Dynamic Test of Negative Stiffness Damped Outrigger With Damping Amplification

ABSTRACT This paper proposed a novel negative stiffness damped outrigger with damping amplification (NSDO‐DA) through a smart combination of an L‐shape lever, a precompressed disc spring brace (DSB), and a viscous damper. A theoretical model of the NSDO‐DA considering nonlinear adaptive negative sti...

Full description

Saved in:
Bibliographic Details
Published inEarthquake engineering & structural dynamics Vol. 54; no. 4; pp. 1141 - 1155
Main Authors Wang, Meng, Koetaka, Yuji, Sun, Fei‐Fei, Liu, Chao, Nagarajaiah, Satish, Ashida, Yosuke, Du, Xiu‐Li
Format Journal Article
LanguageEnglish
Published Bognor Regis Wiley Subscription Services, Inc 01.04.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ABSTRACT This paper proposed a novel negative stiffness damped outrigger with damping amplification (NSDO‐DA) through a smart combination of an L‐shape lever, a precompressed disc spring brace (DSB), and a viscous damper. A theoretical model of the NSDO‐DA considering nonlinear adaptive negative stiffness, damping amplification of nonlinear viscous dampers, and frictions were established. Cyclic tests of disc spring pairs and DSB were presented to verify the feasibility of using DSB as the precompression component of the NSDO‐DA. Subsequently, large‐scale dynamic tests of five different outrigger systems were conducted involving (i) conventional damped outrigger (CDO), (ii) amplified damped outrigger (ADO), (iii) purely negative stiffness mechanism, (iv) negative stiffness damped outrigger (NSDO), and (v) NSDO‐DA. Then, discussions on the dynamic test results and validations of the NSDO‐DA model were provided. The major contributions of this paper are the proposal of the NSDO‐DA and the experimental validation of its two special features: (i) producing negative stiffness force in the parallel direction of the precompression force rather than in the perpendicular direction, making the physical configuration more concise and condensed for outrigger application; (ii) sharing the amplification mechanism of the L‐shape lever for both the viscous damper and the negative stiffness mechanism, leading to an additional damping amplification mechanism for the damper. Moreover, the adaptive stiffness behavior and the frequency‐independent feature of the proposed negative stiffness mechanism were successfully validated by the dynamic tests.
AbstractList This paper proposed a novel negative stiffness damped outrigger with damping amplification (NSDO‐DA) through a smart combination of an L‐shape lever, a precompressed disc spring brace (DSB), and a viscous damper. A theoretical model of the NSDO‐DA considering nonlinear adaptive negative stiffness, damping amplification of nonlinear viscous dampers, and frictions were established. Cyclic tests of disc spring pairs and DSB were presented to verify the feasibility of using DSB as the precompression component of the NSDO‐DA. Subsequently, large‐scale dynamic tests of five different outrigger systems were conducted involving (i) conventional damped outrigger (CDO), (ii) amplified damped outrigger (ADO), (iii) purely negative stiffness mechanism, (iv) negative stiffness damped outrigger (NSDO), and (v) NSDO‐DA. Then, discussions on the dynamic test results and validations of the NSDO‐DA model were provided. The major contributions of this paper are the proposal of the NSDO‐DA and the experimental validation of its two special features: (i) producing negative stiffness force in the parallel direction of the precompression force rather than in the perpendicular direction, making the physical configuration more concise and condensed for outrigger application; (ii) sharing the amplification mechanism of the L‐shape lever for both the viscous damper and the negative stiffness mechanism, leading to an additional damping amplification mechanism for the damper. Moreover, the adaptive stiffness behavior and the frequency‐independent feature of the proposed negative stiffness mechanism were successfully validated by the dynamic tests.
ABSTRACT This paper proposed a novel negative stiffness damped outrigger with damping amplification (NSDO‐DA) through a smart combination of an L‐shape lever, a precompressed disc spring brace (DSB), and a viscous damper. A theoretical model of the NSDO‐DA considering nonlinear adaptive negative stiffness, damping amplification of nonlinear viscous dampers, and frictions were established. Cyclic tests of disc spring pairs and DSB were presented to verify the feasibility of using DSB as the precompression component of the NSDO‐DA. Subsequently, large‐scale dynamic tests of five different outrigger systems were conducted involving (i) conventional damped outrigger (CDO), (ii) amplified damped outrigger (ADO), (iii) purely negative stiffness mechanism, (iv) negative stiffness damped outrigger (NSDO), and (v) NSDO‐DA. Then, discussions on the dynamic test results and validations of the NSDO‐DA model were provided. The major contributions of this paper are the proposal of the NSDO‐DA and the experimental validation of its two special features: (i) producing negative stiffness force in the parallel direction of the precompression force rather than in the perpendicular direction, making the physical configuration more concise and condensed for outrigger application; (ii) sharing the amplification mechanism of the L‐shape lever for both the viscous damper and the negative stiffness mechanism, leading to an additional damping amplification mechanism for the damper. Moreover, the adaptive stiffness behavior and the frequency‐independent feature of the proposed negative stiffness mechanism were successfully validated by the dynamic tests.
