Recent evidence for warmer and drier growing seasons in climate sensitive regions of Central America from multiple global datasets
Smallholder livelihoods throughout Central America are built on rain‐fed agriculture and depend on seasonal variations in temperature and precipitation. Recent climatic shifts in this highly diverse region are not well understood due to sparse observations, and as the skill of global climate product...
Saved in:
Published in | International journal of climatology Vol. 42; no. 3; pp. 1399 - 1417 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
15.03.2022
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Smallholder livelihoods throughout Central America are built on rain‐fed agriculture and depend on seasonal variations in temperature and precipitation. Recent climatic shifts in this highly diverse region are not well understood due to sparse observations, and as the skill of global climate products have not been thoroughly evaluated. We examine the performance for several reanalysis and satellite‐based global climate data products (CHIRPS/CHIRTS, ERA5, MERRA‐2, PERSIANN‐CDR) as compared to the observation‐based GPCC precipitation dataset. These datasets are then used to evaluate the magnitude and spatial extent of hydroclimatic shifts and changes in aridity and drought over the last four decades. We focus on water‐limited regions that are important for rain‐fed agriculture and particularly vulnerable to further drying, and newly delineate those regions for Central America and Mexico by adapting prior definitions of the Central American Dry Corridor. Our results indicate that the CHIRPS dataset exhibits the greatest skill for the study area. A general warming of 0.2–0.8°C·decade−1 was found across the region, particularly for spring and winter, while widespread drying was indicated by several measures for the summer growing season. Changes in annual precipitation have been inconsistent, but show declines of 20–25% in eastern Honduras/Nicaragua and in several parts of Mexico. Some regions most vulnerable to drying have been subject to statistically significant trends towards summer drying, increases in drought and aridity driven by precipitation declines, and/or a lengthening of the winter dry season, highlighting areas where climate adaptation measures may be most urgent.
Over the past four decades, precipitation trends are the main driver of drought trends, with temperature trends playing a small role. The most widespread drying and increases in aridity have occurred during the summer growing season. Based on delimitations of water‐limited and climate‐sensitive regions (brown shading) that are important for rain‐fed agriculture, some of these highly vulnerable regions overlap with areas of significant drying (red), highlighting potential prioritization areas for climate adaptation measures. |
---|---|
AbstractList | Smallholder livelihoods throughout Central America are built on rain‐fed agriculture and depend on seasonal variations in temperature and precipitation. Recent climatic shifts in this highly diverse region are not well understood due to sparse observations, and as the skill of global climate products have not been thoroughly evaluated. We examine the performance for several reanalysis and satellite‐based global climate data products (CHIRPS/CHIRTS, ERA5, MERRA‐2, PERSIANN‐CDR) as compared to the observation‐based GPCC precipitation dataset. These datasets are then used to evaluate the magnitude and spatial extent of hydroclimatic shifts and changes in aridity and drought over the last four decades. We focus on water‐limited regions that are important for rain‐fed agriculture and particularly vulnerable to further drying, and newly delineate those regions for Central America and Mexico by adapting prior definitions of the Central American Dry Corridor. Our results indicate that the CHIRPS dataset exhibits the greatest skill for the study area. A general warming of 0.2–0.8°C·decade−1 was found across the region, particularly for spring and winter, while widespread drying was indicated by several measures for the summer growing season. Changes in annual precipitation have been inconsistent, but show declines of 20–25% in eastern Honduras/Nicaragua and in several parts of Mexico. Some regions most vulnerable to drying have been subject to statistically significant trends towards summer