TMSDNet: Transformer with multi‐scale dense network for single and multi‐view 3D reconstruction
3D reconstruction is a long‐standing problem. Recently, a number of studies have emerged that utilize transformers for 3D reconstruction, and these approaches have demonstrated strong performance. However, transformer‐based 3D reconstruction methods tend to establish the transformation relationship...
Saved in:
Published in | Computer animation and virtual worlds Vol. 35; no. 1 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Chichester
Wiley Subscription Services, Inc
01.01.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | 3D reconstruction is a long‐standing problem. Recently, a number of studies have emerged that utilize transformers for 3D reconstruction, and these approaches have demonstrated strong performance. However, transformer‐based 3D reconstruction methods tend to establish the transformation relationship between the 2D image and the 3D voxel space directly using transformers or rely solely on the powerful feature extraction capabilities of transformers. They ignore the crucial role played by deep multi‐scale representation of the object in the voxel feature domain, which can provide extensive global shape and local detail information about the object in a multi‐scale manner. In this article, we propose a novel framework TMSDNet (transformer with multi‐scale dense network) for single‐view and multi‐view 3D reconstruction with transformer to solve this problem. Based on our well‐designed combined‐transformer Block, which is canonical encoder–decoder architecture, voxel features with spatial order can be extracted from the input image, which are used to further extract multi‐scale global features in parallel using a multi‐scale residual attention module. Furthermore, a residual dense attention block is introduced for deep local features extraction and adaptive fusion. Finally, the reconstructed objects are produced with the voxel reconstruction block. Experiment results on the benchmarks such as ShapeNet and Pix3D datasets demonstrate that TMSDNet outperforms the existing state‐of‐the‐art reconstruction methods substantially.
This paper proposes a novel 3D reconstruction network TMSDNet, which uses transformers' capability of strong feature extraction and processing of relative order between features to obtain voxel features. With the multiple bypass and RDAB in MSRAM, TMSDNet can utilize the information about the global shape and local details in the deep multi‐scale representation of the object in the voxel feature domain to further improve the performance. Extensive experiments show TMSDNet has better reconstruction performance, fewer parameters and competitive inference time. |
---|---|
AbstractList | 3D reconstruction is a long‐standing problem. Recently, a number of studies have emerged that utilize transformers for 3D reconstruction, and these approaches have demonstrated strong performance. However, transformer‐based 3D reconstruction methods tend to establish the transformation relationship between the 2D image and the 3D voxel space directly using transformers or rely solely on the powerful feature extraction capabilities of transformers. They ignore the crucial role played by deep multi‐scale representation of the object in the voxel feature domain, which can provide extensive global shape and local detail information about the object in a multi‐scale manner. In this article, we propose a novel framework TMSDNet (transformer with multi‐scale dense network) for single‐view and multi‐view 3D reconstruction with transformer to solve this problem. Based on our well‐designed combined‐transformer Block, which is canonical encoder–decoder architecture, voxel features with spatial order can be extracted from the input image, which are used to further extract multi‐scale global features in parallel using a multi‐scale residual attention module. Furthermore, a residual dense attention block is introduced for deep local features extraction and adaptive fusion. Finally, the reconstructed objects are produced with the voxel reconstruction block. Experiment results on the benchmarks such as ShapeNet and Pix3D datasets demonstrate that TMSDNet outperforms the existing state‐of‐the‐art reconstruction methods substantially.