Author Liu, Chao
Koetaka, Yuji
Ashida, Yosuke
Wang, Meng
Sun, Fei‐Fei
Nagarajaiah, Satish
Du, Xiu‐Li
Author_xml – sequence: 1
  givenname: Meng
  orcidid: 0000-0003-0432-8313
  surname: Wang
  fullname: Wang, Meng
  organization: Kyoto University
– sequence: 2
  givenname: Yuji
  surname: Koetaka
  fullname: Koetaka, Yuji
  organization: Kyoto University
– sequence: 3
  givenname: Fei‐Fei
  orcidid: 0000-0002-9600-7500
  surname: Sun
  fullname: Sun, Fei‐Fei
  email: ffsun@tongji.edu.cn
  organization: Tongji University
– sequence: 4
  givenname: Chao
  orcidid: 0009-0004-2686-9131
  surname: Liu
  fullname: Liu, Chao
  organization: Beijing University of Technology
– sequence: 5
  givenname: Satish
  orcidid: 0000-0003-0088-1656
  surname: Nagarajaiah
  fullname: Nagarajaiah, Satish
  email: satish.nagarajaiah@rice.edu
  organization: Rice University
– sequence: 6
  givenname: Yosuke
  surname: Ashida
  fullname: Ashida, Yosuke
  organization: Kyoto University
– sequence: 7
  givenname: Xiu‐Li
  surname: Du
  fullname: Du, Xiu‐Li
  organization: Beijing University of Technology
BookMark eNp1kEtLAzEUhYMo2FbBnxBw42bqTTKTSZalrQ8oLWLFZUhnkjFlHm0yVfrvnbauRFcXLt85957TR-d1UxuEbggMCQC9N1szjBnQM9QjIHkkRZycox6AFJEQcXqJ-iGsAYBxSHtoPtnXunIZXprQ4sbiuSl06z4Nfm2dtbUJAU90tTE5Xuxa74rCePzu2o_j1tUFHlWb0lmXdaqmvkIXVpfBXP_MAXp7mC7HT9Fs8fg8Hs2ijNGURpIkNOdSaEaA5iQXPGZcc5IkXBCqV5wSokHEmmR5IpOc2lUmQVNqSay7JGyAbk--G99sd93rat3sfN2dVIykVCYpZQfq7kRlvgnBG6s23lXa7xUBdWhLdW2pQ1sdOvyFZq49Rmq9duVfgugk-HKl2f9rrKYv0yP_DUSzerQ
CitedBy_id crossref_primary_10_1080_13632469_2025_2467331
crossref_primary_10_1016_j_jobe_2025_112122
crossref_primary_10_1016_j_engstruct_2025_119978
Cites_doi 10.1080/13632469.2013.787378
10.1016/j.jobe.2024.110231
10.1002/eqe.2844
10.1016/j.engstruct.2020.110424
10.1016/j.engstruct.2019.04.011
10.1016/j.engstruct.2017.10.040
10.1016/j.engstruct.2020.111338
10.1002/eqe.1023
10.1177/1369433218758475
10.1155/2023/5569434
10.1002/stc.349
10.1002/eqe.3218
10.1061/(ASCE)ST.1943-541X.0000247
10.1061/(ASCE)ST.1943-541X.0002825
10.1061/(ASCE)ST.1943-541X.0000615
10.1002/tal.1664
10.1061/(ASCE)0733-9445(1991)117:9(2708)
10.1061/(ASCE)0733-9445(2001)127:2(105)
10.1061/(ASCE)ST.1943-541X.0000616
10.1016/j.jweia.2021.104761
10.1016/j.jsv.2013.02.008
10.1016/j.engstruct.2022.114963
10.1680/stbu.2010.163.2.111
10.21022/IJHRB.2016.5.1.51
10.1016/j.engstruct.2015.04.033
10.1002/tal.1486
10.1002/eqe.3072
10.1002/stc.2988
10.1061/(ASCE)ST.1943-541X.0001077
10.1155/2023/4024741
10.1016/j.ymssp.2022.108965
10.1016/j.engstruct.2013.09.016
10.1016/j.engstruct.2019.03.110
10.1016/j.jobe.2022.104428
10.1193/051816EQS082M
10.12989/sss.2013.11.5.435
10.1016/j.engstruct.2020.111615
10.1002/stc.496
10.1016/j.jobe.2021.102172
10.1142/S0219455424500342
10.1193/1.1540999
10.1061/(ASCE)ST.1943-541X.0002846
10.1002/tal.659
10.1002/eqe.3891
10.1061/(ASCE)0733-9445(2007)133:1(67)
10.1002/tal.413
10.1061/(ASCE)ST.1943-541X.0003474
10.1061/(ASCE)ST.1943-541X.0003472
10.1016/j.engstruct.2019.110038
10.1061/(ASCE)ST.1943-541X.0003058
10.1002/tal.1098
10.1016/j.engstruct.2020.111074
10.1061/(ASCE)ST.1943-541X.0001698
ContentType Journal Article
Copyright 2025 The Author(s). published by John Wiley & Sons Ltd.
