Global cracking elements: A novel tool for Galerkin‐based approaches simulating quasi‐brittle fracture
Summary Following the so‐called cracking elements method (CEM), we propose a novel Galerkin‐based numerical approach for simulating quasi‐brittle fracture, named global cracking elements method (GCEM). For this purpose the formulation of the original CEM is reorganized. The new approach is embedded...
Saved in:
Published in | International journal for numerical methods in engineering Vol. 121; no. 11; pp. 2462 - 2480 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Bognor Regis
Wiley Subscription Services, Inc
15.06.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
Following the so‐called cracking elements method (CEM), we propose a novel Galerkin‐based numerical approach for simulating quasi‐brittle fracture, named global cracking elements method (GCEM). For this purpose the formulation of the original CEM is reorganized. The new approach is embedded in the standard framework of the Galerkin‐based finite‐element method (FEM), which uses disconnected element‐wise crack openings for capturing crack initiation and propagation. The similarity between the proposed global cracking elements (GCEs) and the standard nine‐node quadrilateral element (Q9) suggests a special procedure: the degrees of freedom of the center node of the Q9, originally defining the displacements, are “borrowed” to describe the crack openings of the GCE. The proposed approach does not need remeshing, enrichment, or a crack‐tracking strategy, and it avoids a precise description of the crack tip. Several benchmark tests provide evidence that the new approach inherits from the CEM most of the advantages. The numerical stability and robustness of the GCEM are better than the ones of the CEM. However, presently only quadrilateral elements with nonlinear interpolations of the displacement field can be used. |
---|---|
AbstractList | Following the so‐called cracking elements method (CEM), we propose a novel Galerkin‐based numerical approach for simulating quasi‐brittle fracture, named global cracking elements method (GCEM). For this purpose the formulation of the original CEM is reorganized. The new approach is embedded in the standard framework of the Galerkin‐based finite‐element method (FEM), which uses disconnected element‐wise crack openings for capturing crack initiation and propagation. The similarity between the proposed global cracking elements (GCEs) and the standard nine‐node quadrilateral element (Q9) suggests a special procedure: the degrees of freedom of the center node of the Q9, originally defining the displacements, are “borrowed” to describe the crack openings of the GCE. The proposed approach does not need remeshing, enrichment, or a crack‐tracking strategy, and it avoids a precise description of the crack tip. Several benchmark tests provide evidence that the new approach inherits from the CEM most of the advantages. The numerical stability and robustness of the GCEM are better than the ones of the CEM. However, presently only quadrilateral elements with nonlinear interpolations of the displacement field can be used. Summary Following the so‐called cracking elements method (CEM), we propose a novel Galerkin‐based numerical approach for simulating quasi‐brittle fracture, named global cracking elements method (GCEM). For this purpose the formulation of the original CEM is reorganized. The new approach is embedded in the standard framework of the Galerkin‐based finite‐element method (FEM), which uses disconnected element‐wise crack openings for capturing crack initiation and propagation. The similarity between the proposed global cracking elements (GCEs) and the standard nine‐node quadrilateral element (Q9) suggests a special procedure: the degrees of freedom of the center node of the Q9, originally defining the displacements, are “borrowed” to describe the crack openings of the GCE. The proposed approach does not need remeshing, enrichment, or a crack‐tracking strategy, and it avoids a precise description of the crack tip. Several benchmark tests provide evidence that the new approach inherits from the CEM most of the advantages. The numerical stability and robustness of the GCEM are better than the ones of the CEM. However, presently only quadrilateral elements with nonlinear interpolations of the displacement field can be used. |
