Inverted Organic Solar Cells with Sol-Gel Processed High Work-Function Vanadium Oxide Hole-Extraction Layers

For large‐scale and high‐throughput production of organic solar cells (OSCs), liquid processing of the functional layers is desired. We demonstrate inverted bulk‐heterojunction organic solar cells (OSCs) with a sol–gel derived V2O5 hole‐extraction‐layer on top of the active organic layer. The V2O5 l...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 21; no. 24; pp. 4776 - 4783
Main Authors Zilberberg, Kirill, Trost, Sara, Meyer, Jens, Kahn, Antoine, Behrendt, Andreas, Lützenkirchen-Hecht, Dirk, Frahm, Ronald, Riedl, Thomas
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 20.12.2011
WILEY‐VCH Verlag
Subjects
Online AccessGet full text

Cover

Loading…
Abstract For large‐scale and high‐throughput production of organic solar cells (OSCs), liquid processing of the functional layers is desired. We demonstrate inverted bulk‐heterojunction organic solar cells (OSCs) with a sol–gel derived V2O5 hole‐extraction‐layer on top of the active organic layer. The V2O5 layers are prepared in ambient air using Vanadium(V)‐oxitriisopropoxide as precursor. Without any post‐annealing or plasma treatment, a high work function of the V2O5 layers is confirmed by both Kelvin probe analysis and ultraviolet photoelectron spectroscopy (UPS). Using UPS and inverse photoelectron spectroscopy (IPES), we show that the electronic structure of the solution processed V2O5 layers is similar to that of thermally evaporated V2O5 layers which have been exposed to ambient air. Optimization of the sol gel process leads to inverted OSCs with solution based V2O5 layers that show power conversion efficiencies similar to that of control devices with V2O5 layers prepared in high‐vacuum. Inverted organic solar cells employing a solution processed V2O5 (sV2O5) hole‐extraction‐layer on top of the active organic layer are demonstrated. Even without any post‐deposition treatment, the electronic structure of the sV2O5 layers is similar to that of thermally evaporated V2O5 (eV2O5) layers which have been exposed to ambient air. Optimized devices with sV2O5 layers show power conversion efficiencies similar to that of devices with eV2O5 layers.
AbstractList Abstract For large‐scale and high‐throughput production of organic solar cells (OSCs), liquid processing of the functional layers is desired. We demonstrate inverted bulk‐heterojunction organic solar cells (OSCs) with a sol–gel derived V 2 O 5 hole‐extraction‐layer on top of the active organic layer. The V 2 O 5 layers are prepared in ambient air using Vanadium(V)‐oxitriisopropoxide as precursor. Without any post‐annealing or plasma treatment, a high work function of the V 2 O 5 layers is confirmed by both Kelvin probe analysis and ultraviolet photoelectron spectroscopy (UPS). Using UPS and inverse photoelectron spectroscopy (IPES), we show that the electronic structure of the solution processed V 2 O 5 layers is similar to that of thermally evaporated V 2 O 5 layers which have been exposed to ambient air. Optimization of the sol gel process leads to inverted OSCs with solution based V 2 O 5 layers that show power conversion efficiencies similar to that of control devices with V 2 O 5 layers prepared in high‐vacuum.
For large‐scale and high‐throughput production of organic solar cells (OSCs), liquid processing of the functional layers is desired. We demonstrate inverted bulk‐heterojunction organic solar cells (OSCs) with a sol–gel derived V2O5 hole‐extraction‐layer on top of the active organic layer. The V2O5 layers are prepared in ambient air using Vanadium(V)‐oxitriisopropoxide as precursor. Without any post‐annealing or plasma treatment, a high work function of the V2O5 layers is confirmed by both Kelvin probe analysis and ultraviolet photoelectron spectroscopy (UPS). Using UPS and inverse photoelectron spectroscopy (IPES), we show that the electronic structure of the solution processed V2O5 layers is similar to that of thermally evaporated V2O5 layers which have been exposed to ambient air. Optimization of the sol gel process leads to inverted OSCs with solution based V2O5 layers that show power conversion efficiencies similar to that of control devices with V2O5 layers prepared in high‐vacuum. Inverted organic solar cells employing a solution processed V2O5 (sV2O5) hole‐extraction‐layer on top of the active organic layer are demonstrated. Even without any post‐deposition treatment, the electronic structure of the sV2O5 layers is similar to that of thermally evaporated V2O5 (eV2O5) layers which have been exposed to ambient air. Optimized devices with sV2O5 layers show power conversion efficiencies similar to that of devices with eV2O5 layers.
