Using ATR‐FTIR spectroscopy and machine learning for forensic hair identification

The purpose of this experiment is to utilize attenuated total reflection (ATR) Fourier transform infrared (FTIR) spectroscopy for the discrimination of different types of hair, as numerous studies have substantiated its efficacy in substance classification. In this study, ATR‐FTIR spectroscopy was e...

Full description

Saved in:
Bibliographic Details
Published inJournal of forensic sciences Vol. 70; no. 4; pp. 1537 - 1543
Main Authors Fan, Zehua, Li, Chenyu, Sun, Qiran, Luo, Yiwen, Lin, Hancheng, Cong, Bin, Huang, Ping
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.07.2025
Subjects
Online AccessGet full text
ISSN0022-1198
1556-4029
1556-4029
DOI10.1111/1556-4029.70062

Cover

Abstract The purpose of this experiment is to utilize attenuated total reflection (ATR) Fourier transform infrared (FTIR) spectroscopy for the discrimination of different types of hair, as numerous studies have substantiated its efficacy in substance classification. In this study, ATR‐FTIR spectroscopy was employed to analyze scalp hair, pubic hair, and armpit hair from human subjects. Additionally, a machine learning model was integrated to differentiate between hairs originating from distinct body regions. Because of the limited sampling conditions, we only chose samples from Chinese people who have been living in Shanghai and the surrounding areas for a long time to conduct the experiment. We developed partial least squares discriminant analysis (PLS‐DA), random forest (RF), and support vector machine (SVM) classification models and compared their performance in identification. The results show that the SVM model has the best identification results with 90.37% accuracy, 90.37% recall, and 90.38% precision. This preliminary study suggests that ATR‐FTIR spectroscopy combined with SVM may be an effective and promising aid in assisting the identification of hair in different parts of the human body. This method is non‐destructive, fast, and accurate, and does not require a sample preparation process, which makes it promising in the field of forensic science. Also, we found that the main substance differences that contributed to the good distinction between hairs were expressed in amide I, followed by amide III and C‐H deformation.
AbstractList The purpose of this experiment is to utilize attenuated total reflection (ATR) Fourier transform infrared (FTIR) spectroscopy for the discrimination of different types of hair, as numerous studies have substantiated its efficacy in substance classification. In this study, ATR-FTIR spectroscopy was employed to analyze scalp hair, pubic hair, and armpit hair from human subjects. Additionally, a machine learning model was integrated to differentiate between hairs originating from distinct body regions. Because of the limited sampling conditions, we only chose samples from Chinese people who have been living in Shanghai and the surrounding areas for a long time to conduct the experiment. We developed partial least squares discriminant analysis (PLS-DA), random forest (RF), and support vector machine (SVM) classification models and compared their performance in identification. The results show that the SVM model has the best identification results with 90.37% accuracy, 90.37% recall, and 90.38% precision. This preliminary study suggests that ATR-FTIR spectroscopy combined with SVM may be an effective and promising aid in assisting the identification of hair in different parts of the human body. This method is non-destructive, fast, and accurate, and does not require a sample preparation process, which makes it promising in the field of forensic science. Also, we found that the main substance differences that contributed to the good distinction between hairs were expressed in amide I, followed by amide III and C-H deformation.The purpose of this experiment is to utilize attenuated total reflection (ATR) Fourier transform infrared (FTIR) spectroscopy for the discrimination of different types of hair, as numerous studies have substantiated its efficacy in substance classification. In this study, ATR-FTIR spectroscopy was employed to analyze scalp hair, pubic hair, and armpit hair from human subjects. Additionally, a machine learning model was integrated to differentiate between hairs originating from distinct body regions. Because of the limited sampling conditions, we only chose samples from Chinese people who have been living in Shanghai and the surrounding areas for a long time to conduct the experiment. We developed partial least squares discriminant analysis (PLS-DA), random forest (RF), and support vector machine (SVM) classification models and compared their performance in identification. The results show that the SVM model has the best identification results with 90.37% accuracy, 90.37% recall, and 90.38% precision. This preliminary study suggests that ATR-FTIR spectroscopy combined with SVM may be an effective and promising aid in assisting the identification of hair in different parts of the human body. This method is non-destructive, fast, and accurate, and does not require a sample preparation process, which makes it promising in the field of forensic science. Also, we found that the main substance differences that contributed to the good distinction between hairs were expressed in amide I, followed by amide III and C-H deformation.