Author | Zhang, Yiming Mang, Herbert A. |
Author_xml | – sequence: 1 givenname: Yiming orcidid: 0000-0002-3693-8039 surname: Zhang fullname: Zhang, Yiming email: yiming.zhang@hebut.edu.cn organization: Hebei University of Technology – sequence: 2 givenname: Herbert A. surname: Mang fullname: Mang, Herbert A. email: Herbert.Mang@tuwien.ac.at organization: Vienna University of Technology |
BookMark | eNp1kE1OwzAQhS1UJNqCxBEssWGTYjs_jtlVVSlIBTawjpx0DClO3NoOqDuOwBk5CQ5lhWA1i_nemzdvhAataQGhU0omlBB20TYwyWKaHqAhJYJHhBE-QMOwElEqcnqERs6tCaE0JfEQrRfalFLjysrqpW6fMGhooPXuEk9xa15BY2-MxspYvJAabIA-3z9K6WCF5WZjjayewWFXN52WvnfYdtLVPWNr7zVgFax9Z-EYHSqpHZz8zDF6vJo_zK6j5f3iZjZdRlXMeBplnIBIEmAceBLHiZJU5QnLiFCslCG1ymiSCcmEyMp8lZSC5SlPZcZExQhU8Rid7X1DuG0Hzhdr09k2nCxYLBjncZqlgZrsqcoa5yyooqp9eMC03spaF5QUfZ9F6LPo-wyC81-Cja0baXd_odEefas17P7lirvb-Tf_BVl5iBQ |
CitedBy_id | crossref_primary_10_1007_s12205_022_1050_0 crossref_primary_10_1016_j_undsp_2022_08_005 crossref_primary_10_1016_j_engfracmech_2021_108126 crossref_primary_10_1002_nme_6669 crossref_primary_10_1088_1402_4896_ad9d92 crossref_primary_10_1016_j_jrmge_2022_11_016 crossref_primary_10_1002_nme_7084 crossref_primary_10_1016_j_compgeo_2021_104168 crossref_primary_10_1002_suco_202201066 crossref_primary_10_1016_j_ijimpeng_2024_104969 crossref_primary_10_1016_j_cma_2022_115559 crossref_primary_10_1016_j_tafmec_2021_103129 crossref_primary_10_1007_s11709_024_1012_3 crossref_primary_10_1016_j_engfracmech_2023_109100 crossref_primary_10_1016_j_rockmb_2024_100142 crossref_primary_10_26599_JIC_2023_9180021 crossref_primary_10_1016_j_compgeo_2023_106061 crossref_primary_10_1016_j_finel_2020_103421 crossref_primary_10_1007_s10706_022_02198_3 crossref_primary_10_1109_ACCESS_2025_3532949 crossref_primary_10_1007_s10706_023_02708_x crossref_primary_10_1016_j_tafmec_2020_102705 crossref_primary_10_1016_j_engfracmech_2024_110790 crossref_primary_10_1007_s11709_023_0996_4 crossref_primary_10_1016_j_undsp_2023_11_006 crossref_primary_10_1007_s11709_021_0763_3 crossref_primary_10_1016_j_undsp_2023_11_005 crossref_primary_10_1007_s12205_023_2146_x crossref_primary_10_1016_j_ijimpeng_2020_103747 crossref_primary_10_1016_j_jallcom_2024_175055 crossref_primary_10_1007_s12205_023_1709_1 crossref_primary_10_1016_j_ijimpeng_2020_103746 crossref_primary_10_1016_j_cma_2023_116430 crossref_primary_10_1016_j_cma_2021_114294 crossref_primary_10_3390_buildings13051280 crossref_primary_10_1007_s11356_024_35819_w crossref_primary_10_1007_s10409_023_23022_x crossref_primary_10_1016_j_jics_2024_101530 crossref_primary_10_1016_j_tafmec_2023_104230 crossref_primary_10_1016_j_enganabound_2023_01_039 crossref_primary_10_1002_pat_70112 crossref_primary_10_1016_j_tafmec_2021_102930 crossref_primary_10_1007_s12205_023_1180_z crossref_primary_10_1016_j_ijimpeng_2021_104033 crossref_primary_10_1007_s43452_024_01109_y crossref_primary_10_1016_j_ijimpeng_2021_104038 crossref_primary_10_1016_j_enganabound_2022_03_015 crossref_primary_10_1016_j_finel_2024_104295 crossref_primary_10_1016_j_jrmge_2023_07_021 crossref_primary_10_1061_IJGNAI_GMENG_7240 crossref_primary_10_1002_pat_70009 crossref_primary_10_1007_s00339_023_06582_5 crossref_primary_10_1002_pat_70008 crossref_primary_10_1016_j_ijimpeng_2021_103866 crossref_primary_10_1002_suco_202000113 