Research Progress on Preparation and Electrocatalytic Performance of Tin Dioxide Nanomaterials

In the contemporary era of rapid economic growth, addressing the energy issue constitutes a significant subject. In contrast to traditional fossil energy, fuel cells, through specific transformation routes, can generate more energy and reduce pollution under the same conversion relationship. Direct...

Full description

Saved in:
Bibliographic Details
Published inChemical record Vol. 25; no. 5; pp. e202500007 - n/a
Main Authors Liu, Chang, Wang, Weixia, Wu, Feiyang, Zhang, Jiayi, Chen, Chunguang, Cheng, Ping, Zhu, Yuanzheng, Zhang, Shuping, Seong, Gimyeong
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.05.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the contemporary era of rapid economic growth, addressing the energy issue constitutes a significant subject. In contrast to traditional fossil energy, fuel cells, through specific transformation routes, can generate more energy and reduce pollution under the same conversion relationship. Direct alcohol fuel cells, as a type of proton exchange membrane fuel cell, exhibit relatively superior performance. During the process of converting chemical energy into electrical energy, the conversion efficiency of the electrode is a crucial aspect of the fuel cell′s performance, thereby giving rise to electrode electrocatalysis. Nevertheless, the noble metal catalysts employed in current direct alcohol fuel cells are confronted with issues such as high cost, susceptibility to poisoning, and poor durability. A new approach to these problems is urgently needed. Loading noble metals onto metal oxides has been verified as an effective means. Among them, tin dioxide has attracted the attention of researchers due to its outstanding stability, anti‐toxicity, and its positive auxiliary role in electrocatalysis. This article will conduct a review of the research progress in loading noble metals on tin dioxide carriers for the electrocatalytic oxidation of small molecule alcohols from various microstructures and loading methods. Finally, the research on metal dioxide electrocatalysts is prospected. Direct alcohol fuel cells have excellent performance, but the noble metal catalyst of their electrode has the problems of high cost, easy poisoning and poor durability. Tin dioxide can play an active auxiliary role in the catalytic process. In this paper, the study of supporting noble metals on tin dioxide support for electrocatalysis of small molecular alcohols is reviewed in terms of different micro‐structure and loading methods.
AbstractList In the contemporary era of rapid economic growth, addressing the energy issue constitutes a significant subject. In contrast to traditional fossil energy, fuel cells, through specific transformation routes, can generate more energy and reduce pollution under the same conversion relationship. Direct alcohol fuel cells, as a type of proton exchange membrane fuel cell, exhibit relatively superior performance. During the process of converting chemical energy into electrical energy, the conversion efficiency of the electrode is a crucial aspect of the fuel cell's performance, thereby giving rise to electrode electrocatalysis. Nevertheless, the noble metal catalysts employed in current direct alcohol fuel cells are confronted with issues such as high cost, susceptibility to poisoning, and poor durability. A new approach to these problems is urgently needed. Loading noble metals onto metal oxides has been verified as an effective means. Among them, tin dioxide has attracted the attention of researchers due to its outstanding stability, anti-toxicity, and its positive auxiliary role in electrocatalysis. This article will conduct a review of the research progress in loading noble metals on tin dioxide carriers for the electrocatalytic oxidation of small molecule alcohols from various microstructures and loading methods. Finally, the research on metal dioxide electrocatalysts is prospected.
In the contemporary era of rapid economic growth, addressing the energy issue constitutes a significant subject. In contrast to traditional fossil energy, fuel cells, through specific transformation routes, can generate more energy and reduce pollution under the same conversion relationship. Direct alcohol fuel cells, as a type of proton exchange membrane fuel cell, exhibit relatively superior performance. During the process of converting chemical energy into electrical energy, the conversion efficiency of the electrode is a crucial aspect of the fuel cell's performance, thereby giving rise to electrode electrocatalysis. Nevertheless, the noble metal catalysts employed in current direct alcohol fuel cells are confronted with issues such as high cost, susceptibility to poisoning, and poor durability. A new approach to these problems is urgently needed. Loading noble metals onto metal oxides has been verified as an effective means. Among them, tin dioxide has attracted the attention of researchers due to its outstanding stability, anti-toxicity, and its positive auxiliary role in electrocatalysis. This article will conduct a review of the research progress in loading noble metals on tin dioxide carriers for the electrocatalytic oxidation of small molecule alcohols from various microstructures and loading methods. Finally, the research on metal dioxide electrocatalysts is prospected.In the contemporary era of rapid economic growth, addressing the energy issue constitutes a significant subject. In contrast to traditional fossil energy, fuel cells, through specific transformation routes, can generate more energy and reduce pollution under the same conversion relationship. Direct alcohol fuel cells, as a type of proton exchange membrane fuel cell, exhibit relatively superior performance. During the process of converting chemical energy into electrical energy, the conversion efficiency of the electrode is a crucial aspect of the fuel cell's performance, thereby giving rise to electrode electrocatalysis. Nevertheless, the noble metal catalysts employed in current direct alcohol fuel cells are confronted with issues such as high cost, susceptibility to poisoning, and poor durability. A new approach to these problems is urgently needed. Loading noble metals onto metal oxides has been verified as an effective means. Among them, tin dioxide has attracted the attention of researchers due to its outstanding stability, anti-toxicity, and its positive auxiliary role in electrocatalysis. This article will conduct a review of the research progress in loading noble metals on tin dioxide carriers for the electrocatalytic oxidation of small molecule alcohols from various microstructures and loading methods. Finally, the research on metal dioxide electrocatalysts is prospected.