This paper proposes a novel 3D reconstruction network TMSDNet, which uses transformers' capability of strong feature extraction and processing of relative order between features to obtain voxel features. With the multiple bypass and RDAB in MSRAM, TMSDNet can utilize the information about the global shape and local details in the deep multi‐scale representation of the object in the voxel feature domain to further improve the performance. Extensive experiments show TMSDNet has better reconstruction performance, fewer parameters and competitive inference time. 3D reconstruction is a long‐standing problem. Recently, a number of studies have emerged that utilize transformers for 3D reconstruction, and these approaches have demonstrated strong performance. However, transformer‐based 3D reconstruction methods tend to establish the transformation relationship between the 2D image and the 3D voxel space directly using transformers or rely solely on the powerful feature extraction capabilities of transformers. They ignore the crucial role played by deep multi‐scale representation of the object in the voxel feature domain, which can provide extensive global shape and local detail information about the object in a multi‐scale manner. In this article, we propose a novel framework TMSDNet (transformer with multi‐scale dense network) for single‐view and multi‐view 3D reconstruction with transformer to solve this problem. Based on our well‐designed combined‐transformer Block, which is canonical encoder–decoder architecture, voxel features with spatial order can be extracted from the input image, which are used to further extract multi‐scale global features in parallel using a multi‐scale residual attention module. Furthermore, a residual dense attention block is introduced for deep local features extraction and adaptive fusion. Finally, the reconstructed objects are produced with the voxel reconstruction block. Experiment results on the benchmarks such as ShapeNet and Pix3D datasets demonstrate that TMSDNet outperforms the existing state‐of‐the‐art reconstruction methods substantially. |
Author | Zhang, Junjie Yao, Xinsheng Zhu, Mengyao Zhao, He Zhang, Jianjun Zeng, Dan Zhu, Xiaoqiang Yang, Xiaosong You, Lihua |
Author_xml | – sequence: 1 givenname: Xiaoqiang orcidid: 0000-0001-7486-0853 surname: Zhu fullname: Zhu, Xiaoqiang organization: Bournemouth University – sequence: 2 givenname: Xinsheng orcidid: 0009-0004-2808-6042 surname: Yao fullname: Yao, Xinsheng organization: Shanghai University – sequence: 3 givenname: Junjie surname: Zhang fullname: Zhang, Junjie email: junjie_zhang@shu.edu.cn organization: Shanghai University – sequence: 4 givenname: Mengyao surname: Zhu fullname: Zhu, Mengyao organization: Shanghai University – sequence: 5 givenname: Lihua surname: You fullname: You, Lihua organization: Bournemouth University – sequence: 6 givenname: Xiaosong surname: Yang fullname: Yang, Xiaosong organization: Bournemouth University – sequence: 7 givenname: Jianjun surname: Zhang fullname: Zhang, Jianjun organization: Bournemouth University – sequence: 8 givenname: He surname: Zhao fullname: Zhao, He organization: The R&D Department of Changzhou Micro‐Intelligence Co. Ltd – sequence: 9 givenname: Dan surname: Zeng fullname: Zeng, Dan organization: Shanghai University |