Author Zilberberg, Kirill
Riedl, Thomas
Meyer, Jens
Trost, Sara
Behrendt, Andreas
Kahn, Antoine
Lützenkirchen-Hecht, Dirk
Frahm, Ronald
Author_xml – sequence: 1
  givenname: Kirill
  surname: Zilberberg
  fullname: Zilberberg, Kirill
  organization: Institute of Electronic Devices, University of Wuppertal, Rainer-Gruenter-Str. 21, 42119 Wuppertal, Germany
– sequence: 2
  givenname: Sara
  surname: Trost
  fullname: Trost, Sara
  organization: Institute of Electronic Devices, University of Wuppertal, Rainer-Gruenter-Str. 21, 42119 Wuppertal, Germany
– sequence: 3
  givenname: Jens
  surname: Meyer
  fullname: Meyer, Jens
  organization: Department of Electrical Engineering, Princeton University, Princeton, NJ, USA
– sequence: 4
  givenname: Antoine
  surname: Kahn
  fullname: Kahn, Antoine
  organization: Department of Electrical Engineering, Princeton University, Princeton, NJ, USA
– sequence: 5
  givenname: Andreas
  surname: Behrendt
  fullname: Behrendt, Andreas
  organization: Physics of Condensed Matter, University of Wuppertal, Germany
– sequence: 6
  givenname: Dirk
  surname: Lützenkirchen-Hecht
  fullname: Lützenkirchen-Hecht, Dirk
  organization: Physics of Condensed Matter, University of Wuppertal, Germany
– sequence: 7
  givenname: Ronald
  surname: Frahm
  fullname: Frahm, Ronald
  organization: Physics of Condensed Matter, University of Wuppertal, Germany
– sequence: 8
  givenname: Thomas
  surname: Riedl
  fullname: Riedl, Thomas
  email: t.riedl@uni-wuppertal.de
  organization: Institute of Electronic Devices, University of Wuppertal, Rainer-Gruenter-Str. 21, 42119 Wuppertal, Germany
BookMark eNqFkE1PwjAYxxuDiYBePfcLDNtu7OVIEAaKIkHFW_Os7aBSNtMOgW8vZIZ48_S8_X_P4ddCjaIsFEK3lHQoIewOZL7pMEIpoQFhF6hJQxp6PmFx49zTjyvUcu6TEBpFftBEZlx8K1spiad2CYUWeF4asLivjHF4p6vVaeGlyuAXWwrl3DE60ssVXpR27Q23hah0WeB3KEDq7QZP91oqPCqN8gb7ykJ9nsBBWXeNLnMwTt381jZ6Gw5e-yNvMk3H_d7EEz6LmOfHWR4HYRSKLqOgMuoTyFkIcZIcRxHJOIMsUzIgCY0TUIxFoQQWU8G6OQXpt1Gn_its6ZxVOf-yegP2wCnhJ1f85IqfXR2BpAZ22qjDP2neux8-_WW9mtWuUvszC3bNw8iPunzxnPJwNn-YJYuUP_o_jO1_4w
CitedBy_id crossref_primary_10_1021_am402105d
crossref_primary_10_1021_am509125c
crossref_primary_10_3740_MRSK_2020_30_2_81
crossref_primary_10_7498_aps_65_127201
crossref_primary_10_1021_am201825t
crossref_primary_10_1002_adma_201502989
crossref_primary_10_1063_1_4728173
crossref_primary_10_1002_aenm_201300430
crossref_primary_10_3390_ma6125796
crossref_primary_10_1016_j_sna_2018_02_011
crossref_primary_10_1016_j_solmat_2019_01_010
crossref_primary_10_1039_C4EE03802A
crossref_primary_10_3390_colloids7010020
crossref_primary_10_1002_pssa_201800047
crossref_primary_10_1039_c4ta00013g
crossref_primary_10_1002_jsid_126
crossref_primary_10_1007_s10854_018_9614_y
crossref_primary_10_1039_D2QM01241C
crossref_primary_10_1007_s40243_015_0054_9
crossref_primary_10_1002_adfm_201706403
crossref_primary_10_1002_adfm_201303108
crossref_primary_10_1002_adfm_202401764
crossref_primary_10_1039_C3TA13275G
crossref_primary_10_1016_j_synthmet_2018_06_008
crossref_primary_10_1021_jp2122505
crossref_primary_10_3390_electronics3010132
crossref_primary_10_1088_0268_1242_30_5_055001
crossref_primary_10_1109_TED_2014_2326818
crossref_primary_10_1016_j_solmat_2014_07_053
crossref_primary_10_1016_j_solmat_2015_05_039
crossref_primary_10_1007_s11814_017_0043_z
crossref_primary_10_1002_adfm_202310865
crossref_primary_10_1063_1_4909530
crossref_primary_10_1002_cjoc_201300626
crossref_primary_10_1039_C9SE00081J
crossref_primary_10_1039_C8TC05370G
crossref_primary_10_1021_am404353y
crossref_primary_10_1016_j_orgel_2018_08_026
crossref_primary_10_1021_am509049t
crossref_primary_10_1039_C7NR04692H
crossref_primary_10_1016_j_solmat_2022_111731
crossref_primary_10_1021_acsami_6b02824
crossref_primary_10_1016_j_orgel_2014_05_005
crossref_primary_10_1063_1_5131300
crossref_primary_10_1039_C7CP04888B
crossref_primary_10_1039_C6QI00457A
crossref_primary_10_1016_j_optlastec_2018_12_031
crossref_primary_10_1016_j_cej_2023_147895
crossref_primary_10_1039_c3cc43053g
crossref_primary_10_1007_s12274_020_3029_9
crossref_primary_10_1039_C6RA07210K
crossref_primary_10_1016_j_vacuum_2022_111794
crossref_primary_10_3390_ma15217837
crossref_primary_10_1557_mrc_2015_5
crossref_primary_10_1016_j_solener_2021_11_009
crossref_primary_10_1002_smll_201502258
crossref_primary_10_1021_am507459t
crossref_primary_10_1007_s11426_016_9023_5
crossref_primary_10_3390_polym12040992
crossref_primary_10_1021_acsami_0c11384
crossref_primary_10_1016_j_jcis_2021_08_216
crossref_primary_10_1039_D0CP03306E
crossref_primary_10_1002_admi_201802058
crossref_primary_10_1021_acsami_6b00356
crossref_primary_10_1002_adma_201204425
crossref_primary_10_1016_j_solmat_2021_111511
crossref_primary_10_1016_j_apsusc_2016_06_086
crossref_primary_10_1016_j_cap_2016_12_007
crossref_primary_10_1039_c3ee42204f