The purpose of this experiment is to utilize attenuated total reflection (ATR) Fourier transform infrared (FTIR) spectroscopy for the discrimination of different types of hair, as numerous studies have substantiated its efficacy in substance classification. In this study, ATR‐FTIR spectroscopy was employed to analyze scalp hair, pubic hair, and armpit hair from human subjects. Additionally, a machine learning model was integrated to differentiate between hairs originating from distinct body regions. Because of the limited sampling conditions, we only chose samples from Chinese people who have been living in Shanghai and the surrounding areas for a long time to conduct the experiment. We developed partial least squares discriminant analysis (PLS‐DA), random forest (RF), and support vector machine (SVM) classification models and compared their performance in identification. The results show that the SVM model has the best identification results with 90.37% accuracy, 90.37% recall, and 90.38% precision. This preliminary study suggests that ATR‐FTIR spectroscopy combined with SVM may be an effective and promising aid in assisting the identification of hair in different parts of the human body. This method is non‐destructive, fast, and accurate, and does not require a sample preparation process, which makes it promising in the field of forensic science. Also, we found that the main substance differences that contributed to the good distinction between hairs were expressed in amide I, followed by amide III and C‐H deformation.
Author Huang, Ping
Li, Chenyu
Fan, Zehua
Lin, Hancheng
Cong, Bin
Sun, Qiran
Luo, Yiwen
Author_xml – sequence: 1
  givenname: Zehua
  surname: Fan
  fullname: Fan, Zehua
  organization: Fudan University
– sequence: 2
  givenname: Chenyu
  surname: Li
  fullname: Li, Chenyu
  organization: Hebei Medical University
– sequence: 3
  givenname: Qiran
  surname: Sun
  fullname: Sun, Qiran
  organization: Academy of Forensic Science
– sequence: 4
  givenname: Yiwen
  surname: Luo
  fullname: Luo, Yiwen
  organization: Academy of Forensic Science
– sequence: 5
  givenname: Hancheng
  surname: Lin
  fullname: Lin, Hancheng
  email: linhancheng@fudan.edu.cn
  organization: Fudan University
– sequence: 6
  givenname: Bin
  surname: Cong
  fullname: Cong, Bin
  email: hbydcongbin@126.com
  organization: Hebei Medical University
– sequence: 7
  givenname: Ping
  surname: Huang
  fullname: Huang, Ping
  email: huangpingafs@163.com
  organization: Fudan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40488367$$D View this record in MEDLINE/PubMed
BookMark eNqF0cFKAzEQBuAgirbq2ZssePGyOsl2s8mxFKuVgqDtOaTZWZuyzdakRXrzEXxGn8SsVQ9eDIRA-CYT_umSfdc4JOSMwhWN65rmOU97wORVAcDZHun83uyTDgBjKaVSHJFuCAuIhHJ6SI560BMi40WHPE2Ddc9Jf_L48fY-nIwek7BCs_ZNMM1qm2hXJktt5tZhUqP2rsVV49uNLliTzLX1iS3RrW1ljV7bxp2Qg0rXAU-_z2MyHd5MBnfp-OF2NOiPU5OxgqV5gZWQCJJyI5gQZcZMXmJRIS-AiZk0eaFBSiZB8yzjZQ-0gVIKzSjMaJYdk8vduyvfvGwwrNXSBoN1rR02m6AyRrmksmAQ6cUfumg23sXfRRUbMOCSRXX-rTazJZZq5e1S-636iSuC6x0wMaDgsfolFFQ7ENXGr9r41ddAYkW-q3i1NW7_4-p--LCr-wQFnYpw
Cites_doi 10.1016/j.saa.2020.118636
10.1177/0003702816652321
10.3390/ijms231911895
10.1021/acs.analchem.7b04642
10.1007/s00114‐024‐01896‐7
10.1023/A:1010933404324
10.1016/j.saa.2022.121577
10.1016/j.jep.2021.114422
10.1021/acs.analchem.9b01021
10.1111/1556‐4029.15235
10.3390/molecules27175618
10.1016/j.jbi.2021.103690
10.1021/acs.analchem.2c03368
10.1039/D0AY01068E
10.1016/j.saa.2020.118157
10.3390/molecules27165318
10.1016/j.saa.2020.118297
10.1007/s00414‐023‐03123‐w
10.1016/j.dib.2021.107439
10.1016/j.talanta.2022.123762
10.1038/s41598-022-25535-1
10.1366/0003702052940440
10.1111/1467‐9639.00050
10.3389/fonc.2021.753791
ContentType Journal Article
Copyright 2025 American Academy of Forensic Sciences.