BookMark | eNp1kE1OwzAQhS1UJEpB4giW2LBJsZ3fsqta_qQCCwpiFzmTCbikTrGdRt1xBM7ISUgp6gLBakaa773Re_ukoyuNhBxx1ueMiVOQy74QjO-QLg-DyAtE_NTZ7hHfI_vWzloyEpx1CUxv7se36M7o1Ehti8rM0dBGuRc6r0unPt8_LMgSaY7aItXomsq80pajVunn9iB1vkWXChvqj6lBqLR1pganKn1AdgtZWjz8mT3ycHE-HV15k7vL69Fw4oEvYu7FEAU85MiABTKDCOM2kJRBkktIfBwkCcTxIAshyQrwI5GHvhRZAAwzBii53yPHG9-Fqd5qtC6dVbXR7ctUDHwWhDEbBC11sqHAVNYaLNKFUXNpViln6brCtK0wXVfYov1fKCgn15Gckar8S-BtBI0qcfWvcToaPn7zX_KshoI |
CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3483434 crossref_primary_10_1007_s00371_025_03837_5 crossref_primary_10_1002_cav_2268 |
Cites_doi | 10.1109/ICCV.2017.324 10.1017/S096249291700006X 10.1109/CVPR.2019.00025 10.1007/978-3-319-67558-9_28 10.1109/ACCESS.2021.3069775 10.1109/CVPR.2018.00464 10.1109/CVPR.2018.00410 10.1109/ICCV.2017.230 10.1007/s11263-019-01217-w 10.1109/CVPR42600.2020.00243 10.1109/CVPR.2019.00254 10.1109/CVPR.2018.00298 10.1109/34.273735 10.1109/ICCV.2019.00278 10.1109/CVPR.2018.00314 10.1109/3DV.2018.00068 10.3390/rs11131588 10.1109/ICCV48922.2021.00717 10.1109/TPAMI.2014.2377712 10.1145/37402.37422 10.1109/3DV53792.2021.00042 10.1109/ICCV48922.2021.01284 10.1109/CVPR.2019.00609 10.1109/CVPR.2017.30 10.1109/CVPR.2019.00459 10.1109/34.784284 10.1109/CVPR.2016.90 10.1109/ICCST53801.2021.00078 10.1007/s10462-012-9365-8 10.1007/s11263-020-01347-6 10.1109/TPAMI.2020.2968521 10.1007/978-3-030-01234-2_1 |
ContentType | Journal Article |
Copyright | 2023 John Wiley & Sons Ltd. 2024 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2023 John Wiley & Sons Ltd. – notice: 2024 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1002/cav.2201 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Visual Arts |
EISSN | 1546-427X |
EndPage | n/a |
ExternalDocumentID | 10_1002_cav_2201 CAV2201 |
Genre | article |
GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 1L6 1OC 29F 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EDO EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA HF~ HGLYW HHY HVGLF HZ~ I-F ITG ITH IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N9A NF~ O66 O9- OIG P2W P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ TN5 TUS UB1 V2E V8K W8V W99 WBKPD WIH WIK WQJ WRC WXSBR WYISQ WZISG XG1 XV2 ~IA ~WT AAYXX ADMLS AGHNM AGQPQ AGYGG CITATION 7SC 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c3271-7c64151e0c04abc6e7100aa48dac83e988c779b5c8bfc362d53a2b4c0eb0cea13 |
IEDL.DBID | DR2 |
ISSN | 1546-4261 |
IngestDate | Fri Jul 25 07:20:48 EDT 2025 Tue Jul 01 02:42:24 EDT 2025 Thu Apr 24 22:51:09 EDT 2025 Wed Jan 22 16:14:30 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3271-7c64151e0c04abc6e7100aa48dac83e988c779b5c8bfc362d53a2b4c0eb0cea13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0004-2808-6042 0000-0001-7486-0853 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cav.2201 |
PQID | 2930457094 |
PQPubID | 2034909 |
PageCount | 21 |
ParticipantIDs | proquest_journals_2930457094 crossref_primary_10_1002_cav_2201 crossref_citationtrail_10_1002_cav_2201 wiley_primary_10_1002_cav_2201_CAV2201 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January/February 2024 2024-01-00 20240101 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: January/February 2024 |
PublicationDecade | 2020 |
PublicationPlace | Chichester |
PublicationPlace_xml | – name: Chichester |