crossref_primary_10_1016_j_cej_2022_138017
crossref_primary_10_1039_c2ra20543b
crossref_primary_10_1557_mrc_2017_68
crossref_primary_10_1021_acs_jpclett_5b00236
crossref_primary_10_1039_C5CS00831J
crossref_primary_10_1021_acsaelm_2c01076
crossref_primary_10_1080_10408436_2019_1632791
crossref_primary_10_1016_j_tsf_2014_11_011
crossref_primary_10_1002_adma_201601197
crossref_primary_10_1039_D2TC03121C
crossref_primary_10_1016_j_matchemphys_2021_125101
crossref_primary_10_1039_C6TA03453E
crossref_primary_10_1039_C9RA06974G
crossref_primary_10_1021_acs_chemmater_5b00129
crossref_primary_10_1039_C6TC00109B
crossref_primary_10_1039_c3nr02733c
crossref_primary_10_1016_j_carbon_2017_08_001
crossref_primary_10_1002_aenm_201300372
crossref_primary_10_1016_j_orgel_2017_09_027
crossref_primary_10_1016_j_optmat_2015_10_036
crossref_primary_10_1016_j_optmat_2021_111457
crossref_primary_10_1039_C4RA09765C
crossref_primary_10_1016_j_jallcom_2021_160303
crossref_primary_10_1126_science_aao5561
crossref_primary_10_1039_C3TA13680A
crossref_primary_10_1016_j_solmat_2024_112703
crossref_primary_10_1109_TED_2022_3156891
crossref_primary_10_1002_aenm_201700885
crossref_primary_10_1016_j_solmat_2014_08_019
crossref_primary_10_1016_j_orgel_2012_06_045
crossref_primary_10_1016_j_cap_2019_03_010
crossref_primary_10_1039_C5NR01456E
crossref_primary_10_1016_j_electacta_2019_135339
crossref_primary_10_1002_adem_201600119
crossref_primary_10_1021_acsami_2c01693
crossref_primary_10_1021_am405571a
crossref_primary_10_1021_acs_jpcc_6b13016
crossref_primary_10_1039_C8NR02903B
crossref_primary_10_1039_D0MA00618A
crossref_primary_10_1149_2_0141601jss
crossref_primary_10_1021_acsami_0c09877
crossref_primary_10_1021_cm400297p
crossref_primary_10_3390_pr9020214
crossref_primary_10_1039_c2jm33838f
crossref_primary_10_1016_j_jpcs_2016_06_014
crossref_primary_10_1002_adma_201201630
crossref_primary_10_1016_j_dyepig_2015_05_004
crossref_primary_10_1021_am300228w
crossref_primary_10_1039_c2jm33445c
crossref_primary_10_3390_en16020869
crossref_primary_10_1016_j_nanoen_2021_106373
crossref_primary_10_1002_advs_201500362
crossref_primary_10_3390_app5040695
crossref_primary_10_1021_acsaem_9b01987
crossref_primary_10_1002_j_2168_0159_2012_tb06090_x
crossref_primary_10_1039_C6TC00541A
crossref_primary_10_1016_j_solmat_2012_09_032
crossref_primary_10_1016_j_jallcom_2021_163501
crossref_primary_10_1016_j_jallcom_2022_163801
crossref_primary_10_1007_s12274_016_1181_z
crossref_primary_10_1002_adfm_201102622
crossref_primary_10_1039_c3tc30930d
crossref_primary_10_3390_ma10020123
crossref_primary_10_1002_admi_201600610
crossref_primary_10_1016_j_orgel_2014_11_020
crossref_primary_10_1016_j_solener_2017_04_013
crossref_primary_10_1016_j_carbpol_2018_12_045
crossref_primary_10_1002_adfm_202009996
crossref_primary_10_1088_2053_1583_ab277d
crossref_primary_10_1007_s00289_021_03709_7
crossref_primary_10_1002_aenm_201600594
crossref_primary_10_1016_j_nanoms_2019_10_001
crossref_primary_10_1021_acsami_9b18095
crossref_primary_10_1063_1_4807388
crossref_primary_10_3390_polym14194143
crossref_primary_10_1063_1_4942638
crossref_primary_10_1002_solr_202000452
crossref_primary_10_1039_C5RA18001E
crossref_primary_10_1021_acsami_2c10901
crossref_primary_10_1002_aenm_201600347
crossref_primary_10_1016_j_cap_2016_06_022
crossref_primary_10_1021_jacs_4c05053
crossref_primary_10_1039_c2cp43125d
crossref_primary_10_1016_j_cap_2019_06_006
crossref_primary_10_1016_j_mtener_2023_101317
crossref_primary_10_1016_j_orgel_2013_01_018
crossref_primary_10_1021_acsami_8b09843
crossref_primary_10_1016_j_nanoen_2022_107750
crossref_primary_10_1038_s41598_021_93365_8
crossref_primary_10_1186_1556_276X_9_150
crossref_primary_10_1016_j_mssp_2021_106333
crossref_primary_10_1007_s11664_017_5605_7
crossref_primary_10_1002_smll_202101729
crossref_primary_10_1039_D1EN01171E
crossref_primary_10_1002_agt2_544
crossref_primary_10_1021_acsami_5b00091
crossref_primary_10_1038_srep07765
crossref_primary_10_1002_smll_202307441
crossref_primary_10_1063_5_0091960
crossref_primary_10_3390_ma9040235
crossref_primary_10_1016_j_orgel_2013_10_015
crossref_primary_10_3390_en17040814
crossref_primary_10_1039_C3TC32146K
crossref_primary_10_1016_j_optmat_2017_01_023
crossref_primary_10_1016_j_solmat_2015_08_028
crossref_primary_10_1016_j_solmat_2013_08_026
crossref_primary_10_1016_j_solmat_2012_12_001
crossref_primary_10_1021_jp3075767
crossref_primary_10_1038_srep11574
crossref_primary_10_1002_aenm_201200330
crossref_primary_10_1002_aenm_201300402
crossref_primary_10_1002_aenm_201500277
crossref_primary_10_1109_JPHOTOV_2023_3295494
crossref_primary_10_1016_j_optmat_2017_11_006
crossref_primary_10_1016_j_dyepig_2016_04_050
crossref_primary_10_1016_j_orgel_2014_02_024
crossref_primary_10_1021_acsami_8b00026
