TMSDNet: Transformer with multi‐scale dense network for single and multi‐view 3D reconstruction

3D reconstruction is a long‐standing problem. Recently, a number of studies have emerged that utilize transformers for 3D reconstruction, and these approaches have demonstrated strong performance. However, transformer‐based 3D reconstruction methods tend to establish the transformation relationship...

Full description

Saved in:
Bibliographic Details
Published inComputer animation and virtual worlds Vol. 35; no. 1
Main Authors Zhu, Xiaoqiang, Yao, Xinsheng, Zhang, Junjie, Zhu, Mengyao, You, Lihua, Yang, Xiaosong, Zhang, Jianjun, Zhao, He, Zeng, Dan
Format Journal Article
LanguageEnglish
Published Chichester Wiley Subscription Services, Inc 01.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract 3D reconstruction is a long‐standing problem. Recently, a number of studies have emerged that utilize transformers for 3D reconstruction, and these approaches have demonstrated strong performance. However, transformer‐based 3D reconstruction methods tend to establish the transformation relationship between the 2D image and the 3D voxel space directly using transformers or rely solely on the powerful feature extraction capabilities of transformers. They ignore the crucial role played by deep multi‐scale representation of the object in the voxel feature domain, which can provide extensive global shape and local detail information about the object in a multi‐scale manner. In this article, we propose a novel framework TMSDNet (transformer with multi‐scale dense network) for single‐view and multi‐view 3D reconstruction with transformer to solve this problem. Based on our well‐designed combined‐transformer Block, which is canonical encoder–decoder architecture, voxel features with spatial order can be extracted from the input image, which are used to further extract multi‐scale global features in parallel using a multi‐scale residual attention module. Furthermore, a residual dense attention block is introduced for deep local features extraction and adaptive fusion. Finally, the reconstructed objects are produced with the voxel reconstruction block. Experiment results on the benchmarks such as ShapeNet and Pix3D datasets demonstrate that TMSDNet outperforms the existing state‐of‐the‐art reconstruction methods substantially. This paper proposes a novel 3D reconstruction network TMSDNet, which uses transformers' capability of strong feature extraction and processing of relative order between features to obtain voxel features. With the multiple bypass and RDAB in MSRAM, TMSDNet can utilize the information about the global shape and local details in the deep multi‐scale representation of the object in the voxel feature domain to further improve the performance. Extensive experiments show TMSDNet has better reconstruction performance, fewer parameters and competitive inference time.
AbstractList 3D reconstruction is a long‐standing problem. Recently, a number of studies have emerged that utilize transformers for 3D reconstruction, and these approaches have demonstrated strong performance. However, transformer‐based 3D reconstruction methods tend to establish the transformation relationship between the 2D image and the 3D voxel space directly using transformers or rely solely on the powerful feature extraction capabilities of transformers. They ignore the crucial role played by deep multi‐scale representation of the object in the voxel feature domain, which can provide extensive global shape and local detail information about the object in a multi‐scale manner. In this article, we propose a novel framework TMSDNet (transformer with multi‐scale dense network) for single‐view and multi‐view 3D reconstruction with transformer to solve this problem. Based on our well‐designed combined‐transformer Block, which is canonical encoder–decoder architecture, voxel features with spatial order can be extracted from the input image, which are used to further extract multi‐scale global features in parallel using a multi‐scale residual attention module. Furthermore, a residual dense attention block is introduced for deep local features extraction and adaptive fusion. Finally, the reconstructed objects are produced with the voxel reconstruction block. Experiment results on the benchmarks such as ShapeNet and Pix3D datasets demonstrate that TMSDNet outperforms the existing state‐of‐the‐art reconstruction methods substantially. This paper proposes a novel 3D reconstruction network TMSDNet, which uses transformers' capability of strong feature extraction and processing of relative order between features to obtain voxel features. With the multiple bypass and RDAB in MSRAM, TMSDNet can utilize the information about the global shape and local details in the deep multi‐scale representation of the object in the voxel feature domain to further improve the performance. Extensive experiments show TMSDNet has better reconstruction performance, fewer parameters and competitive inference time.
3D reconstruction is a long‐standing problem. Recently, a number of studies have emerged that utilize transformers for 3D reconstruction, and these approaches have demonstrated strong performance. However, transformer‐based 3D reconstruction methods tend to establish the transformation relationship between the 2D image and the 3D voxel space directly using transformers or rely solely on the powerful feature extraction capabilities of transformers. They ignore the crucial role played by deep multi‐scale representation of the object in the voxel feature domain, which can provide extensive global shape and local detail information about the object in a multi‐scale manner. In this article, we propose a novel framework TMSDNet (transformer with multi‐scale dense network) for single‐view and multi‐view 3D reconstruction with transformer to solve this problem. Based on our well‐designed combined‐transformer Block, which is canonical encoder–decoder architecture, voxel features with spatial order can be extracted from the input image, which are used to further extract multi‐scale global features in parallel using a multi‐scale residual attention module. Furthermore, a residual dense attention block is introduced for deep local features extraction and adaptive fusion. Finally, the reconstructed objects are produced with the voxel reconstruction block. Experiment results on the benchmarks such as ShapeNet and Pix3D datasets demonstrate that TMSDNet outperforms the existing state‐of‐the‐art reconstruction methods substantially.
Author Zhang, Junjie
Yao, Xinsheng
Zhu, Mengyao
Zhao, He
Zhang, Jianjun
Zeng, Dan
Zhu, Xiaoqiang
Yang, Xiaosong
You, Lihua
Author_xml – sequence: 1
  givenname: Xiaoqiang
  orcidid: 0000-0001-7486-0853
  surname: Zhu
  fullname: Zhu, Xiaoqiang
  organization: Bournemouth University
– sequence: 2
  givenname: Xinsheng
  orcidid: 0009-0004-2808-6042
  surname: Yao
  fullname: Yao, Xinsheng
  organization: Shanghai University
– sequence: 3
  givenname: Junjie
  surname: Zhang
  fullname: Zhang, Junjie
  email: junjie_zhang@shu.edu.cn
  organization: Shanghai University
– sequence: 4
  givenname: Mengyao
  surname: Zhu
  fullname: Zhu, Mengyao
  organization: Shanghai University
– sequence: 5
  givenname: Lihua
  surname: You
  fullname: You, Lihua
  organization: Bournemouth University
– sequence: 6
  givenname: Xiaosong
  surname: Yang
  fullname: Yang, Xiaosong
  organization: Bournemouth University
– sequence: 7
  givenname: Jianjun
  surname: Zhang
  fullname: Zhang, Jianjun
  organization: Bournemouth University
– sequence: 8
  givenname: He
  surname: Zhao
  fullname: Zhao, He
  organization: The R&D Department of Changzhou Micro‐Intelligence Co. Ltd
– sequence: 9
  givenname: Dan
  surname: Zeng
  fullname: Zeng, Dan
  organization: Shanghai University
BookMark eNp1kE1OwzAQhS1UJEpB4giW2LBJsZ3fsqta_qQCCwpiFzmTCbikTrGdRt1xBM7ISUgp6gLBakaa773Re_ukoyuNhBxx1ueMiVOQy74QjO-QLg-DyAtE_NTZ7hHfI_vWzloyEpx1CUxv7se36M7o1Ehti8rM0dBGuRc6r0unPt8_LMgSaY7aItXomsq80pajVunn9iB1vkWXChvqj6lBqLR1pganKn1AdgtZWjz8mT3ycHE-HV15k7vL69Fw4oEvYu7FEAU85MiABTKDCOM2kJRBkktIfBwkCcTxIAshyQrwI5GHvhRZAAwzBii53yPHG9-Fqd5qtC6dVbXR7ctUDHwWhDEbBC11sqHAVNYaLNKFUXNpViln6brCtK0wXVfYov1fKCgn15Gckar8S-BtBI0qcfWvcToaPn7zX_KshoI
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3483434
crossref_primary_10_1007_s00371_025_03837_5
crossref_primary_10_1002_cav_2268
Cites_doi 10.1109/ICCV.2017.324
10.1017/S096249291700006X
10.1109/CVPR.2019.00025
10.1007/978-3-319-67558-9_28
10.1109/ACCESS.2021.3069775
10.1109/CVPR.2018.00464
10.1109/CVPR.2018.00410
10.1109/ICCV.2017.230
10.1007/s11263-019-01217-w
10.1109/CVPR42600.2020.00243
10.1109/CVPR.2019.00254
10.1109/CVPR.2018.00298
10.1109/34.273735
10.1109/ICCV.2019.00278
10.1109/CVPR.2018.00314
10.1109/3DV.2018.00068
10.3390/rs11131588
10.1109/ICCV48922.2021.00717
10.1109/TPAMI.2014.2377712
10.1145/37402.37422
10.1109/3DV53792.2021.00042
10.1109/ICCV48922.2021.01284
10.1109/CVPR.2019.00609
10.1109/CVPR.2017.30
10.1109/CVPR.2019.00459
10.1109/34.784284
10.1109/CVPR.2016.90
10.1109/ICCST53801.2021.00078
10.1007/s10462-012-9365-8
10.1007/s11263-020-01347-6
10.1109/TPAMI.2020.2968521
10.1007/978-3-030-01234-2_1
ContentType Journal Article
Copyright 2023 John Wiley & Sons Ltd.
2024 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2023 John Wiley & Sons Ltd.
– notice: 2024 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/cav.2201
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
CrossRef
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Visual Arts
EISSN 1546-427X
EndPage n/a
ExternalDocumentID 10_1002_cav_2201
CAV2201
Genre article
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OC
29F
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDO
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
ITG
ITH
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N9A
NF~
O66
O9-
OIG
P2W
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
V8K
W8V
W99
WBKPD
WIH
WIK
WQJ
WRC
WXSBR
WYISQ
WZISG
XG1
XV2
~IA
~WT
AAYXX
ADMLS
AGHNM
AGQPQ
AGYGG
CITATION
7SC
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c3271-7c64151e0c04abc6e7100aa48dac83e988c779b5c8bfc362d53a2b4c0eb0cea13
IEDL.DBID DR2
ISSN 1546-4261
IngestDate Fri Jul 25 07:20:48 EDT 2025
Tue Jul 01 02:42:24 EDT 2025
Thu Apr 24 22:51:09 EDT 2025
Wed Jan 22 16:14:30 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3271-7c64151e0c04abc6e7100aa48dac83e988c779b5c8bfc362d53a2b4c0eb0cea13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0004-2808-6042
0000-0001-7486-0853
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cav.2201
PQID 2930457094
PQPubID 2034909
PageCount 21
ParticipantIDs proquest_journals_2930457094
crossref_primary_10_1002_cav_2201
crossref_citationtrail_10_1002_cav_2201
wiley_primary_10_1002_cav_2201_CAV2201
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January/February 2024
2024-01-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: January/February 2024
PublicationDecade 2020
PublicationPlace Chichester
PublicationPlace_xml – name: Chichester
PublicationTitle Computer animation and virtual worlds
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 9
2021; 43
1987; 21
2017; 26
2022
2021
2019; 11
2020
2015; 43
2019
2014; 37
2020; 128
2018
2017
1999; 21
2016
1994; 16
2015
2013
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_54_1
Fan H (e_1_2_9_21_1) 2017
Li J (e_1_2_9_41_1) 2018
Wang N (e_1_2_9_23_1) 2018
Xu Q (e_1_2_9_26_1) 2019
Wu J (e_1_2_9_34_1) 2016
e_1_2_9_37_1
e_1_2_9_18_1
Hao S (e_1_2_9_61_1) 2015
e_1_2_9_62_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_2_1
Wang D (e_1_2_9_12_1) 2021
Ranjan A (e_1_2_9_24_1) 2018
e_1_2_9_49_1
e_1_2_9_28_1
Groueix T (e_1_2_9_58_1) 2018
Liang J (e_1_2_9_11_1) 2021
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_55_1
Choy CB (e_1_2_9_4_1) 2016
Ledig C (e_1_2_9_32_1) 2017
Carion N (e_1_2_9_7_1) 2020
Kar A (e_1_2_9_20_1) 2017
Tiong LCO (e_1_2_9_14_1) 2022
Bian W (e_1_2_9_47_1) 2022
Insafutdinov E (e_1_2_9_22_1) 2018
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
Touvron H (e_1_2_9_45_1) 2021
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_46_1
e_1_2_9_44_1
Richter SR (e_1_2_9_35_1) 2018
e_1_2_9_5_1
Vaswani A (e_1_2_9_39_1) 2017
e_1_2_9_3_1
Li Y (e_1_2_9_9_1) 2022
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
Zai S (e_1_2_9_60_1) 2021
e_1_2_9_29_1
Peng K (e_1_2_9_16_1) 2022
References_xml – start-page: 222
  year: 2022
  end-page: 230
– volume: 9
  start-page: 52202
  year: 2021
  end-page: 52212
  article-title: Lightweight attended multi‐scale residual network for single image super‐resolution
  publication-title: IEEE Access
– volume: 43
  start-page: 55
  issue: 1
  year: 2015
  end-page: 81
  article-title: Visual simultaneous localization and mapping: a survey
  publication-title: Artif Intell Rev
– start-page: 2437
  year: 2019
  end-page: 2446
– start-page: 320
  year: 2021
  end-page: 330
– start-page: 770
  year: 2016
  end-page: 778
– start-page: 2107
  year: 2017
  end-page: 2115
– start-page: 213
  year: 2020
  end-page: 229
– year: 2021
– start-page: 55
  year: 2018
  end-page: 71
– start-page: 4804
  year: 2022
  end-page: 4814
– start-page: 2807
  year: 2018
  end-page: 2817
– start-page: 4681
  year: 2017
  end-page: 4690
– volume: 128
  start-page: 2919
  issue: 12
  year: 2020
  end-page: 2935
  article-title: Pix2Vox++: Multi‐scale context‐aware 3D object reconstruction from single and multiple images
  publication-title: Int J Comput Vis
– start-page: 1936
  year: 2018
  end-page: 1944
– start-page: 4413
  year: 2018
  end-page: 4421
– start-page: 2980
  year: 2017
  end-page: 2988
– volume: 11
  start-page: 1588
  issue: 13
  year: 2019
  article-title: Satellite image super‐resolution via multi‐scale residual deep neural network
  publication-title: Remote Sens
– start-page: 628
  year: 2016
  end-page: 644
– volume: 21
  start-page: 163
  issue: 4
  year: 1987
  end-page: 169
  article-title: Marching cubes: A high resolution 3D surface construction algorithm
  publication-title: ACM Siggraph Comput Graph
– year: 2022
– start-page: 13067
  year: 2021
  end-page: 13076
– volume: 128
  start-page: 53
  issue: 1
  year: 2020
  end-page: 73
  article-title: Robust attentional aggregation of deep feature sets for multi‐view 3D reconstruction
  publication-title: Int J Comput Vis
– start-page: 6000
  year: 2017
  end-page: 6010
– start-page: 4460
  year: 2019
  end-page: 4470
– start-page: 216
  year: 2018
  end-page: 224
– start-page: 517
  year: 2018
  end-page: 532
– start-page: 7242
  year: 2021
  end-page: 7252
– year: 2015
– start-page: 2974
  year: 2018
  end-page: 2983
– start-page: 3897
  year: 2018
  end-page: 3906
– start-page: 704
  year: 2018
  end-page: 720
– volume: 26
  start-page: 305
  year: 2017
  end-page: 364
  article-title: A survey of structure from motion
  publication-title: Acta Numer
– volume: 37
  start-page: 1670
  issue: 8
  year: 2014
  end-page: 1687
  article-title: Shape, illumination, and reflectance from shading
  publication-title: IEEE Trans Pattern Anal Mach Intell
– start-page: 5722
  year: 2021
  end-page: 5731
– start-page: 1438
  year: 2022
  end-page: 1454
– start-page: 240
  year: 2017
  end-page: 248
  article-title: Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations
  publication-title: Lect Notes Comput Sci
– start-page: 165
  year: 2019
  end-page: 174
– volume: 43
  start-page: 2480
  issue: 7
  year: 2021
  end-page: 2495
  article-title: Residual dense network for image restoration
  publication-title: IEEE Trans Pattern Anal Mach Intell
– start-page: 405
  year: 2021
– start-page: 2690
  year: 2019
  end-page: 2698
– start-page: 82
  year: 2016
  end-page: 90
– start-page: 343
  year: 2021
  end-page: 348
– start-page: 2821
  year: 2018
  end-page: 2830
– start-page: 5932
  year: 2019
  end-page: 5941
– start-page: 3
  year: 2018
  end-page: 19
– volume: 21
  start-page: 690
  issue: 8
  year: 1999
  end-page: 706
  article-title: Shape‐from‐shading: a survey
  publication-title: IEEE Trans Pattern Anal Mach Intell
– start-page: 364
  year: 2017
  end-page: 375
– start-page: 10347
  year: 2021
  end-page: 10357
– start-page: 492
  year: 2019
  end-page: 502
– start-page: 209
  year: 2017
  end-page: 217
– start-page: 2686
  year: 2015
  end-page: 2694
– start-page: 542
  year: 2018
  end-page: 551
– start-page: 1833
  year: 2021
  end-page: 1844
– start-page: 2356
  year: 2020
  end-page: 2365
– year: 2020
– start-page: 605
  year: 2017
  end-page: 613
– year: 2017
– volume: 16
  start-page: 150
  issue: 2
  year: 1994
  end-page: 162
  article-title: The visual hull concept for silhouette‐based image understanding
  publication-title: IEEE Trans Pattern Anal Mach Intell
– year: 2013
– ident: e_1_2_9_52_1
  doi: 10.1109/ICCV.2017.324
– ident: e_1_2_9_56_1
– start-page: 628
  volume-title: European Conference on Computer Vision (ECCV)
  year: 2016
  ident: e_1_2_9_4_1
– ident: e_1_2_9_2_1
  doi: 10.1017/S096249291700006X
– ident: e_1_2_9_27_1
  doi: 10.1109/CVPR.2019.00025
– ident: e_1_2_9_53_1
  doi: 10.1007/978-3-319-67558-9_28
– ident: e_1_2_9_43_1
  doi: 10.1109/ACCESS.2021.3069775
– ident: e_1_2_9_51_1
  doi: 10.1109/CVPR.2018.00464
– ident: e_1_2_9_38_1
  doi: 10.1109/CVPR.2018.00410
– ident: e_1_2_9_57_1
  doi: 10.1109/ICCV.2017.230
– ident: e_1_2_9_59_1
  doi: 10.1007/s11263-019-01217-w
– start-page: 1936
  volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  year: 2018
  ident: e_1_2_9_35_1
– ident: e_1_2_9_49_1
  doi: 10.1109/CVPR42600.2020.00243
– ident: e_1_2_9_18_1
  doi: 10.1109/CVPR.2019.00254
– start-page: 704
  volume-title: In: Proceedings of the European Conference on Computer Vision (ECCV)
  year: 2018
  ident: e_1_2_9_24_1
– ident: e_1_2_9_37_1
  doi: 10.1109/CVPR.2018.00298
– ident: e_1_2_9_30_1
  doi: 10.1109/34.273735
– ident: e_1_2_9_19_1
  doi: 10.1109/ICCV.2019.00278
– ident: e_1_2_9_8_1
– start-page: 4681
  volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  year: 2017
  ident: e_1_2_9_32_1
– ident: e_1_2_9_33_1
– start-page: 82
  volume-title: Proceedings of the 30th International Conference on Neural Information Processing Systems (NIPS'16)
  year: 2016
  ident: e_1_2_9_34_1
– ident: e_1_2_9_55_1
  doi: 10.1109/CVPR.2018.00314
– start-page: 405
  volume-title: Proceedings of British Machine Vision Conference (BMVC)
  year: 2021
  ident: e_1_2_9_60_1
– start-page: 1438
  volume-title: Proceedings of the Asian Conference on Computer Vision (ACCV)
  year: 2022
  ident: e_1_2_9_14_1
– start-page: 6000
  volume-title: Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS'17)
  year: 2017
  ident: e_1_2_9_39_1
– start-page: 2807
  volume-title: In: Proceedings of the 32nd International Conference on Neural Information Processing Systems (NIPS'18)
  year: 2018
  ident: e_1_2_9_22_1
– volume-title: Proceedings of the 32nd British Machine Vision Conference (BMVC)
  year: 2022
  ident: e_1_2_9_47_1
– ident: e_1_2_9_36_1
  doi: 10.1109/3DV.2018.00068
– start-page: 517
  volume-title: Proceedings of the European Conference on Computer Vision (ECCV)
  year: 2018
  ident: e_1_2_9_41_1
– start-page: 4804
  volume-title: In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
  year: 2022
  ident: e_1_2_9_9_1
– start-page: 213
  volume-title: European Conference on Computer Vision (ECCV)
  year: 2020
  ident: e_1_2_9_7_1
– ident: e_1_2_9_42_1
  doi: 10.3390/rs11131588
– ident: e_1_2_9_6_1
– ident: e_1_2_9_10_1
  doi: 10.1109/ICCV48922.2021.00717
– start-page: 492
  volume-title: Advances in Neural Information Processing Systems 32
  year: 2019
  ident: e_1_2_9_26_1
– ident: e_1_2_9_29_1
  doi: 10.1109/TPAMI.2014.2377712
– ident: e_1_2_9_40_1
  doi: 10.1145/37402.37422
– ident: e_1_2_9_17_1
  doi: 10.1109/3DV53792.2021.00042
– ident: e_1_2_9_44_1
  doi: 10.1109/ICCV48922.2021.01284
– ident: e_1_2_9_28_1
  doi: 10.1109/CVPR.2019.00609
– start-page: 1833
  volume-title: In: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)
  year: 2021
  ident: e_1_2_9_11_1
– ident: e_1_2_9_54_1
– ident: e_1_2_9_62_1
  doi: 10.1109/CVPR.2017.30
– start-page: 55
  volume-title: In: Proceedings of the European Conference on Computer Vision (ECCV)
  year: 2018
  ident: e_1_2_9_23_1
– ident: e_1_2_9_25_1
  doi: 10.1109/CVPR.2019.00459
– ident: e_1_2_9_13_1
– start-page: 5722
  volume-title: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)
  year: 2021
  ident: e_1_2_9_12_1
– start-page: 2686
  volume-title: 2015 IEEE International Conference on Computer Vision (ICCV)
  year: 2015
  ident: e_1_2_9_61_1
– ident: e_1_2_9_31_1
  doi: 10.1109/34.784284
– start-page: 10347
  volume-title: Proceedings of International Conference on Machine Learning
  year: 2021
  ident: e_1_2_9_45_1
– ident: e_1_2_9_48_1
  doi: 10.1109/CVPR.2016.90
– ident: e_1_2_9_15_1
  doi: 10.1109/ICCST53801.2021.00078
– start-page: 364
  volume-title: Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS'17)
  year: 2017
  ident: e_1_2_9_20_1
– ident: e_1_2_9_3_1
  doi: 10.1007/s10462-012-9365-8
– ident: e_1_2_9_5_1
  doi: 10.1007/s11263-020-01347-6
– start-page: 222
  volume-title: In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)
  year: 2022
  ident: e_1_2_9_16_1
– start-page: 216
  volume-title: In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
  year: 2018
  ident: e_1_2_9_58_1
– start-page: 605
  volume-title: In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  year: 2017
  ident: e_1_2_9_21_1
– ident: e_1_2_9_46_1
  doi: 10.1109/TPAMI.2020.2968521
– ident: e_1_2_9_50_1
  doi: 10.1007/978-3-030-01234-2_1
SSID ssj0026210
Score 2.415789
Snippet 3D reconstruction is a long‐standing problem. Recently, a number of studies have emerged that utilize transformers for 3D reconstruction, and these approaches...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms deep learning
Feature extraction
Image reconstruction
multi‐scale
single‐view and multi‐view 3D reconstruction
transformer
Transformers
Title TMSDNet: Transformer with multi‐scale dense network for single and multi‐view 3D reconstruction
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcav.2201
https://www.proquest.com/docview/2930457094
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6yXvTgW1xfRBA9dbdN0pe3xXVZRD24DxY8lGQ2C6JUsasHT_4Ef6O_xEnT1gcK4qnQTkozk2S-mU6-ELLPPKGk1IBBji8wQOGho7yJ56gwjiEShsAkZ_u8CLoDcTryR0VVpdkLY_khqoSbmRn5em0muFRZ84M0FORTg7F865Yp1TJ46LJijmIBs0QEvggcEyWUvLMua5YNv3qiD3j5GaTmXqazSK7K77PFJTeNx6lqwPM36sb_dWCJLBTgk7bsaFkmMzpdIfPD6-zR3s1WCfTPe-0LPT2i_RLS6gdqsrU0rz18e3nN0Kya4nqVaZraKnKKctRkHfCBTMeVqPnvQHmb5mF3RVW7Rgadk_5x1ykOYnCAs9BzQgjQz3vaBVdIBYE2lEBSimgsIeI6jiIIw1j5EKkJoEcc-1wyJcDVygUtPb5OauldqjcIHYMr_QiHr5pge3PwhwAeu1y7Et-hZZ0clkZJoGApN4dl3CaWX5klqLbEqK1O9irJe8vM8YPMdmnXpJibWYIAB3FsiHFtnRzkBvq1fXLcGprr5l8Ft8gcQ9RjczTbpIaK1TuIWqZql8y22udnvd18nL4DsDTtCA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5ED-rBt7g-I4ieurZp-tKT-GB97UFX8SCUZDYLolSxux48-RP8jf4SJ822PlAQT4V2UppMkvlmOvkGYI17QkmpkZycQJCD4keO8jqeo6IkwVgYApOC7bMZNi7E0VVwNQDb5VkYyw9RBdzMyij2a7PATUB684M1FOVTnXNzdmvIFPQu_KmzijuKh9xSEQQidIyfUDLPunyzbPnVFn0AzM8wtbAzB-NwXX6hTS-5rfe6qo7P38gb_9mFCRjr40-2YyfMJAzobApGL2_ynr2bTwO2Ts_3mrq7xVolqtWPzARsWZF--PbympNmNaMtK9css4nkjOSYCTzQA5m1K1Hz64H5e6zwvCu22hm4ONhv7Tacfi0GB30eeU6EIZl6T7voCqkw1IYVSEoRtyXGvk7iGKMoUQHGqoNkFNuBL7kS6GrlopaePwuD2X2m54C10ZVBTDNYdai9qf0h0E9cX7uS3qFlDTZKraTYJyo39TLuUkuxzFMattQMWw1WK8kHS87xg8xiqdi0vzzzlDAOQdmIXNsarBca-rV9urtzaa7zfxVcgeFG6_QkPTlsHi_ACCcQZEM2izBIg6yXCMR01XIxWd8B9vnvjw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iIHrwLa7PCKKnrmmavryJ6-JzEV1F8FCSaRZEqWJXD578Cf5Gf4mTpq0PFMRToZ2UJjPJfDOdfCFkjbtCSakBgxxfYIDihY5ye66jwjiGSBgCk4LtsxPsnYuDS_-yrKo0e2EsP0SdcDMzo1ivzQS_T3ubH6ShIJ-anJutW0MiYJGx6NZpTR3FA26ZCHwROCZMqIhnGd-sWn51RR_48jNKLdxMe5xcVR9oq0tumo991YTnb9yN_-vBBBkr0SfdtuYySQZ0NkVGL67zR3s3nybQPT5rdXR_i3YrTKsfqEnX0qL48O3lNUe9aooLVq5pZsvIKcpRk3bABzJLa1Hz44F6LVrE3TVX7Qw5b-92d_ac8iQGBzweuk4IATp6VzNgQioItOEEklJEqYTI03EUQRjGyodI9QBdYup7kisBTCsGWrreLBnM7jI9R2gKTPoR2q_qYXtz8ocAL2aeZhLfoWWDbFRKSaCkKTenZdwmlmCZJzhsiRm2BlmtJe8tNccPMouVXpNycuYJIhwEsiEGtg2yXijo1_bJzvaFuc7_VXCFDJ-02snRfudwgYxwREA2X7NIBnGM9RIimL5aLkz1HV0n7kc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TMSDNet%3A+Transformer+with+multi%E2%80%90scale+dense+network+for+single+and+multi%E2%80%90view+3D+reconstruction&rft.jtitle=Computer+animation+and+virtual+worlds&rft.au=Zhu%2C+Xiaoqiang&rft.au=Yao%2C+Xinsheng&rft.au=Zhang%2C+Junjie&rft.au=Zhu%2C+Mengyao&rft.date=2024-01-01&rft.issn=1546-4261&rft.eissn=1546-427X&rft.volume=35&rft.issue=1&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fcav.2201&rft.externalDBID=10.1002%252Fcav.2201&rft.externalDocID=CAV2201
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-4261&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-4261&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-4261&client=summon