PublicationTitle | Computer animation and virtual worlds |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 9 2021; 43 1987; 21 2017; 26 2022 2021 2019; 11 2020 2015; 43 2019 2014; 37 2020; 128 2018 2017 1999; 21 2016 1994; 16 2015 2013 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_54_1 Fan H (e_1_2_9_21_1) 2017 Li J (e_1_2_9_41_1) 2018 Wang N (e_1_2_9_23_1) 2018 Xu Q (e_1_2_9_26_1) 2019 Wu J (e_1_2_9_34_1) 2016 e_1_2_9_37_1 e_1_2_9_18_1 Hao S (e_1_2_9_61_1) 2015 e_1_2_9_62_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_2_1 Wang D (e_1_2_9_12_1) 2021 Ranjan A (e_1_2_9_24_1) 2018 e_1_2_9_49_1 e_1_2_9_28_1 Groueix T (e_1_2_9_58_1) 2018 Liang J (e_1_2_9_11_1) 2021 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_55_1 Choy CB (e_1_2_9_4_1) 2016 Ledig C (e_1_2_9_32_1) 2017 Carion N (e_1_2_9_7_1) 2020 Kar A (e_1_2_9_20_1) 2017 Tiong LCO (e_1_2_9_14_1) 2022 Bian W (e_1_2_9_47_1) 2022 Insafutdinov E (e_1_2_9_22_1) 2018 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 Touvron H (e_1_2_9_45_1) 2021 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_46_1 e_1_2_9_44_1 Richter SR (e_1_2_9_35_1) 2018 e_1_2_9_5_1 Vaswani A (e_1_2_9_39_1) 2017 e_1_2_9_3_1 Li Y (e_1_2_9_9_1) 2022 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 Zai S (e_1_2_9_60_1) 2021 e_1_2_9_29_1 Peng K (e_1_2_9_16_1) 2022 |
References_xml | – start-page: 222 year: 2022 end-page: 230 – volume: 9 start-page: 52202 year: 2021 end-page: 52212 article-title: Lightweight attended multi‐scale residual network for single image super‐resolution publication-title: IEEE Access – volume: 43 start-page: 55 issue: 1 year: 2015 end-page: 81 article-title: Visual simultaneous localization and mapping: a survey publication-title: Artif Intell Rev – start-page: 2437 year: 2019 end-page: 2446 – start-page: 320 year: 2021 end-page: 330 – start-page: 770 year: 2016 end-page: 778 – start-page: 2107 year: 2017 end-page: 2115 – start-page: 213 year: 2020 end-page: 229 – year: 2021 – start-page: 55 year: 2018 end-page: 71 – start-page: 4804 year: 2022 end-page: 4814 – start-page: 2807 year: 2018 end-page: 2817 – start-page: 4681 year: 2017 end-page: 4690 – volume: 128 start-page: 2919 issue: 12 year: 2020 end-page: 2935 article-title: Pix2Vox++: Multi‐scale context‐aware 3D object reconstruction from single and multiple images publication-title: Int J Comput Vis – start-page: 1936 year: 2018 end-page: 1944 – start-page: 4413 year: 2018 end-page: 4421 – start-page: 2980 year: 2017 end-page: 2988 – volume: 11 start-page: 1588 issue: 13 year: 2019 article-title: Satellite image super‐resolution via multi‐scale residual deep neural network publication-title: Remote Sens – start-page: 628 year: 2016 end-page: 644 – volume: 21 start-page: 163 issue: 4 year: 1987 end-page: 169 article-title: Marching cubes: A high resolution 3D surface construction algorithm publication-title: ACM Siggraph Comput Graph – year: 2022 – start-page: 13067 year: 2021 end-page: 13076 – volume: 128 start-page: 53 issue: 1 year: 2020 end-page: 73 article-title: Robust attentional aggregation of deep feature sets for multi‐view 3D reconstruction publication-title: Int J Comput Vis – start-page: 6000 year: 2017 end-page: 6010 – start-page: 4460 year: 2019 end-page: 4470 – start-page: 216 year: 2018 end-page: 224 – start-page: 517 year: 2018 end-page: 