2025. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025 The Author(s). published by John Wiley & Sons Ltd.
– notice: 2025. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7ST
7TG
7UA
8FD
C1K
F1W
FR3
H96
KL.
KR7
L.G
SOI
DOI 10.1002/eqe.4302
DatabaseName Wiley Online Library Open Access
CrossRef
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Civil Engineering Abstracts

CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1096-9845
EndPage 1155
ExternalDocumentID 10_1002_eqe_4302
EQE4302
Genre researchArticle
GrantInformation_xml – fundername: Grant in aids JSPS
  funderid: JP23KF0043
– fundername: Beijing Postdoctoral Science Foundation
  funderid: 2022‐ZZ‐093
– fundername: National Natural Science Foundation of China
  funderid: 52308299
– fundername: National Postdoctoral Program for Innovative Talents
  funderid: BX20220026
GroupedDBID -~X
.3N
.DC
.GA
05W
0R~
10A
1L6
1OB
1OC
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AABCJ
AAESR
AAEVG
AAHHS
AAHQN
AAIKC
AAMNL
AAMNW
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
.Y3
31~
8WZ
A6W
AAMMB
AANHP
AASGY
AAYXX
ABEML
ACBWZ
ACKIV
ACRPL
ACSCC
ACYXJ
ADNMO
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AI.
AIDQK
AIDYY
ARCSS
ASPBG
AVWKF
AZFZN
CITATION
CKXBT
EJD
FEDTE
HF~
HVGLF
LH4
LW6
M58
PALCI
RIWAO
RJQFR
RNS
SAMSI
TUS
VH1
ZY4
7ST
7TG
7UA
8FD
C1K
F1W
FR3
H96
KL.
KR7
L.G
SOI
ID FETCH-LOGICAL-c3272-9152d698a3102d1d86436a61556812ab6211a084a1cd595d2fbc90a22f14a0983
IEDL.DBID DR2
ISSN 0098-8847
IngestDate Fri Jul 25 21:35:02 EDT 2025
Thu Jul 24 02:07:38 EDT 2025
Thu Apr 24 22:56:24 EDT 2025
Mon Mar 03 15:18:45 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3272-9152d698a3102d1d86436a61556812ab6211a084a1cd595d2fbc90a22f14a0983
Notes Funding
This study was supported by National Natural Science Foundation of China 52308299. National Postdoctoral Program for Innovative Talents BX20220026. Grant in aids JSPS JP23KF0043. Beijing Postdoctoral Science Foundation 2022‐ZZ‐093.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9600-7500
0000-0003-0432-8313
0009-0004-2686-9131
0000-0003-0088-1656
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feqe.4302
PQID 3172957238
PQPubID 866380
PageCount 15
ParticipantIDs proquest_journals_3172957238
crossref_primary_10_1002_eqe_4302
crossref_citationtrail_10_1002_eqe_4302
wiley_primary_10_1002_eqe_4302_EQE4302
PublicationCentury 2000
PublicationDate 2025-04-01
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle Earthquake engineering & structural dynamics
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 141
2022; 172
2013; 20
2023; 2023
2023; 264
2020; 204
2017; 153
2003; 19
1991; 117
2014; 23
2018; 47
2022; 29
2021; 38
2023; 24
2013; 17
2013; 11
2013; 57
2017; 33
2007; 133
2011; 20
2019; 28
2020; 211
2009; 16
2016; 46
2023; 52
2019; 191
2021; 42
2022; 271
2019; 190
2012
2021; 147
2011; 40
2021; 229
2015; 98
2008
2024; 95
2020; 225
2010; 163
2020; 222
2020; 146
2018; 21
2018; 27
2007; 16
2001; 127
2016; 5
2010; 136
2019; 48
2021; 218
2013; 139
2013; 332
2022; 52
2017; 143
2013
2022; 148
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_37_1
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
Ding J. (e_1_2_10_14_1) 2021; 42
e_1_2_10_29_1
Wang Z. (e_1_2_10_50_1) 2023; 264
China Ministry of Construction (CMC) (e_1_2_10_56_1) 2012
Wang Z. (e_1_2_10_21_1) 2023; 2023
e_1_2_10_27_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
China Ministry of Construction (CMC) (e_1_2_10_57_1) 2013
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_26_1
e_1_2_10_47_1
References_xml – volume: 271
  year: 2022
  article-title: Seismic Performance Improvement of Base‐Isolated Structures Using a Semi‐Active Tuned Mass Damper
  publication-title: Engineering Structures
– volume: 33
  start-page: 665
  issue: 2
  year: 2017
  end-page: 685
  article-title: Dynamic Response Evaluation of Damped‐Outrigger Systems With Various Heights
  publication-title: Earthquake Spectra
– volume: 146
  issue: 12
  year: 2020
  article-title: Optimized Seismic Design of Passively Damped Outriggers Considering Perimeter Column Flexibility