drying, increases in drought and aridity driven by precipitation declines, and/or a lengthening of the winter dry season, highlighting areas where climate adaptation measures may be most urgent. Smallholder livelihoods throughout Central America are built on rain‐fed agriculture and depend on seasonal variations in temperature and precipitation. Recent climatic shifts in this highly diverse region are not well understood due to sparse observations, and as the skill of global climate products have not been thoroughly evaluated. We examine the performance for several reanalysis and satellite‐based global climate data products (CHIRPS/CHIRTS, ERA5, MERRA‐2, PERSIANN‐CDR) as compared to the observation‐based GPCC precipitation dataset. These datasets are then used to evaluate the magnitude and spatial extent of hydroclimatic shifts and changes in aridity and drought over the last four decades. We focus on water‐limited regions that are important for rain‐fed agriculture and particularly vulnerable to further drying, and newly delineate those regions for Central America and Mexico by adapting prior definitions of the Central American Dry Corridor. Our results indicate that the CHIRPS dataset exhibits the greatest skill for the study area. A general warming of 0.2–0.8°C·decade −1 was found across the region, particularly for spring and winter, while widespread drying was indicated by several measures for the summer growing season. Changes in annual precipitation have been inconsistent, but show declines of 20–25% in eastern Honduras/Nicaragua and in several parts of Mexico. Some regions most vulnerable to drying have been subject to statistically significant trends towards summer drying, increases in drought and aridity driven by precipitation declines, and/or a lengthening of the winter dry season, highlighting areas where climate adaptation measures may be most urgent. Smallholder livelihoods throughout Central America are built on rain‐fed agriculture and depend on seasonal variations in temperature and precipitation. Recent climatic shifts in this highly diverse region are not well understood due to sparse observations, and as the skill of global climate products have not been thoroughly evaluated. We examine the performance for several reanalysis and satellite‐based global climate data products (CHIRPS/CHIRTS, ERA5, MERRA‐2, PERSIANN‐CDR) as compared to the observation‐based GPCC precipitation dataset. These datasets are then used to evaluate the magnitude and spatial extent of hydroclimatic shifts and changes in aridity and drought over the last four decades. We focus on water‐limited regions that are important for rain‐fed agriculture and particularly vulnerable to further drying, and newly delineate those regions for Central America and Mexico by adapting prior definitions of the Central American Dry Corridor. Our results indicate that the CHIRPS dataset exhibits the greatest skill for the study area. A general warming of 0.2–0.8°C·decade−1 was found across the region, particularly for spring and winter, while widespread drying was indicated by several measures for the summer growing season. Changes in annual precipitation have been inconsistent, but show declines of 20–25% in eastern Honduras/Nicaragua and in several parts of Mexico. Some regions most vulnerable to drying have been subject to statistically significant trends towards summer drying, increases in drought and aridity driven by precipitation declines, and/or a lengthening of the winter dry season, highlighting areas where climate adaptation measures may be most urgent. Over the past four decades, precipitation trends are the main driver of drought trends, with temperature trends playing a small role. The most widespread drying and increases in aridity have occurred during the summer growing season. Based on delimitations of water‐limited and climate‐sensitive regions (brown shading) that are important for rain‐fed agriculture, some of these highly vulnerable regions overlap with areas of significant drying (red), highlighting potential prioritization areas for climate adaptation measures. |
Author | Joseph, Kenneth Stewart, Iris T. Stahl, Kerstin Maurer, Edwin P. |