crossref_primary_10_1002_smll_201402883
crossref_primary_10_1002_smll_201702007
crossref_primary_10_1021_acsami_6b06723
crossref_primary_10_1007_s10008_022_05309_5
crossref_primary_10_1016_j_cap_2018_10_021
crossref_primary_10_1002_cvde_201207039
crossref_primary_10_1038_srep39555
crossref_primary_10_1039_C4EE03824J
crossref_primary_10_1039_c3ta13579a
crossref_primary_10_1016_j_orgel_2020_105725
crossref_primary_10_1002_aenm_201301502
crossref_primary_10_1002_aenm_201300896
crossref_primary_10_1016_j_optmat_2024_115502
crossref_primary_10_1039_C5EE01116G
crossref_primary_10_1016_j_optmat_2024_115509
crossref_primary_10_1039_D0TC03753B
Cites_doi 10.1016/S0040-6090(99)00144-3
10.1038/nmat2102
10.1063/1.3455108
10.1063/1.2402890
10.1016/j.orgel.2009.05.017
10.1016/0927-0248(93)90003-L
10.1063/1.3159824
10.1088/0957-4484/19/25/255202
10.1063/1.3138131
10.1016/j.orgel.2009.05.007
10.1039/b921624c
10.1021/ja106299g
10.1063/1.3026741
10.1063/1.3427416
10.1038/nphoton.2009.192
10.1063/1.3076134
10.1063/1.2174093
10.1039/C0JM03048A
10.1002/adma.200700622
10.1016/S0927-0248(98)00065-8
10.1103/PhysRevB.5.4709
10.1016/0368-2048(76)80015-1
10.1002/adfm.201100514
10.1063/1.2972113
10.1103/PhysRevLett.102.137401
10.5012/bkcs.2011.32.3.1067
10.1021/ja2037673
10.1063/1.3231928
10.1002/adfm.200701459
10.1002/adma.201003065
10.1063/1.2821368
10.1063/1.3159622
10.1016/S0039-6028(00)00111-4
10.1002/aenm.201100076
10.1002/adfm.200801286
10.1016/j.mser.2008.12.001
10.1063/1.3039076
10.1063/1.3427430
10.1063/1.2359579
10.1016/j.orgel.2010.05.008
10.1063/1.3611392
10.1063/1.3250176
10.1021/jp1013658
10.1007/BF00331817
10.1016/j.solmat.2008.12.012
10.1109/LED.2009.2039846
10.1002/adma.200802854
10.1063/1.359433
10.1107/S0021889810030499
10.1002/adma.200903528
10.1016/j.orgel.2008.04.009
10.1021/ar600036x
10.1016/j.ssi.2003.12.016
10.1016/0167-2738(94)90393-X
ContentType Journal Article
Copyright Copyright © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: Copyright © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
DOI 10.1002/adfm.201101402
DatabaseName Istex
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage 4783
ExternalDocumentID 10_1002_adfm_201101402
ADFM201101402
ark_67375_WNG_6QSJQ9WG_K
Genre article
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
23M
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABHUG
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFVGU
AFZJQ
AGJLS
AHBTC
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
AITYG
HGLYW
OIG
AAYXX
CITATION
ID FETCH-LOGICAL-c3272-38bf84676c521aeb130af26a8991aec7d8babbed409189ae2276da281c25f1ad3
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Aug 23 00:33:18 EDT 2024
Sat Aug 24 00:46:40 EDT 2024
Wed Jan 17 05:02:49 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3272-38bf84676c521aeb130af26a8991aec7d8babbed409189ae2276da281c25f1ad3
Notes ark:/67375/WNG-6QSJQ9WG-K
istex:C8C188109DEC423679E5D9781AF3107F5343321B
ArticleID:ADFM201101402
PageCount 8
ParticipantIDs crossref_primary_10_1002_adfm_201101402
wiley_primary_10_1002_adfm_201101402_ADFM201101402
istex_primary_ark_67375_WNG_6QSJQ9WG_K
PublicationCentury 2000
PublicationDate 2011-12-20
December 20, 2011
PublicationDateYYYYMMDD 2011-12-20
PublicationDate_xml – month: 12
  year: 2011
  text: 2011-12-20
  day: 20
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced functional materials
PublicationTitleAlternate Adv. Funct. Mater
PublicationYear 2011
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
References a) N. Ozer, C. M. Lampert, Thin Solid Films 1999, 349, 205
A. Talledo, C. G. Granqvist, J. Appl. Phys. 1995, 77, 4655
K. Zilberberg, S. Trost, H. Schmidt, T. Riedl, Advanced Energy Materials 2011, 1, 377.
W. Osikowicz, M. P. de Jong, W. R. Salaneck, Adv. Mater. 2007, 19, 4213.
J. Meyer, R. Khalandovsky, P. Görrn, A. Kahn, Adv. Mater. 2011, 23, 70.
A. K. K. Kyaw, X. W. Sun, C. Y. Jiang, G. Q. Lo, D. W. Zhao, D. L. Kwong, Appl. Phys. Lett. 2008, 93, 221107
b) T. Rabe, P. Görrn, M. Lehnhardt, M. Tilgner, T. Riedl, W. Kowalsky, Phys. Rev. Lett. 2009, 102, 137401.
b) K. Takanezawa, K. Tajima, K. Hashimoto, Appl. Phys. Lett. 2008, 93, 063308
b) Y. Y. Liang, Z. Xu, J. B. Xia, S. T. Tsai, Y. Wu, G. Li, C. Ray, L. P. Yu, Adv. Mater. 2010, 22, E135.
b) Y. Yao, J. H. Hou, Z. Xu, G. Li, Y. Yang, Adv. Funct. Mater. 2008, 18, 1783.
S. R. Cowan, W. L. Leong, N. Banerji, G. Dennler, A. J. Heeger, Adv. Funct. Mater. 2011, 21, 3083.
J. Hwang, A. Wan, A. Kahn, Mat. Sci. Eng. R 2009, 64, 1.
D. A. Shirley, Phys. Rev. B 1972, 5, 4709.
I. G. Hill, C. K. Chan, W. Zhao, A. Kahn, Appl. Phys. Lett. 2009, 94, 203306.
a) H. Y. Chen, J. H. Hou, S. Q. Zhang, Y. Y. Liang, G. W. Yang, Y. Yang, L. P. Yu, Y. Wu, G. Li, Nat. Photonics 2009, 3, 649
b) S. Hamwi, J. Meyer, T. Winkler, T. Riedl, W. Kowalsky, Appl. Phys. Lett. 2009, 94, 253307.