crossref_primary_10_1016_j_cma_2023_115904 crossref_primary_10_1016_j_ijimpeng_2022_104217 crossref_primary_10_1007_s10706_025_03071_9 crossref_primary_10_1016_j_jrmge_2023_02_017 crossref_primary_10_1016_j_ijimpeng_2023_104645 crossref_primary_10_1016_j_ijimpeng_2024_105217 crossref_primary_10_1016_j_tafmec_2025_104938 crossref_primary_10_1016_j_engfracmech_2021_107993 crossref_primary_10_1007_s11709_023_0953_2 crossref_primary_10_1007_s12205_023_1511_0 crossref_primary_10_1016_j_ijimpeng_2022_104485 crossref_primary_10_3390_app10207335 crossref_primary_10_1007_s00366_022_01774_8 crossref_primary_10_1016_j_finel_2021_103573 crossref_primary_10_1155_2022_7001654 crossref_primary_10_1007_s11709_021_0772_2 crossref_primary_10_1007_s11709_022_0909_y crossref_primary_10_1007_s00339_023_06609_x crossref_primary_10_1007_s10704_024_00797_0 crossref_primary_10_1016_j_ijrmms_2023_105419 crossref_primary_10_1016_j_ijthermalsci_2025_109696 crossref_primary_10_1016_j_ijimpeng_2024_104923 crossref_primary_10_1016_j_cma_2024_116968 crossref_primary_10_1016_j_molstruc_2025_141617 crossref_primary_10_32604_cmes_2024_050898 crossref_primary_10_1002_slct_202403847 crossref_primary_10_1061_IJGNAI_GMENG_10082 crossref_primary_10_1016_j_rineng_2024_103867 crossref_primary_10_1007_s11709_022_0855_8 crossref_primary_10_1016_j_enggeo_2024_107896 crossref_primary_10_1007_s10704_024_00785_4 crossref_primary_10_1002_pat_70021 crossref_primary_10_1002_pat_70020 crossref_primary_10_1007_s00339_023_06739_2 crossref_primary_10_1007_s00707_024_04216_2 crossref_primary_10_1016_j_cma_2023_116078 crossref_primary_10_1016_j_engfracmech_2024_110305 crossref_primary_10_1109_ACCESS_2025_3542557 crossref_primary_10_1016_j_ijimpeng_2024_105036 crossref_primary_10_1016_j_cma_2024_116790 crossref_primary_10_1016_j_engfracmech_2024_110300 crossref_primary_10_1007_s12205_023_1445_6 crossref_primary_10_1016_j_ijimpeng_2021_104061 crossref_primary_10_1016_j_engfracmech_2025_110820 crossref_primary_10_1016_j_ijimpeng_2021_104060 crossref_primary_10_1007_s12205_023_0157_2 crossref_primary_10_1007_s00339_023_06437_z crossref_primary_10_1016_j_compgeo_2024_106640 crossref_primary_10_1007_s12205_023_1940_9 crossref_primary_10_1002_dug2_12127 crossref_primary_10_1016_j_jrmge_2024_03_039 crossref_primary_10_1016_j_ijimpeng_2020_103776 crossref_primary_10_1016_j_compgeo_2022_105118 crossref_primary_10_1016_j_undsp_2024_04_006 crossref_primary_10_1007_s00707_025_04221_z crossref_primary_10_1007_s42417_024_01745_x crossref_primary_10_1007_s00339_023_06558_5 crossref_primary_10_1007_s42417_024_01597_5 crossref_primary_10_1007_s10999_024_09707_7 crossref_primary_10_1007_s00339_024_08058_6 crossref_primary_10_1016_j_undsp_2022_07_005 crossref_primary_10_1016_j_undsp_2022_07_004 crossref_primary_10_3390_app122111123 crossref_primary_10_1007_s00366_023_01840_9 crossref_primary_10_1007_s11709_023_0919_4 crossref_primary_10_1016_j_undsp_2022_11_003 crossref_primary_10_1007_s12205_023_1748_7 crossref_primary_10_1016_j_tafmec_2023_103757 |
Cites_doi | 10.1002/nme.2579 10.1016/j.engfracmech.2013.06.006 10.1002/nag.518 10.1007/s00466-016-1351-6 10.1016/j.cma.2014.01.008 10.1016/j.enggeo.2016.08.018 10.1002/nme.272 10.1002/nme.3063 10.1016/j.cma.2015.02.001 10.1016/j.cma.2003.09.022 10.1016/0045-7825(88)90180-6 10.1002/nme.1329 10.1002/nme.1620280214 10.1016/S0022-5096(99)00029-0 10.1002/nme.4620 10.1016/S0045-7825(00)00263-2 10.1002/nme.4365 10.1002/nme.4393 10.1016/j.compstruc.2011.10.021 10.1016/j.compgeo.2011.08.011 10.1016/j.finel.2017.05.001 10.1016/j.finel.2019.103333 10.1061/(ASCE)0733-9399(1987)113:11(1739) 10.1016/j.engfracmech.2017.12.018 10.1016/j.jmps.2016.05.017 10.1002/nme.3279 10.1016/j.cma.2014.11.013 10.1016/j.ijrmms.2014.01.008 10.1016/0020-7683(89)90107-8 10.1016/j.cma.2016.11.034 10.1016/j.tafmec.2018.09.015 10.1016/j.ijsolstr.2016.03.005 10.1007/s00466-006-0067-4 10.1002/nme.1652 10.1016/j.cma.2016.05.015 10.1002/nme.731 10.1016/j.jmps.2017.03.015 10.1016/j.cma.2006.11.016 10.1016/j.ijsolstr.2017.04.024 10.1016/j.jmps.2015.05.016 10.1016/j.cma.2014.11.016 10.1007/s11831-018-9274-3 10.1007/s11440-018-0701-2 10.1002/nag.560 10.1016/j.finel.2017.10.007 10.1016/j.ijrmms.2016.09.010 |