  publication-title: Journal of Structural Engineering
– volume: 190
  start-page: 128
  year: 2019
  end-page: 141
  article-title: Seismic Protection of SDOF Systems With a Negative Stiffness Amplifying Damper
  publication-title: Engineering Structures
– volume: 133
  start-page: 67
  issue: 1
  year: 2007
  end-page: 77
  article-title: Structures With Semiactive Variable Stiffness Single/Multiple Tuned Mass Dampers
  publication-title: Journal of Structural Engineering
– volume: 148
  issue: 11
  year: 2022
  article-title: Adaptive Stiffness Structures With Dampers: Seismic and Wind Response Reduction Using Passive Negative Stiffness and Inerter Systems
  publication-title: Journal of Structural Engineering
– volume: 5
  start-page: 51
  issue: 1
  year: 2016
  end-page: 62
  article-title: Mechanical Amplification of Relative Movements in Damped Outriggers for Wind and Seismic Response Mitigation
  publication-title: International Journal of High‐Rise Buildings
– volume: 211
  year: 2020
  article-title: Development and Validation Test of a Novel Self‐Centering Energy‐Absorbing Dual Rocking Core (SEDRC) System for Seismic Resilience
  publication-title: Engineering Structures
– volume: 2023
  start-page: 1
  year: 2023
  end-page: 22
  article-title: Stochastic Optimization and Sensitivity Analysis of the Combined Negative Stiffness Damped Outrigger and Conventional Damped Outrigger Systems Subjected to Nonstationary Seismic Excitation
  publication-title: Structural Control and Health Monitoring
– volume: 29
  issue: 9
  year: 2022
  article-title: A Novel Crosswind Mitigation Strategy for Tall Buildings Using Negative Stiffness Damped Outrigger Systems
  publication-title: Structural Control and Health Monitoring
– year: 2008
  article-title: Performance Based Seismic and Wind Engineering for 60 Story Twin Towers in Manila
– volume: 52
  year: 2022
  article-title: Fragility Analysis and Inelastic Seismic Performance of Steel Braced‐Core‐Tube Frame Outrigger Tall Buildings With Passive Adaptive Negative Stiffness Damped Outrigger
  publication-title: Journal of Building Engineering
– volume: 57
  start-page: 177
  year: 2013
  end-page: 188
  article-title: Real‐Time Hybrid Simulation of a Smart Outrigger Damping System for High‐Rise Buildings
  publication-title: Engineering Structures
– volume: 204
  year: 2020
  article-title: Seismic Evaluation of Low‐Rise Steel Building Frames With Self‐Centering Energy‐absorbing Rigid Cores Designed Using a Force‐Based Approach
  publication-title: Engineering Structures
– volume: 117
  start-page: 2708
  issue: 9
  year: 1991
  end-page: 2724
  article-title: Fractional‐Derivative Maxwell Model for Viscous Dampers
  publication-title: Journal of Structural Engineering
– volume: 153
  start-page: 404
  year: 2017
  end-page: 410
  article-title: Outrigger Tuned Inertial Mass Electromagnetic Transducers for High‐Rise Buildings Subject to Long Period Earthquakes
  publication-title: Engineering Structures
– volume: 17
  start-page: 972
  issue: 7
  year: 2013
  end-page: 997
  article-title: Experimental Study of Full‐Scale Self‐Centering Sliding Hinge Joint Connections With Friction Ring Springs
  publication-title: Journal of Earthquake Engineering
– volume: 16
  start-page: 800
  issue: 7–8
  year: 2009
  end-page: 841
  article-title: Adaptive Passive, Semiactive, Smart Tuned Mass Dampers: Identification and Control Using Empirical Mode Decomposition, Hilbert Transform, and Short‐Term Fourier Transform
  publication-title: Structural Control and Health Monitoring
– volume: 136
  start-page: 1435
  issue: 11
  year: 2010
  end-page: 1443
  article-title: Analysis of Tall Buildings With Damped Outriggers
  publication-title: Journal of Structural Engineering
– volume: 148
  issue: 11
  year: 2022
  article-title: Adaptive Passive Negative Stiffness and Damping for Retrofit of Existing Tall Buildings With Tuned Mass Damper: TMD‐NSD
  publication-title: Journal of Structural Engineering
– volume: 42
  start-page: 1
  issue: 2
  year: 2021
  end-page: 14
