Dynamic Test of Negative Stiffness Damped Outrigger With Damping Amplification
ABSTRACT This paper proposed a novel negative stiffness damped outrigger with damping amplification (NSDO‐DA) through a smart combination of an L‐shape lever, a precompressed disc spring brace (DSB), and a viscous damper. A theoretical model of the NSDO‐DA considering nonlinear adaptive negative sti...
Saved in:
Published in | Earthquake engineering & structural dynamics Vol. 54; no. 4; pp. 1141 - 1155 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Bognor Regis
Wiley Subscription Services, Inc
01.04.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ABSTRACT
This paper proposed a novel negative stiffness damped outrigger with damping amplification (NSDO‐DA) through a smart combination of an L‐shape lever, a precompressed disc spring brace (DSB), and a viscous damper. A theoretical model of the NSDO‐DA considering nonlinear adaptive negative stiffness, damping amplification of nonlinear viscous dampers, and frictions were established. Cyclic tests of disc spring pairs and DSB were presented to verify the feasibility of using DSB as the precompression component of the NSDO‐DA. Subsequently, large‐scale dynamic tests of five different outrigger systems were conducted involving (i) conventional damped outrigger (CDO), (ii) amplified damped outrigger (ADO), (iii) purely negative stiffness mechanism, (iv) negative stiffness damped outrigger (NSDO), and (v) NSDO‐DA. Then, discussions on the dynamic test results and validations of the NSDO‐DA model were provided. The major contributions of this paper are the proposal of the NSDO‐DA and the experimental validation of its two special features: (i) producing negative stiffness force in the parallel direction of the precompression force rather than in the perpendicular direction, making the physical configuration more concise and condensed for outrigger application; (ii) sharing the amplification mechanism of the L‐shape lever for both the viscous damper and the negative stiffness mechanism, leading to an additional damping amplification mechanism for the damper. Moreover, the adaptive stiffness behavior and the frequency‐independent feature of the proposed negative stiffness mechanism were successfully validated by the dynamic tests. |
---|---|
AbstractList | This paper proposed a novel negative stiffness damped outrigger with damping amplification (NSDO‐DA) through a smart combination of an L‐shape lever, a precompressed disc spring brace (DSB), and a viscous damper. A theoretical model of the NSDO‐DA considering nonlinear adaptive negative stiffness, damping amplification of nonlinear viscous dampers, and frictions were established. Cyclic tests of disc spring pairs and DSB were presented to verify the feasibility of using DSB as the precompression component of the NSDO‐DA. Subsequently, large‐scale dynamic tests of five different outrigger systems were conducted involving (i) conventional damped outrigger (CDO), (ii) amplified damped outrigger (ADO), (iii) purely negative stiffness mechanism, (iv) negative stiffness damped outrigger (NSDO), and (v) NSDO‐DA. Then, discussions on the dynamic test results and validations of the NSDO‐DA model were provided. The major contributions of this paper are the proposal of the NSDO‐DA and the experimental validation of its two special features: (i) producing negative stiffness force in the parallel direction of the precompression force rather than in the perpendicular direction, making the physical configuration more concise and condensed for outrigger application; (ii) sharing the amplification mechanism of the L‐shape lever for both the viscous damper and the negative stiffness mechanism, leading to an additional damping amplification mechanism for the damper. Moreover, the adaptive stiffness behavior and the frequency‐independent feature of the proposed negative stiffness mechanism were successfully validated by the dynamic tests. ABSTRACT This paper proposed a novel negative stiffness damped outrigger with damping