ContentType | Journal Article |
Copyright | 2020 The Authors. published by John Wiley & Sons, Ltd. 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020 The Authors. published by John Wiley & Sons, Ltd. – notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1002/nme.6315 |
DatabaseName | Wiley Online Library Open Access CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Mathematics |
EISSN | 1097-0207 |
EndPage | 2480 |
ExternalDocumentID | 10_1002_nme_6315 NME6315 |
Genre | article |
GrantInformation_xml | – fundername: Hebei Province Natural Science Fund funderid: E2019202441 – fundername: National Natural Science Foundation of China funderid: 51809069 |
GroupedDBID | -~X .3N .4S .DC .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RWI RWS RX1 RYL SUPJJ TN5 TUS UB1 V2E W8V W99 WBKPD WIB WIH WIK WLBEL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAYXX AEYWJ AGHNM AGYGG CITATION 7SC 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c3275-670e944e27e74334fa1f842609f2ba150f61469a2996b8d4b928575a629c20ec3 |
IEDL.DBID | DR2 |
ISSN | 0029-5981 |
IngestDate | Fri Jul 25 12:14:53 EDT 2025 Tue Jul 01 04:32:06 EDT 2025 Thu Apr 24 23:05:04 EDT 2025 Wed Jan 22 16:34:17 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3275-670e944e27e74334fa1f842609f2ba150f61469a2996b8d4b928575a629c20ec3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3693-8039 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.6315 |
PQID | 2392773565 |
PQPubID | 996376 |
PageCount | 19 |
ParticipantIDs | proquest_journals_2392773565 crossref_citationtrail_10_1002_nme_6315 crossref_primary_10_1002_nme_6315 wiley_primary_10_1002_nme_6315_NME6315 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 15 June 2020 |
PublicationDateYYYYMMDD | 2020-06-15 |
PublicationDate_xml | – month: 06 year: 2020 text: 15 June 2020 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Bognor Regis |
PublicationPlace_xml | – name: Bognor Regis |
PublicationTitle | International journal for numerical methods in engineering |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2007; 39 2018; 144 2006; 30 2012 2000; 48 2015; 287 2015; 285 2019; 14 2003; 57 2005; 63 2019; 102 2016; 94 2012; 39 2017; 132 2007; 31 1988; 70 2014; 274 1989; 25 2014; 67 2017; 315 1989; 28 2012; 93 2015; 294 2012; 92 2009; 79 2018; 192 1989; 34 1987; 113 2015; 82 2017; 59 2006; 67 2001; 190 2012; 92‐93 2020; 170 2019; 26 2007; 196 2017; 118‐119 2004; 193 2011; 86 2016; 88‐89 2013; 110 2016; 312 2012; 89 2017; 103 2017; 225 2001; 52 2016; 89 2014; 97 Rots JG (e_1_2_6_43_1) 1989; 34 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_15_1 e_1_2_6_38_1 Remacle JF (e_1_2_6_21_1) 2012 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_40_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – volume: 287 start-page: 335 year: 2015 end-page: 366 article-title: Strong discontinuity embedded approach with standard SOS formulation: element formulation, energy‐based crack‐tracking strategy, and validations publication-title: Comput Methods Appl Mech Eng – volume: 14 start-page: 1195 year: 2019 end-page: 1214 article-title: Propagation and coalescence of quasi‐static cracks in brazilian disks: an insight from a phase field model publication-title: Acta Geotech – volume: 190 start-page: 2753 year: 2001 end-page: 2770 article-title: Some remarks on the compressed matrix representation of symmetric second‐order and fourth‐order tensors publication-title: Comput Methods Appl Mech Eng – volume: 170 