K. Norrman, M. V. Madsen, S. A. Gevorgyan, F. C. Krebs, J. Am. Chem. Soc. 2010, 132, 16883.
M. M. Mandoc, F. B. Kooistra, J. C. Hummelen, B. de Boer, P. W. M. Blom, Appl. Phys. Lett. 2007, 91, 263505.
e) D. W. Zhao, P. Liu, X. W. Sun, S. T. Tan, L. Ke, A. K. K. Kyaw, Appl. Phys. Lett. 2009, 95, 153304.
b) N. Ozer, C. M. Lampert, Sol. Energ. Mat. Sol. Cells 1998, 54, 147
c) A. Agrawal, J. P. Cronin, R. Zhang, Sol. Energ. Mat. Sol. Cells 1993, 31, 9.
b) C. G. Granqvist, Solid State Ionics 1994, 70, 678.
M. Kröger, S. Hamwi, J. Meyer, T. Riedl, W. Kowalsky, A. Kahn, Appl. Phys. Lett. 2009, 95, 123301
C. Waldauf, M. Morana, P. Denk, P. Schilinsky, K. Coakley, S. A. Choulis, C. J. Brabec, Appl. Phys. Lett. 2006, 89, 233517.
b) C. Tao, S. P. Ruan, X. D. Zhang, G. H. Xie, L. Shen, X. Z. Kong, W. Dong, C. X. Liu, W. Y. Chen, Appl. Phys. Lett. 2008, 93, 193307
J. Meyer, K. Zilberberg, T. Riedl, A. Kahn, J. Appl. Phys. 2011, 110, 033710.
M. Campoy-Quiles, T. Ferenczi, T. Agostinelli, P. G. Etchegoin, Y. Kim, T. D. Anthopoulos, P. N. Stavrinou, D. D. C. Bradley, J. Nelson, Nat. Mater. 2008, 7, 158
b) J. S. Huang, C. Y. Chou, M. Y. Liu, K. H. Tsai, W. H. Lin, C. F. Lin, Org. Electron. 2009, 10, 1060.
K. X. Steirer, J. P. Chesin, N. E. Widjonarko, J. J. Berry, A. Miedaner, D. S. Ginley, D. C. Olson, Org. Electron. 2010, 11, 1414.
C. Y. Chang, F. Y. Tsai, S. J. Jhuo, M. J. Chen, Org. Electron. 2008, 9, 667.
J. S. Huang, C. Y. Chou, C. F. Lin, IEEE Electr. Dev. Lett. 2010, 31, 332
b) J. Meyer, M. Kröger, S. Hamwi, F. Gnam, T. Riedl, W. Kowalsky, A. Kahn, Appl. Phys. Lett. 2010, 96, 193302.
Q. H. Wu, A. Thissen, W. Jaegermann, Solid State Ionics 2004, 167, 155.
U. Schubert, Acc. Chem. Res. 2007, 40, 730.
D. C. Lim, Y. T. Kim, W. H. Shim, A. Y. Jang, J. H. Lim, Y. D. Kim, Y. Jeong, Y. D. Kim, K. H. Lee, Bull. of the Kor. Chem. Soc. 2011, 32, 1067.
c) K. S. Shin, K. H. Lee, H. H. Lee, D. Choi, S. W. Kim, J. Phys. Chem. C 2010, 114, 15782
M. S. White, D. C. Olson, S. E. Shaheen, N. Kopidakis, D. S. Ginley, Appl. Phys. Lett. 2006, 89, 143517.
J. H. Seo, A. Gutacker, Y. Sun, H. Wu, F. Huang, Y. Cao, U. Scherf, A. J. Heeger, G. C. Bazan, J. Am. Chem. Soc. 2011, 133, 8416.
b) Z. Xu, L. M. Chen, G. W. Yang, C. H. Huang, J. H. Hou, Y. Wu, G. Li, C. S. Hsu, Y. Yang, Adv. Funct. Mater. 2009, 19, 1227.
J. H. Scofield, J. Electron Spectrosc. 1976, 8, 129.
F. C. Krebs, Sol. Energ. Mat. Sol. Cells 2009, 93, 465.
S. Schumann, R. Da Campo, B. Illy, A. C. Cruickshank, M. A. McLachlan, M. P. Ryan, D. J. Riley, D. W. McComb, T. S. Jones, J. Mater. Chem. 2011, 21, 2381.
L. M. Chen, Z. R. Hong, G. Li, Y. Yang, Adv. Mater. 2009, 21, 1434
A. Roy, S. H. Park, S. Cowan, M. H. Tong, S. N. Cho, K. Lee, A. J. Heeger, Appl. Phys. Lett. 2009, 95, 013302.
a) G. Li, C. W. Chu, V. Shrotriya, J. Huang, Y. Yang, Appl. Phys. Lett. 2006, 88, 073508
d) H. Schmidt, K. Zilberberg, S. Schmale, H. Flügge, T. Riedl, W. Kowalsky, Appl. Phys. Lett. 2010, 96, 243305
M. Lehnhardt, S. Hamwi, M. Hoping, J. Reinker, T. Riedl, W. Kowalsky, Appl. Phys. Lett. 2010, 96, 193301
c) B. Y. Yu, A. Tsai, S. P. Tsai, K. T. Wong, Y. Yang, C. W. Chu, J. J. Shyue, Nanotechnology 2008, 19, 255202.
M. Demeter, M. Neumann, W. Reichelt, Surf. Sci. 2000, 454, 41.
M. Kröger, S. Hamwi, J. Meyer, T. Riedl, W. Kowalsky, A. Kahn, Org. Electron. 2009, 10, 932
M. Wojdyr, J. of Appl. Cryst. 2010, 43, 1126.
C. Tao, S. P. Ruan, G. H. Xie, X. Z. Kong, L. Shen, F. X. Meng, C. X. Liu, X. D. Zhang, W. Dong, W. Y. Chen, Appl. Phys. Lett. 2009, 94, 043311.