2025 American Academy of Forensic Sciences
Copyright_xml – notice: 2025 American Academy of Forensic Sciences.
– notice: 2025 American Academy of Forensic Sciences
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K7.
K9.
NAPCQ
7X8
DOI 10.1111/1556-4029.70062
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Criminal Justice (Alumni)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
ProQuest Criminal Justice (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
MEDLINE

ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
EISSN 1556-4029
EndPage 1543
ExternalDocumentID 1011111556402970062
40488367
10_1111_1556_4029_70062
JFO70062
Genre technicalNote
Journal Article
GrantInformation_xml – fundername: Public welfare special project of central research institutes
  funderid: GY2023G‐7
– fundername: National Natural Science Foundation of China
  funderid: 82430060
– fundername: Public welfare special project of central research institutes
  grantid: GY2023G-7
– fundername: National Natural Science Foundation of China
  grantid: 82430060
GroupedDBID ---
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
186
1KJ
1OC
1UQ
1US
29K
31~
33P
36Y
3O-
3SF
4.4
41~
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABGFU
ABIVO
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADMHG
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AFBPY
AFFPM
AFGKR
AFHKK
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AI.
AIACR
AIAGR
AIDAL
AIDQK
AIDYY
AITYG
AIURR
AJUXI
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
D-I
D0L
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
EV9
EX3
EYL
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
H~9
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MQT
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MVM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NHB
NP-
O66
O9-
OHT
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PQQKQ
Q.N
Q11
QB0
QJJ
R.K
RNS
ROL
RSM
RX1
SJN
SUPJJ
SV3
TEORI
TN5
TWZ
UB1
ULE
URZ
V8K
VH1
W8V
W99
WBFHL
WBKPD
WH7
WHG
WIH
WIJ
WIK
WOHZO
WOW
WQJ
WXI
WXSBR
WYISQ
X7M
XG1
YR5
YRY
YYQ
YZZ
ZCG
ZGI
ZHY
ZUP
ZXP
ZZTAW
~02
~IA
~WT
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K7.
K9.
NAPCQ
7X8
ID FETCH-LOGICAL-c3272-57ef89e0916c8288d32c5de7fe67028b9c57a099290a6336d40ac0d98a210b133
IEDL.DBID DR2
ISSN 0022-1198
1556-4029
IngestDate Fri Sep 05 15:55:30 EDT 2025
Fri Jul 25 09:04:17 EDT 2025
Fri Jul 04 01:54:58 EDT 2025
Thu Jul 10 08:02:33 EDT 2025
Thu Jul 03 09:30:27 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords identification
armpit hair
pubic hair
scalp hair
Language English
License 2025 American Academy of Forensic Sciences.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3272-57ef89e0916c8288d32c5de7fe67028b9c57a099290a6336d40ac0d98a210b133
Notes Zehua Fan and Chenyu Li contributed equally.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 40488367
PQID 3229020692
PQPubID 49292
PageCount 7
ParticipantIDs proquest_miscellaneous_3216919720
proquest_journals_3229020692
pubmed_primary_40488367
crossref_primary_10_1111_1556_4029_70062
wiley_primary_10_1111_1556_4029_70062_JFO70062
PublicationCentury 2000
PublicationDate July 2025
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: July 2025
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Colorado Springs
PublicationTitle Journal of forensic sciences
PublicationTitleAlternate J Forensic Sci
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 91
2021; 38
2023; 68
2021; 11
2022; 280
2023; 251
2024; 138
2021; 115
2022; 94
2020; 241
2022; 23
2022; 12
2021; 280
2018; 90
2008; 79
2024; 111
2020; 12
2020; 232
2016; 70
2020; 235
2005; 59
2001; 45
2001; 23
2022; 27
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_16_1
Maitra S (e_1_2_8_23_1) 2008; 79
e_1_2_8_10_1
e_1_2_8_11_1
e_1_2_8_12_1
References_xml – volume: 241
  year: 2020
  article-title: ATR‐FTIR spectroscopy and spectroscopic imaging for the analysis of biopharmaceuticals
  publication-title: Spectrochim Acta A Mol Biomol Spectrosc
– volume: 23
  start-page: 49
  issue: 2
  year: 2001
  end-page: 54
  article-title: An introduction to the bootstrap
  publication-title: Teach Stat
– volume: 79
  start-page: 79
  year: 2008
  end-page: 90
  article-title: Principle component analysis and partial least squares: two dimension reduction techniques for regression
  publication-title: Appl Multivar Stat Models
– volume: 138
  start-page: 801
  issue: 3
  year: 2024
  end-page: 814
  article-title: Sex and blood group determination from hair using ATR‐FTIR spectroscopy and chemometrics
  publication-title: Int J Leg Med
– volume: 23
  issue: 19
  year: 2022
  article-title: ATR‐FTIR biosensors for antibody detection and analysis
  publication-title: Int J Mol Sci
– volume: 94
  start-page: 17112
  issue: 49
  year: 2022
  end-page: 17120
  article-title: Evaluating subtle pathological changes in early myocardial ischemia using spectral histopathology
  publication-title: Anal Chem
– volume: 232
  year: 2020
  article-title: Rapid determination and classification of crude oils by ATR‐FTIR spectroscopy and chemometric methods
  publication-title: Spectrochim Acta A Mol Biomol Spectrosc
– volume: 280
  year: 2021
  article-title: Rapid discrimination and screening of volatile markers for varietal recognition of Curcumae radix using ATR‐FTIR and HS‐GC‐MS combined with chemometrics
  publication-title: J Ethnopharmacol
– volume: 12
  start-page: 3741
  issue: 29
  year: 2020
  end-page: 3747
  article-title: Infrared analysis of hair dyeing and bleaching history
  publication-title: Anal Methods
– volume: 251
  year: 2023
  article-title: Surface‐enhanced Raman spectroscopy enables highly accurate identification of different brands, types and colors of hair dyes
  publication-title: Talanta
– volume: 12
  issue: 1
  year: 2022
  article-title: Urinalysis of individuals with renal hyperfiltration using ATR‐FTIR spectroscopy
  publication-title: Sci Rep
– volume: 27
  issue: 16
  year: 2022
  article-title: Fast and noninvasive hair test for preliminary diagnosis of mood disorders
  publication-title: Molecules
– volume: 91
  start-page: 7313
  issue: 11
  year: 2019
  end-page: 7318
  article-title: Surface‐enhanced Raman analysis of underlaying colorants on redyed hair
  publication-title: Anal Chem
– volume: 115
  year: 2021
  article-title: Random forest swarm optimization‐based for heart diseases diagnosis
  publication-title: J Biomed Inform
– volume: 68
  start-page: 807
  issue: 3
  year: 2023
  end-page: 814
  article-title: Elucidation of the effect of heat exposure on hair colored by permanent and semipermanent colorants using surface‐enhanced Raman spectroscopy
  publication-title: J Forensic Sci
– volume: 11
  year: 2021
  article-title: Diagnosis of lung cancer by ATR‐FTIR spectroscopy and chemometrics
  publication-title: Front Oncol
– volume: 27
  issue: 17
  year: 2022
  article-title: Rapid classification and recognition method of the species and chemotypes of essential oils by ATR‐FTIR spectroscopy coupled with chemometrics
  publication-title: Molecules
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  article-title: Random forests
  publication-title: Mach Learn
– volume: 59
  start-page: 26
  issue: 1
  year: 2005
  end-page: 32
  article-title: Fourier transform infrared attenuated total reflection analysis of human hair: comparison of hair from breast cancer patients with hair from healthy subjects
  publication-title: Appl Spectrosc
– volume: 235
  year: 2020
  article-title: Detection of adulteration in Chinese honey using NIR and ATR‐FTIR spectral data fusion
  publication-title: Spectrochim Acta A Mol Biomol Spectrosc
– volume: 90
  start-page: 2708
  issue: 4
  year: 2018
  end-page: 2715
  article-title: Identification of pulmonary edema in forensic autopsy cases of sudden cardiac death using Fourier transform infrared microspectroscopy: a pilot study
  publication-title: Anal Chem
– volume: 111
  start-page: 9
  issue: 1
  year: 2024
  article-title: A novel approach using ATR‐FTIR spectroscopy and chemometric analysis to distinguish male and female human hair samples
  publication-title: Naturwissenschaften
– volume: 70
  start-page: 1109
  issue: 7
  year: 2016
  end-page: 1117
  article-title: Forensic hair differentiation using attenuated total reflection Fourier transform infrared (ATR FT‐IR) spectroscopy
  publication-title: Appl Spectrosc
– volume: 38
  year: 2021
  article-title: Vibrational Raman and IR data on brown hair subjected to bleaching
  publication-title: Data Brief
– volume: 280
  year: 2022
  article-title: Characterization by Raman and infrared spectroscopy and fluorescence microscopy of human hair treated with cosmetic products
  publication-title: Spectrochim Acta A Mol Biomol Spectrosc
– ident: e_1_2_8_11_1
  doi: 10.1016/j.saa.2020.118636
– ident: e_1_2_8_8_1
  doi: 10.1177/0003702816652321
– ident: e_1_2_8_10_1
  doi: 10.3390/ijms231911895
– ident: e_1_2_8_26_1
  doi: 10.1021/acs.analchem.7b04642
– ident: e_1_2_8_24_1
  doi: 10.1007/s00114‐024‐01896‐7
– ident: e_1_2_8_17_1
  doi: 10.1023/A:1010933404324
– ident: e_1_2_8_2_1
  doi: 10.1016/j.saa.2022.121577
– ident: e_1_2_8_13_1
  doi: 10.1016/j.jep.2021.114422
– ident: e_1_2_8_7_1
  doi: 10.1021/acs.analchem.9b01021
– ident: e_1_2_8_4_1
  doi: 10.1111/1556‐4029.15235
– ident: e_1_2_8_12_1
  doi: 10.3390/molecules27175618
– ident: e_1_2_8_19_1
  doi: 10.1016/j.jbi.2021.103690
– ident: e_1_2_8_21_1
  doi: 10.1021/acs.analchem.2c03368
– ident: e_1_2_8_3_1
  doi: 10.1039/D0AY01068E
– ident: e_1_2_8_15_1
  doi: 10.1016/j.saa.2020.118157
– ident: e_1_2_8_25_1
  doi: 10.3390/molecules27165318
– volume: 79
  start-page: 79
  year: 2008
  ident: e_1_2_8_23_1
  article-title: Principle component analysis and partial least squares: two dimension reduction techniques for regression
  publication-title: Appl Multivar Stat Models
– ident: e_1_2_8_20_1
  doi: 10.1016/j.saa.2020.118297
– ident: e_1_2_8_6_1
  doi: 10.1007/s00414‐023‐03123‐w
– ident: e_1_2_8_14_1
  doi: 10.1016/j.dib.2021.107439
– ident: e_1_2_8_5_1
  doi: 10.1016/j.talanta.2022.123762
– ident: e_1_2_8_22_1
  doi: 10.1038/s41598-022-25535-1
– ident: e_1_2_8_9_1
  doi: 10.1366/0003702052940440
– ident: e_1_2_8_18_1
  doi: 10.1111/1467‐9639.00050
– ident: e_1_2_8_16_1
  doi: 10.3389/fonc.2021.753791
SSID ssj0006161
Score 2.429044
Snippet The purpose of this experiment is to utilize attenuated total reflection (ATR) Fourier transform infrared (FTIR) spectroscopy for the discrimination of...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 1537
SubjectTerms armpit hair
Classification
Discriminant Analysis
Effectiveness
Female
Forensic Sciences
Fourier transforms
Hair - chemistry
Humans
identification
Infrared reflection
Infrared spectroscopy
Least-Squares Analysis
Machine Learning
Male
pubic hair
scalp hair
Spectroscopic analysis
Spectroscopy, Fourier Transform Infrared
Spectrum analysis
Support Vector Machine
Support vector machines
Title Using ATR‐FTIR spectroscopy and machine learning for forensic hair identification
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1556-4029.70062
https://www.ncbi.nlm.nih.gov/pubmed/40488367
https://www.proquest.com/docview/3229020692
https://www.proquest.com/docview/3216919720
Volume 70
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsQwFA3iShDfj_FFBBduOrRpk7RLUQcVVBhHcFfyqorYGXRmoSs_wW_0S7w3bcfXQsRFoZCGprm5yTnpvSeE7FjNU1UoFsBYiYOEKRkAV7EBT63WKbdQhInCp2fi6DI5ueJNNCHmwlT6EOMNN_QMP1-jgyv9-MnJYSEUyH6ytsREQJiFo1igev5B90NASkQiavTCI-DXtbgPxvJ8q_91XfoBNr9iV7_4dGaJbppdxZzctUdD3TbP3xQd__Vdc2SmhqZ0rxpL82TClQtkutrXo1W60iK58DEGdK_XfXt57fSOu9TnaqImZn_wRFVp6b2Pz3S0PpDimgIuxgtD5Q29UbcP9NbWQUp-XCyRy85hb_8oqA9mCEzMJJBX6Yo0cwA1hAHGltqYGW6dLJyQgFd0ZrhUAD1ZFioRx8ImoTKhzVIFBFMDK14mk2W_dKuEFgVnoYpkxMI00SiQZ5gsQkBJ3DgeFS2y25glH1T6G3nDW7Cncuyp3PdUi2w0ZstrR3zMY9SzZ6HIoHh7XAwuhP9FVOn6I3wGFYMyycIWWanMPX5XgjNcLGSLVEb7rRH5Sefc36z9tcI6mWJ4trAPBd4gk8OHkdsEwDPUW35MvwNDs_IZ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xOBQJFegDlkdxJQ69ZJU4sZ0cUWG1vKXtInGLHNtpUUUWwe6BnvoT-hv5JZ1xkuV1QFUPkSI5D8eesb_PmfkMsGMLkepS8wBtJQ4SrlWAXMUGIrVFkQqLRZQofHIq--fJ4YW4eJQLU-tDTBfcyDP8eE0OTgvSj7wcZ0JJ9CfrKsoEnIX5BOEGEbC9wYOElIxk1CqGR8iwG3kfiuZ59oCnM9MLuPkUvfrpp7cEpq14HXXyszsZF13z65mm4_992TK8bdAp263NaQVmXPUOFuulPVZnLL2Hbz7MgO0OB_e___SGBwPm0zVJFnN0fcd0ZdmVD9F0rNmT4jtDaEwHRcsb9kNf3rBL28QpedP4AOe9_eHXftDszRCYmCvkr8qVaeYQbUiDpC21MTfCOlU6qRCyFJkRSiP65FmoZRxLm4TahDZLNXLMAonxR5irRpVbA1aWgoc6UhEP06QgjTzDVRkiUBLGiajswJe2X_LrWoIjb6kLtVROLZX7lurAZttveeOLt3lMkvY8lBkWf54WoxfRrxFdudGEriHRoEzxsAOrdX9P35XQIBdL1YG6116rRH7YO_Mn6_96wza86Q9PjvPjg9OjDVjgtNWwjwzehLnxzcRtIf4ZF5-8gf8FioT2OA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkVAlVF5tWShgJA5cskqc2E6OFRD1XbRspd4ivwJVRXZVdg_tqT-B39hf0hknWWg5VIhDpEjOw7Fn7G-cbz4DvHdG5LrWPEJbSaOMaxVhrOIikTtjcuGwiBKF9w_k1lG2cyx6NiHlwrT6EIsFN_KMMF6Tg09d_YeT40QoKfophooSAe_Dg0winiBcNPqtICUTmfSC4QkG2J26D5F5bj3g5sT0F9q8CV7D7FM-BtPXuyWdnA7nMzO0F7ckHf_rw57ASodN2WZrTE_hnm-ewaN2YY-1-UrP4WsgGbDN8ejq8lc53h6xkKxJopiT6TnTjWM_AkHTs25Him8MgTEdxJW37Ls-OWMnrmMpBcNYhaPy8_jjVtTtzBDZlCuMXpWv88Ij1pAWQ7bcpdwK51XtpULAYgorlEbsyYtYyzSVLou1jV2Ra4wwDYbFa7DUTBr_AlhdCx7rRCU8zjNDCnmWqzpGmCSsF0k9gA99t1TTVoCj6gMXaqmKWqoKLTWAjb7bqs4Tf1YpCdrzWBZY_G5RjD5EP0Z04ydzuoYkgwrF4wGst929eFdGQ1wq1QDaTrurEtVOeRhOXv7rDW_h4ZdPZbW3fbD7CpY57TMcaMEbsDQ7m_vXCH5m5k0w72ueDvTn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+ATR%E2%80%90FTIR+spectroscopy+and+machine+learning+for+forensic+hair+identification&rft.jtitle=Journal+of+forensic+sciences&rft.au=Fan%2C+Zehua&rft.au=Li%2C+Chenyu&rft.au=Sun%2C+Qiran&rft.au=Luo%2C+Yiwen&rft.date=2025-07-01&rft.issn=0022-1198&rft.eissn=1556-4029&rft.volume=70&rft.issue=4&rft.spage=1537&rft.epage=1543&rft_id=info:doi/10.1111%2F1556-4029.70062&rft.externalDBID=10.1111%252F1556-4029.70062&rft.externalDocID=JFO70062
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1198&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1198&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1198&client=summon