year: 2020 article-title: On the crack opening and energy dissipation in a continuum based disconnected crack model publication-title: Finite Elem Anal Des – volume: 110 start-page: 113 year: 2013 end-page: 137 article-title: Element‐wise fracture algorithm based on rotation of edges publication-title: Eng Fract Mech – volume: 285 start-page: 346 year: 2015 end-page: 378 article-title: Extended embedded finite elements with continuous displacement jumps for the modeling of localized failure in solids publication-title: Comput Methods Appl Mech Eng – volume: 57 start-page: 1553 year: 2003 end-page: 1576 article-title: 3D modelling of strong discontinuities in elastoplastic solids: fixed and rotating localization formulations publication-title: Int J Numer Methods Eng – volume: 118‐119 start-page: 41 year: 2017 end-page: 57 article-title: On crack propagation in brittle material using the distinct lattice spring model publication-title: Int J Solids Struct – volume: 94 start-page: 453 year: 2016 end-page: 472 article-title: Adaptive coupling between damage mechanics and peridynamics: a route for objective simulation of material degradation up to complete failure publication-title: J Mech Phys Solids – volume: 39 start-page: 38 year: 2012 end-page: 53 article-title: Frictional crack initiation and propagation analysis using the numerical manifold method publication-title: Comput Geotech – volume: 26 start-page: 961 year: 2019 end-page: 1005 article-title: Challenges, tools and applications of tracking algorithms in the numerical modelling of cracks in concrete and masonry structures publication-title: Archiv Comput Methods Eng – volume: 67 start-page: 868 year: 2006 end-page: 893 article-title: A method for dynamic crack and shear band propagation with phantom nodes publication-title: Int J Numer Methods Eng – volume: 86 start-page: 249 year: 2011 end-page: 268 article-title: Accurate fracture modelling using meshless methods, the visibility criterion and level sets: formulation and 2D modelling publication-title: Int J Numer Methods Eng – volume: 144 start-page: 84 year: 2018 end-page: 100 article-title: Cracking elements: a self‐propagating strong discontinuity embedded approach for quasi‐brittle fracture publication-title: Finite Elem Anal Des – volume: 88‐89 start-page: 227 year: 2016 end-page: 247 article-title: A thermodynamically consistent plastic‐damage framework for localized failure in quasi‐brittle solids: material model and strain localization analysis publication-title: Int J Solids Struct – volume: 63 start-page: 1313 year: 2005 end-page: 1341 article-title: On advanced solution strategies to overcome locking effects in strong discontinuity approaches publication-title: Int J Numer Methods Eng – volume: 103 start-page: 72 year: 2017 end-page: 99 article-title: A unified phase‐field theory for the mechanics of damage and quasi‐brittle failure publication-title: J Mech Phys Solids – volume: 67 start-page: 20 year: 2014 end-page: 28 article-title: Experimental and numerical study of crack propagation and coalescence in pre‐cracked rock‐like disks publication-title: Int J Rock Mech Min Sci – volume: 31 start-page: 239 year: 2007 end-page: 259 article-title: Crack propagation criteria in the framework of X‐FEM‐based structural analyses publication-title: Int J Numer Anal Methods Geomech – volume: 48 start-page: 175 year: 2000 end-page: 209 article-title: Reformulation of elasticity theory for discontinuities and long‐range force publication-title: J Mech Phys Solids – volume: 39 start-page: 743 year: 2007 end-page: 760 article-title: A meshfree method based on the local partition of unity for cohesive cracks publication-title: Comput Mech – volume: 30 start-page: 1173 year: 2006 end-page: 1199 article-title: Smeared crack approach: back to the original track publication-title: Int J Numer Anal Methods Geomech – volume: 315 start-page: 881 year: 2017 end-page: 895 article-title: Developing a four‐dimensional lattice spring model for mechanical responses of solids publication-title: Comput Methods Appl Mech Eng – volume: 193 start-page: 3351 year: 2004 end-page: 3375 article-title: Embedded crack vs. smeared crack models: a comparison of element‐wise discontinuous crack path approaches with emphasis on mesh bias publication-title: Comput Methods Appl Mech Eng – volume: 92 start-page: 969 year: 2012 end-page: 998 article-title: Fracture modeling using meshless methods and level sets in 3D: framework and modeling publication-title: Int J Numer Methods Eng – volume: 70 start-page: 59 year: 1988 end-page: 89 article-title: A finite element with embedded localization zones publication-title: Comput Methods Appl Mech Eng – volume: 274 start-page: 289 year: 2014 end-page: 348 article-title: Crack‐path field and strain‐injection techniques in computational modeling of propagating material failure publication-title: Comput Methods Appl Mech Eng – volume: 52 start-page: 63 year: 2001 end-page: 95 article-title: Some recent issues in computational failure mechanics publication-title: Int J Numer Methods Eng – volume: 59 start-page: 299 year: 2017 end-page: 316 article-title: Finite element modelling of internal and multiple localized cracks publication-title: Comput Mech – volume: 89 start-page: 1102 issue: 9 year: 2012 end-page: 1119 article-title: Blossom‐quad: a non‐uniform quadrilateral mesh generator using a minimum‐cost perfect‐matching algorithm publication-title: Int J Numer Methods Eng – volume: 93 start-page: 224 year: 2012 end-page: 244 article-title: An embedded formulation with conforming finite elements to capture strong discontinuities publication-title: Int J Numer Methods Eng – volume: 294 start-page: 449 year: 2015 end-page: 485 article-title: Phase field modeling of fracture in multi‐physics problems. Part I. balance of crack surface and failure criteria for brittle crack propagation in thermo‐elastic solids publication-title: Comput Methods Appl Mech Eng – volume: 192 start-page: 290 year: 2018 end-page: 306 article-title: A softening‐healing law for self‐healing quasi‐brittle materials: analyzing with strong discontinuity embedded approach publication-title: Eng Fract Mech – volume: 113 start-page: 1739 issue: 11 year: 1987 end-page: 1758 article-title: Analysis of mixed‐mode fracture in concrete publication-title: J Eng Mech – volume: 28 start-page: 461 year: 1989 end-page: 474 article-title: A consistent characteristic length for smeared cracking models publication-title: Int J Numer Methods Eng – volume: 196 start-page: 2338 year: 2007 end-page: 2357 article-title: Energy‐based modeling of cohesive and cohesionless cracks via X‐FEM publication-title: Comput Methods Appl Mech Eng – volume: 102 start-page: 1 year: 2019 end-page: 9 article-title: Cracking elements method for dynamic brittle fracture publication-title: Theor Appl Fract Mech – volume: 25 start-page: 1381 issue: 12 year: 1989 end-page: 1394 article-title: Analysis of concrete fracture in “direct” tension publication-title: Int J Solids Struct – volume: 132 start-page: 27 year: 2017 end-page: 41 article-title: Steiner‐point free edge cutting of tetrahedral meshes with applications in fracture publication-title: Finite Elem Anal Des – volume: 92‐93 start-page: 242 year: 2012 end-page: 246 article-title: Phantom‐node method for shell models with arbitrary cracks publication-title: Comput Struct – volume: 82 start-page: 137 year: 2015 end-page: 163 article-title: On the equivalence between traction‐ and stress‐based approaches for the modeling of localized failure in solids publication-title: J Mech Phys Solids – start-page: 455 year: 2012 end-page: 472 – volume: 312 start-page: 