Author_xml | – sequence: 1 givenname: Iris T. orcidid: 0000-0002-0232-2367 surname: Stewart fullname: Stewart, Iris T. email: istewartfrey@scu.edu organization: University of Freiburg – sequence: 2 givenname: Edwin P. orcidid: 0000-0001-7134-487X surname: Maurer fullname: Maurer, Edwin P. organization: Santa Clara University – sequence: 3 givenname: Kerstin orcidid: 0000-0002-2159-9441 surname: Stahl fullname: Stahl, Kerstin organization: University of Freiburg – sequence: 4 givenname: Kenneth surname: Joseph fullname: Joseph, Kenneth organization: Santa Clara University |
BookMark | eNp1kEtLAzEUhYNUsK2CPyHgxs3Um5npPJZl8EmhILoeMsmdIWUmqUna0q2_3NS6El3lcb9zLudMyEgbjYRcM5gxgPhubcQsTxickTGDMo8AimJExlCUZVSkrLggE-fWAFCWLBuTz1cUqD3FnZKoBdLWWLrndkBLuZZUWhVunTV7pTvqkDujHVWail4N3GP40k55tUNqsVPHoWlpFSwt7-ki2CjBaWvNQIdt79WmR9r1pglDyT136N0lOW957_Dq55yS94f7t-opWq4en6vFMhJJnEOEKTRZKriEJm3bOcYsPCWXSZ60DZN5HrN5kYEMQVPOGI95EkOeihxSFCKZJ1Nyc_LdWPOxRefrtdlaHVbWcZaEOlhWsEDdnihhjXMW23pjQ1J7qBnUx4aDStTHhgM6-4UK5bkPJYTwqv9LEJ0Ee9Xj4V_j-mVVffNfF86P7w |
CitedBy_id | crossref_primary_10_1007_s00704_023_04358_8 crossref_primary_10_1002_joc_8468 crossref_primary_10_1007_s41748_022_00337_7 crossref_primary_10_1002_joc_8374 crossref_primary_10_3389_fclim_2024_1392033 crossref_primary_10_1029_2024PA005036 crossref_primary_10_3390_cli11060117 crossref_primary_10_1155_2024_5027669 crossref_primary_10_1002_joc_7745 crossref_primary_10_1016_j_envsci_2024_103678 crossref_primary_10_3389_fclim_2023_1215062 crossref_primary_10_1029_2023GL105391 crossref_primary_10_1002_joc_8571 crossref_primary_10_1007_s41748_023_00368_8 crossref_primary_10_1029_2022PA004445 crossref_primary_10_3354_cr01707 |
Cites_doi | 10.1016/j.jhydrol.2013.05.004 10.1175/JCLI-D-16-0720.1 10.1002/joc.4267 10.2307/3001968 10.21105/joss.02042 10.1002/wcc.627 10.1175/1520-0477-83.8.1149 10.1088/1748-9326/ab5046 10.1002/joc.6276 10.1038/s41597-020-0453-3 10.1175/JHM-D-15-0192.1 10.1007/s12571-015-0446-9 10.1016/j.jhydrol.2019.01.036 10.1079/9781845933890.0000 10.1007/s00382-019-05045-z 10.1175/JCLI-D-16-0758.1 10.1002/qj.3803 10.3390/rs11172010 10.1007/s00382-011-1099-9 10.1175/BAMS-D-13-00068.1 10.1007/s00382-018-4381-2 10.1007/s10584-016-1786-y 10.3390/atmos8030052 10.5194/gmd-9-2755-2016 10.1029/2009JD012866 10.1175/1520-0493(1999)127<2204:FASOCR>2.0.CO;2 10.2307/1907187 10.1002/qj.3244 10.1175/JHM-D-15-0190.1 10.1007/s10584-016-1867-y 10.1177/0309133319860224 10.1002/joc.5925 10.1201/9781420004496 10.1093/biomet/69.1.242 10.1016/j.jhydrol.2020.124632 10.1175/1520-0442(1999)012<1577:TMDOMA>2.0.CO;2 10.1016/j.jhydrol.2012.01.011 10.3133/ds832 10.5194/hess-22-3515-2018 10.1111/geoa.12085 10.1007/s10584-016-1792-0 10.1002/joc.3972 10.5194/hess-23-207-2019 10.1016/j.jhydrol.2009.08.003 10.1029/2002JD002499 10.1175/BAMS-87-3-343 10.1038/s41586-019-1149-8 10.3390/atmos11040427 10.1088/1748-9326/ab5023 10.1175/JCLI-D-16-0570.1 10.1029/2005JD006119 10.1016/S0168-1923(96)02366-0 10.1371/journal.pone.0088463 10.1002/2017RG000574 10.1007/s10584-017-1920-5 10.1016/S0168-1923(98)00126-9 10.1038/sdata.2015.66 10.3354/cr01627 10.1016/j.rse.2020.111697 10.1175/JCLI-D-18-0698.1 10.1080/01621459.1968.10480934 10.1175/2009JCLI2909.1 10.15517/rbt.v66i1.33294 |
ContentType | Journal Article |
Copyright | 2021 The Authors. published by John Wiley & Sons Ltd on behalf of Royal Meteorological Society. 2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 The Authors. published by John Wiley & Sons Ltd on behalf of Royal Meteorological Society. – notice: 2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 7TG 7TN F1W H96 KL. L.G |
DOI | 10.1002/joc.7310 |
DatabaseName | Wiley Online Library Open Access CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Meteorological & Geoastrophysical Abstracts - Academic ASFA: Aquatic Sciences and Fisheries Abstracts |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Agriculture |
EISSN | 1097-0088 |
EndPage | 1417 |
ExternalDocumentID | 10_1002_joc_7310 JOC7310 |
Genre | article |
GeographicLocations | Central America Mexico |
GeographicLocations_xml | – name: Central America – name: Mexico |
GrantInformation_xml | – fundername: Frias Institute of Advanced Studies (FRIAS) – fundername: Deutsche Forschungsgemeinschaft funderid: STA 632/6‐1 – fundername: National Science Foundation funderid: BCS‐1539795 |
GroupedDBID | .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EDH F00 F01 F04 G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HZ~ IX1 J0M JPC LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ TN5 UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WOHZO WQJ WRC WUPDE WWD WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAYXX AEYWJ AGHNM AGYGG CITATION 7TG 7TN AAMMB AEFGJ AGXDD AIDQK AIDYY F1W H96 KL. L.G |