R. Steim, F. R. Kogler, C. J. Brabec, J. Mater. Chem. 2010, 20, 2499.
M. Yoshizawa, A. Yasuda, T. Kobayashi, Appl. Phys. B 1991, 53, 296.
2010 2009; 31 10
2004; 167
2010; 11
2007; 19
2009 2009; 21 19
2011; 1
2009; 64
2009 2010; 3 22
2000; 454
1999 1998 1993; 349 54 31
1991; 53
2008; 9
2007; 91
2011; 32
2010 2009; 96 102
2008 2008; 7 18
1995 1994; 77 70
2008 2008 2010 2010 2009; 93 93 114 96 95
1972; 5
1976; 8
2011; 133
2011; 110
2010; 43
2010; 20
2009 2009; 10 94
2009; 95
2009 2010; 95 96
2006; 89
2009; 94
2009; 93
2010; 132
2006 2008 2008; 88 93 19
2011; 21
2011; 23
2007; 40
e_1_2_7_5_2
e_1_2_7_3_3
e_1_2_7_3_2
e_1_2_7_1_3
e_1_2_7_9_2
e_1_2_7_7_2
e_1_2_7_17_4
e_1_2_7_19_2
e_1_2_7_17_3
e_1_2_7_17_2
e_1_2_7_15_3
e_1_2_7_13_4
e_1_2_7_15_2
e_1_2_7_1_2
e_1_2_7_13_3
e_1_2_7_13_2
e_1_2_7_11_2
e_1_2_7_26_2
e_1_2_7_28_2
e_1_2_7_25_3
e_1_2_7_25_2
e_1_2_7_23_2
e_1_2_7_31_2
e_1_2_7_21_2
e_1_2_7_33_2
e_1_2_7_33_3
e_1_2_7_35_2
e_1_2_7_37_2
e_1_2_7_4_2
e_1_2_7_2_3
e_1_2_7_2_2
e_1_2_7_8_2
e_1_2_7_6_2
e_1_2_7_18_2
e_1_2_7_16_2
e_1_2_7_10_6
e_1_2_7_14_2
e_1_2_7_10_5
e_1_2_7_10_4
e_1_2_7_12_2
e_1_2_7_10_3
e_1_2_7_10_2
e_1_2_7_27_2
e_1_2_7_29_2
e_1_2_7_24_2
e_1_2_7_30_2
e_1_2_7_22_3
e_1_2_7_22_2
e_1_2_7_32_2
e_1_2_7_20_2
e_1_2_7_34_2
e_1_2_7_34_3
e_1_2_7_36_2
e_1_2_7_38_2
References_xml – volume: 43
  start-page: 1126
  year: 2010
  publication-title: J. of Appl. Cryst.
– volume: 95
  start-page: 013302
  year: 2009
  publication-title: Appl. Phys. Lett.
– volume: 23
  start-page: 70
  year: 2011
  publication-title: Adv. Mater.
– volume: 95 96
  start-page: 123301 193302
  year: 2009 2010
  publication-title: Appl. Phys. Lett. Appl. Phys. Lett.
– volume: 64
  start-page: 1
  year: 2009
  publication-title: Mat. Sci. Eng. R
– volume: 91
  start-page: 263505
  year: 2007
  publication-title: Appl. Phys. Lett.
– volume: 21 19
  start-page: 1434 1227
  year: 2009 2009
  publication-title: Adv. Mater. Adv. Funct. Mater.
– volume: 21
  start-page: 2381
  year: 2011
  publication-title: J. Mater. Chem.
– volume: 110
  start-page: 033710
  year: 2011
  publication-title: J. Appl. Phys.
– volume: 7 18
  start-page: 158 1783
  year: 2008 2008
  publication-title: Nat. Mater. Adv. Funct. Mater.
– volume: 10 94
  start-page: 932 253307
  year: 2009 2009
  publication-title: Org. Electron. Appl. Phys. Lett.
– volume: 3 22
  start-page: 649 E135
  year: 2009 2010
  publication-title: Nat. Photonics Adv. Mater.
– volume: 94
  start-page: 043311
  year: 2009
  publication-title: Appl. Phys. Lett.
– volume: 8
  start-page: 129
  year: 1976
  publication-title: J. Electron Spectrosc.
– volume: 53
  start-page: 296
  year: 1991
  publication-title: Appl. Phys. B
– volume: 32
  start-page: 1067
  year: 2011
  publication-title: Bull. of the Kor. Chem. Soc.
– volume: 89
  start-page: 143517
  year: 2006
  publication-title: Appl. Phys. Lett.
– volume: 167
  start-page: 155
  year: 2004
  publication-title: Solid State Ionics
– volume: 133
  start-page: 8416
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 19
  start-page: 4213
  year: 2007
  publication-title: Adv. Mater.
– volume: 11
  start-page: 1414
  year: 2010
  publication-title: Org. Electron.
– volume: 5
  start-page: 4709
  year: 1972
  publication-title: Phys. Rev. B
– volume: 89
  start-page: 233517
  year: 2006
  publication-title: Appl. Phys. Lett.
– volume: 31 10
  start-page: 332 1060
  year: 2010 2009
  publication-title: IEEE Electr. Dev. Lett. Org. Electron.
– volume: 40
  start-page: 730
  year: 2007
  publication-title: Acc. Chem. Res.
– volume: 9
  start-page: 667
  year: 2008
  publication-title: Org. Electron.
– volume: 21
  start-page: 3083
  year: 2011
  publication-title: Adv. Funct. Mater.
– volume: 96 102
  start-page: 193301 137401
  year: 2010 2009
  publication-title: Appl. Phys. Lett. Phys. Rev. Lett.
– volume: 132
  start-page: 16883
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 20
  start-page: 2499
  year: 2010
  publication-title: J. Mater. Chem.