  article-title: Structural Design and Key Technology of China International Silk Road Center Super High‐Rise Building
  publication-title: Journal of Building Structures
– volume: 139
  start-page: 1112
  issue: 7
  year: 2013
  end-page: 1123
  article-title: Adaptive Negative Stiffness: New Structural Modification Approach for Seismic Protection
  publication-title: Journal of Structural Engineering
– volume: 141
  issue: 4
  year: 2015
  article-title: Apparent Weakening in SDOF Yielding Structures Using a Negative Stiffness Device: Experimental and Analytical Study
  publication-title: Journal of Structural Engineering
– volume: 52
  start-page: 2731
  issue: 9
  year: 2023
  end-page: 2754
  article-title: Frequency Independent Damped Outrigger Systems for Multi‐Mode Seismic Control of Super Tall Buildings With Frequency Independent Negative Stiffness Enhancement
  publication-title: Earthquake Engineering & Structural Dynamics
– volume: 172
  year: 2022
  article-title: Frequency‐Dependency/Independency Analysis of Damping Magnification Effect Provided by Tuned Inter Absorber and Negative Stiffness Amplifying Damper Considering Soil‐Structure Interaction
  publication-title: Mechanical Systems and Signal Processing
– volume: 191
  start-page: 280
  year: 2019
  end-page: 291
  article-title: Optimization of Damped Outrigger Systems Subject to Stochastic Excitation
  publication-title: Engineering Structures
– volume: 47
  start-page: 2343
  issue: 12
  year: 2018
  end-page: 2365
  article-title: Seismic Performance Evaluation of Single Damped‐Outrigger System Incorporating Buckling‐Restrained Braces
  publication-title: Earthquake Engineering & Structural Dynamics
– volume: 139
  start-page: 1124
  issue: 7
  year: 2013
  end-page: 1133
  article-title: Negative Stiffness Device for Seismic Protection of Structures
  publication-title: Journal of Structural Engineering
– volume: 332
  start-page: 3610
  issue: 15
  year: 2013
  end-page: 3625
  article-title: Semi‐Active Tuned Mass Dampers With Phase Control
  publication-title: Journal of Sound and Vibration
– volume: 27
  issue: 13
  year: 2018
  article-title: Seismic Performance Analysis of Viscous Damping Outrigger in Super High‐Rise Buildings
  publication-title: The Structural Design of Tall and Special Buildings
– volume: 147
  issue: 7
  year: 2021
  article-title: Development and Experimental Study of Disc Spring–Based Self‐Centering Devices for Seismic Resilience
  publication-title: Journal of Structural Engineering
– volume: 20
  start-page: 435
  issue: 4
  year: 2011
  end-page: 452
  article-title: Mitigation of Wind‐Induced Response of Shanghai Center Tower by Tuned Mass Damper
  publication-title: The Structural Design of Tall and Special Buildings
– volume: 20
  start-page: 320
  issue: 3
  year: 2013
  end-page: 336
  article-title: Optimal Design Formulas for Viscous Tuned Mass Dampers in Wind‐Excited Structures
  publication-title: Structural Control and Health Monitoring
– volume: 225
  year: 2020
  article-title: Self‐Centering Energy‐Absorbing Rocking Core System With Friction Spring Damper: Experiments, Modeling and Design
  publication-title: Engineering Structures
– volume: 264
  year: 2023
  article-title: Comparative Study Between Inerter and Negative Stiffness Damped Outrigger Structures
  publication-title: International Journal of Mechanical Sciences
– volume: 23
  start-page: 963
  issue: 13
  year: 2014
  end-page: 979
  article-title: Analysis of a High‐Rise Steel Structure With Viscous Damped Outriggers
  publication-title: The Structural Design of Tall and Special Buildings
– year: 2012
– volume: 21
  start-page: 1865
  issue: 12
  year: 2018
  end-page: 1878
  article-title: A Novel Energy Dissipation Outrigger System With Rotational Inertia Damper
  publication-title: Advances in Structural Engineering
– volume: 40
  start-page: 75
  issue: 1
  year: 2011
  end-page: 92
  article-title: Effects of Brace Stiffness on Performance of Structures With Supplemental Maxwell Model‐Based Brace–Damper Systems
  publication-title: Earthquake Engineering & Structural Dynamics
– volume: 24
  issue: 4
  year: 2023
  article-title: Generalized Damped Outrigger Systems for Suppressing Multimode Vibrations of Tall Buildings
  publication-title: International Journal of Structural Stability and Dynamics
– volume: 46
  start-page: 1065
  issue: 7
  year: 2016
  end-page: 1080
  article-title: Cyclic Behavior and Failure Mechanism of Self‐Centering Energy Dissipation Braces With Pre‐Pressed Combination Disc Springs
  publication-title: Earthquake Engineering & Structural Dynamics
– volume: 16
  start-page: 501
  issue: 4
  year: 2007
  end-page: 517
  article-title: The Damped Outrigger Concept for Tall Buildings
  publication-title: The Structural Design of Tall and Special Buildings
– volume: 98
  start-page: 128
  year: 2015
  end-page: 140
  article-title: Dynamic Characteristics of Novel Energy Dissipation Systems With Damped Outriggers
  publication-title: Engineering Structures
– volume: 222
  year: 2020
  article-title: Optimization of SMA Based Damped Outrigger Structure Under Uncertainty
  publication-title: Engineering Structures
– volume: 48
  start-page: 1661
  issue: 15
  year: 2019
  end-page: 1677
  article-title: Development of a Novel Sacrificial‐Energy Dissipation Outrigger System for Tall Buildings
  publication-title: Earthquake Engineering & Structural Dynamics
– volume: 38
  year: 2021
  article-title: Experimental and Numerical Study on Viscously‐Damped Outriggers With Amplifying Devices
  publication-title: Journal of Building Engineering
– volume: 127
  start-page: 105
  issue: 2
  year: 2001
  end-page: 112
  article-title: Toggle‐Brace‐Damper Seismic Energy Dissipation Systems
  publication-title: Journal of Structural Engineering
– volume: 229
  year: 2021
  article-title: Multi‐Objective Optimal Design and Seismic Performance of Negative Stiffness Damped Outrigger Structures Considering Damping Cost
  publication-title: Engineering Structures
– volume: 11
  start-page: 435
  issue: 5
  year: 2013
  end-page: 451
  article-title: Semi‐active Damped Outriggers for Seismic Protection of High‐Rise Buildings
  publication-title: Smart Structures and Systems
– volume: 143
  issue: 4
  year: 2017
  article-title: Open‐Space Damping System Description, Theory, and Verification
  publication-title: Journal of Structural Engineering
– volume: 19
  start-page: 133
  issue: 1
  year: 2003
  end-page: 158
  article-title: Scissor‐Jack‐Damper Energy Dissipation System
  publication-title: Earthquake Spectra
– volume: 163
  start-page: 111
  issue: 2
  year: 2010
  end-page: 118
  article-title: Intrinsic and Supplementary Damping in Tall Buildings
  publication-title: Proceedings of the Institution of Civil Engineers—Structures and Buildings
– volume: 146
  issue: 12
  year: 2020
  article-title: Dynamic Characteristics and Responses of Damped Outrigger Tall Buildings Using Negative Stiffness
  publication-title: Journal of Structural Engineering
– volume: 28
  issue: 15
  year: 2019
  article-title: Simplified Optimal Design of MDOF Structures With Negative Stiffness Amplifying Dampers Based on Effective Damping
  publication-title: The Structural Design of Tall and Special Buildings
– volume: 95
  year: 2024
  article-title: Development and Experimental Study of Disc Spring‐Based Negative‐positive‐Uncoupled Stiffness Devices for Structural Multi‐Level Seismic Fortification
  publication-title: Journal of Building Engineering
– volume: 2023
  start-page: 1
  year: 2023
  end-page: 20
  article-title: Energy Analysis of a Damped Substructure Outrigger System
  publication-title: Structural Control and Health Monitoring
– volume: 218
  year: 2021
  article-title: Optimal Design of Supplemental Negative Stiffness Damped Outrigger System for High‐Rise Buildings Resisting Multi‐Hazard of Winds and Earthquakes
  publication-title: Journal of Wind Engineering and Industrial Aerodynamics
– year: 2013
– ident: e_1_2_10_52_1
  doi: 10.1080/13632469.2013.787378
– volume-title: Technical Specification for Seismic Energy Dissipation of Buildings (JGJ 297‐2013)
  year: 2013
  ident: e_1_2_10_57_1
– ident: e_1_2_10_13_1
– volume-title: Dampers for Vibration Energy Dissipation of Buildings (JG/T 209‐2012)
  year: 2012
  ident: e_1_2_10_56_1
– ident: e_1_2_10_51_1
  doi: 10.1016/j.jobe.2024.110231
– ident: e_1_2_10_53_1
  doi: 10.1002/eqe.2844
– ident: e_1_2_10_58_1
  doi: 10.1016/j.engstruct.2020.110424
– ident: e_1_2_10_19_1
  doi: 10.1016/j.engstruct.2019.04.011
– ident: e_1_2_10_26_1
  doi: 10.1016/j.engstruct.2017.10.040
– ident: e_1_2_10_55_1
  doi: 10.1016/j.engstruct.2020.111338
– ident: e_1_2_10_38_1
  doi: 10.1002/eqe.1023
– ident: e_1_2_10_27_1
  doi: 10.1177/1369433218758475
– ident: e_1_2_10_23_1
  doi: 10.1155/2023/5569434
– ident: e_1_2_10_6_1
  doi: 10.1002/stc.349
– ident: e_1_2_10_4_1
  doi: 10.1002/eqe.3218
– ident: e_1_2_10_15_1
  doi: 10.1061/(ASCE)ST.1943-541X.0000247
– ident: e_1_2_10_22_1
  doi: 10.1061/(ASCE)ST.1943-541X.0002825
– ident: e_1_2_10_45_1
  doi: 10.1061/(ASCE)ST.1943-541X.0000615
– ident: e_1_2_10_40_1
  doi: 10.1002/tal.1664
– ident: e_1_2_10_37_1
  doi: 10.1061/(ASCE)0733-9445(1991)117:9(2708)
– ident: e_1_2_10_32_1
  doi: 10.1061/(ASCE)0733-9445(2001)127:2(105)
– ident: e_1_2_10_46_1
  doi: 10.1061/(ASCE)ST.1943-541X.0000616
– ident: e_1_2_10_42_1
  doi: 10.1016/j.jweia.2021.104761
– ident: e_1_2_10_11_1
  doi: 10.1016/j.jsv.2013.02.008
– ident: e_1_2_10_12_1
  doi: 10.1016/j.engstruct.2022.114963
– ident: e_1_2_10_2_1
  doi: 10.1680/stbu.2010.163.2.111
– ident: e_1_2_10_35_1
  doi: 10.21022/IJHRB.2016.5.1.51
– ident: e_1_2_10_16_1
  doi: 10.1016/j.engstruct.2015.04.033
– ident: e_1_2_10_20_1
  doi: 10.1002/tal.1486
– ident: e_1_2_10_18_1
  doi: 10.1002/eqe.3072
– ident: e_1_2_10_43_1
  doi: 10.1002/stc.2988
– ident: e_1_2_10_47_1
  doi: 10.1061/(ASCE)ST.1943-541X.0001077
– volume: 2023
  start-page: 1
  year: 2023
  ident: e_1_2_10_21_1
  article-title: Stochastic Optimization and Sensitivity Analysis of the Combined Negative Stiffness Damped Outrigger and Conventional Damped Outrigger Systems Subjected to Nonstationary Seismic Excitation
  publication-title: Structural Control and Health Monitoring
  doi: 10.1155/2023/4024741
– ident: e_1_2_10_48_1
  doi: 10.1016/j.ymssp.2022.108965
– ident: e_1_2_10_30_1
  doi: 10.1016/j.engstruct.2013.09.016
– ident: e_1_2_10_39_1
  doi: 10.1016/j.engstruct.2019.03.110
– ident: e_1_2_10_44_1
  doi: 10.1016/j.jobe.2022.104428
– ident: e_1_2_10_17_1
  doi: 10.1193/051816EQS082M
– ident: e_1_2_10_31_1
  doi: 10.12989/sss.2013.11.5.435
– volume: 42
  start-page: 1
  issue: 2
  year: 2021
  ident: e_1_2_10_14_1
  article-title: Structural Design and Key Technology of China International Silk Road Center Super High‐Rise Building
  publication-title: Journal of Building Structures
– ident: e_1_2_10_41_1
  doi: 10.1016/j.engstruct.2020.111615
– ident: e_1_2_10_7_1
  doi: 10.1002/stc.496
– ident: e_1_2_10_36_1
  doi: 10.1016/j.jobe.2021.102172
– ident: e_1_2_10_29_1
  doi: 10.1142/S0219455424500342
– ident: e_1_2_10_33_1
  doi: 10.1193/1.1540999
– ident: e_1_2_10_24_1
  doi: 10.1061/(ASCE)ST.1943-541X.0002846
– ident: e_1_2_10_8_1
  doi: 10.1002/tal.659
– ident: e_1_2_10_49_1
  doi: 10.1002/eqe.3891
– volume: 264
  year: 2023
  ident: e_1_2_10_50_1
  article-title: Comparative Study Between Inerter and Negative Stiffness Damped Outrigger Structures
  publication-title: International Journal of Mechanical Sciences
– ident: e_1_2_10_10_1
  doi: 10.1061/(ASCE)0733-9445(2007)133:1(67)
– ident: e_1_2_10_5_1
  doi: 10.1002/tal.413
– ident: e_1_2_10_9_1
  doi: 10.1061/(ASCE)ST.1943-541X.0003474
– ident: e_1_2_10_28_1
  doi: 10.1061/(ASCE)ST.1943-541X.0003472
– ident: e_1_2_10_59_1
  doi: 10.1016/j.engstruct.2019.110038
– ident: e_1_2_10_54_1
  doi: 10.1061/(ASCE)ST.1943-541X.0003058
– ident: e_1_2_10_3_1
  doi: 10.1002/tal.1098
– ident: e_1_2_10_25_1
  doi: 10.1016/j.engstruct.2020.111074
– ident: e_1_2_10_34_1
  doi: 10.1061/(ASCE)ST.1943-541X.0001698
SSID ssj0003607
Score 2.4863663
Snippet ABSTRACT This paper proposed a novel negative stiffness damped outrigger with damping amplification (NSDO‐DA) through a smart combination of an L‐shape lever,...
This paper proposed a novel negative stiffness damped outrigger with damping amplification (NSDO‐DA) through a smart combination of an L‐shape lever, a...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1141
SubjectTerms adaptive stiffness
damped outrigger
Dampers
damping amplification
disc spring
dynamic test
Dynamic tests
frequency‐independent
Levers
negative stiffness
Shape
Stiffness
viscous damper
Viscous damping
Title Dynamic Test of Negative Stiffness Damped Outrigger With Damping Amplification
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feqe.4302
https://www.proquest.com/docview/3172957238
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bS8MwFMeD7kkfvIvTOSKIPnW26TWPw20MwXnbcOBDSXOZQ9l061789J6k7TZFQaQPhZKU9iQ5-Tc5_R2ETm0uJAhV3wokDDeP29yizJWWryLwfiEcSu_oXneCds-76vv9PKpS_wuT8SHmC256ZBh_rQc4S6YXC2iofJc1zzUcSR2qpfXQ_YIc5Qb2HJcZgQcuuLM2uSgqfp2JFvJyWaSaWaa1iZ6K58uCS15qszSp8Y9v6Mb_vcAW2sjFJ65nvWUbrcjRDlpfQhLuok4jS1GPu_CUeKxwRw4MGxw_pEOltGPEDQZaW-AbDfIfDOQEPw7TZ3MVboHrOkZd5UuBe6jXanYv21aec8HiLgkJ-D6fiIBGDGQfEY6IQLEETG9ealAZSwL4YGR25DGHC2hiQVTCqc0IUY7HwNjuPiqNxiN5gLBPVUhlBLMwiDamaEIc5ogQnCsjNAloGZ0X9o95DiTXeTFe4wylTGKwUKwtVEYn85JvGYTjhzKVognjfBhOYxBHhPo6r1oZnZm2-LV-3Lxr6vPhXwseoTWicwGbKJ4KKqWTmTwGgZImVbRKvNuq6ZCf8R3gwA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB2xHIADO6KsRmI5pSTO0vjAAdGishUBRfQWHMcuFVC2IAS_xK_wUYyztIBA4sIB5RApcqzY45l5Hk_eACybIpIIVF3Dk6hujjCFwbgtDVf5aP1KeCl9ontQ86qnzm7DbfTAa_4vTMoP0Qm4ac1I7LVWcB2QXu-yhso7WXRsk2YZlXvy-Qn3aw8bO2UU7gql25X6VtXISgoYwqYliqrt0shjPkdUQyMr8tEhe1yfzWkeLh56uB_ipu9wS0Q4goiqUDCTU6osh5vMt7HfXujXBcQ1UX_5uMtVZXtmh6DTR5ufM92adD3_0s--rwtoP8LixK9tj8BbPiNpOstl8TEOi-LlC1nkP5myURjO8DXZTBViDHpkexyGPrAuTkCt_Nzm1y1B6jgt5EaRmmwm9OfkJG4ppW0_KXPcTkTkUNcqaDblPTlrxRfJU-yCbOo0fJVFOyfh9E8GNAV97Zu2nAbiMlVi0keggbiUKxZSi1tRCf0Hpyz0WAHWcoEHIuNc16U_roKULZoGKJFAS6QAS52WtynPyDdt5vI1E2SW5iFA_EeZq0vHFWA1Ef6P7weVo4q-z_y24SIMVOsH-8H-Tm1vFgapLn2cJC3NQV98_yjnEY_F4UKiBwTO_3oVvQMNeDmE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB5qBdGD-MT6XMHHKZpMHs0ePBTbolaroqK3uMnuVkGq1or4l_yVzubRKih4kRwCYTMkk3l8uzv5BmDDTqQioOpbgSJ38xI7sbhwleXrkKJflQ5tdnRP2sHBlXd049-U4KP4FybjhxgsuBnPSOO1cfAnqXeHpKHqWe14ro15QWVLvb_RdO1l77BO33YTsdm43D-w8o4CVuJiFcmzfZQBDwWBGpSODCkfB8JszRkaLhEHNB0SdugJJ5H0AhJ1nHBbIGrHEzYPXZI7AqNmb9GUj6F3Noj6bmAP-DlDCvkF0a2Nu8WTfk99Qzz7FRWnaa05BZM5HmW1zICmoaS6MzDxhaVwFtr1rGs9uyQ57FGztuqkdOHson-vtYmVrC4Ifkt2arj9Ox3VY9f3_bv0KolgNVO2rvPVwTm4-helzUO5-9hVC8B8rqtchZSYCccJzWN0hCOrFG8F8jjgFdguNBQlOUe5aZXxEGXsyhiRLiOjywqsD0Y-ZbwcP4xZLpQc5Z75EhFeQu6bVmsV2EoV_-v9UeO8Yc6Lfx24BmNn9WZ0fNhuLcE4mk7BaY3PMpT7vVe1QvClH6-mdsPg9r8N9RM_Qfmi
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Test+of+Negative+Stiffness+Damped+Outrigger+With+Damping+Amplification&rft.jtitle=Earthquake+engineering+%26+structural+dynamics&rft.au=Wang%2C+Meng&rft.au=Koetaka%2C+Yuji&rft.au=Fei%E2%80%90Fei+Sun&rft.au=Liu%2C+Chao&rft.date=2025-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0098-8847&rft.eissn=1096-9845&rft.volume=54&rft.issue=4&rft.spage=1141&rft.epage=1155&rft_id=info:doi/10.1002%2Feqe.4302&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-8847&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-8847&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-8847&client=summon