amplification (NSDO‐DA) through a smart combination of an L‐shape lever, a precompressed disc spring brace (DSB), and a viscous damper. A theoretical model of the NSDO‐DA considering nonlinear adaptive negative stiffness, damping amplification of nonlinear viscous dampers, and frictions were established. Cyclic tests of disc spring pairs and DSB were presented to verify the feasibility of using DSB as the precompression component of the NSDO‐DA. Subsequently, large‐scale dynamic tests of five different outrigger systems were conducted involving (i) conventional damped outrigger (CDO), (ii) amplified damped outrigger (ADO), (iii) purely negative stiffness mechanism, (iv) negative stiffness damped outrigger (NSDO), and (v) NSDO‐DA. Then, discussions on the dynamic test results and validations of the NSDO‐DA model were provided. The major contributions of this paper are the proposal of the NSDO‐DA and the experimental validation of its two special features: (i) producing negative stiffness force in the parallel direction of the precompression force rather than in the perpendicular direction, making the physical configuration more concise and condensed for outrigger application; (ii) sharing the amplification mechanism of the L‐shape lever for both the viscous damper and the negative stiffness mechanism, leading to an additional damping amplification mechanism for the damper. Moreover, the adaptive stiffness behavior and the frequency‐independent feature of the proposed negative stiffness mechanism were successfully validated by the dynamic tests. |
Author | Liu, Chao Koetaka, Yuji Ashida, Yosuke Wang, Meng Sun, Fei‐Fei Nagarajaiah, Satish Du, Xiu‐Li |
Author_xml | – sequence: 1 givenname: Meng orcidid: 0000-0003-0432-8313 surname: Wang fullname: Wang, Meng organization: Kyoto University – sequence: 2 givenname: Yuji surname: Koetaka fullname: Koetaka, Yuji organization: Kyoto University – sequence: 3 givenname: Fei‐Fei orcidid: 0000-0002-9600-7500 surname: Sun fullname: Sun, Fei‐Fei email: ffsun@tongji.edu.cn organization: Tongji University – sequence: 4 givenname: Chao orcidid: 0009-0004-2686-9131 surname: Liu fullname: Liu, Chao organization: Beijing University of Technology – sequence: 5 givenname: Satish orcidid: 0000-0003-0088-1656 surname: Nagarajaiah fullname: Nagarajaiah, Satish email: satish.nagarajaiah@rice.edu organization: Rice University – sequence: 6 givenname: Yosuke surname: Ashida fullname: Ashida, Yosuke organization: Kyoto University – sequence: 7 givenname: Xiu‐Li surname: Du fullname: Du, Xiu‐Li organization: Beijing University of Technology |
BookMark | eNp1kEtLAzEUhYMo2FbBnxBw42bqTTKTSZalrQ8oLWLFZUhnkjFlHm0yVfrvnbauRFcXLt85957TR-d1UxuEbggMCQC9N1szjBnQM9QjIHkkRZycox6AFJEQcXqJ-iGsAYBxSHtoPtnXunIZXprQ4sbiuSl06z4Nfm2dtbUJAU90tTE5Xuxa74rCePzu2o_j1tUFHlWb0lmXdaqmvkIXVpfBXP_MAXp7mC7HT9Fs8fg8Hs2ijNGURpIkNOdSaEaA5iQXPGZcc5IkXBCqV5wSokHEmmR5IpOc2lUmQVNqSay7JGyAbk--G99sd93rat3sfN2dVIykVCYpZQfq7kRlvgnBG6s23lXa7xUBdWhLdW2pQ1sdOvyFZq49Rmq9duVfgugk-HKl2f9rrKYv0yP_DUSzerQ |
CitedBy_id | crossref_primary_10_1080_13632469_2025_2467331 crossref_primary_10_1016_j_jobe_2025_112122 crossref_primary_10_1016_j_engstruct_2025_119978 |
Cites_doi | 10.1080/13632469.2013.787378 10.1016/j.jobe.2024.110231 10.1002/eqe.2844 10.1016/j.engstruct.2020.110424 10.1016/j.engstruct.2019.04.011 10.1016/j.engstruct.2017.10.040 10.1016/j.engstruct.2020.111338 10.1002/eqe.1023 10.1177/1369433218758475 10.1155/2023/5569434 10.1002/stc.349 10.1002/eqe.3218 10.1061/(ASCE)ST.1943-541X.0000247 10.1061/(ASCE)ST.1943-541X.0002825 10.1061/(ASCE)ST.1943-541X.0000615 10.1002/tal.1664 10.1061/(ASCE)0733-9445(1991)117:9(2708) 10.1061/(ASCE)0733-9445(2001)127:2(105) 10.1061/(ASCE)ST.1943-541X.0000616 10.1016/j.jweia.2021.104761 10.1016/j.jsv.2013.02.008 10.1016/j.engstruct.2022.114963 10.1680/stbu.2010.163.2.111 10.21022/IJHRB.2016.5.1.51 10.1016/j.engstruct.2015.04.033 10.1002/tal.1486 10.1002/eqe.3072 10.1002/stc.2988 10.1061/(ASCE)ST.1943-541X.0001077 10.1155/2023/4024741 10.1016/j.ymssp.2022.108965 10.1016/j.engstruct.2013.09.016 10.1016/j.engstruct.2019.03.110 10.1016/j.jobe.2022.104428 10.1193/051816EQS082M 10.12989/sss.2013.11.5.435 10.1016/j.engstruct.2020.111615 10.1002/stc.496 10.1016/j.jobe.2021.102172 10.1142/S0219455424500342 10.1193/1.1540999 10.1061/(ASCE)ST.1943-541X.0002846 10.1002/tal.659 10.1002/eqe.3891 10.1061/(ASCE)0733-9445(2007)133:1(67) 10.1002/tal.413 10.1061/(ASCE)ST.1943-541X.0003474 10.1061/(ASCE)ST.1943-541X.0003472 10.1016/j.engstruct.2019.110038 10.1061/(ASCE)ST.1943-541X.0003058 10.1002/tal.1098 10.1016/j.engstruct.2020.111074 10.1061/(ASCE)ST.1943-541X.0001698 |