In the contemporary era of rapid economic growth, addressing the energy issue constitutes a significant subject. In contrast to traditional fossil energy, fuel cells, through specific transformation routes, can generate more energy and reduce pollution under the same conversion relationship. Direct alcohol fuel cells, as a type of proton exchange membrane fuel cell, exhibit relatively superior performance. During the process of converting chemical energy into electrical energy, the conversion efficiency of the electrode is a crucial aspect of the fuel cell′s performance, thereby giving rise to electrode electrocatalysis. Nevertheless, the noble metal catalysts employed in current direct alcohol fuel cells are confronted with issues such as high cost, susceptibility to poisoning, and poor durability. A new approach to these problems is urgently needed. Loading noble metals onto metal oxides has been verified as an effective means. Among them, tin dioxide has attracted the attention of researchers due to its outstanding stability, anti‐toxicity, and its positive auxiliary role in electrocatalysis. This article will conduct a review of the research progress in loading noble metals on tin dioxide carriers for the electrocatalytic oxidation of small molecule alcohols from various microstructures and loading methods. Finally, the research on metal dioxide electrocatalysts is prospected. Direct alcohol fuel cells have excellent performance, but the noble metal catalyst of their electrode has the problems of high cost, easy poisoning and poor durability. Tin dioxide can play an active auxiliary role in the catalytic process. In this paper, the study of supporting noble metals on tin dioxide support for electrocatalysis of small molecular alcohols is reviewed in terms of different micro‐structure and loading methods.
Author Zhang, Jiayi
Chen, Chunguang
Zhu, Yuanzheng
Wang, Weixia
Wu, Feiyang
Zhang, Shuping
Cheng, Ping
Liu, Chang
Seong, Gimyeong
Author_xml – sequence: 1
  givenname: Chang
  surname: Liu
  fullname: Liu, Chang
  organization: University of Shanghai for Science and Technology
– sequence: 2
  givenname: Weixia
  surname: Wang
  fullname: Wang, Weixia
  organization: University of Shanghai for Science and Technology
– sequence: 3
  givenname: Feiyang
  surname: Wu
  fullname: Wu, Feiyang
  organization: University of Shanghai for Science and Technology
– sequence: 4
  givenname: Jiayi
  surname: Zhang
  fullname: Zhang, Jiayi
  organization: University of Shanghai for Science and Technology
– sequence: 5
  givenname: Chunguang
  surname: Chen
  fullname: Chen, Chunguang
  organization: University of Shanghai for Science and Technology
– sequence: 6
  givenname: Ping
  surname: Cheng
  fullname: Cheng, Ping
  organization: University of Shanghai for Science and Technology
– sequence: 7
  givenname: Yuanzheng
  orcidid: 0000-0002-5687-8766
  surname: Zhu
  fullname: Zhu, Yuanzheng
  email: zyz@usst.edu.cn
  organization: University of Shanghai for Science and Technology
– sequence: 8
  givenname: Shuping
  surname: Zhang
  fullname: Zhang, Shuping
  organization: University of Shanghai for Science and Technology
– sequence: 9
  givenname: Gimyeong
  surname: Seong
  fullname: Seong, Gimyeong
  organization: The University of Suwon
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40195570$$D View this record in MEDLINE/PubMed
BookMark eNp90c9vFCEUB3BiauwPPXo1k3jxMvUBwwBHs63VpNGmWa-SV-aN0szACrPR_e9L3VoTD3J538MHQt73mB3EFImxlxxOOYB4u_h8KkAoqEc_YUdcCdNCb_nB76xbY609ZMel3AJw3mn9jB12wK1SGo7Y12sqhNl_b65y-paplCbFmmmDGZdQM8ahOZ_ILzl5XHDaLcE3V5THlGeMnpo0NusQm7OQfoWBmk8Y04wL5YBTec6ejnXQi4d5wr68P1-vPrSXny8-rt5dtl4KrVvb02CRowWSajTYo-i87DozCg0W1WANjV3fc8NvoMPOw-BHq-XQK-6lB3nC3uzf3eT0Y0tlcXMonqYJI6VtcZIbrYTS4p6-_ofepm2O9XdOCmGMBK14Va8e1PZmpsFtcpgx79yfzVXQ7oHPqZRM4yPh4O6bcbUZ99hM9Xrvf4aJdv_Hbr26_nvzDvyRj9U
Cites_doi 10.1016/j.materresbull.2022.112086
10.1016/j.enconman.2024.118244
10.1016/j.vacuum.2023.111914
10.1016/j.jcis.2019.11.009
10.1021/acs.energyfuels.4c03600
10.3390/catal12060596
10.1021/acssuschemeng.8b02567
10.1021/acscatal.9b01375
10.1016/j.apsusc.2022.153500
10.1016/j.jelechem.2021.115641
10.1021/ja505456w
10.1016/j.jpowsour.2013.12.008
10.1002/smll.202005048
10.1002/adma.202005767
10.1021/acs.energyfuels.3c04556
10.1186/s13065-014-0049-0
10.1016/j.ijhydene.2022.11.168
10.1039/C5TA01476J
10.1007/s12678-017-0424-4
10.3390/catal10080866
10.1016/j.ijhydene.2014.08.079
10.1016/j.jhazmat.2022.130444
10.1016/j.snb.2024.136022
10.1016/j.coco.2021.100703
10.3390/s22082934
10.1002/adma.202211099
10.1021/acsami.7b07866
10.1016/j.cap.2023.07.004
10.1021/acsami.9b19442
10.1016/j.nantod.2021.101265
10.1016/j.jelechem.2020.114363
10.1039/D2NR06142B
10.1016/j.apsusc.2017.11.154
10.1039/D0TA02509G
10.1039/D1NR04621G
10.1016/j.electacta.2022.141044
10.3390/catal14010060
10.1007/s12598-024-02917-0
10.1021/acs.nanolett.1c02501
10.1016/j.mtchem.2023.101797
10.1021/acscatal.0c03212
10.1002/adma.202202943
10.1016/j.cej.2023.146709
10.1080/01614940.2020.1802811
10.1016/j.jallcom.2023.169665
10.1016/j.apenergy.2024.122629
10.1073/pnas.2207326119
10.1016/j.jcat.2021.04.024
10.1002/wene.419
10.1007/s10800-012-0520-3
10.1016/j.vacuum.2023.112023
10.1038/nmat2359
10.1039/D2TA00178K
10.1039/D1TA09359B
10.1016/j.jmst.2022.01.022
10.1021/ja306384x
10.1039/D0TA08693B
10.1016/j.jelechem.2021.115164
10.1016/j.mssp.2020.105020
10.3390/catal12010030
10.1016/j.snb.2013.06.076
10.1007/s10562-023-04419-7
10.1039/C9TA10941B
10.1021/acsaem.0c00717
10.1088/1361-6528/acdbd3
10.1016/j.electacta.2016.06.089
10.34133/2022/9871842
10.1016/j.jechem.2022.11.023
10.1021/cr4007335
10.1002/anie.201804142
10.1016/j.snb.2023.133545
10.1016/j.jmst.2023.04.043
10.1021/acs.inorgchem.3c04634
10.1016/j.apsusc.2021.151922
10.1016/j.inoche.2024.113036
10.1002/cssc.201901487
10.1016/j.jelechem.2023.117768
10.1002/cphc.201800519
10.1016/j.mseb.2023.116687
10.1007/s10854-023-09954-y
10.1039/D1RA01841H
10.3390/molecules28124613
10.3390/molecules14020738
10.1016/j.matre.2023.100197
10.1039/C9TA10886F
10.1002/celc.201900220
10.1088/2053-1591/ac6cce
10.1016/j.powtec.2017.12.028
10.3390/molecules29163753
10.1007/s12598-023-02428-4
10.1038/s41598-021-90939-4
10.1016/j.apsusc.2018.12.002
10.1016/j.physleta.2019.126174
10.1016/j.ijhydene.2023.06.263
10.1016/j.jre.2018.02.007
10.1007/s12274-022-4298-2
10.1021/acsomega.3c06414
10.1002/smll.202302327
10.1016/j.physb.2024.415948
10.1016/j.materresbull.2020.110820
10.1021/jz3015925
10.1016/j.cej.2024.149113
10.1007/s10008-017-3567-6
10.1016/j.apcatb.2020.119275
10.1002/anie.201608279
10.1021/acs.jpcc.3c07378
10.1016/j.ijhydene.2023.02.013
10.1016/j.ijhydene.2021.09.088
10.1007/s12649-021-01604-w
10.3390/su151914368
10.1007/s00604-022-05555-4
10.1016/j.cej.2021.128814
10.1016/j.jpcs.2020.109883
10.1016/j.electacta.2014.12.099
10.1016/j.jelechem.2022.116793
10.1007/s00339-020-04228-4
10.1002/adma.201603286
10.1002/smll.202405322
10.1016/j.biortech.2022.127299
10.1021/acscatal.0c02220
10.1016/j.cej.2024.156321
10.1016/j.cej.2022.135102
ContentType Journal Article
Copyright 2025 The Chemical Society of Japan and Wiley-VCH GmbH
2025 The Chemical Society of Japan and Wiley-VCH GmbH.
Copyright_xml – notice: 2025 The Chemical Society of Japan and Wiley-VCH GmbH
– notice: 2025 The Chemical Society of Japan and Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7QO
7T7
8FD
C1K
FR3
P64
7X8
DOI 10.1002/tcr.202500007
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Engineering Research Database
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1528-0691
EndPage n/a
ExternalDocumentID 40195570
10_1002_tcr_202500007
TCR202500007
Genre reviewArticle
Journal Article
Review
GroupedDBID ---
.3N
.Y3
05W
0R~
10A
123
1OC
29B
31~
33P
3WU
4.4
50Y
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
53G
5VS
66C
702
7PT
8-1
8UM
AAESR
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ASPBG
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BMXJE
BROTX
BRXPI
BY8
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
F5P
FEDTE
G-S
G.N
GODZA
HF~
HGLYW
HVGLF
HZ~
IX1
J0M
LATKE
LAW
LC2
LC3
LEEKS
LH-
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MSFUL
MSSTM
MXFUL
MXSTM
MY~
N9A
O9-
OIG
P2W
P4D
Q11
QB0
QRW
R.K
ROL
RX1
SUPJJ
V2E
W99
WBKPD
WOHZO
WQJ
WXSBR
WYUIH
XG1
XV2
ZZTAW
~IA
AAMMB
AAYXX
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
NPM
7QO
7T7
8FD
C1K
FR3
P64
7X8
ID FETCH-LOGICAL-c3277-96ed9a1a90e35f8a6a24c3448f2709a5d98ef466181b04a4c0dcf973d651c3c03
IEDL.DBID DR2
ISSN 1527-8999
1528-0691
IngestDate Fri Jul 11 18:46:57 EDT 2025
Sat Jul 12 02:35:34 EDT 2025
Mon Jul 21 05:47:43 EDT 2025
Sun Jul 06 05:07:59 EDT 2025
Mon May 12 09:30:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Electrocatalysis
Tin dioxide
Small molecule alcohol oxidation
Fuel cell
Language English
License 2025 The Chemical Society of Japan and Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3277-96ed9a1a90e35f8a6a24c3448f2709a5d98ef466181b04a4c0dcf973d651c3c03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-5687-8766
PMID 40195570
PQID 3228830751
PQPubID 1006501
PageCount 22
ParticipantIDs proquest_miscellaneous_3187525720
proquest_journals_3228830751
pubmed_primary_40195570
crossref_primary_10_1002_tcr_202500007
wiley_primary_10_1002_tcr_202500007_TCR202500007
PublicationCentury 2000
PublicationDate May 2025
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: May 2025
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Chemical record
PublicationTitleAlternate Chem Rec
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2023; 77
2018; 326
2020; 560
2019; 12
2020; 16
2020; 12
2025
2020; 10
2022; 22
2024; 38
2014; 252
2022; 577
2014; 136
2023; 64
2018; 6
2009; 14
2012; 135
2021; 399
2023; 296
2024; 359
2023; 212
2023; 211
2022; 34
2021; 150
2024; 20
2024; 29
2018; 36
2023; 53
2019; 7
2021; 46
2022; 594
2019; 9
2019; 6
2024; 128
2020; 384
2023; 165
2013; 188
2024; 483
2023; 444
2020; 33
2022; 119
2024; 14
2022; 355
2023; 42
2018; 19
2022; 189
2023; 48
2021; 898
2021; 414
2024; 416
2022; 9
2023; 154
2022; 12
2016; 211
2022; 15
2023; 158
2020; 277
2022; 10
2014; 39
2024; 499
2016; 29
2021; 25
2023; 35
2021; 21
2023; 34
2020; 64
2023; 383
2024; 304
2023; 8
2021; 887
2021; 127
2020; 126
2023; 3
2023; 948
2023; 947
2017; 9
2020; 8
2020; 3
2023; 28
2024; 63
2022; 923
2019; 471
2014; 8
2021; 40
2022; 124
2015; 162
2015; 3
2017; 2017
2013; 43
2023; 15
2017; 21
2023; 19
2024; 50
2024; 684
2024; 169
2014; 114
2022; 435
2016; 56
2021; 13
2012; 3
2021; 12
2022; 2022
2021; 11
2018; 435
2023; 476
2009; 8
2024; 44
2022; 429
2020; 873
2020; 113
2018; 57
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_5_1
e_1_2_8_9_1
e_1_2_8_117_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_113_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_109_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_120_1
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_110_1
e_1_2_8_6_1
Li S.-H. (e_1_2_8_118_1) 2017; 2017
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_18_1
e_1_2_8_37_1
e_1_2_8_79_1
e_1_2_8_94_1
e_1_2_8_90_1
e_1_2_8_121_1
e_1_2_8_98_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_106_1
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_102_1
e_1_2_8_71_1
e_1_2_8_125_1
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_119_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
Ozbakir Y. (e_1_2_8_70_1) 2025
e_1_2_8_122_1
e_1_2_8_97_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_93_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_69_1
e_1_2_8_80_1
e_1_2_8_4_1
Horiguchi D. (e_1_2_8_14_1) 2023; 64
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_84_1
e_1_2_8_112_1
e_1_2_8_61_1
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_58_1
e_1_2_8_92_1
e_1_2_8_96_1
e_1_2_8_100_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_73_1
e_1_2_8_123_1
e_1_2_8_50_1
e_1_2_8_104_1
References_xml – volume: 471
  start-page: 263
  year: 2019
  end-page: 272
  publication-title: Appl. Surf. Sci.
– volume: 135
  start-page: 132
  year: 2012
  end-page: 141
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 26921
  year: 2017
  end-page: 26927
  publication-title: ACS Appl. Mater. Interfaces
– volume: 40
  year: 2021
  publication-title: Nano Today
– volume: 8
  start-page: 44964
  year: 2023
  end-page: 44976
  publication-title: ACS Omega
– volume: 499
  year: 2024
  publication-title: Chem. Eng. J.
– volume: 8
  start-page: 325
  year: 2009
  end-page: 330
  publication-title: Nat. Mater.
– volume: 165
  start-page: 85
  year: 2023
  end-page: 93
  publication-title: J. Mater. Sci. Technol.
– volume: 399
  start-page: 8
  year: 2021
  end-page: 14
  publication-title: J. Catal.
– volume: 3
  start-page: 5774
  year: 2020
  end-page: 5783
  publication-title: ACS Appl. Energ. Mater.
– volume: 12
  start-page: 4140
  year: 2019
  end-page: 4159
  publication-title: ChemSusChem
– volume: 359
  year: 2024
  publication-title: Appl. Energy
– volume: 3
  start-page: 3286
  year: 2012
  end-page: 3290
  publication-title: J. Phys. Chem. Lett.
– volume: 3
  year: 2023
  publication-title: Materials Reports: Energy
– volume: 34
  year: 2023
  publication-title: Materials Today Chemistry
– volume: 8
  start-page: 592
  year: 2020
  end-page: 598
  publication-title: J. Mater. Chem. A
– volume: 13
  start-page: 1705
  year: 2021
  end-page: 1716
  publication-title: Waste and Biomass Valorization
– volume: 594
  year: 2022
  publication-title: Appl. Surf. Sci.
– volume: 435
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 304
  year: 2024
  publication-title: Energy Convers. Manage.
– volume: 14
  start-page: 60
  year: 2024
  publication-title: Catalysts
– volume: 34
  year: 2023
  publication-title: Nanotechnology
– volume: 9
  start-page: 6607
  year: 2019
  end-page: 6612
  publication-title: ACS Catal.
– volume: 39
  start-page: 17583
  year: 2014
  end-page: 17588
  publication-title: Int. J. Hydrogen Energy
– volume: 483
  year: 2024
  publication-title: Chem. Eng. J.
– volume: 20
  year: 2024
  publication-title: Small
– volume: 13
  start-page: 16307
  year: 2021
  end-page: 16315
  publication-title: Nanoscale
– volume: 212
  year: 2023
  publication-title: Vacuum
– volume: 10
  start-page: 866
  year: 2020
  publication-title: Catalysts
– volume: 25
  year: 2021
  publication-title: Composites Communications
– volume: 36
  start-page: 974
  year: 2018
  end-page: 980
  publication-title: J. Rare Earth
– volume: 14
  start-page: 738
  year: 2009
  end-page: 754
  publication-title: Molecules
– volume: 8
  start-page: 15992
  year: 2020
  end-page: 16005
  publication-title: J. Mater. Chem. A
– volume: 64
  start-page: 126
  year: 2020
  end-page: 228
  publication-title: Catal. Rev.
– volume: 429
  year: 2022
  publication-title: Electrochim. Acta
– volume: 560
  start-page: 802
  year: 2020
  end-page: 810
  publication-title: J. Colloid Interface Sci.
– volume: 947
  year: 2023
  publication-title: J. Electroanal. Chem.
– volume: 296
  year: 2023
  publication-title: Mater. Sci. Eng. B
– volume: 7
  start-page: 27377
  year: 2019
  end-page: 27382
  publication-title: J. Mater. Chem. A
– volume: 77
  start-page: 499
  year: 2023
  end-page: 513
  publication-title: J. Energy Chem.
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 383
  year: 2023
  publication-title: Sens. Actuators B
– volume: 6
  start-page: 2107
  year: 2019
  end-page: 2118
  publication-title: ChemElectroChem
– volume: 12
  start-page: 4594
  year: 2020
  end-page: 4606
  publication-title: ACS Appl. Mater. Interfaces
– volume: 211
  start-page: 636
  year: 2016
  end-page: 643
  publication-title: Electrochim. Acta
– volume: 126
  year: 2020
  publication-title: Mater. Res. Bull.
– volume: 10
  start-page: 14540
  year: 2020
  end-page: 14551
  publication-title: ACS Catal.
– volume: 898
  year: 2021
  publication-title: J. Electroanal. Chem.
– volume: 50
  start-page: 761
  year: 2024
  end-page: 771
  publication-title: Int. J. Hydrogen Energy
– volume: 124
  start-page: 102
  year: 2022
  end-page: 108
  publication-title: J. Mater. Sci. Technol.
– volume: 277
  year: 2020
  publication-title: Appl. Catal. B
– volume: 158
  year: 2023
  publication-title: Mater. Res. Bull.
– volume: 10
  start-page: 10150
  year: 2022
  end-page: 10161
  publication-title: J. Mater. Chem. A
– volume: 444
  year: 2023
  publication-title: J. Hazard. Mater.
– volume: 948
  year: 2023
  publication-title: J. Alloys Compd.
– volume: 29
  start-page: 3753
  year: 2024
  publication-title: Molecules
– volume: 10
  start-page: 10399
  year: 2020
  end-page: 10411
  publication-title: ACS Catal.
– volume: 6
  start-page: 14026
  year: 2018
  end-page: 14032
  publication-title: ACS Sustainable Chem. Eng.
– volume: 252
  start-page: 156
  year: 2014
  end-page: 163
  publication-title: J. Power Sources
– volume: 114
  start-page: 7442
  year: 2014
  end-page: 7486
  publication-title: Chem. Rev.
– volume: 28
  start-page: 4613
  year: 2023
  publication-title: Molecules
– volume: 188
  start-page: 85
  year: 2013
  end-page: 93
  publication-title: Sens. Actuators B
– volume: 169
  year: 2024
  publication-title: Inorg. Chem. Commun.
– volume: 42
  start-page: 3614
  year: 2023
  end-page: 3621
  publication-title: Rare Met.
– volume: 12
  start-page: 30
  year: 2021
  publication-title: Catalysts
– volume: 384
  year: 2020
  publication-title: Phys. Lett. A
– volume: 15
  start-page: 6026
  year: 2022
  end-page: 6035
  publication-title: Nano Res.
– volume: 326
  start-page: 479
  year: 2018
  end-page: 487
  publication-title: Powder Technol.
– volume: 150
  year: 2021
  publication-title: J. Phys. Chem. Solids
– volume: 189
  start-page: 451
  year: 2022
  publication-title: Microchim. Acta
– volume: 119
  year: 2022
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 923
  year: 2022
  publication-title: J. Electroanal. Chem.
– volume: 127
  start-page: 66
  year: 2021
  publication-title: Appl. Phys. A
– volume: 3
  start-page: 13492
  year: 2015
  end-page: 13499
  publication-title: J. Mater. Chem. A
– volume: 11
  start-page: 419
  year: 2021
  publication-title: WIREs Energy and Environment
– volume: 64
  start-page: 215
  year: 2023
  end-page: 220
  publication-title: The Electrochem. Soc.
– volume: 43
  start-page: 171
  year: 2013
  end-page: 179
  publication-title: J. Appl. Electrochem.
– volume: 57
  start-page: 9475
  year: 2018
  end-page: 9479
  publication-title: Angew. Chem. Int. Ed.
– volume: 211
  year: 2023
  publication-title: Vacuum
– volume: 15
  start-page: 2122
  year: 2023
  end-page: 2133
  publication-title: Nanoscale
– volume: 136
  start-page: 10862
  year: 2014
  end-page: 10865
  publication-title: J. Am. Chem. Soc.
– volume: 154
  start-page: 1806
  year: 2023
  end-page: 1818
  publication-title: Catal. Lett.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 355
  year: 2022
  publication-title: Bioresour. Technol.
– volume: 12
  start-page: 596
  year: 2022
  publication-title: Catalysts
– volume: 16
  year: 2020
  publication-title: Small
– volume: 46
  start-page: 38270
  year: 2021
  end-page: 38280
  publication-title: Int. J. Hydrogen Energy
– volume: 113
  year: 2020
  publication-title: Mater. Sci. Semicond. Process.
– volume: 44
  start-page: 349
  year: 2024
  end-page: 357
  publication-title: Rare Met.
– volume: 11
  start-page: 11304
  year: 2021
  publication-title: Sci. Rep.
– volume: 577
  year: 2022
  publication-title: Appl. Surf. Sci.
– volume: 21
  start-page: 2449
  year: 2017
  end-page: 2456
  publication-title: J. Solid State Electrochem.
– volume: 2017
  start-page: 1
  year: 2017
  end-page: 6
  publication-title: Advances in Condensed Matter Physics
– volume: 56
  start-page: 505
  year: 2016
  end-page: 509
  publication-title: Angew. Chem. Int. Ed.
– volume: 2022
  year: 2022
  publication-title: Energy Material Advances
– volume: 19
  year: 2023
  publication-title: Small
– volume: 22
  start-page: 2934
  year: 2022
  publication-title: Sensors
– volume: 873
  year: 2020
  publication-title: J. Electroanal. Chem.
– volume: 887
  year: 2021
  publication-title: J. Electroanal. Chem.
– volume: 8
  start-page: 20931
  year: 2020
  end-page: 20938
  publication-title: J. Mater. Chem. A
– volume: 10
  start-page: 4254
  year: 2022
  end-page: 4265
  publication-title: J. Mater. Chem. A
– volume: 128
  start-page: 3193
  year: 2024
  end-page: 3203
  publication-title: J. Phys. Chem. C
– volume: 11
  start-page: 16768
  year: 2021
  end-page: 16804
  publication-title: RSC Adv.
– volume: 9
  year: 2022
  publication-title: Mater. Res. Express
– start-page: 04861c
  year: 2025
  publication-title: J. Mater. Chem. C
– volume: 162
  start-page: 282
  year: 2015
  end-page: 289
  publication-title: Electrochim. Acta
– volume: 33
  year: 2020
  publication-title: Adv. Mater.
– volume: 34
  start-page: 488
  year: 2023
  publication-title: J. Mater. Sci. Mater. Electron.
– volume: 29
  year: 2016
  publication-title: Adv. Mater.
– volume: 435
  start-page: 535
  year: 2018
  end-page: 542
  publication-title: Appl. Surf. Sci.
– volume: 684
  year: 2024
  publication-title: Physica B: Condensed Matter
– volume: 48
  start-page: 15492
  year: 2023
  end-page: 15503
  publication-title: Int. J. Hydrogen Energy
– volume: 53
  start-page: 165
  year: 2023
  end-page: 171
  publication-title: Curr. Appl. Phys.
– volume: 38
  start-page: 2759
  year: 2024
  end-page: 2776
  publication-title: Energy Fuels
– volume: 414
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 63
  start-page: 4364
  year: 2024
  end-page: 4372
  publication-title: Inorg. Chem.
– volume: 48
  start-page: 19103
  year: 2023
  end-page: 19114
  publication-title: Int. J. Hydrogen Energy
– volume: 15
  start-page: 14368
  year: 2023
  publication-title: Sustainability
– volume: 21
  start-page: 7309
  year: 2021
  end-page: 7316
  publication-title: Nano Lett.
– volume: 476
  year: 2023
  publication-title: Chem. Eng. J.
– volume: 19
  start-page: 2717
  year: 2018
  end-page: 2723
  publication-title: ChemPhysChem
– volume: 416
  year: 2024
  publication-title: Sens. Actuators B
– volume: 9
  start-page: 76
  year: 2017
  end-page: 85
  publication-title: Electrocatalysis
– volume: 8
  start-page: 49
  year: 2014
  publication-title: Chemistry Central
– volume: 38
  start-page: 22543
  year: 2024
  end-page: 22553
  publication-title: Energy Fuels
– ident: e_1_2_8_125_1
  doi: 10.1016/j.materresbull.2022.112086
– ident: e_1_2_8_1_1
  doi: 10.1016/j.enconman.2024.118244
– ident: e_1_2_8_120_1
  doi: 10.1016/j.vacuum.2023.111914
– ident: e_1_2_8_28_1
  doi: 10.1016/j.jcis.2019.11.009
– ident: e_1_2_8_79_1
  doi: 10.1021/acs.energyfuels.4c03600
– ident: e_1_2_8_90_1
  doi: 10.3390/catal12060596
– ident: e_1_2_8_31_1
  doi: 10.1021/acssuschemeng.8b02567
– ident: e_1_2_8_76_1
  doi: 10.1021/acscatal.9b01375
– ident: e_1_2_8_72_1
  doi: 10.1016/j.apsusc.2022.153500
– ident: e_1_2_8_24_1
  doi: 10.1016/j.jelechem.2021.115641
– ident: e_1_2_8_105_1
  doi: 10.1021/ja505456w
– ident: e_1_2_8_80_1
  doi: 10.1016/j.jpowsour.2013.12.008
– ident: e_1_2_8_54_1
  doi: 10.1002/smll.202005048
– ident: e_1_2_8_69_1
  doi: 10.1002/adma.202005767
– ident: e_1_2_8_2_1
  doi: 10.1021/acs.energyfuels.3c04556
– ident: e_1_2_8_44_1
  doi: 10.1186/s13065-014-0049-0
– ident: e_1_2_8_35_1
  doi: 10.1016/j.ijhydene.2022.11.168
– ident: e_1_2_8_13_1
  doi: 10.1039/C5TA01476J
– ident: e_1_2_8_58_1
  doi: 10.1007/s12678-017-0424-4
– ident: e_1_2_8_59_1
  doi: 10.3390/catal10080866
– ident: e_1_2_8_66_1
  doi: 10.1016/j.ijhydene.2014.08.079
– ident: e_1_2_8_85_1
  doi: 10.1016/j.jhazmat.2022.130444
– ident: e_1_2_8_74_1
  doi: 10.1016/j.snb.2024.136022
– ident: e_1_2_8_115_1
  doi: 10.1016/j.coco.2021.100703
– ident: e_1_2_8_112_1
  doi: 10.3390/s22082934
– ident: e_1_2_8_10_1
  doi: 10.1002/adma.202211099
– ident: e_1_2_8_33_1
  doi: 10.1021/acsami.7b07866
– ident: e_1_2_8_86_1
  doi: 10.1016/j.cap.2023.07.004
– ident: e_1_2_8_37_1
  doi: 10.1021/acsami.9b19442
– ident: e_1_2_8_117_1
  doi: 10.1016/j.nantod.2021.101265
– ident: e_1_2_8_34_1
  doi: 10.1016/j.jelechem.2020.114363
– ident: e_1_2_8_123_1
  doi: 10.1039/D2NR06142B
– ident: e_1_2_8_62_1
  doi: 10.1016/j.apsusc.2017.11.154
– ident: e_1_2_8_101_1
  doi: 10.1039/D0TA02509G
– ident: e_1_2_8_114_1
  doi: 10.1039/D1NR04621G
– ident: e_1_2_8_17_1
  doi: 10.1016/j.electacta.2022.141044
– ident: e_1_2_8_68_1
  doi: 10.3390/catal14010060
– ident: e_1_2_8_102_1
  doi: 10.1007/s12598-024-02917-0
– ident: e_1_2_8_94_1
  doi: 10.1021/acs.nanolett.1c02501
– ident: e_1_2_8_71_1
  doi: 10.1016/j.mtchem.2023.101797
– ident: e_1_2_8_124_1
  doi: 10.1021/acscatal.0c03212
– ident: e_1_2_8_81_1
  doi: 10.1002/adma.202202943
– ident: e_1_2_8_20_1
  doi: 10.1016/j.cej.2023.146709
– ident: e_1_2_8_11_1
  doi: 10.1080/01614940.2020.1802811
– ident: e_1_2_8_27_1
  doi: 10.1016/j.jallcom.2023.169665
– ident: e_1_2_8_5_1
  doi: 10.1016/j.apenergy.2024.122629
– ident: e_1_2_8_49_1
  doi: 10.1073/pnas.2207326119
– ident: e_1_2_8_97_1
  doi: 10.1016/j.jcat.2021.04.024
– ident: e_1_2_8_12_1
  doi: 10.1002/wene.419
– ident: e_1_2_8_65_1
  doi: 10.1007/s10800-012-0520-3
– ident: e_1_2_8_109_1
  doi: 10.1016/j.vacuum.2023.112023
– ident: e_1_2_8_103_1
  doi: 10.1038/nmat2359
– ident: e_1_2_8_7_1
  doi: 10.1039/D2TA00178K
– ident: e_1_2_8_52_1
  doi: 10.1039/D1TA09359B
– ident: e_1_2_8_121_1
  doi: 10.1016/j.jmst.2022.01.022
– ident: e_1_2_8_78_1
  doi: 10.1021/ja306384x
– ident: e_1_2_8_106_1
  doi: 10.1039/D0TA08693B
– ident: e_1_2_8_107_1
  doi: 10.1016/j.jelechem.2021.115164
– ident: e_1_2_8_95_1
  doi: 10.1016/j.mssp.2020.105020
– ident: e_1_2_8_19_1
  doi: 10.3390/catal12010030
– ident: e_1_2_8_88_1
  doi: 10.1016/j.snb.2013.06.076
– ident: e_1_2_8_9_1
  doi: 10.1007/s10562-023-04419-7
– ident: e_1_2_8_39_1
  doi: 10.1039/C9TA10941B
– ident: e_1_2_8_46_1
  doi: 10.1021/acsaem.0c00717
– ident: e_1_2_8_57_1
  doi: 10.1088/1361-6528/acdbd3
– ident: e_1_2_8_40_1
  doi: 10.1016/j.electacta.2016.06.089
– ident: e_1_2_8_77_1
  doi: 10.34133/2022/9871842
– ident: e_1_2_8_8_1
  doi: 10.1016/j.jechem.2022.11.023
– ident: e_1_2_8_43_1
  doi: 10.1021/cr4007335
– ident: e_1_2_8_119_1
  doi: 10.1002/anie.201804142
– ident: e_1_2_8_83_1
  doi: 10.1016/j.snb.2023.133545
– ident: e_1_2_8_113_1
  doi: 10.1016/j.jmst.2023.04.043
– ident: e_1_2_8_100_1
  doi: 10.1021/acs.inorgchem.3c04634
– ident: e_1_2_8_93_1
  doi: 10.1016/j.apsusc.2021.151922
– ident: e_1_2_8_73_1
  doi: 10.1016/j.inoche.2024.113036
– ident: e_1_2_8_92_1
  doi: 10.1002/cssc.201901487
– ident: e_1_2_8_18_1
  doi: 10.1016/j.jelechem.2023.117768
– ident: e_1_2_8_48_1
  doi: 10.1002/cphc.201800519
– ident: e_1_2_8_110_1
  doi: 10.1016/j.mseb.2023.116687
– ident: e_1_2_8_98_1
  doi: 10.1007/s10854-023-09954-y
– ident: e_1_2_8_3_1
  doi: 10.1039/D1RA01841H
– ident: e_1_2_8_22_1
  doi: 10.3390/molecules28124613
– ident: e_1_2_8_30_1
  doi: 10.3390/molecules14020738
– ident: e_1_2_8_75_1
  doi: 10.1016/j.matre.2023.100197
– ident: e_1_2_8_111_1
  doi: 10.1039/C9TA10886F
– ident: e_1_2_8_29_1
  doi: 10.1002/celc.201900220
– ident: e_1_2_8_38_1
  doi: 10.1088/2053-1591/ac6cce
– ident: e_1_2_8_108_1
  doi: 10.1016/j.powtec.2017.12.028
– ident: e_1_2_8_53_1
  doi: 10.3390/molecules29163753
– ident: e_1_2_8_47_1
  doi: 10.1007/s12598-023-02428-4
– volume: 64
  start-page: 215
  year: 2023
  ident: e_1_2_8_14_1
  publication-title: The Electrochem. Soc.
– ident: e_1_2_8_122_1
  doi: 10.1038/s41598-021-90939-4
– ident: e_1_2_8_42_1
  doi: 10.1016/j.apsusc.2018.12.002
– ident: e_1_2_8_84_1
  doi: 10.1016/j.physleta.2019.126174
– ident: e_1_2_8_87_1
  doi: 10.1016/j.ijhydene.2023.06.263
– volume: 2017
  start-page: 1
  year: 2017
  ident: e_1_2_8_118_1
  publication-title: Advances in Condensed Matter Physics
– ident: e_1_2_8_16_1
  doi: 10.1016/j.jre.2018.02.007
– ident: e_1_2_8_91_1
  doi: 10.1007/s12274-022-4298-2
– ident: e_1_2_8_15_1
  doi: 10.1021/acsomega.3c06414
– ident: e_1_2_8_36_1
  doi: 10.1002/smll.202302327
– ident: e_1_2_8_82_1
  doi: 10.1016/j.physb.2024.415948
– ident: e_1_2_8_116_1
  doi: 10.1016/j.materresbull.2020.110820
– ident: e_1_2_8_99_1
  doi: 10.1021/jz3015925
– ident: e_1_2_8_6_1
  doi: 10.1016/j.cej.2024.149113
– ident: e_1_2_8_67_1
  doi: 10.1007/s10008-017-3567-6
– ident: e_1_2_8_45_1
  doi: 10.1016/j.apcatb.2020.119275
– ident: e_1_2_8_55_1
  doi: 10.1002/anie.201608279
– ident: e_1_2_8_23_1
  doi: 10.1021/acs.jpcc.3c07378
– ident: e_1_2_8_25_1
  doi: 10.1016/j.ijhydene.2023.02.013
– ident: e_1_2_8_61_1
  doi: 10.1016/j.ijhydene.2021.09.088
– ident: e_1_2_8_63_1
  doi: 10.1007/s12649-021-01604-w
– ident: e_1_2_8_4_1
  doi: 10.3390/su151914368
– ident: e_1_2_8_50_1
  doi: 10.1007/s00604-022-05555-4
– ident: e_1_2_8_32_1
  doi: 10.1016/j.cej.2021.128814
– ident: e_1_2_8_26_1
  doi: 10.1016/j.jpcs.2020.109883
– ident: e_1_2_8_56_1
  doi: 10.1016/j.electacta.2014.12.099
– ident: e_1_2_8_21_1
  doi: 10.1016/j.jelechem.2022.116793
– ident: e_1_2_8_64_1
  doi: 10.1007/s00339-020-04228-4
– ident: e_1_2_8_96_1
  doi: 10.1002/adma.201603286
– ident: e_1_2_8_89_1
  doi: 10.1002/smll.202405322
– ident: e_1_2_8_41_1
  doi: 10.1016/j.biortech.2022.127299
– start-page: 04861c
  year: 2025
  ident: e_1_2_8_70_1
  publication-title: J. Mater. Chem. C
– ident: e_1_2_8_60_1
  doi: 10.1021/acscatal.0c02220
– ident: e_1_2_8_104_1
  doi: 10.1016/j.cej.2024.156321
– ident: e_1_2_8_51_1
  doi: 10.1016/j.cej.2022.135102
SSID ssj0011477
Score 2.4070137
SecondaryResourceType review_article
Snippet In the contemporary era of rapid economic growth, addressing the energy issue constitutes a significant subject. In contrast to traditional fossil energy, fuel...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e202500007
SubjectTerms Alcohol fuels
Alcohols
Catalysis
Chemical energy
Dioxides
Economic development
Economic growth
Electrocatalysis
Electrocatalysts
Electrodes
Energy
Fossil fuels
Fuel cell
Fuel cells
Fuel technology
Heavy metals
Metal oxides
Metals
Nanomaterials
Nanotechnology
Noble metals
Oxidation
Pollution control
Proton exchange membrane fuel cells
Small molecule alcohol oxidation
Tin
Tin dioxide
Toxicity
Title Research Progress on Preparation and Electrocatalytic Performance of Tin Dioxide Nanomaterials
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ftcr.202500007
https://www.ncbi.nlm.nih.gov/pubmed/40195570
https://www.proquest.com/docview/3228830751
https://www.proquest.com/docview/3187525720
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS-wwEB7EF3053o_1RgTxrZo2aTd5lFURQRFZwSdrmgssB1rRXVB_vZOmrazCAfEtpU2bZiaTb5LJNwAHKReWcZ3HTuQCHZRExoo7ESvqhDGslDrzZ4evrvOLO355n923eU79WZjAD9EvuPmR0dhrP8BV-XL8SRqKhgrduzRrNuPQBvt4LQ-Kbnv6KIT6TeZFn7k1Rr9CthybWP94pvbsnPQNaM7i1mbiOV-Cx67JId7k39F0Uh7p9y9sjr_4p2X404JSchK0aAXmbLUKC8MuF9waPHQBeuTGx3OhdSR1hWUbmMOxrCpDzkJKnWZF6A1fRW4-TyWQ2pHRuCKn4_p1bCxBq14jWA76vw5352ej4UXcZmaINWv2fHNrpEqUpJZlTqhcpVwz9PRcOqBSZUYK6zhO_QiKKVdcU6OdHDCTZ4lmmrINmK_qym4CcVojIhJMD5TgWhtp0lKn5YDqzFGnVASHnWyKp0DAUQSq5bTA7ir67opgp5Nc0Y7DlwLNlRBoxrIkgv3-Nnae3xZRla2n-EyCPhtarpRG8DdIvP-SV15PUhYBbeT2_yYUo-Ftf7H18yrbsOjLIZ5yB-Ynz1O7i5hnUu41iv0B1bz44A
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7azSG9JE3Th_NoVCi5OdFaslc6lu2GbV6EsAs51ch6wFKwS7ILaX99RtLaybZQCL3JD8myRhp9I42-AficcWEZ10XqRCHQQOnLVHEnUkWdMIZVUuf-7PDFZTGe8tOb_ObJKf7ID9EtuPmREfS1H-B-Qfr4kTUUNRXad1keduNewpqP6h2MquuOQArBfoi96GO3pmhZyCXLJhZwvJJ9dVb6C2quItcw9ZxsgmorHT1Ofhwt5tWR_v0Hn-P__NVr2FjiUvIldqQteGHrN7A-bMPBbcP31kePXHmXLlSQpKkxbSN5OKZVbcgoRtUJi0K_sChy9XgwgTSOTGY1-Tpr7mfGElTsDeLlOATewvRkNBmO02VwhlSzsO1bWCNVX0lqWe6EKlTGNUNjz2UDKlVupLCO4-yPuJhyxTU12skBMyglzTRl76BXN7X9AMRpjaBIMD1QgmttpMkqnVUDqnNHnVIJHLbCKX9GDo4ysi1nJTZX2TVXAnut6MrlULwrUWMJgZos7yfwqXuMjed3RlRtmwW-00ezDZVXRhN4H0Xefcn3X89TlgANgvt3FcrJ8Lq72Hl-lgNYH08uzsvzb5dnu_DK34_ulXvQm98u7D5CoHn1MfTyB2gf_Ps
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB61ILVcWtryCKXUlareAk7sZO0j2mVFaYtWaJE4ERw_pBVSgmBXov31HcdJ0FIJCfXmPOw4nodn7PE3AF9TLizjOo-dyAU6KImMFXciVtQJY1gpdebPDv86zY_P-clFdtHmOfVnYQI-RL_g5iWj0ddewG-MO3gADUVFhe5dmjWbcS9hledUeLYenfX4UWjrN6kXferWGB0L2YJsYgMHS9WXJ6V_LM1lw7WZecZv4arrcwg4ud5fzMt9_ecRnON__NQ6vGmtUnIY2OgdvLDVe3g97JLBfYDLLkKPTHxAF6pHUldYtgE6HMuqMuQo5NRploR-Y1Nk8nAsgdSOTGcVGc3q-5mxBNV6jdZyEIANOB8fTYfHcZuaIdas2fTNrZEqUZJaljmhcpVyzdDVc-mASpUZKazjOPejVUy54poa7eSAmTxLNNOUbcJKVVd2G4jTGk0iwfRACa61kSYtdVoOqM4cdUpF8K2jTXETEDiKgLWcFjhcRT9cEex2lCtaQbwrUF8JgXosSyL40j_GwfP7Iqqy9QLfSdBpQ9WV0gi2AsX7L3nu9ShlEdCGbk93oZgOz_qLnedX-QyvJqNx8fP76Y-PsOZvh9jKXViZ3y7sJ7R_5uVew-N_AYqB-7M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+Progress+on+Preparation+and+Electrocatalytic+Performance+of+Tin+Dioxide+Nanomaterials&rft.jtitle=Chemical+record&rft.au=Liu%2C+Chang&rft.au=Wang%2C+Weixia&rft.au=Wu%2C+Feiyang&rft.au=Zhang%2C+Jiayi&rft.date=2025-05-01&rft.eissn=1528-0691&rft.volume=25&rft.issue=5&rft.spage=e202500007&rft_id=info:doi/10.1002%2Ftcr.202500007&rft_id=info%3Apmid%2F40195570&rft.externalDocID=40195570
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1527-8999&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1527-8999&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1527-8999&client=summon