78 year: 2016 end-page: 94 article-title: Gradient damage vs phase‐field approaches for fracture: similarities and differences publication-title: Comput Methods Appl Mech Eng – volume: 97 start-page: 986 year: 2014 end-page: 1010 article-title: New strategies for some issues of numerical manifold method in simulation of crack propagation publication-title: Int J Numer Methods Eng – volume: 225 start-page: 49 year: 2017 end-page: 60 article-title: Micro‐mechanical modeling of the macro‐mechanical response and fracture behavior of rock using the numerical manifold method publication-title: Eng Geol – volume: 79 start-page: 1309 issue: 11 year: 2009 end-page: 1331 article-title: Gmsh: a 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities publication-title: Int J Numer Methods Eng – volume: 34 start-page: 3 year: 1989 end-page: 33 article-title: Crack models for concrete, discrete or smeared? fixed, multi‐directional or rotating? publication-title: Heron – volume: 89 start-page: 235 year: 2016 end-page: 249 article-title: Numerical simulation of crack propagation and coalescence in pre‐cracked rock‐like Brazilian disks using the non‐ordinary state‐based peridynamics publication-title: Int J Rock Mech Min Sci – ident: e_1_2_6_19_1 doi: 10.1002/nme.2579 – ident: e_1_2_6_8_1 doi: 10.1016/j.engfracmech.2013.06.006 – ident: e_1_2_6_18_1 doi: 10.1002/nag.518 – ident: e_1_2_6_23_1 doi: 10.1007/s00466-016-1351-6 – ident: e_1_2_6_22_1 doi: 10.1016/j.cma.2014.01.008 – ident: e_1_2_6_31_1 doi: 10.1016/j.enggeo.2016.08.018 – ident: e_1_2_6_4_1 doi: 10.1002/nme.272 – ident: e_1_2_6_11_1 doi: 10.1002/nme.3063 – ident: e_1_2_6_17_1 doi: 10.1016/j.cma.2015.02.001 – ident: e_1_2_6_38_1 doi: 10.1016/j.cma.2003.09.022 – ident: e_1_2_6_34_1 doi: 10.1016/0045-7825(88)90180-6 – ident: e_1_2_6_41_1 doi: 10.1002/nme.1329 – ident: e_1_2_6_45_1 doi: 10.1002/nme.1620280214 – ident: e_1_2_6_14_1 doi: 10.1016/S0022-5096(99)00029-0 – ident: e_1_2_6_30_1 doi: 10.1002/nme.4620 – ident: e_1_2_6_39_1 doi: 10.1016/S0045-7825(00)00263-2 – ident: e_1_2_6_10_1 doi: 10.1002/nme.4365 – ident: e_1_2_6_24_1 doi: 10.1002/nme.4393 – ident: e_1_2_6_28_1 doi: 10.1016/j.compstruc.2011.10.021 – ident: e_1_2_6_29_1 doi: 10.1016/j.compgeo.2011.08.011 – ident: e_1_2_6_9_1 doi: 10.1016/j.finel.2017.05.001 – ident: e_1_2_6_13_1 doi: 10.1016/j.finel.2019.103333 – ident: e_1_2_6_44_1 doi: 10.1061/(ASCE)0733-9399(1987)113:11(1739) – ident: e_1_2_6_36_1 doi: 10.1016/j.engfracmech.2017.12.018 – ident: e_1_2_6_15_1 doi: 10.1016/j.jmps.2016.05.017 – ident: e_1_2_6_20_1 doi: 10.1002/nme.3279 – ident: e_1_2_6_40_1 doi: 10.1016/j.cma.2014.11.013 – ident: e_1_2_6_47_1 doi: 10.1016/j.ijrmms.2014.01.008 – volume: 34 start-page: 3 year: 1989 ident: e_1_2_6_43_1 article-title: Crack models for concrete, discrete or smeared? fixed, multi‐directional or rotating? publication-title: Heron – ident: e_1_2_6_42_1 doi: 10.1016/0020-7683(89)90107-8 – ident: e_1_2_6_16_1 doi: 10.1016/j.cma.2016.11.034 – ident: e_1_2_6_3_1 doi: 10.1016/j.tafmec.2018.09.015 – ident: e_1_2_6_6_1 doi: 10.1016/j.ijsolstr.2016.03.005 – ident: e_1_2_6_12_1 doi: 10.1007/s00466-006-0067-4 – ident: e_1_2_6_27_1 doi: 10.1002/nme.1652 – ident: e_1_2_6_26_1 doi: 10.1016/j.cma.2016.05.015 – ident: e_1_2_6_37_1 doi: 10.1002/nme.731 – ident: e_1_2_6_7_1 doi: 10.1016/j.jmps.2017.03.015 – start-page: 455 volume-title: Proceedings of the 20th International Meshing Roundtable year: 2012 ident: e_1_2_6_21_1 – ident: e_1_2_6_35_1 doi: 10.1016/j.cma.2006.11.016 – ident: e_1_2_6_46_1 – ident: e_1_2_6_50_1 doi: 10.1016/j.ijsolstr.2017.04.024 – ident: e_1_2_6_5_1 doi: 10.1016/j.jmps.2015.05.016 – ident: e_1_2_6_25_1 doi: 10.1016/j.cma.2014.11.016 – ident: e_1_2_6_33_1 doi: 10.1007/s11831-018-9274-3 – ident: e_1_2_6_48_1 doi: 10.1007/s11440-018-0701-2 – ident: e_1_2_6_32_1 doi: 10.1002/nag.560 – ident: e_1_2_6_2_1 doi: 10.1016/j.finel.2017.10.007 – ident: e_1_2_6_49_1 doi: 10.1016/j.ijrmms.2016.09.010 |
SSID | ssj0011503 |
Score | 2.6162846 |
Snippet | Summary
Following the so‐called cracking elements method (CEM), we propose a novel Galerkin‐based numerical approach for simulating quasi‐brittle fracture,... Following the so‐called cracking elements method (CEM), we propose a novel Galerkin‐based numerical approach for simulating quasi‐brittle fracture, named... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2462 |
SubjectTerms | Brittle fracture Computer simulation Crack initiation Crack propagation Crack tips Cracking (fracturing) cracking elements method Finite element method finite‐element method (FEM) Galerkin method Numerical stability Quadrilaterals quasi‐brittle fracture Robustness (mathematics) self‐propagating crack standard Galerkin form |
Title | Global cracking elements: A novel tool for Galerkin‐based approaches simulating quasi‐brittle fracture |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.6315 https://www.proquest.com/docview/2392773565 |
Volume | 121 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60Jz34FqtVVhA9pcbdTdr1JuIDoSKiIHgIu5sJVGurTevBkz_B3-gvcSePWkVBPIXAbEh2dvJ9u8x8A7DlMIMr0qmMUfueFMb3jEHtxdqBpUbLk5AKhVvn4em1PLsJboqsSqqFyfUhRgduFBnZ_5oCXJt0d0w09AHrocjqyylVi_jQ5Ug5iniOKLM7AtXcK3Vnfb5bDvyKRJ_0cpykZihzPAu35fvlySX39eHA1O3LN-nG_33AHMwU5JMd5KtlHiawuwCzBRFlRZinCzA9plLo7lojadd0Ee7yLgHM9rWlY3aGeQJ6us8OWLf3jB026PU6zJFhduLQh87i31_fCC1jViqYY8rS9kPWOcw94Wmo0zbZ9NukqMwSqtwa9nEJro-Prg5PvaJhg2cFb1ARg49KSuQNdMREyETvJU2SwFcJN9q5JHFkIFTaQWBomrE0ilODUB1yZbmPVixDpdvr4gqwWAZaybCJwqK0iVKBdRs7GYqYhJUFr8JO6bzIFmrm1FSjE-U6zDxy0xvR9FZhc2T5mCt4_GBTK_0fFTGcRtxRx0ZDOMZbhe3Mkb-Oj85bR3Rd_avhGkxx2rhTE6SgBpVBf4jrjt0MzAZMcnmxka3mD9kc-Vw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LT-MwEMdHFRxgD7A8VhRYMBJiTynBdtIaThWvskt7QCBxQIocZyIVSgtNy4ETH4HPyCfBk0cpiJUQpyiSHSW2J_P3yPMbgE3rM7giTmWE2nWkCF0nDFE7kbbOUqPhsU-Jws2W37iQfy-9yxLsFbkwGR9iFHAjy0j_12TgFJDeHqOG3mLFF5RgPkkFvQmcf3A2YkeR0hHF-Q5P1XYK8qzLt4ue733Rm8Acl6mpnzmahaviDbPjJTeV4SCsmMcP8MZvfsJPmMn1J6tnC2YOStidh9lci7Lc0pN5-DEGKrR3zRHdNVmA66xQADN9bSjSzjA7g57ssjrr9h6wwwa9XodZPcyOrQOicPzL0zM5zIgVEHNMWNK-TYuH2SfcD3XSpjb9NkGVWUzJW8M-LsLF0eH5fsPJazY4RvAq5TG4qKREXkWrTYSM9U5cIwq-inmo7ZzEVg_4Slsv6Ie1SIaKU41Q7XNluItG_IKJbq-LS8Ai6Wkl_RoKg9LESnnG7u2kLyJiKwtehj_F7AUmB5pTXY1OkKGYeWCHN6DhLcPGqOVdBvH4pM1qsQCC3IyTgFv1WK0KK3rLsJXO5H_7B63mIV2Xv9pwHaYa583T4PSk9W8Fpjnt46kmkrcKE4P-EH9bsTMI19JF_QqA1Pyh |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVQkRAcWAqIQgEjITiFpraT1twqaClLqx6o1FvkOBOpqBtNy5lP4Bv5EjxZSpFA4hRFGufg8eQ92zNvCDk3mMEk6lQGoGxLcN-2fB-UFSgDlgo0C10sFG613WZXPPScXppVibUwiT7E4sANIyP-X2OAT4KwtCQaOoQrl2N9-Sre9WE6FxOdxQ2CITo8S-9wZLWcCc_arJSN_AlF3_xymaXGMNPYJpspP6S1xKE7ZAVGebKVckWaRmKUJxtLQoLmrbVQX412yUsi5E_1VGk8CaeQ5IhH17RGR-M3GNDZeDyghq_SOwMQeFz--f6BgBbQTGQcIhr1h3FzL_OF17mK-mgz7aPoMQ2xuGo-hT3SbdSfb5pW2lPB0pxVsM7ABikEsAoY7sBFqMphFVXqZch8ZSYtNHjtSmVQyvWrgfAlwx6eymVSMxs03ye50XgEB4QGwlFSuFXgGoQOpXS02XsJlweofcxZgVxm0-vpVHAc-14MvEQqmXnGER46okDOFpaTRGTjF5ti5iEvDbPIY4bdVSrckNICuYi99ud4r92q4_Pwv4anZK1z2_Ce7tuPR2Sd4TYbWxY5RZKbTedwbLjIzD-JF90XRXnbUQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+cracking+elements%3A+A+novel+tool+for+Galerkin%E2%80%90based+approaches+simulating+quasi%E2%80%90brittle+fracture&rft.jtitle=International+journal+for+numerical+methods+in+engineering&rft.au=Zhang%2C+Yiming&rft.au=Mang%2C+Herbert+A.&rft.date=2020-06-15&rft.issn=0029-5981&rft.eissn=1097-0207&rft.volume=121&rft.issue=11&rft.spage=2462&rft.epage=2480&rft_id=info:doi/10.1002%2Fnme.6315&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_nme_6315 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5981&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5981&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5981&client=summon |