ContentType | Journal Article |
Copyright | 2025 The Author(s). published by John Wiley & Sons Ltd. 2025. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2025 The Author(s). published by John Wiley & Sons Ltd. – notice: 2025. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 7ST 7TG 7UA 8FD C1K F1W FR3 H96 KL. KR7 L.G SOI |
DOI | 10.1002/eqe.4302 |
DatabaseName | Wiley Online Library Open Access CrossRef Environment Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Civil Engineering Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1096-9845 |
EndPage | 1155 |
ExternalDocumentID | 10_1002_eqe_4302 EQE4302 |
Genre | researchArticle |
GrantInformation_xml | – fundername: Grant in aids JSPS funderid: JP23KF0043 – fundername: Beijing Postdoctoral Science Foundation funderid: 2022‐ZZ‐093 – fundername: National Natural Science Foundation of China funderid: 52308299 – fundername: National Postdoctoral Program for Innovative Talents funderid: BX20220026 |
GroupedDBID | -~X .3N .DC .GA 05W 0R~ 10A 1L6 1OB 1OC 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AABCJ AAESR AAEVG AAHHS AAHQN AAIKC AAMNL AAMNW AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F00 F01 F04 G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RX1 RYL SUPJJ TN5 UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WLBEL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT .Y3 31~ 8WZ A6W AAMMB AANHP AASGY AAYXX ABEML ACBWZ ACKIV ACRPL ACSCC ACYXJ ADNMO AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AI. AIDQK AIDYY ARCSS ASPBG AVWKF AZFZN CITATION CKXBT EJD FEDTE HF~ HVGLF LH4 LW6 M58 PALCI RIWAO RJQFR RNS SAMSI TUS VH1 ZY4 7ST 7TG 7UA 8FD C1K F1W FR3 H96 KL. KR7 L.G SOI |
ID | FETCH-LOGICAL-c3272-9152d698a3102d1d86436a61556812ab6211a084a1cd595d2fbc90a22f14a0983 |
IEDL.DBID | DR2 |
ISSN | 0098-8847 |
IngestDate | Fri Jul 25 21:35:02 EDT 2025 Thu Jul 24 02:07:38 EDT 2025 Thu Apr 24 22:56:24 EDT 2025 Mon Mar 03 15:18:45 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | Attribution-NonCommercial-NoDerivs |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3272-9152d698a3102d1d86436a61556812ab6211a084a1cd595d2fbc90a22f14a0983 |
Notes | Funding This study was supported by National Natural Science Foundation of China 52308299. National Postdoctoral Program for Innovative Talents BX20220026. Grant in aids JSPS JP23KF0043. Beijing Postdoctoral Science Foundation 2022‐ZZ‐093. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9600-7500 0000-0003-0432-8313 0009-0004-2686-9131 0000-0003-0088-1656 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feqe.4302 |
PQID | 3172957238 |
PQPubID | 866380 |
PageCount | 15 |
ParticipantIDs | proquest_journals_3172957238 crossref_primary_10_1002_eqe_4302 crossref_citationtrail_10_1002_eqe_4302 wiley_primary_10_1002_eqe_4302_EQE4302 |
PublicationCentury | 2000 |
PublicationDate | 2025-04-01 |
PublicationDateYYYYMMDD | 2025-04-01 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Bognor Regis |
PublicationPlace_xml | – name: Bognor Regis |