532 – start-page: 7242 year: 2021 end-page: 7252 – year: 2015 – start-page: 2974 year: 2018 end-page: 2983 – start-page: 3897 year: 2018 end-page: 3906 – start-page: 704 year: 2018 end-page: 720 – volume: 26 start-page: 305 year: 2017 end-page: 364 article-title: A survey of structure from motion publication-title: Acta Numer – volume: 37 start-page: 1670 issue: 8 year: 2014 end-page: 1687 article-title: Shape, illumination, and reflectance from shading publication-title: IEEE Trans Pattern Anal Mach Intell – start-page: 5722 year: 2021 end-page: 5731 – start-page: 1438 year: 2022 end-page: 1454 – start-page: 240 year: 2017 end-page: 248 article-title: Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations publication-title: Lect Notes Comput Sci – start-page: 165 year: 2019 end-page: 174 – volume: 43 start-page: 2480 issue: 7 year: 2021 end-page: 2495 article-title: Residual dense network for image restoration publication-title: IEEE Trans Pattern Anal Mach Intell – start-page: 405 year: 2021 – start-page: 2690 year: 2019 end-page: 2698 – start-page: 82 year: 2016 end-page: 90 – start-page: 343 year: 2021 end-page: 348 – start-page: 2821 year: 2018 end-page: 2830 – start-page: 5932 year: 2019 end-page: 5941 – start-page: 3 year: 2018 end-page: 19 – volume: 21 start-page: 690 issue: 8 year: 1999 end-page: 706 article-title: Shape‐from‐shading: a survey publication-title: IEEE Trans Pattern Anal Mach Intell – start-page: 364 year: 2017 end-page: 375 – start-page: 10347 year: 2021 end-page: 10357 – start-page: 492 year: 2019 end-page: 502 – start-page: 209 year: 2017 end-page: 217 – start-page: 2686 year: 2015 end-page: 2694 – start-page: 542 year: 2018 end-page: 551 – start-page: 1833 year: 2021 end-page: 1844 – start-page: 2356 year: 2020 end-page: 2365 – year: 2020 – start-page: 605 year: 2017 end-page: 613 – year: 2017 – volume: 16 start-page: 150 issue: 2 year: 1994 end-page: 162 article-title: The visual hull concept for silhouette‐based image understanding publication-title: IEEE Trans Pattern Anal Mach Intell – year: 2013 – ident: e_1_2_9_52_1 doi: 10.1109/ICCV.2017.324 – ident: e_1_2_9_56_1 – start-page: 628 volume-title: European Conference on Computer Vision (ECCV) year: 2016 ident: e_1_2_9_4_1 – ident: e_1_2_9_2_1 doi: 10.1017/S096249291700006X – ident: e_1_2_9_27_1 doi: 10.1109/CVPR.2019.00025 – ident: e_1_2_9_53_1 doi: 10.1007/978-3-319-67558-9_28 – ident: e_1_2_9_43_1 doi: 10.1109/ACCESS.2021.3069775 – ident: e_1_2_9_51_1 doi: 10.1109/CVPR.2018.00464 – ident: e_1_2_9_38_1 doi: 10.1109/CVPR.2018.00410 – ident: e_1_2_9_57_1 doi: 10.1109/ICCV.2017.230 – ident: e_1_2_9_59_1 doi: 10.1007/s11263-019-01217-w – start-page: 1936 volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) year: 2018 ident: e_1_2_9_35_1 – ident: e_1_2_9_49_1 doi: 10.1109/CVPR42600.2020.00243 – ident: e_1_2_9_18_1 doi: 10.1109/CVPR.2019.00254 – start-page: 704 volume-title: In: Proceedings of the European Conference on Computer Vision (ECCV) year: 2018 ident: e_1_2_9_24_1 – ident: e_1_2_9_37_1 doi: 10.1109/CVPR.2018.00298 – ident: e_1_2_9_30_1 doi: 10.1109/34.273735 – ident: e_1_2_9_19_1 doi: 10.1109/ICCV.2019.00278 – ident: e_1_2_9_8_1 – start-page: 4681 volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) year: 2017 ident: e_1_2_9_32_1 – ident: e_1_2_9_33_1 – start-page: 82 