– volume: 88 93 19
  start-page: 073508 063308 255202
  year: 2006 2008 2008
  publication-title: Appl. Phys. Lett. Appl. Phys. Lett. Nanotechnology
– volume: 93
  start-page: 465
  year: 2009
  publication-title: Sol. Energ. Mat. Sol. Cells
– volume: 77 70
  start-page: 4655 678
  year: 1995 1994
  publication-title: J. Appl. Phys. Solid State Ionics
– volume: 454
  start-page: 41
  year: 2000
  publication-title: Surf. Sci.
– volume: 93 93 114 96 95
  start-page: 221107 193307 15782 243305 153304
  year: 2008 2008 2010 2010 2009
  publication-title: Appl. Phys. Lett. Appl. Phys. Lett. J. Phys. Chem. C Appl. Phys. Lett. Appl. Phys. Lett.
– volume: 1
  start-page: 377
  year: 2011
  publication-title: Advanced Energy Materials
– volume: 94
  start-page: 203306
  year: 2009
  publication-title: Appl. Phys. Lett.
– volume: 349 54 31
  start-page: 205 147 9
  year: 1999 1998 1993
  publication-title: Thin Solid Films Sol. Energ. Mat. Sol. Cells Sol. Energ. Mat. Sol. Cells
– ident: e_1_2_7_17_2
  doi: 10.1016/S0040-6090(99)00144-3
– ident: e_1_2_7_2_2
  doi: 10.1038/nmat2102
– ident: e_1_2_7_10_5
  doi: 10.1063/1.3455108
– ident: e_1_2_7_5_2
  doi: 10.1063/1.2402890
– ident: e_1_2_7_15_3
  doi: 10.1016/j.orgel.2009.05.017
– ident: e_1_2_7_17_4
  doi: 10.1016/0927-0248(93)90003-L
– ident: e_1_2_7_33_3
  doi: 10.1063/1.3159824
– ident: e_1_2_7_13_4
  doi: 10.1088/0957-4484/19/25/255202
– ident: e_1_2_7_32_2
  doi: 10.1063/1.3138131
– ident: e_1_2_7_33_2
  doi: 10.1016/j.orgel.2009.05.007
– ident: e_1_2_7_8_2
  doi: 10.1039/b921624c
– ident: e_1_2_7_9_2
  doi: 10.1021/ja106299g
– ident: e_1_2_7_10_3
  doi: 10.1063/1.3026741
– ident: e_1_2_7_34_2
  doi: 10.1063/1.3427416
– ident: e_1_2_7_1_2
  doi: 10.1038/nphoton.2009.192
– ident: e_1_2_7_12_2
  doi: 10.1063/1.3076134
– ident: e_1_2_7_13_2
  doi: 10.1063/1.2174093
– ident: e_1_2_7_11_2
  doi: 10.1039/C0JM03048A
– ident: e_1_2_7_24_2
  doi: 10.1002/adma.200700622
– ident: e_1_2_7_17_3
  doi: 10.1016/S0927-0248(98)00065-8
– ident: e_1_2_7_35_2
  doi: 10.1103/PhysRevB.5.4709
– ident: e_1_2_7_37_2
  doi: 10.1016/0368-2048(76)80015-1
– ident: e_1_2_7_31_2
  doi: 10.1002/adfm.201100514
– ident: e_1_2_7_13_3
  doi: 10.1063/1.2972113
– ident: e_1_2_7_34_3
  doi: 10.1103/PhysRevLett.102.137401
– ident: e_1_2_7_14_2
  doi: 10.5012/bkcs.2011.32.3.1067
– ident: e_1_2_7_26_2
  doi: 10.1021/ja2037673
– ident: e_1_2_7_25_2
  doi: 10.1063/1.3231928
– ident: e_1_2_7_2_3
  doi: 10.1002/adfm.200701459
– ident: e_1_2_7_16_2
  doi: 10.1002/adma.201003065
– ident: e_1_2_7_30_2
  doi: 10.1063/1.2821368
– ident: e_1_2_7_7_2
  doi: 10.1063/1.3159622
– ident: e_1_2_7_20_2
  doi: 10.1016/S0039-6028(00)00111-4
– ident: e_1_2_7_19_2
  doi: 10.1002/aenm.201100076
– ident: e_1_2_7_3_3
  doi: 10.1002/adfm.200801286
– ident: e_1_2_7_38_2
  doi: 10.1016/j.mser.2008.12.001
– ident: e_1_2_7_10_2
  doi: 10.1063/1.3039076
– ident: e_1_2_7_25_3
  doi: 10.1063/1.3427430
– ident: e_1_2_7_6_2
  doi: 10.1063/1.2359579
– ident: e_1_2_7_18_2
  doi: 10.1016/j.orgel.2010.05.008
– ident: e_1_2_7_21_2
  doi: 10.1063/1.3611392
– ident: e_1_2_7_10_6
  doi: 10.1063/1.3250176
– ident: e_1_2_7_10_4
  doi: 10.1021/jp1013658
– ident: e_1_2_7_29_2
  doi: 10.1007/BF00331817
– ident: e_1_2_7_4_2
  doi: 10.1016/j.solmat.2008.12.012
– ident: e_1_2_7_15_2
  doi: 10.1109/LED.2009.2039846
– ident: e_1_2_7_3_2
  doi: 10.1002/adma.200802854
– ident: e_1_2_7_22_2
  doi: 10.1063/1.359433
– ident: e_1_2_7_36_2
  doi: 10.1107/S0021889810030499
– ident: e_1_2_7_1_3
  doi: 10.1002/adma.200903528
– ident: e_1_2_7_28_2
  doi: 10.1016/j.orgel.2008.04.009
– ident: e_1_2_7_27_2
  doi: 10.1021/ar600036x
– ident: e_1_2_7_23_2
  doi: 10.1016/j.ssi.2003.12.016
– ident: e_1_2_7_22_3
  doi: 10.1016/0167-2738(94)90393-X
SSID ssj0017734
Score 2.5360782
Snippet For large‐scale and high‐throughput production of organic solar cells (OSCs), liquid processing of the functional layers is desired. We demonstrate inverted...