PublicationTitle | Earthquake engineering & structural dynamics |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 141 2022; 172 2013; 20 2023; 2023 2023; 264 2020; 204 2017; 153 2003; 19 1991; 117 2014; 23 2018; 47 2022; 29 2021; 38 2023; 24 2013; 17 2013; 11 2013; 57 2017; 33 2007; 133 2011; 20 2019; 28 2020; 211 2009; 16 2016; 46 2023; 52 2019; 191 2021; 42 2022; 271 2019; 190 2012 2021; 147 2011; 40 2021; 229 2015; 98 2008 2024; 95 2020; 225 2010; 163 2020; 222 2020; 146 2018; 21 2018; 27 2007; 16 2001; 127 2016; 5 2010; 136 2019; 48 2021; 218 2013; 139 2013; 332 2022; 52 2017; 143 2013 2022; 148 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_40_1 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_55_1 e_1_2_10_8_1 e_1_2_10_37_1 e_1_2_10_58_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_51_1 Ding J. (e_1_2_10_14_1) 2021; 42 e_1_2_10_29_1 Wang Z. (e_1_2_10_50_1) 2023; 264 China Ministry of Construction (CMC) (e_1_2_10_56_1) 2012 Wang Z. (e_1_2_10_21_1) 2023; 2023 e_1_2_10_27_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 China Ministry of Construction (CMC) (e_1_2_10_57_1) 2013 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_26_1 e_1_2_10_47_1 |
References_xml | – volume: 271 year: 2022 article-title: Seismic Performance Improvement of Base‐Isolated Structures Using a Semi‐Active Tuned Mass Damper publication-title: Engineering Structures – volume: 33 start-page: 665 issue: 2 year: 2017 end-page: 685 article-title: Dynamic Response Evaluation of Damped‐Outrigger Systems With Various Heights publication-title: Earthquake Spectra – volume: 146 issue: 12 year: 2020 article-title: Optimized Seismic Design of Passively Damped Outriggers Considering Perimeter Column Flexibility publication-title: Journal of Structural Engineering – volume: 190 start-page: 128 year: 2019 end-page: 141 article-title: Seismic Protection of SDOF Systems With a Negative Stiffness Amplifying Damper publication-title: Engineering Structures – volume: 133 start-page: 67 issue: 1 year: 2007 end-page: 77 article-title: Structures With Semiactive Variable Stiffness Single/Multiple Tuned Mass Dampers publication-title: Journal of Structural Engineering – volume: 148 issue: 11 year: 2022 article-title: Adaptive Stiffness Structures With Dampers: Seismic and Wind Response Reduction Using Passive Negative Stiffness and Inerter Systems publication-title: Journal of Structural Engineering – volume: 5 start-page: 51 issue: 1 year: 2016 end-page: 62 article-title: Mechanical Amplification of Relative Movements in Damped Outriggers for Wind and Seismic Response Mitigation publication-title: International Journal of High‐Rise Buildings – volume: 211 year: 2020 article-title: Development and Validation Test of a Novel Self‐Centering Energy‐Absorbing Dual Rocking Core (SEDRC) System for Seismic Resilience publication-title: Engineering Structures – volume: 2023 start-page: 1 year: 2023 end-page: 22 article-title: Stochastic Optimization and Sensitivity Analysis of the Combined Negative Stiffness Damped Outrigger and Conventional Damped Outrigger Systems Subjected to Nonstationary Seismic Excitation publication-title: Structural Control and Health Monitoring – volume: 29 issue: 9 year: 2022 article-title: A Novel Crosswind Mitigation Strategy for Tall Buildings Using Negative Stiffness Damped Outrigger Systems publication-title: Structural Control and Health Monitoring – year: 2008 article-title: Performance Based Seismic and Wind Engineering for 60 Story Twin Towers in Manila – volume: 52 year: 2022 article-title: Fragility Analysis and Inelastic Seismic Performance of Steel Braced‐Core‐Tube Frame Outrigger Tall Buildings With Passive Adaptive Negative Stiffness Damped Outrigger publication-title: Journal of Building Engineering – volume: 57 start-page: 177 year: 2013 end-page: 188 article-title: Real‐Time Hybrid Simulation of a Smart Outrigger Damping System for High‐Rise Buildings publication-title: Engineering Structures – volume: 204 year: 2020 article-title: Seismic Evaluation of Low‐Rise Steel Building Frames With Self‐Centering Energy‐absorbing Rigid Cores Designed Using a Force‐Based Approach publication-title: Engineering Structures – volume: 117 start-page: 2708 issue: 9 year: 1991 end-page: 2724 article-title: Fractional‐Derivative Maxwell Model for Viscous Dampers publication-title: Journal of Structural Engineering – volume: 153 start-page: 404 year: 2017 end-page: 410 article-title: Outrigger Tuned Inertial Mass Electromagnetic Transducers for High‐Rise Buildings Subject to Long Period Earthquakes publication-title: Engineering Structures – volume: 17 start-page: 972 issue: 7 year: 2013 end-page: 997 article-title: Experimental Study of Full‐Scale Self‐Centering Sliding Hinge Joint Connections With Friction Ring Springs publication-title: Journal of Earthquake Engineering – volume: 16 start-page: 800 issue: 7–8 year: 2009 end-page: 841 article-title: Adaptive Passive, Semiactive, Smart Tuned Mass Dampers: Identification and Control Using Empirical Mode Decomposition, Hilbert Transform, and Short‐Term Fourier Transform publication-title: Structural Control and Health Monitoring – volume: 136 start-page: 1435 issue: 11 year: 2010 end-page: 1443 article-title: Analysis of Tall Buildings With Damped Outriggers publication-title: Journal of Structural Engineering – volume: 148 issue: 11 year: 2022 article-title: Adaptive Passive Negative Stiffness and Damping for Retrofit of Existing Tall Buildings With Tuned Mass Damper: TMD‐NSD publication-title: Journal of Structural Engineering – volume: 42 start-page: 1 issue: 2 year: 2021 end-page: 14 article-title: Structural Design and Key Technology of China International Silk Road Center Super High‐Rise Building publication-title: Journal of Building Structures – volume: 139 start-page: 1112 issue: 7 year: 2013 end-page: 1123 article-title: Adaptive Negative Stiffness: New Structural Modification Approach for Seismic Protection publication-title: Journal of Structural Engineering – volume: 141 issue: 4 year: 2015 article-title: Apparent Weakening in SDOF Yielding Structures Using a Negative Stiffness Device: Experimental and Analytical Study publication-title: Journal of Structural Engineering – volume: 52 start-page: 2731 issue: 9 year: 2023 end-page: 2754 article-title: Frequency Independent Damped Outrigger Systems for Multi‐Mode Seismic Control of Super Tall Buildings With Frequency Independent Negative Stiffness Enhancement publication-title: Earthquake Engineering & Structural Dynamics – volume: 172 year: 2022 article-title: Frequency‐Dependency/Independency Analysis of Damping Magnification Effect Provided by Tuned Inter Absorber and Negative Stiffness Amplifying Damper Considering Soil‐Structure Interaction publication-title: Mechanical Systems and Signal Processing – volume: 191 start-page: 280 year: 2019 end-page: 291 article-title: Optimization of Damped Outrigger Systems Subject to Stochastic Excitation publication-title: Engineering Structures – volume: 47 start-page: 2343 issue: 12 year: 2018 end-page: 2365 article-title: Seismic Performance Evaluation of Single Damped‐Outrigger System Incorporating Buckling‐Restrained Braces publication-title: Earthquake Engineering & Structural Dynamics – volume: 139 start-page: 1124 issue: 7 year: 2013 end-page: 1133 article-title: Negative Stiffness Device for Seismic Protection of Structures publication-title: Journal of Structural Engineering – volume: 332 start-page: 3610 issue: 15 year: 2013 end-page: 3625 article-title: Semi‐Active Tuned Mass Dampers With Phase Control publication-title: Journal of Sound and Vibration – volume: 27 issue: 13 year: 2018 article-title: Seismic Performance Analysis of Viscous Damping Outrigger in Super High‐Rise Buildings publication-title: The Structural Design of Tall and Special Buildings – volume: 147 issue: 7 year: 2021 article-title: Development and Experimental Study of Disc Spring–Based Self‐Centering Devices for Seismic Resilience publication-title: Journal of Structural Engineering – volume: 20 start-page: 435 issue: 4 year: 2011 end-page: 452 article-title: Mitigation of Wind‐Induced Response of Shanghai Center Tower by Tuned Mass Damper publication-title: The Structural Design of Tall and Special Buildings – volume: 20 start-page: 320 issue: 3 year: 2013 end-page: 336 article-title: Optimal Design Formulas for Viscous Tuned Mass Dampers in Wind‐Excited Structures publication-title: Structural Control and Health Monitoring – volume: 225 year: 2020 article-title: Self‐Centering Energy‐Absorbing Rocking Core System With Friction Spring Damper: Experiments, Modeling and Design publication-title: Engineering Structures – volume: 264 year: 2023 article-title: Comparative Study Between Inerter and Negative Stiffness Damped Outrigger Structures publication-title: International Journal of Mechanical Sciences – volume: 23 start-page: 963 issue: 13 year: 2014 end-page: 979 article-title: Analysis of a High‐Rise Steel Structure With Viscous Damped Outriggers publication-title: The Structural Design of Tall and Special Buildings – year: 2012 – volume: 21 start-page: 1865 issue: 12 year: 2018 end-page: 1878 article-title: A Novel Energy Dissipation Outrigger System With Rotational Inertia Damper publication-title: Advances in Structural Engineering – volume: 40 start-page: 75 issue: 1 year: 2011 end-page: 92 article-title: Effects of Brace Stiffness on Performance of Structures With Supplemental Maxwell Model‐Based Brace–Damper Systems publication-title: Earthquake Engineering & Structural Dynamics – volume: 24 issue: 4 year: 2023 article-title: Generalized Damped Outrigger Systems for Suppressing Multimode Vibrations of Tall Buildings publication-title: International Journal of Structural Stability and Dynamics – volume: 46 start-page: 1065 issue: 7 year: 2016 end-page: 1080 article-title: Cyclic Behavior and Failure Mechanism of Self‐Centering Energy Dissipation Braces With Pre‐Pressed Combination Disc Springs publication-title: Earthquake Engineering & Structural Dynamics – volume: 16 start-page: 501 issue: 4 year: 2007 end-page: 517 article-title: The Damped Outrigger Concept for Tall Buildings publication-title: The Structural Design of Tall and Special Buildings – volume: 98 start-page: 128 year: 2015 end-page: 140 article-title: Dynamic Characteristics of Novel Energy Dissipation Systems With Damped Outriggers publication-title: Engineering Structures – volume: 222 year: 2020 article-title: Optimization of SMA Based Damped Outrigger Structure Under Uncertainty publication-title: Engineering Structures – volume: 48 start-page: 1661 issue: 15 year: 2019 end-page: 1677 article-title: Development of a Novel Sacrificial‐Energy Dissipation Outrigger System for Tall Buildings publication-title: Earthquake Engineering & Structural Dynamics – volume: 38 year: 2021 article-title: Experimental and Numerical Study on Viscously‐Damped Outriggers With Amplifying Devices publication-title: Journal of Building Engineering – volume: 127 start-page: 105 issue: 2 year: 2001 end-page: 112 article-title: Toggle‐Brace‐Damper Seismic Energy Dissipation Systems publication-title: Journal of Structural Engineering – volume: 229 year: 2021 article-title: Multi‐Objective Optimal Design and Seismic Performance of Negative Stiffness Damped Outrigger Structures Considering Damping Cost publication-title: Engineering Structures – volume: 11 start-page: 435 issue: 5 year: 2013 end-page: 451 article-title: Semi‐active Damped Outriggers for Seismic Protection of High‐Rise Buildings publication-title: Smart Structures and Systems – volume: 143 issue: 4 year: 2017 article-title: Open‐Space Damping System Description, Theory, and Verification publication-title: Journal of Structural Engineering – volume: 19 start-page: 133 issue: 1 year: 2003 end-page: 158 article-title: Scissor‐Jack‐Damper Energy Dissipation System publication-title: Earthquake Spectra – volume: 163 start-page: 111 issue: 2 year: 2010 end-page: 118 article-title: Intrinsic and Supplementary Damping in Tall Buildings publication-title: Proceedings of the Institution of Civil Engineers—Structures and Buildings – volume: 146 issue: 12 year: 2020 article-title: Dynamic Characteristics and Responses of Damped Outrigger Tall Buildings Using Negative Stiffness publication-title: Journal of Structural Engineering – volume: 28 issue: 15 year: 2019 article-title: Simplified Optimal Design of MDOF Structures With Negative Stiffness Amplifying Dampers Based on Effective Damping publication-title: The Structural Design of Tall and Special Buildings – volume: 95 year: 2024 article-title: Development and Experimental Study of Disc Spring‐Based Negative‐positive‐Uncoupled Stiffness Devices for Structural Multi‐Level Seismic Fortification publication-title: Journal of Building Engineering – volume: 2023 start-page: 1 year: 2023 end-page: 20 article-title: Energy Analysis of a Damped Substructure Outrigger System publication-title: Structural Control and Health Monitoring – volume: 218 year: 2021 article-title: Optimal Design of Supplemental Negative Stiffness Damped Outrigger System for High‐Rise Buildings Resisting Multi‐Hazard of Winds and Earthquakes publication-title: Journal of Wind Engineering and Industrial Aerodynamics – year: 2013 – ident: e_1_2_10_52_1 doi: 10.1080/13632469.2013.787378 – volume-title: Technical Specification for Seismic Energy Dissipation of Buildings (JGJ 297‐2013) year: 2013 ident: e_1_2_10_57_1 – ident: e_1_2_10_13_1 – volume-title: Dampers for Vibration Energy Dissipation of Buildings (JG/T 209‐2012) year: 2012 ident: e_1_2_10_56_1 – ident: e_1_2_10_51_1 doi: 10.1016/j.jobe.2024.110231 – ident: e_1_2_10_53_1 doi: 10.1002/eqe.2844 – ident: e_1_2_10_58_1 doi: 10.1016/j.engstruct.2020.110424 – ident: e_1_2_10_19_1 doi: 10.1016/j.engstruct.2019.04.011 – ident: e_1_2_10_26_1 doi: 10.1016/j.engstruct.2017.10.040 – ident: e_1_2_10_55_1 doi: 10.1016/j.engstruct.2020.111338 – ident: e_1_2_10_38_1 doi: 10.1002/eqe.1023 – ident: e_1_2_10_27_1 doi: 10.1177/1369433218758475 – ident: e_1_2_10_23_1 doi: 10.1155/2023/5569434 – ident: e_1_2_10_6_1 doi: 10.1002/stc.349 – ident: e_1_2_10_4_1 doi: 10.1002/eqe.3218 – ident: e_1_2_10_15_1 doi: 10.1061/(ASCE)ST.1943-541X.0000247 – ident: e_1_2_10_22_1 doi: 10.1061/(ASCE)ST.1943-541X.0002825 – ident: e_1_2_10_45_1 doi: 10.1061/(ASCE)ST.1943-541X.0000615 – ident: e_1_2_10_40_1 doi: 10.1002/tal.1664 – ident: e_1_2_10_37_1 doi: 10.1061/(ASCE)0733-9445(1991)117:9(2708) – ident: e_1_2_10_32_1 doi: 10.1061/(ASCE)0733-9445(2001)127:2(105) – ident: e_1_2_10_46_1 doi: 10.1061/(ASCE)ST.1943-541X.0000616 – ident: e_1_2_10_42_1 doi: 10.1016/j.jweia.2021.104761 – ident: e_1_2_10_11_1 doi: 10.1016/j.jsv.2013.02.008 – ident: e_1_2_10_12_1 doi: 10.1016/j.engstruct.2022.114963 – ident: e_1_2_10_2_1 doi: 10.1680/stbu.2010.163.2.111 – ident: e_1_2_10_35_1 doi: 10.21022/IJHRB.2016.5.1.51 – ident: e_1_2_10_16_1 doi: 10.1016/j.engstruct.2015.04.033 – ident: e_1_2_10_20_1 doi: 10.1002/tal.1486 – ident: e_1_2_10_18_1 doi: 10.1002/eqe.3072 – ident: e_1_2_10_43_1 doi: 10.1002/stc.2988 – ident: e_1_2_10_47_1 doi: 10.1061/(ASCE)ST.1943-541X.0001077 – volume: 2023 start-page: 1 year: 2023 ident: e_1_2_10_21_1 article-title: Stochastic Optimization and Sensitivity Analysis of the Combined Negative Stiffness Damped Outrigger and Conventional Damped Outrigger Systems Subjected to Nonstationary Seismic Excitation publication-title: Structural Control and Health Monitoring doi: 10.1155/2023/4024741 – ident: e_1_2_10_48_1 doi: 10.1016/j.ymssp.2022.108965 – ident: e_1_2_10_30_1 doi: 10.1016/j.engstruct.2013.09.016 – ident: e_1_2_10_39_1 doi: 10.1016/j.engstruct.2019.03.110 – ident: e_1_2_10_44_1 doi: 10.1016/j.jobe.2022.104428 – ident: e_1_2_10_17_1 doi: 10.1193/051816EQS082M – ident: e_1_2_10_31_1 doi: 10.12989/sss.2013.11.5.435 – volume: 42 start-page: 1 issue: 2 year: 2021 ident: e_1_2_10_14_1 article-title: Structural Design and Key Technology of China International Silk Road Center Super High‐Rise Building publication-title: Journal of Building Structures – ident: e_1_2_10_41_1 doi: 10.1016/j.engstruct.2020.111615 – ident: e_1_2_10_7_1 doi: 10.1002/stc.496 – ident: e_1_2_10_36_1 doi: 10.1016/j.jobe.2021.102172 – ident: e_1_2_10_29_1 doi: 10.1142/S0219455424500342 – ident: e_1_2_10_33_1 doi: 10.1193/1.1540999 – ident: e_1_2_10_24_1 doi: 10.1061/(ASCE)ST.1943-541X.0002846 – ident: e_1_2_10_8_1 doi: 10.1002/tal.659 – ident: e_1_2_10_49_1 doi: 10.1002/eqe.3891 – volume: 264 year: 2023 ident: e_1_2_10_50_1 article-title: Comparative Study Between Inerter and Negative Stiffness Damped Outrigger Structures publication-title: International Journal of Mechanical Sciences – ident: e_1_2_10_10_1 doi: 10.1061/(ASCE)0733-9445(2007)133:1(67) – ident: e_1_2_10_5_1 doi: 10.1002/tal.413 – ident: e_1_2_10_9_1 doi: 10.1061/(ASCE)ST.1943-541X.0003474 – ident: e_1_2_10_28_1 doi: 10.1061/(ASCE)ST.1943-541X.0003472 – ident: e_1_2_10_59_1 doi: 10.1016/j.engstruct.2019.110038 – ident: e_1_2_10_54_1 doi: 10.1061/(ASCE)ST.1943-541X.0003058 – ident: e_1_2_10_3_1 doi: 10.1002/tal.1098 – ident: e_1_2_10_25_1 doi: 10.1016/j.engstruct.2020.111074 – ident: e_1_2_10_34_1 doi: 10.1061/(ASCE)ST.1943-541X.0001698 |
SSID | ssj0003607 |
Score | 2.4863663 |
Snippet | ABSTRACT
This paper proposed a novel negative stiffness damped outrigger with damping amplification (NSDO‐DA) through a smart combination of an L‐shape lever,... This paper proposed a novel negative stiffness damped outrigger with damping amplification (NSDO‐DA) through a smart combination of an L‐shape lever, a... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1141 |
SubjectTerms | adaptive stiffness damped outrigger Dampers damping amplification disc spring dynamic test Dynamic tests frequency‐independent Levers negative stiffness Shape Stiffness viscous damper Viscous damping |
Title | Dynamic Test of Negative Stiffness Damped Outrigger With Damping Amplification |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feqe.4302 https://www.proquest.com/docview/3172957238 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bS8MwFMeD7kkfvIvTOSKIPnW26TWPw20MwXnbcOBDSXOZQ9l061789J6k7TZFQaQPhZKU9iQ5-Tc5_R2ETm0uJAhV3wokDDeP29yizJWWryLwfiEcSu_oXneCds-76vv9PKpS_wuT8SHmC256ZBh_rQc4S6YXC2iofJc1zzUcSR2qpfXQ_YIc5Qb2HJcZgQcuuLM2uSgqfp2JFvJyWaSaWaa1iZ6K58uCS15qszSp8Y9v6Mb_vcAW2sjFJ65nvWUbrcjRDlpfQhLuok4jS1GPu_CUeKxwRw4MGxw_pEOltGPEDQZaW-AbDfIfDOQEPw7TZ3MVboHrOkZd5UuBe6jXanYv21aec8HiLgkJ-D6fiIBGDGQfEY6IQLEETG9ealAZSwL4YGR25DGHC2hiQVTCqc0IUY7HwNjuPiqNxiN5gLBPVUhlBLMwiDamaEIc5ogQnCsjNAloGZ0X9o95DiTXeTFe4wylTGKwUKwtVEYn85JvGYTjhzKVognjfBhOYxBHhPo6r1oZnZm2-LV-3Lxr6vPhXwseoTWicwGbKJ4KKqWTmTwGgZImVbRKvNuq6ZCf8R3gwA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB2xHIADO6KsRmI5pSTO0vjAAdGishUBRfQWHMcuFVC2IAS_xK_wUYyztIBA4sIB5RApcqzY45l5Hk_eACybIpIIVF3Dk6hujjCFwbgtDVf5aP1KeCl9ontQ86qnzm7DbfTAa_4vTMoP0Qm4ac1I7LVWcB2QXu-yhso7WXRsk2YZlXvy-Qn3aw8bO2UU7gql25X6VtXISgoYwqYliqrt0shjPkdUQyMr8tEhe1yfzWkeLh56uB_ipu9wS0Q4goiqUDCTU6osh5vMt7HfXujXBcQ1UX_5uMtVZXtmh6DTR5ufM92adD3_0s--rwtoP8LixK9tj8BbPiNpOstl8TEOi-LlC1nkP5myURjO8DXZTBViDHpkexyGPrAuTkCt_Nzm1y1B6jgt5EaRmmwm9OfkJG4ppW0_KXPcTkTkUNcqaDblPTlrxRfJU-yCbOo0fJVFOyfh9E8GNAV97Zu2nAbiMlVi0keggbiUKxZSi1tRCf0Hpyz0WAHWcoEHIuNc16U_roKULZoGKJFAS6QAS52WtynPyDdt5vI1E2SW5iFA_EeZq0vHFWA1Ef6P7weVo4q-z_y24SIMVOsH-8H-Tm1vFgapLn2cJC3NQV98_yjnEY_F4UKiBwTO_3oVvQMNeDmE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB5qBdGD-MT6XMHHKZpMHs0ePBTbolaroqK3uMnuVkGq1or4l_yVzubRKih4kRwCYTMkk3l8uzv5BmDDTqQioOpbgSJ38xI7sbhwleXrkKJflQ5tdnRP2sHBlXd049-U4KP4FybjhxgsuBnPSOO1cfAnqXeHpKHqWe14ro15QWVLvb_RdO1l77BO33YTsdm43D-w8o4CVuJiFcmzfZQBDwWBGpSODCkfB8JszRkaLhEHNB0SdugJJ5H0AhJ1nHBbIGrHEzYPXZI7AqNmb9GUj6F3Noj6bmAP-DlDCvkF0a2Nu8WTfk99Qzz7FRWnaa05BZM5HmW1zICmoaS6MzDxhaVwFtr1rGs9uyQ57FGztuqkdOHson-vtYmVrC4Ifkt2arj9Ox3VY9f3_bv0KolgNVO2rvPVwTm4-helzUO5-9hVC8B8rqtchZSYCccJzWN0hCOrFG8F8jjgFdguNBQlOUe5aZXxEGXsyhiRLiOjywqsD0Y-ZbwcP4xZLpQc5Z75EhFeQu6bVmsV2EoV_-v9UeO8Yc6Lfx24BmNn9WZ0fNhuLcE4mk7BaY3PMpT7vVe1QvClH6-mdsPg9r8N9RM_Qfmi |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Test+of+Negative+Stiffness+Damped+Outrigger+With+Damping+Amplification&rft.jtitle=Earthquake+engineering+%26+structural+dynamics&rft.au=Wang%2C+Meng&rft.au=Koetaka%2C+Yuji&rft.au=Fei%E2%80%90Fei+Sun&rft.au=Liu%2C+Chao&rft.date=2025-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0098-8847&rft.eissn=1096-9845&rft.volume=54&rft.issue=4&rft.spage=1141&rft.epage=1155&rft_id=info:doi/10.1002%2Feqe.4302&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-8847&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-8847&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-8847&client=summon |