volume-title: Proceedings of the 30th International Conference on Neural Information Processing Systems (NIPS'16) year: 2016 ident: e_1_2_9_34_1 – ident: e_1_2_9_55_1 doi: 10.1109/CVPR.2018.00314 – start-page: 405 volume-title: Proceedings of British Machine Vision Conference (BMVC) year: 2021 ident: e_1_2_9_60_1 – start-page: 1438 volume-title: Proceedings of the Asian Conference on Computer Vision (ACCV) year: 2022 ident: e_1_2_9_14_1 – start-page: 6000 volume-title: Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS'17) year: 2017 ident: e_1_2_9_39_1 – start-page: 2807 volume-title: In: Proceedings of the 32nd International Conference on Neural Information Processing Systems (NIPS'18) year: 2018 ident: e_1_2_9_22_1 – volume-title: Proceedings of the 32nd British Machine Vision Conference (BMVC) year: 2022 ident: e_1_2_9_47_1 – ident: e_1_2_9_36_1 doi: 10.1109/3DV.2018.00068 – start-page: 517 volume-title: Proceedings of the European Conference on Computer Vision (ECCV) year: 2018 ident: e_1_2_9_41_1 – start-page: 4804 volume-title: In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) year: 2022 ident: e_1_2_9_9_1 – start-page: 213 volume-title: European Conference on Computer Vision (ECCV) year: 2020 ident: e_1_2_9_7_1 – ident: e_1_2_9_42_1 doi: 10.3390/rs11131588 – ident: e_1_2_9_6_1 – ident: e_1_2_9_10_1 doi: 10.1109/ICCV48922.2021.00717 – start-page: 492 volume-title: Advances in Neural Information Processing Systems 32 year: 2019 ident: e_1_2_9_26_1 – ident: e_1_2_9_29_1 doi: 10.1109/TPAMI.2014.2377712 – ident: e_1_2_9_40_1 doi: 10.1145/37402.37422 – ident: e_1_2_9_17_1 doi: 10.1109/3DV53792.2021.00042 – ident: e_1_2_9_44_1 doi: 10.1109/ICCV48922.2021.01284 – ident: e_1_2_9_28_1 doi: 10.1109/CVPR.2019.00609 – start-page: 1833 volume-title: In: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops (ICCVW) year: 2021 ident: e_1_2_9_11_1 – ident: e_1_2_9_54_1 – ident: e_1_2_9_62_1 doi: 10.1109/CVPR.2017.30 – start-page: 55 volume-title: In: Proceedings of the European Conference on Computer Vision (ECCV) year: 2018 ident: e_1_2_9_23_1 – ident: e_1_2_9_25_1 doi: 10.1109/CVPR.2019.00459 – ident: e_1_2_9_13_1 – start-page: 5722 volume-title: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) year: 2021 ident: e_1_2_9_12_1 – start-page: 2686 volume-title: 2015 IEEE International Conference on Computer Vision (ICCV) year: 2015 ident: e_1_2_9_61_1 – ident: e_1_2_9_31_1 doi: 10.1109/34.784284 – start-page: 10347 volume-title: Proceedings of International Conference on Machine Learning year: 2021 ident: e_1_2_9_45_1 – ident: e_1_2_9_48_1 doi: 10.1109/CVPR.2016.90 – ident: e_1_2_9_15_1 doi: 10.1109/ICCST53801.2021.00078 – start-page: 364 volume-title: Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS'17) year: 2017 ident: e_1_2_9_20_1 – ident: e_1_2_9_3_1 doi: 10.1007/s10462-012-9365-8 – ident: e_1_2_9_5_1 doi: 10.1007/s11263-020-01347-6 – start-page: 222 volume-title: In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) year: 2022 ident: e_1_2_9_16_1 – start-page: 216 volume-title: In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) year: 2018 ident: e_1_2_9_58_1 – start-page: 605 volume-title: In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) year: 2017 ident: e_1_2_9_21_1 – ident: e_1_2_9_46_1 doi: 10.1109/TPAMI.2020.2968521 – ident: e_1_2_9_50_1 doi: 10.1007/978-3-030-01234-2_1 |
SSID | ssj0026210 |
Score | 2.415789 |
Snippet | 3D reconstruction is a long‐standing problem. Recently, a number of studies have emerged that utilize transformers for 3D reconstruction, and these approaches... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | deep learning Feature extraction Image reconstruction multi‐scale single‐view and multi‐view 3D reconstruction transformer Transformers |
Title | TMSDNet: Transformer with multi‐scale dense network for single and multi‐view 3D reconstruction |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcav.2201 https://www.proquest.com/docview/2930457094 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6yXvTgW1xfRBA9dbdN0pe3xXVZRD24DxY8lGQ2C6JUsasHT_4Ef6O_xEnT1gcK4qnQTkozk2S-mU6-ELLPPKGk1IBBji8wQOGho7yJ56gwjiEShsAkZ_u8CLoDcTryR0VVpdkLY_khqoSbmRn5em0muFRZ84M0FORTg7F865Yp1TJ46LJijmIBs0QEvggcEyWUvLMua5YNv3qiD3j5GaTmXqazSK7K77PFJTeNx6lqwPM36sb_dWCJLBTgk7bsaFkmMzpdIfPD6-zR3s1WCfTPe-0LPT2i_RLS6gdqsrU0rz18e3nN0Kya4nqVaZraKnKKctRkHfCBTMeVqPnvQHmb5mF3RVW7Rgadk_5x1ykOYnCAs9BzQgjQz3vaBVdIBYE2lEBSimgsIeI6jiIIw1j5EKkJoEcc-1wyJcDVygUtPb5OauldqjcIHYMr_QiHr5pge3PwhwAeu1y7Et-hZZ0clkZJoGApN4dl3CaWX5klqLbEqK1O9irJe8vM8YPMdmnXpJibWYIAB3FsiHFtnRzkBvq1fXLcGprr5l8Ft8gcQ9RjczTbpIaK1TuIWqZql8y22udnvd18nL4DsDTtCA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5ED-rBt7g-I4ieurZp-tKT-GB97UFX8SCUZDYLolSxux48-RP8jf4SJ822PlAQT4V2UppMkvlmOvkGYI17QkmpkZycQJCD4keO8jqeo6IkwVgYApOC7bMZNi7E0VVwNQDb5VkYyw9RBdzMyij2a7PATUB684M1FOVTnXNzdmvIFPQu_KmzijuKh9xSEQQidIyfUDLPunyzbPnVFn0AzM8wtbAzB-NwXX6hTS-5rfe6qo7P38gb_9mFCRjr40-2YyfMJAzobApGL2_ynr2bTwO2Ts_3mrq7xVolqtWPzARsWZF--PbympNmNaMtK9css4nkjOSYCTzQA5m1K1Hz64H5e6zwvCu22hm4ONhv7Tacfi0GB30eeU6EIZl6T7voCqkw1IYVSEoRtyXGvk7iGKMoUQHGqoNkFNuBL7kS6GrlopaePwuD2X2m54C10ZVBTDNYdai9qf0h0E9cX7uS3qFlDTZKraTYJyo39TLuUkuxzFMattQMWw1WK8kHS87xg8xiqdi0vzzzlDAOQdmIXNsarBca-rV9urtzaa7zfxVcgeFG6_QkPTlsHi_ACCcQZEM2izBIg6yXCMR01XIxWd8B9vnvjw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iIHrwLa7PCKKnrmmavryJ6-JzEV1F8FCSaRZEqWJXD578Cf5Gf4mTpq0PFMRToZ2UJjPJfDOdfCFkjbtCSakBgxxfYIDihY5ye66jwjiGSBgCk4LtsxPsnYuDS_-yrKo0e2EsP0SdcDMzo1ivzQS_T3ubH6ShIJ-anJutW0MiYJGx6NZpTR3FA26ZCHwROCZMqIhnGd-sWn51RR_48jNKLdxMe5xcVR9oq0tumo991YTnb9yN_-vBBBkr0SfdtuYySQZ0NkVGL67zR3s3nybQPT5rdXR_i3YrTKsfqEnX0qL48O3lNUe9aooLVq5pZsvIKcpRk3bABzJLa1Hz44F6LVrE3TVX7Qw5b-92d_ac8iQGBzweuk4IATp6VzNgQioItOEEklJEqYTI03EUQRjGyodI9QBdYup7kisBTCsGWrreLBnM7jI9R2gKTPoR2q_qYXtz8ocAL2aeZhLfoWWDbFRKSaCkKTenZdwmlmCZJzhsiRm2BlmtJe8tNccPMouVXpNycuYJIhwEsiEGtg2yXijo1_bJzvaFuc7_VXCFDJ-02snRfudwgYxwREA2X7NIBnGM9RIimL5aLkz1HV0n7kc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TMSDNet%3A+Transformer+with+multi%E2%80%90scale+dense+network+for+single+and+multi%E2%80%90view+3D+reconstruction&rft.jtitle=Computer+animation+and+virtual+worlds&rft.au=Zhu%2C+Xiaoqiang&rft.au=Yao%2C+Xinsheng&rft.au=Zhang%2C+Junjie&rft.au=Zhu%2C+Mengyao&rft.date=2024-01-01&rft.issn=1546-4261&rft.eissn=1546-427X&rft.volume=35&rft.issue=1&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fcav.2201&rft.externalDBID=10.1002%252Fcav.2201&rft.externalDocID=CAV2201 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-4261&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-4261&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-4261&client=summon |