Abstract For large‐scale and high‐throughput production of organic solar cells (OSCs), liquid processing of the functional layers is desired. We demonstrate...
SourceID crossref
wiley
istex
SourceType Aggregation Database
Publisher
StartPage 4776
SubjectTerms high work-function materials
inverted organic solar cells
solution processed metal oxide
vanadium oxide
Title Inverted Organic Solar Cells with Sol-Gel Processed High Work-Function Vanadium Oxide Hole-Extraction Layers
URI https://api.istex.fr/ark:/67375/WNG-6QSJQ9WG-K/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201101402
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4YvejBtxFf2YPRU6G7fXIkyCMoGESEW7O73SaGAqZAQjzxE0z8h_wSd1qo4MVEL0223W3amd2db6YzXxG6JlJYOpNcMy2iDsJgGtcDX1PGxHQJMwxbQu1wvWFX22ata3VXqvgTfog04AYrI96vYYEzPsp9k4YyP-jHFJzgI8AmDGx6gIqeUv4o4jjJZ2WbQIIX6S5ZG3WaWx--ZpW2QMDTdbQam5vyHmLLB02yTHrZyZhnxfsPDsf_vMk-2l1gUVxIJs8B2pCDQ7SzwlB4hCLg4YgUKsVJ0abALfCFcVGG4QhDEBdOzGefFRniRdGB6gzZIxji8PPZR1lZTtA-fonzyyZ9_Dh99SWuDkOpLpem4ygprsAPDPD_MWqXS8_Fqrb4TYMmDOpQzXB5ACjGFgoKKLUrq8gCajPlyammcHyXM86lrzxJ4uaZpNSxfUZdIqgVEOYbJ2hzMBzIU4SJq0ufOYHJgaZf-YKBUODfZJTreW6YTgbdLtXkvSVsHF7Cu0w9kKKXSjGDbmItpt1Y1IMcNsfyOo2KZzdbtWa-U_HuM4jGuvnlfl7hrlxPW2d_GXSOtuOANKFqa7pAm-NoIi8Vohnzq3jWfgE_0fA7
link.rule.ids 315,786,790,1382,27955,27956,46327,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQHIADO6KsPiA4pY2dtUdUaAu0RezcLNtxJEQpKLRSxYlPQOIP-yXMJG2gXJDgEsmJHSUej-fNZOaFkF1mtGdLoyzXY3DQjrSUHUcWGBM3ZNJxfIO1w82WX792T-68UTYh1sJk_BB5wA01I92vUcExIF36Yg2VUfyYcnCikwC78BTovIe6eXiRM0ixIMg-LPsMU7zY3Yi30eal8fFjdmkKp7g_jldTg1OdJ2r0qFmeyUOx11VF_fqDxfFf77JA5oZwlB5k62eRTJjOEpn9RlK4TBKk4kgAmNKsblPTS3SHacW02y8U47h4YvD2UTNtOqw7gM6YQEIxFD94e6-C8cQFQG_SFLPeIz3r30eG1p_aBi4f9btJVl9BGxJdgBVyXT26qtSt4Z8aLO3wgFtOqGIEMr4GNACSB8MoY-5LcOagqYMoVFIpE4EzycKyNJwHfiR5yDT3YiYjZ5VMdp46Zo1QFtomkkHsKmTqB3cw1oD_XcmVXVaOGxTI_khO4jkj5BAZ9TIXOIsin8UC2UvFmHeTyQOmsQWeuG3VhH9-eXJevq2J0wLhqXB-uZ84OKw289b6XwbtkOn6VbMhGset0w0yk8anGYedapNMdpOe2QKA01Xb6RL-BFKC9Fs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEF4hkFB7oLwq0vLYA4KTwbt-5ohInDRAgFIgt9W-LKG8kJtIESd-QqX-Q34JM3ZiSC-V2oultXcte2Z355vxzGdC9pnVgSutcvyAwUF70lFuahwwJn7MpOeFFmuHL9ph89ZvdYLOuyr-gh-iDLjhysj3a1zgjyY9fiMNlSbt5xSc6CPAJrzkhx5H96v2vSSQYlFUfFcOGWZ4sc6MttHlx_Pj58zSEkp4Mg9Xc3uTfCJy9qRFmkn3aDxSR_rpDxLH_3mVVbIyBaP0pJg9a2TBDtbJx3cUhRskQyKODGApLao2Nb1BZ5ie2l7vJ8UoLp54ef7dsD06rTqAzpg-QjEQ__L8KwHTieqnd3mC2bhPLycPxtLmsGfhcn0yyorqCnou0QHYJLdJ_cdp05n-p8HRIHHueLFKEcaEGrAA6B3Mokx5KMGVg6aOTKykUtaAK8niqrScR6GRPGaaBymTxvtMFgfDgd0ilMWuNTJKfYU8_eAMphrQvy-5cqvK86MKOZypSTwWdByiIF7mAqUoSilWyEGuxbKbzLqYxBYF4r7dEOH1Teu6et8QZxXCc9385X7ipJZclK0v_zJojyxf1RJx_q199pV8yIPTjMM2tU0WR9nY7gC6GandfAK_AoHR8wo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inverted+Organic+Solar+Cells+with+Sol-Gel+Processed+High+Work-Function+Vanadium+Oxide+Hole-Extraction+Layers&rft.jtitle=Advanced+functional+materials&rft.au=Zilberberg%2C+Kirill&rft.au=Trost%2C+Sara&rft.au=Meyer%2C+Jens&rft.au=Kahn%2C+Antoine&rft.date=2011-12-20&rft.pub=WILEY-VCH+Verlag&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=21&rft.issue=24&rft.spage=4776&rft.epage=4783&rft_id=info:doi/10.1002%2Fadfm.201101402&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_6QSJQ9WG_K
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon