Research Progress on Preparation and Electrocatalytic Performance of Tin Dioxide Nanomaterials
In the contemporary era of rapid economic growth, addressing the energy issue constitutes a significant subject. In contrast to traditional fossil energy, fuel cells, through specific transformation routes, can generate more energy and reduce pollution under the same conversion relationship. Direct...
Saved in:
Published in | Chemical record Vol. 25; no. 5; pp. e202500007 - n/a |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.05.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the contemporary era of rapid economic growth, addressing the energy issue constitutes a significant subject. In contrast to traditional fossil energy, fuel cells, through specific transformation routes, can generate more energy and reduce pollution under the same conversion relationship. Direct alcohol fuel cells, as a type of proton exchange membrane fuel cell, exhibit relatively superior performance. During the process of converting chemical energy into electrical energy, the conversion efficiency of the electrode is a crucial aspect of the fuel cell′s performance, thereby giving rise to electrode electrocatalysis. Nevertheless, the noble metal catalysts employed in current direct alcohol fuel cells are confronted with issues such as high cost, susceptibility to poisoning, and poor durability. A new approach to these problems is urgently needed. Loading noble metals onto metal oxides has been verified as an effective means. Among them, tin dioxide has attracted the attention of researchers due to its outstanding stability, anti‐toxicity, and its positive auxiliary role in electrocatalysis. This article will conduct a review of the research progress in loading noble metals on tin dioxide carriers for the electrocatalytic oxidation of small molecule alcohols from various microstructures and loading methods. Finally, the research on metal dioxide electrocatalysts is prospected.
Direct alcohol fuel cells have excellent performance, but the noble metal catalyst of their electrode has the problems of high cost, easy poisoning and poor durability. Tin dioxide can play an active auxiliary role in the catalytic process. In this paper, the study of supporting noble metals on tin dioxide support for electrocatalysis of small molecular alcohols is reviewed in terms of different micro‐structure and loading methods. |
---|---|
AbstractList | In the contemporary era of rapid economic growth, addressing the energy issue constitutes a significant subject. In contrast to traditional fossil energy, fuel cells, through specific transformation routes, can generate more energy and reduce pollution under the same conversion relationship. Direct alcohol fuel cells, as a type of proton exchange membrane fuel cell, exhibit relatively superior performance. During the process of converting chemical energy into electrical energy, the conversion efficiency of the electrode is a crucial aspect of the fuel cell's performance, thereby giving rise to electrode electrocatalysis. Nevertheless, the noble metal catalysts employed in current direct alcohol fuel cells are confronted with issues such as high cost, susceptibility to poisoning, and poor durability. A new approach to these problems is urgently needed. Loading noble metals onto metal oxides has been verified as an effective means. Among them, tin dioxide has attracted the attention of researchers due to its outstanding stability, anti-toxicity, and its positive auxiliary role in electrocatalysis. This article will conduct a review of the research progress in loading noble metals on tin dioxide carriers for the electrocatalytic oxidation of small molecule alcohols from various microstructures and loading methods. Finally, the research on metal dioxide electrocatalysts is prospected. In the contemporary era of rapid economic growth, addressing the energy issue constitutes a significant subject. In contrast to traditional fossil energy, fuel cells, through specific transformation routes, can generate more energy and reduce pollution under the same conversion relationship. Direct alcohol fuel cells, as a type of proton exchange membrane fuel cell, exhibit relatively superior performance. During the process of converting chemical energy into electrical energy, the conversion efficiency of the electrode is a crucial aspect of the fuel cell's performance, thereby giving rise to electrode electrocatalysis. Nevertheless, the noble metal catalysts employed in current direct alcohol fuel cells are confronted with issues such as high cost, susceptibility to poisoning, and poor durability. A new approach to these problems is urgently needed. Loading noble metals onto metal oxides has been verified as an effective means. Among them, tin dioxide has attracted the attention of researchers due to its outstanding stability, anti-toxicity, and its positive auxiliary role in electrocatalysis. This article will conduct a review of the research progress in loading noble metals on tin dioxide carriers for the electrocatalytic oxidation of small molecule alcohols from various microstructures and loading methods. Finally, the research on metal dioxide electrocatalysts is prospected.In the contemporary era of rapid economic growth, addressing the energy issue constitutes a significant subject. In contrast to traditional fossil energy, fuel cells, through specific transformation routes, can generate more energy and reduce pollution under the same conversion relationship. Direct alcohol fuel cells, as a type of proton exchange membrane fuel cell, exhibit relatively superior performance. During the process of converting chemical energy into electrical energy, the conversion efficiency of the electrode is a crucial aspect of the fuel cell's performance, thereby giving rise to electrode electrocatalysis. Nevertheless, the noble metal catalysts employed in current direct alcohol fuel cells are confronted with issues such as high cost, susceptibility to poisoning, and poor durability. A new approach to these problems is urgently needed. Loading noble metals onto metal oxides has been verified as an effective means. Among them, tin dioxide has attracted the attention of researchers due to its outstanding stability, anti-toxicity, and its positive auxiliary role in electrocatalysis. This article will conduct a review of the research progress in loading noble metals on tin dioxide carriers for the electrocatalytic oxidation of small molecule alcohols from various microstructures and loading methods. Finally, the research on metal dioxide electrocatalysts is prospected. In the contemporary era of rapid economic growth, addressing the energy issue constitutes a significant subject. In contrast to traditional fossil energy, fuel cells, through specific transformation routes, can generate more energy and reduce pollution under the same conversion relationship. Direct alcohol fuel cells, as a type of proton exchange membrane fuel cell, exhibit relatively superior performance. During the process of converting chemical energy into electrical energy, the conversion efficiency of the electrode is a crucial aspect of the fuel cell′s performance, thereby giving rise to electrode electrocatalysis. Nevertheless, the noble metal catalysts employed in current direct alcohol fuel cells are confronted with issues such as high cost, susceptibility to poisoning, and poor durability. A new approach to these problems is urgently needed. Loading noble metals onto metal oxides has been verified as an effective means. Among them, tin dioxide has attracted the attention of researchers due to its outstanding stability, anti‐toxicity, and its positive auxiliary role in electrocatalysis. This article will conduct a review of the research progress in loading noble metals on tin dioxide carriers for the electrocatalytic oxidation of small molecule alcohols from various microstructures and loading methods. Finally, the research on metal dioxide electrocatalysts is prospected. Direct alcohol fuel cells have excellent performance, but the noble metal catalyst of their electrode has the problems of high cost, easy poisoning and poor durability. Tin dioxide can play an active auxiliary role in the catalytic process. In this paper, the study of supporting noble metals on tin dioxide support for electrocatalysis of small molecular alcohols is reviewed in terms of different micro‐structure and loading methods. |
Author | Zhang, Jiayi Chen, Chunguang Zhu, Yuanzheng Wang, Weixia Wu, Feiyang Zhang, Shuping Cheng, Ping Liu, Chang Seong, Gimyeong |
Author_xml | – sequence: 1 givenname: Chang surname: Liu fullname: Liu, Chang organization: University of Shanghai for Science and Technology – sequence: 2 givenname: Weixia surname: Wang fullname: Wang, Weixia organization: University of Shanghai for Science and Technology – sequence: 3 givenname: Feiyang surname: Wu fullname: Wu, Feiyang organization: University of Shanghai for Science and Technology – sequence: 4 givenname: Jiayi surname: Zhang fullname: Zhang, Jiayi organization: University of Shanghai for Science and Technology – sequence: 5 givenname: Chunguang surname: Chen fullname: Chen, Chunguang organization: University of Shanghai for Science and Technology – sequence: 6 givenname: Ping surname: Cheng fullname: Cheng, Ping organization: University of Shanghai for Science and Technology – sequence: 7 givenname: Yuanzheng orcidid: 0000-0002-5687-8766 surname: Zhu fullname: Zhu, Yuanzheng email: zyz@usst.edu.cn organization: University of Shanghai for Science and Technology – sequence: 8 givenname: Shuping surname: Zhang fullname: Zhang, Shuping organization: University of Shanghai for Science and Technology – sequence: 9 givenname: Gimyeong surname: Seong fullname: Seong, Gimyeong organization: The University of Suwon |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40195570$$D View this record in MEDLINE/PubMed |
BookMark | eNp90c9vFCEUB3BiauwPPXo1k3jxMvUBwwBHs63VpNGmWa-SV-aN0szACrPR_e9L3VoTD3J538MHQt73mB3EFImxlxxOOYB4u_h8KkAoqEc_YUdcCdNCb_nB76xbY609ZMel3AJw3mn9jB12wK1SGo7Y12sqhNl_b65y-paplCbFmmmDGZdQM8ahOZ_ILzl5XHDaLcE3V5THlGeMnpo0NusQm7OQfoWBmk8Y04wL5YBTec6ejnXQi4d5wr68P1-vPrSXny8-rt5dtl4KrVvb02CRowWSajTYo-i87DozCg0W1WANjV3fc8NvoMPOw-BHq-XQK-6lB3nC3uzf3eT0Y0tlcXMonqYJI6VtcZIbrYTS4p6-_ofepm2O9XdOCmGMBK14Va8e1PZmpsFtcpgx79yfzVXQ7oHPqZRM4yPh4O6bcbUZ99hM9Xrvf4aJdv_Hbr26_nvzDvyRj9U |
Cites_doi | 10.1016/j.materresbull.2022.112086 10.1016/j.enconman.2024.118244 10.1016/j.vacuum.2023.111914 10.1016/j.jcis.2019.11.009 10.1021/acs.energyfuels.4c03600 10.3390/catal12060596 10.1021/acssuschemeng.8b02567 10.1021/acscatal.9b01375 10.1016/j.apsusc.2022.153500 10.1016/j.jelechem.2021.115641 10.1021/ja505456w 10.1016/j.jpowsour.2013.12.008 10.1002/smll.202005048 10.1002/adma.202005767 10.1021/acs.energyfuels.3c04556 10.1186/s13065-014-0049-0 10.1016/j.ijhydene.2022.11.168 10.1039/C5TA01476J 10.1007/s12678-017-0424-4 10.3390/catal10080866 10.1016/j.ijhydene.2014.08.079 10.1016/j.jhazmat.2022.130444 10.1016/j.snb.2024.136022 10.1016/j.coco.2021.100703 10.3390/s22082934 10.1002/adma.202211099 10.1021/acsami.7b07866 10.1016/j.cap.2023.07.004 10.1021/acsami.9b19442 10.1016/j.nantod.2021.101265 10.1016/j.jelechem.2020.114363 10.1039/D2NR06142B 10.1016/j.apsusc.2017.11.154 10.1039/D0TA02509G 10.1039/D1NR04621G 10.1016/j.electacta.2022.141044 10.3390/catal14010060 10.1007/s12598-024-02917-0 10.1021/acs.nanolett.1c02501 10.1016/j.mtchem.2023.101797 10.1021/acscatal.0c03212 10.1002/adma.202202943 10.1016/j.cej.2023.146709 10.1080/01614940.2020.1802811 10.1016/j.jallcom.2023.169665 10.1016/j.apenergy.2024.122629 10.1073/pnas.2207326119 10.1016/j.jcat.2021.04.024 10.1002/wene.419 10.1007/s10800-012-0520-3 10.1016/j.vacuum.2023.112023 10.1038/nmat2359 10.1039/D2TA00178K 10.1039/D1TA09359B 10.1016/j.jmst.2022.01.022 10.1021/ja306384x 10.1039/D0TA08693B 10.1016/j.jelechem.2021.115164 10.1016/j.mssp.2020.105020 10.3390/catal12010030 10.1016/j.snb.2013.06.076 10.1007/s10562-023-04419-7 10.1039/C9TA10941B 10.1021/acsaem.0c00717 10.1088/1361-6528/acdbd3 10.1016/j.electacta.2016.06.089 10.34133/2022/9871842 10.1016/j.jechem.2022.11.023 10.1021/cr4007335 10.1002/anie.201804142 10.1016/j.snb.2023.133545 10.1016/j.jmst.2023.04.043 10.1021/acs.inorgchem.3c04634 10.1016/j.apsusc.2021.151922 10.1016/j.inoche.2024.113036 10.1002/cssc.201901487 10.1016/j.jelechem.2023.117768 10.1002/cphc.201800519 10.1016/j.mseb.2023.116687 10.1007/s10854-023-09954-y 10.1039/D1RA01841H 10.3390/molecules28124613 10.3390/molecules14020738 10.1016/j.matre.2023.100197 10.1039/C9TA10886F 10.1002/celc.201900220 10.1088/2053-1591/ac6cce 10.1016/j.powtec.2017.12.028 10.3390/molecules29163753 10.1007/s12598-023-02428-4 10.1038/s41598-021-90939-4 10.1016/j.apsusc.2018.12.002 10.1016/j.physleta.2019.126174 10.1016/j.ijhydene.2023.06.263 10.1016/j.jre.2018.02.007 10.1007/s12274-022-4298-2 10.1021/acsomega.3c06414 10.1002/smll.202302327 10.1016/j.physb.2024.415948 10.1016/j.materresbull.2020.110820 10.1021/jz3015925 10.1016/j.cej.2024.149113 10.1007/s10008-017-3567-6 10.1016/j.apcatb.2020.119275 10.1002/anie.201608279 10.1021/acs.jpcc.3c07378 10.1016/j.ijhydene.2023.02.013 10.1016/j.ijhydene.2021.09.088 10.1007/s12649-021-01604-w 10.3390/su151914368 10.1007/s00604-022-05555-4 10.1016/j.cej.2021.128814 10.1016/j.jpcs.2020.109883 10.1016/j.electacta.2014.12.099 10.1016/j.jelechem.2022.116793 10.1007/s00339-020-04228-4 10.1002/adma.201603286 10.1002/smll.202405322 10.1016/j.biortech.2022.127299 10.1021/acscatal.0c02220 10.1016/j.cej.2024.156321 10.1016/j.cej.2022.135102 |
ContentType | Journal Article |
Copyright | 2025 The Chemical Society of Japan and Wiley-VCH GmbH 2025 The Chemical Society of Japan and Wiley-VCH GmbH. |
Copyright_xml | – notice: 2025 The Chemical Society of Japan and Wiley-VCH GmbH – notice: 2025 The Chemical Society of Japan and Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7QO 7T7 8FD C1K FR3 P64 7X8 |
DOI | 10.1002/tcr.202500007 |
DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Engineering Research Database Biotechnology Research Abstracts Technology Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Engineering Research Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1528-0691 |
EndPage | n/a |
ExternalDocumentID | 40195570 10_1002_tcr_202500007 TCR202500007 |
Genre | reviewArticle Journal Article Review |
GroupedDBID | --- .3N .Y3 05W 0R~ 10A 123 1OC 29B 31~ 33P 3WU 4.4 50Y 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 53G 5VS 66C 702 7PT 8-1 8UM AAESR AAHHS AAHQN AAMNL AANHP AANLZ AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AENEX AEQDE AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGYGG AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ASPBG AVWKF AZFZN AZVAB BDRZF BFHJK BMXJE BROTX BRXPI BY8 CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD F5P FEDTE G-S G.N GODZA HF~ HGLYW HVGLF HZ~ IX1 J0M LATKE LAW LC2 LC3 LEEKS LH- LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MSFUL MSSTM MXFUL MXSTM MY~ N9A O9- OIG P2W P4D Q11 QB0 QRW R.K ROL RX1 SUPJJ V2E W99 WBKPD WOHZO WQJ WXSBR WYUIH XG1 XV2 ZZTAW ~IA AAMMB AAYXX AEFGJ AGXDD AIDQK AIDYY CITATION NPM 7QO 7T7 8FD C1K FR3 P64 7X8 |
ID | FETCH-LOGICAL-c3277-96ed9a1a90e35f8a6a24c3448f2709a5d98ef466181b04a4c0dcf973d651c3c03 |
IEDL.DBID | DR2 |
ISSN | 1527-8999 1528-0691 |
IngestDate | Fri Jul 11 18:46:57 EDT 2025 Sat Jul 12 02:35:34 EDT 2025 Mon Jul 21 05:47:43 EDT 2025 Sun Jul 06 05:07:59 EDT 2025 Mon May 12 09:30:21 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Electrocatalysis Tin dioxide Small molecule alcohol oxidation Fuel cell |
Language | English |
License | 2025 The Chemical Society of Japan and Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3277-96ed9a1a90e35f8a6a24c3448f2709a5d98ef466181b04a4c0dcf973d651c3c03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-5687-8766 |
PMID | 40195570 |
PQID | 3228830751 |
PQPubID | 1006501 |
PageCount | 22 |
ParticipantIDs | proquest_miscellaneous_3187525720 proquest_journals_3228830751 pubmed_primary_40195570 crossref_primary_10_1002_tcr_202500007 wiley_primary_10_1002_tcr_202500007_TCR202500007 |
PublicationCentury | 2000 |
PublicationDate | May 2025 |
PublicationDateYYYYMMDD | 2025-05-01 |
PublicationDate_xml | – month: 05 year: 2025 text: May 2025 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Chemical record |
PublicationTitleAlternate | Chem Rec |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2023; 77 2018; 326 2020; 560 2019; 12 2020; 16 2020; 12 2025 2020; 10 2022; 22 2024; 38 2014; 252 2022; 577 2014; 136 2023; 64 2018; 6 2009; 14 2012; 135 2021; 399 2023; 296 2024; 359 2023; 212 2023; 211 2022; 34 2021; 150 2024; 20 2024; 29 2018; 36 2023; 53 2019; 7 2021; 46 2022; 594 2019; 9 2019; 6 2024; 128 2020; 384 2023; 165 2013; 188 2024; 483 2023; 444 2020; 33 2022; 119 2024; 14 2022; 355 2023; 42 2018; 19 2022; 189 2023; 48 2021; 898 2021; 414 2024; 416 2022; 9 2023; 154 2022; 12 2016; 211 2022; 15 2023; 158 2020; 277 2022; 10 2014; 39 2024; 499 2016; 29 2021; 25 2023; 35 2021; 21 2023; 34 2020; 64 2023; 383 2024; 304 2023; 8 2021; 887 2021; 127 2020; 126 2023; 3 2023; 948 2023; 947 2017; 9 2020; 8 2020; 3 2023; 28 2024; 63 2022; 923 2019; 471 2014; 8 2021; 40 2022; 124 2015; 162 2015; 3 2017; 2017 2013; 43 2023; 15 2017; 21 2023; 19 2024; 50 2024; 684 2024; 169 2014; 114 2022; 435 2016; 56 2021; 13 2012; 3 2021; 12 2022; 2022 2021; 11 2018; 435 2023; 476 2009; 8 2024; 44 2022; 429 2020; 873 2020; 113 2018; 57 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_5_1 e_1_2_8_9_1 e_1_2_8_117_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_113_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_109_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_120_1 e_1_2_8_91_1 e_1_2_8_95_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_110_1 e_1_2_8_6_1 Li S.-H. (e_1_2_8_118_1) 2017; 2017 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_86_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_18_1 e_1_2_8_37_1 e_1_2_8_79_1 e_1_2_8_94_1 e_1_2_8_90_1 e_1_2_8_121_1 e_1_2_8_98_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_106_1 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_102_1 e_1_2_8_71_1 e_1_2_8_125_1 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 Ozbakir Y. (e_1_2_8_70_1) 2025 e_1_2_8_122_1 e_1_2_8_97_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_93_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_69_1 e_1_2_8_80_1 e_1_2_8_4_1 Horiguchi D. (e_1_2_8_14_1) 2023; 64 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_84_1 e_1_2_8_112_1 e_1_2_8_61_1 e_1_2_8_39_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 e_1_2_8_92_1 e_1_2_8_96_1 e_1_2_8_100_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_73_1 e_1_2_8_123_1 e_1_2_8_50_1 e_1_2_8_104_1 |
References_xml | – volume: 471 start-page: 263 year: 2019 end-page: 272 publication-title: Appl. Surf. Sci. – volume: 135 start-page: 132 year: 2012 end-page: 141 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 26921 year: 2017 end-page: 26927 publication-title: ACS Appl. Mater. Interfaces – volume: 40 year: 2021 publication-title: Nano Today – volume: 8 start-page: 44964 year: 2023 end-page: 44976 publication-title: ACS Omega – volume: 499 year: 2024 publication-title: Chem. Eng. J. – volume: 8 start-page: 325 year: 2009 end-page: 330 publication-title: Nat. Mater. – volume: 165 start-page: 85 year: 2023 end-page: 93 publication-title: J. Mater. Sci. Technol. – volume: 399 start-page: 8 year: 2021 end-page: 14 publication-title: J. Catal. – volume: 3 start-page: 5774 year: 2020 end-page: 5783 publication-title: ACS Appl. Energ. Mater. – volume: 12 start-page: 4140 year: 2019 end-page: 4159 publication-title: ChemSusChem – volume: 359 year: 2024 publication-title: Appl. Energy – volume: 3 start-page: 3286 year: 2012 end-page: 3290 publication-title: J. Phys. Chem. Lett. – volume: 3 year: 2023 publication-title: Materials Reports: Energy – volume: 34 year: 2023 publication-title: Materials Today Chemistry – volume: 8 start-page: 592 year: 2020 end-page: 598 publication-title: J. Mater. Chem. A – volume: 13 start-page: 1705 year: 2021 end-page: 1716 publication-title: Waste and Biomass Valorization – volume: 594 year: 2022 publication-title: Appl. Surf. Sci. – volume: 435 year: 2022 publication-title: Chem. Eng. J. – volume: 304 year: 2024 publication-title: Energy Convers. Manage. – volume: 14 start-page: 60 year: 2024 publication-title: Catalysts – volume: 34 year: 2023 publication-title: Nanotechnology – volume: 9 start-page: 6607 year: 2019 end-page: 6612 publication-title: ACS Catal. – volume: 39 start-page: 17583 year: 2014 end-page: 17588 publication-title: Int. J. Hydrogen Energy – volume: 483 year: 2024 publication-title: Chem. Eng. J. – volume: 20 year: 2024 publication-title: Small – volume: 13 start-page: 16307 year: 2021 end-page: 16315 publication-title: Nanoscale – volume: 212 year: 2023 publication-title: Vacuum – volume: 10 start-page: 866 year: 2020 publication-title: Catalysts – volume: 25 year: 2021 publication-title: Composites Communications – volume: 36 start-page: 974 year: 2018 end-page: 980 publication-title: J. Rare Earth – volume: 14 start-page: 738 year: 2009 end-page: 754 publication-title: Molecules – volume: 8 start-page: 15992 year: 2020 end-page: 16005 publication-title: J. Mater. Chem. A – volume: 64 start-page: 126 year: 2020 end-page: 228 publication-title: Catal. Rev. – volume: 429 year: 2022 publication-title: Electrochim. Acta – volume: 560 start-page: 802 year: 2020 end-page: 810 publication-title: J. Colloid Interface Sci. – volume: 947 year: 2023 publication-title: J. Electroanal. Chem. – volume: 296 year: 2023 publication-title: Mater. Sci. Eng. B – volume: 7 start-page: 27377 year: 2019 end-page: 27382 publication-title: J. Mater. Chem. A – volume: 77 start-page: 499 year: 2023 end-page: 513 publication-title: J. Energy Chem. – volume: 35 year: 2023 publication-title: Adv. Mater. – volume: 383 year: 2023 publication-title: Sens. Actuators B – volume: 6 start-page: 2107 year: 2019 end-page: 2118 publication-title: ChemElectroChem – volume: 12 start-page: 4594 year: 2020 end-page: 4606 publication-title: ACS Appl. Mater. Interfaces – volume: 211 start-page: 636 year: 2016 end-page: 643 publication-title: Electrochim. Acta – volume: 126 year: 2020 publication-title: Mater. Res. Bull. – volume: 10 start-page: 14540 year: 2020 end-page: 14551 publication-title: ACS Catal. – volume: 898 year: 2021 publication-title: J. Electroanal. Chem. – volume: 50 start-page: 761 year: 2024 end-page: 771 publication-title: Int. J. Hydrogen Energy – volume: 124 start-page: 102 year: 2022 end-page: 108 publication-title: J. Mater. Sci. Technol. – volume: 277 year: 2020 publication-title: Appl. Catal. B – volume: 158 year: 2023 publication-title: Mater. Res. Bull. – volume: 10 start-page: 10150 year: 2022 end-page: 10161 publication-title: J. Mater. Chem. A – volume: 444 year: 2023 publication-title: J. Hazard. Mater. – volume: 948 year: 2023 publication-title: J. Alloys Compd. – volume: 29 start-page: 3753 year: 2024 publication-title: Molecules – volume: 10 start-page: 10399 year: 2020 end-page: 10411 publication-title: ACS Catal. – volume: 6 start-page: 14026 year: 2018 end-page: 14032 publication-title: ACS Sustainable Chem. Eng. – volume: 252 start-page: 156 year: 2014 end-page: 163 publication-title: J. Power Sources – volume: 114 start-page: 7442 year: 2014 end-page: 7486 publication-title: Chem. Rev. – volume: 28 start-page: 4613 year: 2023 publication-title: Molecules – volume: 188 start-page: 85 year: 2013 end-page: 93 publication-title: Sens. Actuators B – volume: 169 year: 2024 publication-title: Inorg. Chem. Commun. – volume: 42 start-page: 3614 year: 2023 end-page: 3621 publication-title: Rare Met. – volume: 12 start-page: 30 year: 2021 publication-title: Catalysts – volume: 384 year: 2020 publication-title: Phys. Lett. A – volume: 15 start-page: 6026 year: 2022 end-page: 6035 publication-title: Nano Res. – volume: 326 start-page: 479 year: 2018 end-page: 487 publication-title: Powder Technol. – volume: 150 year: 2021 publication-title: J. Phys. Chem. Solids – volume: 189 start-page: 451 year: 2022 publication-title: Microchim. Acta – volume: 119 year: 2022 publication-title: Proc. Natl. Acad. Sci. USA – volume: 923 year: 2022 publication-title: J. Electroanal. Chem. – volume: 127 start-page: 66 year: 2021 publication-title: Appl. Phys. A – volume: 3 start-page: 13492 year: 2015 end-page: 13499 publication-title: J. Mater. Chem. A – volume: 11 start-page: 419 year: 2021 publication-title: WIREs Energy and Environment – volume: 64 start-page: 215 year: 2023 end-page: 220 publication-title: The Electrochem. Soc. – volume: 43 start-page: 171 year: 2013 end-page: 179 publication-title: J. Appl. Electrochem. – volume: 57 start-page: 9475 year: 2018 end-page: 9479 publication-title: Angew. Chem. Int. Ed. – volume: 211 year: 2023 publication-title: Vacuum – volume: 15 start-page: 2122 year: 2023 end-page: 2133 publication-title: Nanoscale – volume: 136 start-page: 10862 year: 2014 end-page: 10865 publication-title: J. Am. Chem. Soc. – volume: 154 start-page: 1806 year: 2023 end-page: 1818 publication-title: Catal. Lett. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 355 year: 2022 publication-title: Bioresour. Technol. – volume: 12 start-page: 596 year: 2022 publication-title: Catalysts – volume: 16 year: 2020 publication-title: Small – volume: 46 start-page: 38270 year: 2021 end-page: 38280 publication-title: Int. J. Hydrogen Energy – volume: 113 year: 2020 publication-title: Mater. Sci. Semicond. Process. – volume: 44 start-page: 349 year: 2024 end-page: 357 publication-title: Rare Met. – volume: 11 start-page: 11304 year: 2021 publication-title: Sci. Rep. – volume: 577 year: 2022 publication-title: Appl. Surf. Sci. – volume: 21 start-page: 2449 year: 2017 end-page: 2456 publication-title: J. Solid State Electrochem. – volume: 2017 start-page: 1 year: 2017 end-page: 6 publication-title: Advances in Condensed Matter Physics – volume: 56 start-page: 505 year: 2016 end-page: 509 publication-title: Angew. Chem. Int. Ed. – volume: 2022 year: 2022 publication-title: Energy Material Advances – volume: 19 year: 2023 publication-title: Small – volume: 22 start-page: 2934 year: 2022 publication-title: Sensors – volume: 873 year: 2020 publication-title: J. Electroanal. Chem. – volume: 887 year: 2021 publication-title: J. Electroanal. Chem. – volume: 8 start-page: 20931 year: 2020 end-page: 20938 publication-title: J. Mater. Chem. A – volume: 10 start-page: 4254 year: 2022 end-page: 4265 publication-title: J. Mater. Chem. A – volume: 128 start-page: 3193 year: 2024 end-page: 3203 publication-title: J. Phys. Chem. C – volume: 11 start-page: 16768 year: 2021 end-page: 16804 publication-title: RSC Adv. – volume: 9 year: 2022 publication-title: Mater. Res. Express – start-page: 04861c year: 2025 publication-title: J. Mater. Chem. C – volume: 162 start-page: 282 year: 2015 end-page: 289 publication-title: Electrochim. Acta – volume: 33 year: 2020 publication-title: Adv. Mater. – volume: 34 start-page: 488 year: 2023 publication-title: J. Mater. Sci. Mater. Electron. – volume: 29 year: 2016 publication-title: Adv. Mater. – volume: 435 start-page: 535 year: 2018 end-page: 542 publication-title: Appl. Surf. Sci. – volume: 684 year: 2024 publication-title: Physica B: Condensed Matter – volume: 48 start-page: 15492 year: 2023 end-page: 15503 publication-title: Int. J. Hydrogen Energy – volume: 53 start-page: 165 year: 2023 end-page: 171 publication-title: Curr. Appl. Phys. – volume: 38 start-page: 2759 year: 2024 end-page: 2776 publication-title: Energy Fuels – volume: 414 year: 2021 publication-title: Chem. Eng. J. – volume: 63 start-page: 4364 year: 2024 end-page: 4372 publication-title: Inorg. Chem. – volume: 48 start-page: 19103 year: 2023 end-page: 19114 publication-title: Int. J. Hydrogen Energy – volume: 15 start-page: 14368 year: 2023 publication-title: Sustainability – volume: 21 start-page: 7309 year: 2021 end-page: 7316 publication-title: Nano Lett. – volume: 476 year: 2023 publication-title: Chem. Eng. J. – volume: 19 start-page: 2717 year: 2018 end-page: 2723 publication-title: ChemPhysChem – volume: 416 year: 2024 publication-title: Sens. Actuators B – volume: 9 start-page: 76 year: 2017 end-page: 85 publication-title: Electrocatalysis – volume: 8 start-page: 49 year: 2014 publication-title: Chemistry Central – volume: 38 start-page: 22543 year: 2024 end-page: 22553 publication-title: Energy Fuels – ident: e_1_2_8_125_1 doi: 10.1016/j.materresbull.2022.112086 – ident: e_1_2_8_1_1 doi: 10.1016/j.enconman.2024.118244 – ident: e_1_2_8_120_1 doi: 10.1016/j.vacuum.2023.111914 – ident: e_1_2_8_28_1 doi: 10.1016/j.jcis.2019.11.009 – ident: e_1_2_8_79_1 doi: 10.1021/acs.energyfuels.4c03600 – ident: e_1_2_8_90_1 doi: 10.3390/catal12060596 – ident: e_1_2_8_31_1 doi: 10.1021/acssuschemeng.8b02567 – ident: e_1_2_8_76_1 doi: 10.1021/acscatal.9b01375 – ident: e_1_2_8_72_1 doi: 10.1016/j.apsusc.2022.153500 – ident: e_1_2_8_24_1 doi: 10.1016/j.jelechem.2021.115641 – ident: e_1_2_8_105_1 doi: 10.1021/ja505456w – ident: e_1_2_8_80_1 doi: 10.1016/j.jpowsour.2013.12.008 – ident: e_1_2_8_54_1 doi: 10.1002/smll.202005048 – ident: e_1_2_8_69_1 doi: 10.1002/adma.202005767 – ident: e_1_2_8_2_1 doi: 10.1021/acs.energyfuels.3c04556 – ident: e_1_2_8_44_1 doi: 10.1186/s13065-014-0049-0 – ident: e_1_2_8_35_1 doi: 10.1016/j.ijhydene.2022.11.168 – ident: e_1_2_8_13_1 doi: 10.1039/C5TA01476J – ident: e_1_2_8_58_1 doi: 10.1007/s12678-017-0424-4 – ident: e_1_2_8_59_1 doi: 10.3390/catal10080866 – ident: e_1_2_8_66_1 doi: 10.1016/j.ijhydene.2014.08.079 – ident: e_1_2_8_85_1 doi: 10.1016/j.jhazmat.2022.130444 – ident: e_1_2_8_74_1 doi: 10.1016/j.snb.2024.136022 – ident: e_1_2_8_115_1 doi: 10.1016/j.coco.2021.100703 – ident: e_1_2_8_112_1 doi: 10.3390/s22082934 – ident: e_1_2_8_10_1 doi: 10.1002/adma.202211099 – ident: e_1_2_8_33_1 doi: 10.1021/acsami.7b07866 – ident: e_1_2_8_86_1 doi: 10.1016/j.cap.2023.07.004 – ident: e_1_2_8_37_1 doi: 10.1021/acsami.9b19442 – ident: e_1_2_8_117_1 doi: 10.1016/j.nantod.2021.101265 – ident: e_1_2_8_34_1 doi: 10.1016/j.jelechem.2020.114363 – ident: e_1_2_8_123_1 doi: 10.1039/D2NR06142B – ident: e_1_2_8_62_1 doi: 10.1016/j.apsusc.2017.11.154 – ident: e_1_2_8_101_1 doi: 10.1039/D0TA02509G – ident: e_1_2_8_114_1 doi: 10.1039/D1NR04621G – ident: e_1_2_8_17_1 doi: 10.1016/j.electacta.2022.141044 – ident: e_1_2_8_68_1 doi: 10.3390/catal14010060 – ident: e_1_2_8_102_1 doi: 10.1007/s12598-024-02917-0 – ident: e_1_2_8_94_1 doi: 10.1021/acs.nanolett.1c02501 – ident: e_1_2_8_71_1 doi: 10.1016/j.mtchem.2023.101797 – ident: e_1_2_8_124_1 doi: 10.1021/acscatal.0c03212 – ident: e_1_2_8_81_1 doi: 10.1002/adma.202202943 – ident: e_1_2_8_20_1 doi: 10.1016/j.cej.2023.146709 – ident: e_1_2_8_11_1 doi: 10.1080/01614940.2020.1802811 – ident: e_1_2_8_27_1 doi: 10.1016/j.jallcom.2023.169665 – ident: e_1_2_8_5_1 doi: 10.1016/j.apenergy.2024.122629 – ident: e_1_2_8_49_1 doi: 10.1073/pnas.2207326119 – ident: e_1_2_8_97_1 doi: 10.1016/j.jcat.2021.04.024 – ident: e_1_2_8_12_1 doi: 10.1002/wene.419 – ident: e_1_2_8_65_1 doi: 10.1007/s10800-012-0520-3 – ident: e_1_2_8_109_1 doi: 10.1016/j.vacuum.2023.112023 – ident: e_1_2_8_103_1 doi: 10.1038/nmat2359 – ident: e_1_2_8_7_1 doi: 10.1039/D2TA00178K – ident: e_1_2_8_52_1 doi: 10.1039/D1TA09359B – ident: e_1_2_8_121_1 doi: 10.1016/j.jmst.2022.01.022 – ident: e_1_2_8_78_1 doi: 10.1021/ja306384x – ident: e_1_2_8_106_1 doi: 10.1039/D0TA08693B – ident: e_1_2_8_107_1 doi: 10.1016/j.jelechem.2021.115164 – ident: e_1_2_8_95_1 doi: 10.1016/j.mssp.2020.105020 – ident: e_1_2_8_19_1 doi: 10.3390/catal12010030 – ident: e_1_2_8_88_1 doi: 10.1016/j.snb.2013.06.076 – ident: e_1_2_8_9_1 doi: 10.1007/s10562-023-04419-7 – ident: e_1_2_8_39_1 doi: 10.1039/C9TA10941B – ident: e_1_2_8_46_1 doi: 10.1021/acsaem.0c00717 – ident: e_1_2_8_57_1 doi: 10.1088/1361-6528/acdbd3 – ident: e_1_2_8_40_1 doi: 10.1016/j.electacta.2016.06.089 – ident: e_1_2_8_77_1 doi: 10.34133/2022/9871842 – ident: e_1_2_8_8_1 doi: 10.1016/j.jechem.2022.11.023 – ident: e_1_2_8_43_1 doi: 10.1021/cr4007335 – ident: e_1_2_8_119_1 doi: 10.1002/anie.201804142 – ident: e_1_2_8_83_1 doi: 10.1016/j.snb.2023.133545 – ident: e_1_2_8_113_1 doi: 10.1016/j.jmst.2023.04.043 – ident: e_1_2_8_100_1 doi: 10.1021/acs.inorgchem.3c04634 – ident: e_1_2_8_93_1 doi: 10.1016/j.apsusc.2021.151922 – ident: e_1_2_8_73_1 doi: 10.1016/j.inoche.2024.113036 – ident: e_1_2_8_92_1 doi: 10.1002/cssc.201901487 – ident: e_1_2_8_18_1 doi: 10.1016/j.jelechem.2023.117768 – ident: e_1_2_8_48_1 doi: 10.1002/cphc.201800519 – ident: e_1_2_8_110_1 doi: 10.1016/j.mseb.2023.116687 – ident: e_1_2_8_98_1 doi: 10.1007/s10854-023-09954-y – ident: e_1_2_8_3_1 doi: 10.1039/D1RA01841H – ident: e_1_2_8_22_1 doi: 10.3390/molecules28124613 – ident: e_1_2_8_30_1 doi: 10.3390/molecules14020738 – ident: e_1_2_8_75_1 doi: 10.1016/j.matre.2023.100197 – ident: e_1_2_8_111_1 doi: 10.1039/C9TA10886F – ident: e_1_2_8_29_1 doi: 10.1002/celc.201900220 – ident: e_1_2_8_38_1 doi: 10.1088/2053-1591/ac6cce – ident: e_1_2_8_108_1 doi: 10.1016/j.powtec.2017.12.028 – ident: e_1_2_8_53_1 doi: 10.3390/molecules29163753 – ident: e_1_2_8_47_1 doi: 10.1007/s12598-023-02428-4 – volume: 64 start-page: 215 year: 2023 ident: e_1_2_8_14_1 publication-title: The Electrochem. Soc. – ident: e_1_2_8_122_1 doi: 10.1038/s41598-021-90939-4 – ident: e_1_2_8_42_1 doi: 10.1016/j.apsusc.2018.12.002 – ident: e_1_2_8_84_1 doi: 10.1016/j.physleta.2019.126174 – ident: e_1_2_8_87_1 doi: 10.1016/j.ijhydene.2023.06.263 – volume: 2017 start-page: 1 year: 2017 ident: e_1_2_8_118_1 publication-title: Advances in Condensed Matter Physics – ident: e_1_2_8_16_1 doi: 10.1016/j.jre.2018.02.007 – ident: e_1_2_8_91_1 doi: 10.1007/s12274-022-4298-2 – ident: e_1_2_8_15_1 doi: 10.1021/acsomega.3c06414 – ident: e_1_2_8_36_1 doi: 10.1002/smll.202302327 – ident: e_1_2_8_82_1 doi: 10.1016/j.physb.2024.415948 – ident: e_1_2_8_116_1 doi: 10.1016/j.materresbull.2020.110820 – ident: e_1_2_8_99_1 doi: 10.1021/jz3015925 – ident: e_1_2_8_6_1 doi: 10.1016/j.cej.2024.149113 – ident: e_1_2_8_67_1 doi: 10.1007/s10008-017-3567-6 – ident: e_1_2_8_45_1 doi: 10.1016/j.apcatb.2020.119275 – ident: e_1_2_8_55_1 doi: 10.1002/anie.201608279 – ident: e_1_2_8_23_1 doi: 10.1021/acs.jpcc.3c07378 – ident: e_1_2_8_25_1 doi: 10.1016/j.ijhydene.2023.02.013 – ident: e_1_2_8_61_1 doi: 10.1016/j.ijhydene.2021.09.088 – ident: e_1_2_8_63_1 doi: 10.1007/s12649-021-01604-w – ident: e_1_2_8_4_1 doi: 10.3390/su151914368 – ident: e_1_2_8_50_1 doi: 10.1007/s00604-022-05555-4 – ident: e_1_2_8_32_1 doi: 10.1016/j.cej.2021.128814 – ident: e_1_2_8_26_1 doi: 10.1016/j.jpcs.2020.109883 – ident: e_1_2_8_56_1 doi: 10.1016/j.electacta.2014.12.099 – ident: e_1_2_8_21_1 doi: 10.1016/j.jelechem.2022.116793 – ident: e_1_2_8_64_1 doi: 10.1007/s00339-020-04228-4 – ident: e_1_2_8_96_1 doi: 10.1002/adma.201603286 – ident: e_1_2_8_89_1 doi: 10.1002/smll.202405322 – ident: e_1_2_8_41_1 doi: 10.1016/j.biortech.2022.127299 – start-page: 04861c year: 2025 ident: e_1_2_8_70_1 publication-title: J. Mater. Chem. C – ident: e_1_2_8_60_1 doi: 10.1021/acscatal.0c02220 – ident: e_1_2_8_104_1 doi: 10.1016/j.cej.2024.156321 – ident: e_1_2_8_51_1 doi: 10.1016/j.cej.2022.135102 |
SSID | ssj0011477 |
Score | 2.4070137 |
SecondaryResourceType | review_article |
Snippet | In the contemporary era of rapid economic growth, addressing the energy issue constitutes a significant subject. In contrast to traditional fossil energy, fuel... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e202500007 |
SubjectTerms | Alcohol fuels Alcohols Catalysis Chemical energy Dioxides Economic development Economic growth Electrocatalysis Electrocatalysts Electrodes Energy Fossil fuels Fuel cell Fuel cells Fuel technology Heavy metals Metal oxides Metals Nanomaterials Nanotechnology Noble metals Oxidation Pollution control Proton exchange membrane fuel cells Small molecule alcohol oxidation Tin Tin dioxide Toxicity |
Title | Research Progress on Preparation and Electrocatalytic Performance of Tin Dioxide Nanomaterials |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ftcr.202500007 https://www.ncbi.nlm.nih.gov/pubmed/40195570 https://www.proquest.com/docview/3228830751 https://www.proquest.com/docview/3187525720 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS-wwEB7EF3053o_1RgTxrZo2aTd5lFURQRFZwSdrmgssB1rRXVB_vZOmrazCAfEtpU2bZiaTb5LJNwAHKReWcZ3HTuQCHZRExoo7ESvqhDGslDrzZ4evrvOLO355n923eU79WZjAD9EvuPmR0dhrP8BV-XL8SRqKhgrduzRrNuPQBvt4LQ-Kbnv6KIT6TeZFn7k1Rr9CthybWP94pvbsnPQNaM7i1mbiOV-Cx67JId7k39F0Uh7p9y9sjr_4p2X404JSchK0aAXmbLUKC8MuF9waPHQBeuTGx3OhdSR1hWUbmMOxrCpDzkJKnWZF6A1fRW4-TyWQ2pHRuCKn4_p1bCxBq14jWA76vw5352ej4UXcZmaINWv2fHNrpEqUpJZlTqhcpVwz9PRcOqBSZUYK6zhO_QiKKVdcU6OdHDCTZ4lmmrINmK_qym4CcVojIhJMD5TgWhtp0lKn5YDqzFGnVASHnWyKp0DAUQSq5bTA7ir67opgp5Nc0Y7DlwLNlRBoxrIkgv3-Nnae3xZRla2n-EyCPhtarpRG8DdIvP-SV15PUhYBbeT2_yYUo-Ftf7H18yrbsOjLIZ5yB-Ynz1O7i5hnUu41iv0B1bz44A |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7azSG9JE3Th_NoVCi5OdFaslc6lu2GbV6EsAs51ch6wFKwS7ILaX99RtLaybZQCL3JD8myRhp9I42-AficcWEZ10XqRCHQQOnLVHEnUkWdMIZVUuf-7PDFZTGe8tOb_ObJKf7ID9EtuPmREfS1H-B-Qfr4kTUUNRXad1keduNewpqP6h2MquuOQArBfoi96GO3pmhZyCXLJhZwvJJ9dVb6C2quItcw9ZxsgmorHT1Ofhwt5tWR_v0Hn-P__NVr2FjiUvIldqQteGHrN7A-bMPBbcP31kePXHmXLlSQpKkxbSN5OKZVbcgoRtUJi0K_sChy9XgwgTSOTGY1-Tpr7mfGElTsDeLlOATewvRkNBmO02VwhlSzsO1bWCNVX0lqWe6EKlTGNUNjz2UDKlVupLCO4-yPuJhyxTU12skBMyglzTRl76BXN7X9AMRpjaBIMD1QgmttpMkqnVUDqnNHnVIJHLbCKX9GDo4ysi1nJTZX2TVXAnut6MrlULwrUWMJgZos7yfwqXuMjed3RlRtmwW-00ezDZVXRhN4H0Xefcn3X89TlgANgvt3FcrJ8Lq72Hl-lgNYH08uzsvzb5dnu_DK34_ulXvQm98u7D5CoHn1MfTyB2gf_Ps |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB61ILVcWtryCKXUlareAk7sZO0j2mVFaYtWaJE4ERw_pBVSgmBXov31HcdJ0FIJCfXmPOw4nodn7PE3AF9TLizjOo-dyAU6KImMFXciVtQJY1gpdebPDv86zY_P-clFdtHmOfVnYQI-RL_g5iWj0ddewG-MO3gADUVFhe5dmjWbcS9hledUeLYenfX4UWjrN6kXferWGB0L2YJsYgMHS9WXJ6V_LM1lw7WZecZv4arrcwg4ud5fzMt9_ecRnON__NQ6vGmtUnIY2OgdvLDVe3g97JLBfYDLLkKPTHxAF6pHUldYtgE6HMuqMuQo5NRploR-Y1Nk8nAsgdSOTGcVGc3q-5mxBNV6jdZyEIANOB8fTYfHcZuaIdas2fTNrZEqUZJaljmhcpVyzdDVc-mASpUZKazjOPejVUy54poa7eSAmTxLNNOUbcJKVVd2G4jTGk0iwfRACa61kSYtdVoOqM4cdUpF8K2jTXETEDiKgLWcFjhcRT9cEex2lCtaQbwrUF8JgXosSyL40j_GwfP7Iqqy9QLfSdBpQ9WV0gi2AsX7L3nu9ShlEdCGbk93oZgOz_qLnedX-QyvJqNx8fP76Y-PsOZvh9jKXViZ3y7sJ7R_5uVew-N_AYqB-7M |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+Progress+on+Preparation+and+Electrocatalytic+Performance+of+Tin+Dioxide+Nanomaterials&rft.jtitle=Chemical+record&rft.au=Liu%2C+Chang&rft.au=Wang%2C+Weixia&rft.au=Wu%2C+Feiyang&rft.au=Zhang%2C+Jiayi&rft.date=2025-05-01&rft.eissn=1528-0691&rft.volume=25&rft.issue=5&rft.spage=e202500007&rft_id=info:doi/10.1002%2Ftcr.202500007&rft_id=info%3Apmid%2F40195570&rft.externalDocID=40195570 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1527-8999&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1527-8999&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1527-8999&client=summon |