ID | FETCH-LOGICAL-c3270-e40b64cad0b4ff5e21b64dad373fb1d77215860d8994a11a2a32074c704ecc353 |
IEDL.DBID | DR2 |
ISSN | 0899-8418 |
IngestDate | Sat Jul 19 23:11:41 EDT 2025 Tue Jul 01 01:20:51 EDT 2025 Thu Apr 24 22:57:21 EDT 2025 Wed Jan 22 16:25:08 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | Attribution-NonCommercial |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3270-e40b64cad0b4ff5e21b64dad373fb1d77215860d8994a11a2a32074c704ecc353 |
Notes | Funding information Deutsche Forschungsgemeinschaft, Grant/Award Number: STA 632/6‐1; Frias Institute of Advanced Studies (FRIAS); National Science Foundation, Grant/Award Number: BCS‐1539795 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0232-2367 0000-0001-7134-487X 0000-0002-2159-9441 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjoc.7310 |
PQID | 2639911681 |
PQPubID | 996368 |
PageCount | 19 |
ParticipantIDs | proquest_journals_2639911681 crossref_primary_10_1002_joc_7310 crossref_citationtrail_10_1002_joc_7310 wiley_primary_10_1002_joc_7310_JOC7310 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 15 March 2022 |
PublicationDateYYYYMMDD | 2022-03-15 |
PublicationDate_xml | – month: 03 year: 2022 text: 15 March 2022 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK – name: Bognor Regis |
PublicationTitle | International journal of climatology |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley Subscription Services, Inc |
References | 2015; 35 2017; 8 2020; 240 1945; 1 2019; 52 2019; 11 1997; 85 2019; 14 2020; 11 2020; 54 2019; 569 1999; 127 1968; 63 2010; 23 2020; 7 1982; 69 2020; 5 2017; 30 2002; 83 2017a; 30 2019; 23 2010; 115 1999; 12 2014; 9 1999; 93 2021; 82 1948 2015; 2 2018; 144 2014; 832 2019; 3 2005; 110 2012 2020; 40 2020; 583 2019; 32 2015; 97 2015; 96 1945; 13 2019; 39 2009; 377 2006 1993 2020; 146 2011; 37 2018; 22 2016; 17 2018; 66 2012; 424 2016; 16 2015; 7 2017b; 30 2003; 108 2006; 87 2020 2019; 43 2015; 2015 2019 2018 2017 2009; 7 2017; 141 2015 2013; 495 2014 2013 2018; 56 2016; 9 2019; 571 e_1_2_8_28_1 e_1_2_8_47_1 Zee Arias A. (e_1_2_8_75_1) 2012 e_1_2_8_26_1 e_1_2_8_49_1 Peterson P. (e_1_2_8_58_1) 2015; 2015 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 Schneider U. (e_1_2_8_65_1) 2018 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 Gotlieb Y. (e_1_2_8_25_1) 2019; 3 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_51_1 e_1_2_8_74_1 Ziese M. (e_1_2_8_80_1) 2018 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 Wani S.P. (e_1_2_8_77_1) 2009 Kendall M.G. (e_1_2_8_39_1) 1948 Shukla P.R. (e_1_2_8_68_1) 2020 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_67_1 Copernicus Climate Change Service (C3S) (e_1_2_8_18_1) 2017 Pérez‐Briceño P.M. (e_1_2_8_57_1) 2016; 16 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 Global Modeling and Assimilation Office (GMAO) (e_1_2_8_24_1) 2015 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_79_1 Soroosh S. (e_1_2_8_70_1) 2014 Kreft S. (e_1_2_8_42_1) 2013 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 Mirzabaev A. (e_1_2_8_52_1) 2019 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_71_1 |
References_xml | – volume: 110 year: 2005 article-title: Changes in precipitation and temperature extremes in Central America and northern South America, 1961–2003 publication-title: Journal of Geophysical Research – volume: 141 start-page: 123 year: 2017 end-page: 137 article-title: Mapping climate change adaptive capacity and vulnerability of smallholder agricultural livelihoods in Central America: ranking and descriptive approaches to support adaptation strategies publication-title: Climatic Change – volume: 141 start-page: 13 year: 2017 end-page: 28 article-title: Observed (1970–1999) climate variability in Central America using a high‐resolution meteorological dataset with implication to climate change studies publication-title: Climatic Change – volume: 144 start-page: 292 year: 2018 end-page: 312 article-title: Validation of the CHIRPS satellite rainfall estimates over eastern Africa publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 377 start-page: 80 year: 2009 end-page: 91 article-title: Decomposition of the mean squared error and NSE performance criteria: implications for improving hydrological modelling publication-title: Journal of Hydrology – volume: 87 start-page: 343 issue: 3 year: 2006 end-page: 360 article-title: North American regional reanalysis publication-title: Bulletin of the American Meteorological Society – volume: 9 start-page: 2755 issue: 8 year: 2016 end-page: 2769 article-title: YAC 1.2. 0: new aspects for coupling software in Earth system modelling publication-title: Geoscientific Model Development – volume: 66 start-page: S153 year: 2018 end-page: S175 article-title: A review of the main drivers and variability of Central America's climate and seasonal forecast systems publication-title: Revista de Biología Tropical – volume: 571 start-page: 50 year: 2019 end-page: 59 article-title: Performance assessment of CHIRPS, MSWEP, SM2RAIN‐CCI, and TMPA precipitation products across India publication-title: Journal of Hydrology – volume: 97 start-page: 41 year: 2015 end-page: 59 article-title: The caribbean low‐level jet, the inter‐tropical convergence zone and precipitation patterns in the intra‐americas sea: a proposed dynamical mechanism publication-title: Geografiska Annaler: Series A, Physical Geography – volume: 13 start-page: 245 year: 1945 end-page: 259 article-title: Nonparametric tests against trend publication-title: Econometrica – volume: 16 start-page: 63 year: 2016 end-page: 75 article-title: Distribución espacial de impactos de eventos hidrometeorológicos en América Central publication-title: Revista de Climatologia – year: 2018 – volume: 69 start-page: 242 year: 1982 end-page: 244 article-title: Robust regression using repeated medians publication-title: Biometrika – year: 2014 – volume: 9 year: 2014 article-title: An integrated framework for assessing vulnerability to climate change and developing adaptation strategies for coffee growing families in Mesoamerica publication-title: PLoS One – volume: 127 start-page: 2204 issue: 9 year: 1999 end-page: 2210 article-title: First‐and second‐order conservative remapping schemes for grids in spherical coordinates publication-title: Monthly Weather Review – volume: 832 start-page: 1 year: 2014 end-page: 12 – volume: 115 year: 2010 article-title: Variability and trends in dry day frequency and dry event length in the southwestern United States publication-title: Journal of Geophysical Research: Atmospheres – volume: 30 start-page: 1643 year: 2017b end-page: 1664 article-title: Land surface precipitation in MERRA‐2 publication-title: Journal of Climate – volume: 17 start-page: 2061 year: 2016 end-page: 2076 article-title: Assessing the efficacy of high‐resolution satellite‐based PERSIANN‐CDR precipitation product in simulating streamflow publication-title: Journal of Hydrometeorology – volume: 14 issue: 12 year: 2019 article-title: Multiscale trends and precipitation extremes in the Central American midsummer drought publication-title: Environmental Research Letters – volume: 35 start-page: 4027 year: 2015 end-page: 4040 article-title: Candidate distributions for climatological drought indices (SPI and SPEI) publication-title: International Journal of Climatology – volume: 108 start-page: 1 year: 2003 end-page: 14 article-title: Adjustment of global gridded precipitation for systematic bias publication-title: Journal of Geophysical Research – volume: 35 start-page: 196 year: 2015 end-page: 214 article-title: Observed changes in dry day frequency and prolonged dry episodes in Northeast China publication-title: International Journal of Climatology – volume: 583 year: 2020 article-title: Inter‐comparison of ERA‐5, ERA‐interim and GPCP rainfall over the last 40 years: process‐based analysis of systematic and random differences publication-title: Journal of Hydrology – volume: 11 year: 2020 article-title: Assessing precipitation trends in the Americas with historical data: a review publication-title: WIREs Climate Change – year: 1993 – year: 2019 – year: 2015 – volume: 37 start-page: 605 issue: 3–4 year: 2011 article-title: Climate change in Central America and Mexico: regional climate model validation and climate change projections publication-title: Climate Dynamics – volume: 8 start-page: 52 year: 2017 article-title: Evaluating the hydrological cycle over land using the newly‐corrected precipitation climatology from the Global Precipitation Climatology Centre (GPCC) publication-title: Atmosphere – volume: 7 start-page: 303 year: 2015 end-page: 321 article-title: The coffee rust crises in Colombia and Central America (2008–2013): impacts, plausible causes and proposed solutions publication-title: Food Security – volume: 17 start-page: 1101 year: 2016 end-page: 1117 article-title: A review of merged high‐resolution satellite precipitation product accuracy during the Tropical Rainfall Measuring Mission (TRMM) era publication-title: Journal of Hydrometeorology – volume: 1 start-page: 80 year: 1945 end-page: 83 article-title: Individual comparisons by ranking methods publication-title: Biometric Bulletin – volume: 54 start-page: 1057 year: 2020 end-page: 1076 article-title: Inter‐comparison of spatiotemporal features of precipitation extremes within six daily precipitation products publication-title: Climate Dynamics – volume: 569 start-page: 59 year: 2019 end-page: 65 article-title: Twentieth‐century hydroclimate changes consistent with human influence publication-title: Nature – volume: 7 start-page: 1 year: 2009 end-page: 33 – volume: 146 start-page: 1999 year: 2020 end-page: 2049 article-title: The ERA5 global reanalysis publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 240 year: 2020 article-title: Have satellite precipitation products improved over last two decades? A comprehensive comparison of GPM IMERG with nine satellite and reanalysis datasets publication-title: Remote Sensing of Environment – volume: 22 start-page: 3515 year: 2018 end-page: 3532 article-title: ERA‐5 and ERA‐Interim driven ISBA land surface model simulations: which one performs better? publication-title: Hydrology and Earth System Sciences – volume: 39 start-page: 1940 year: 2019 end-page: 1953 article-title: Spatial and temporal patterns, trends and teleconnection of cumulative rainfall deficits across Central America publication-title: International Journal of Climatology – year: 1948 – volume: 23 start-page: 1696 year: 2010 end-page: 1718 article-title: A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index publication-title: Journal of Climate – volume: 141 start-page: 29 year: 2017 end-page: 45 article-title: Regional modeling of climate change impacts on smallholder agriculture and ecosystems in Central America publication-title: Climatic Change – volume: 83 start-page: 1149 year: 2002 end-page: 1166 article-title: A review of twentieth‐century drought indices used in the United States publication-title: Bulletin of the American Meteorological Society – volume: 495 start-page: 94 year: 2013 end-page: 112 article-title: Hydrological climate change projections for Central America publication-title: Journal of Hydrology – volume: 11 year: 2019 article-title: Evaluating the drought‐monitoring utility of four satellite‐based quantitative precipitation estimation products at global scale publication-title: Remote Sensing – volume: 5 year: 2020 article-title: MetSim: a Python package for estimation and disaggregation of meteorological data publication-title: Journal of Open Source Software – volume: 14 start-page: 124006 year: 2019 article-title: The aridity index under global warming publication-title: Environmental Research Letters – volume: 56 start-page: 79 year: 2018 end-page: 107 article-title: A review of global precipitation data sets: data sources, estimation, and intercomparisons publication-title: Reviews of Geophysics – volume: 2015 year: 2015 article-title: The climate hazards group infrared precipitation with stations (CHIRPS) v2.0 dataset: 35 year quasi‐global precipitation estimates for drought monitoring publication-title: AGU Fall Meeting – volume: 43 start-page: 627 year: 2019 end-page: 642 article-title: Dynamical delimitation of the Central American Dry Corridor (CADC) using drought indices and aridity values publication-title: Progress in Physical Geography: Earth and Environment – volume: 85 start-page: 87 year: 1997 end-page: 98 article-title: An improved method for estimating surface humidity from daily minimum temperature publication-title: Agricultural and Forest Meteorology – volume: 63 start-page: 1379 year: 1968 end-page: 1389 article-title: Estimates of the regression coefficient based on Kendall's tau publication-title: Journal of the American Statistical Association – year: 2012 – volume: 12 start-page: 1577 year: 1999 end-page: 1588 article-title: The midsummer drought over Mexico and Central America publication-title: Journal of Climate – volume: 3 start-page: 42 year: 2019 end-page: 51 article-title: The Central American dry corridor: a consensus statement and its background publication-title: Revista Yu'am – volume: 141 start-page: 1 year: 2017 end-page: 12 article-title: Climate change, ecosystems and smallholder agriculture in Central America: an introduction to the special issue publication-title: Climatic Change – volume: 424 start-page: 264 year: 2012 end-page: 277 article-title: Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios publication-title: Journal of Hydrology – volume: 30 start-page: 5419 year: 2017 end-page: 5454 article-title: The modern‐era retrospective analysis for research and applications, version 2 (MERRA‐2) publication-title: Journal of Climate – volume: 52 start-page: 4305 issue: 7 year: 2019 end-page: 4328 article-title: Dynamical downscaling of historical climate over CORDEX Central America domain with a regionally coupled atmosphere–ocean model publication-title: Climate Dynamics – year: 2006 – year: 2020 – volume: 32 start-page: 5639 year: 2019 end-page: 5658 article-title: A high‐resolution 1983–2016 Tmax climate data record based on infrared temperatures and stations by the climate hazard center publication-title: Journal of Climate – volume: 11 year: 2020 article-title: Aridity trends in Central America: a spatial correlation analysis publication-title: Atmosphere – volume: 96 start-page: 69 year: 2015 end-page: 83 article-title: PERSIANN‐CDR: daily precipitation climate data record from multisatellite observations for hydrological and climate studies publication-title: Bulletin of the American Meteorological Society – volume: 2 start-page: 1 issue: 1 year: 2015 end-page: 21 article-title: The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes publication-title: Scientific Data – volume: 40 start-page: 1396 year: 2020 end-page: 1420 article-title: Climatic trends and regional climate models intercomparison over the CORDEX‐CAM (Central America, Caribbean, and Mexico) domain publication-title: International Journal of Climatology – year: 2017 – volume: 30 start-page: 2937 year: 2017a end-page: 2960 article-title: Assessment of MERRA‐2 land surface hydrology estimates publication-title: Journal of Climate – volume: 93 start-page: 211 year: 1999 end-page: 228 article-title: An improved algorithm for estimating incident daily solar radiation from measurements of temperature, humidity, and precipitation publication-title: Agricultural and Forest Meteorology – volume: 7 start-page: 1 issue: 1 year: 2020 end-page: 18 article-title: Version 4 of the CRU TS monthly high‐resolution gridded multivariate climate dataset publication-title: Scientific Data – volume: 23 start-page: 207 year: 2019 end-page: 224 article-title: Daily evaluation of 26 precipitation datasets using stage‐IV gauge‐radar data for the CONUS publication-title: Hydrology and Earth System Sciences – volume: 82 start-page: 177 year: 2021 end-page: 189 article-title: Mean temperature evolution on the Spanish mainland 1916–2015 publication-title: Climate Research – year: 2013 – ident: e_1_2_8_34_1 doi: 10.1016/j.jhydrol.2013.05.004 – ident: e_1_2_8_61_1 doi: 10.1175/JCLI-D-16-0720.1 – volume-title: ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate year: 2017 ident: e_1_2_8_18_1 – ident: e_1_2_8_71_1 doi: 10.1002/joc.4267 – ident: e_1_2_8_78_1 doi: 10.2307/3001968 – ident: e_1_2_8_12_1 doi: 10.21105/joss.02042 – ident: e_1_2_8_54_1 – ident: e_1_2_8_15_1 doi: 10.1002/wcc.627 – ident: e_1_2_8_31_1 doi: 10.1175/1520-0477-83.8.1149 – volume-title: Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO) year: 2012 ident: e_1_2_8_75_1 – ident: e_1_2_8_26_1 doi: 10.1088/1748-9326/ab5046 – ident: e_1_2_8_16_1 doi: 10.1002/joc.6276 – ident: e_1_2_8_63_1 – volume: 16 start-page: 63 year: 2016 ident: e_1_2_8_57_1 article-title: Distribución espacial de impactos de eventos hidrometeorológicos en América Central publication-title: Revista de Climatologia – ident: e_1_2_8_30_1 doi: 10.1038/s41597-020-0453-3 – ident: e_1_2_8_8_1 doi: 10.1175/JHM-D-15-0192.1 – volume-title: Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems year: 2019 ident: e_1_2_8_52_1 – ident: e_1_2_8_9_1 doi: 10.1007/s12571-015-0446-9 – ident: e_1_2_8_59_1 doi: 10.1016/j.jhydrol.2019.01.036 – start-page: 1 volume-title: Rainfed agriculture–past trends and future prospects year: 2009 ident: e_1_2_8_77_1 doi: 10.1079/9781845933890.0000 – ident: e_1_2_8_17_1 doi: 10.1007/s00382-019-05045-z – ident: e_1_2_8_23_1 doi: 10.1175/JCLI-D-16-0758.1 – ident: e_1_2_8_32_1 doi: 10.1002/qj.3803 – ident: e_1_2_8_79_1 doi: 10.3390/rs11172010 – ident: e_1_2_8_38_1 doi: 10.1007/s00382-011-1099-9 – ident: e_1_2_8_7_1 doi: 10.1175/BAMS-D-13-00068.1 – ident: e_1_2_8_14_1 doi: 10.1007/s00382-018-4381-2 – ident: e_1_2_8_33_1 doi: 10.1007/s10584-016-1786-y – ident: e_1_2_8_66_1 doi: 10.3390/atmos8030052 – volume-title: Global Climate Risk Index 2014 year: 2013 ident: e_1_2_8_42_1 – ident: e_1_2_8_28_1 doi: 10.5194/gmd-9-2755-2016 – ident: e_1_2_8_49_1 doi: 10.1029/2009JD012866 – ident: e_1_2_8_37_1 doi: 10.1175/1520-0493(1999)127<2204:FASOCR>2.0.CO;2 – ident: e_1_2_8_47_1 doi: 10.2307/1907187 – ident: e_1_2_8_50_1 – ident: e_1_2_8_19_1 doi: 10.1002/qj.3244 – ident: e_1_2_8_45_1 doi: 10.1175/JHM-D-15-0190.1 – ident: e_1_2_8_29_1 doi: 10.1007/s10584-016-1867-y – ident: e_1_2_8_60_1 doi: 10.1177/0309133319860224 – ident: e_1_2_8_53_1 doi: 10.1002/joc.5925 – ident: e_1_2_8_56_1 doi: 10.1201/9781420004496 – ident: e_1_2_8_69_1 doi: 10.1093/biomet/69.1.242 – ident: e_1_2_8_55_1 doi: 10.1016/j.jhydrol.2020.124632 – ident: e_1_2_8_44_1 doi: 10.1175/1520-0442(1999)012<1577:TMDOMA>2.0.CO;2 – ident: e_1_2_8_41_1 doi: 10.1016/j.jhydrol.2012.01.011 – ident: e_1_2_8_22_1 doi: 10.3133/ds832 – volume-title: GPCC full data daily version.2018 at 1.0°: daily land‐surface precipitation from rain‐gauges built on GTS‐based and historic data year: 2018 ident: e_1_2_8_80_1 – ident: e_1_2_8_4_1 doi: 10.5194/hess-22-3515-2018 – ident: e_1_2_8_35_1 doi: 10.1111/geoa.12085 – ident: e_1_2_8_13_1 doi: 10.1007/s10584-016-1792-0 – ident: e_1_2_8_43_1 doi: 10.1002/joc.3972 – volume: 2015 start-page: NH41D‐05 year: 2015 ident: e_1_2_8_58_1 article-title: The climate hazards group infrared precipitation with stations (CHIRPS) v2.0 dataset: 35 year quasi‐global precipitation estimates for drought monitoring publication-title: AGU Fall Meeting – ident: e_1_2_8_11_1 doi: 10.5194/hess-23-207-2019 – ident: e_1_2_8_27_1 doi: 10.1016/j.jhydrol.2009.08.003 – ident: e_1_2_8_2_1 doi: 10.1029/2002JD002499 – ident: e_1_2_8_51_1 doi: 10.1175/BAMS-87-3-343 – ident: e_1_2_8_48_1 doi: 10.1038/s41586-019-1149-8 – ident: e_1_2_8_5_1 doi: 10.3390/atmos11040427 – ident: e_1_2_8_6_1 doi: 10.1088/1748-9326/ab5023 – volume-title: NOAA climate data record (CDR) of precipitation estimation from remotely sensed information using artificial neural networks (PERSIANN‐CDR) year: 2014 ident: e_1_2_8_70_1 – volume-title: MERRA‐2 year: 2015 ident: e_1_2_8_24_1 – ident: e_1_2_8_62_1 doi: 10.1175/JCLI-D-16-0570.1 – ident: e_1_2_8_3_1 doi: 10.1029/2005JD006119 – volume: 3 start-page: 42 year: 2019 ident: e_1_2_8_25_1 article-title: The Central American dry corridor: a consensus statement and its background publication-title: Revista Yu'am – volume-title: GPCC monitoring product: near real‐time monthly land‐surface precipitation from rain‐gauges based on SYNOP and CLIMAT data year: 2018 ident: e_1_2_8_65_1 – volume-title: Rank Correlation Methods year: 1948 ident: e_1_2_8_39_1 – ident: e_1_2_8_40_1 doi: 10.1016/S0168-1923(96)02366-0 – ident: e_1_2_8_10_1 doi: 10.1371/journal.pone.0088463 – ident: e_1_2_8_72_1 doi: 10.1002/2017RG000574 – ident: e_1_2_8_36_1 doi: 10.1007/s10584-017-1920-5 – ident: e_1_2_8_74_1 doi: 10.1016/S0168-1923(98)00126-9 – ident: e_1_2_8_20_1 doi: 10.1038/sdata.2015.66 – ident: e_1_2_8_64_1 doi: 10.3354/cr01627 – ident: e_1_2_8_73_1 doi: 10.1016/j.rse.2020.111697 – ident: e_1_2_8_21_1 doi: 10.1175/JCLI-D-18-0698.1 – ident: e_1_2_8_67_1 doi: 10.1080/01621459.1968.10480934 – ident: e_1_2_8_76_1 doi: 10.1175/2009JCLI2909.1 – ident: e_1_2_8_46_1 doi: 10.15517/rbt.v66i1.33294 – volume-title: Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems year: 2020 ident: e_1_2_8_68_1 |
SSID | ssj0009916 |
Score | 2.4723885 |
Snippet | Smallholder livelihoods throughout Central America are built on rain‐fed agriculture and depend on seasonal variations in temperature and precipitation. Recent... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1399 |
SubjectTerms | Agriculture Annual precipitation Aridity Atmospheric precipitations Central America Climate Climate adaptation climate change Climatic data Datasets Drought dry corridor Dry season Drying Global climate Growing season Livelihoods Precipitation Rain Seasonal variation Seasonal variations Statistical analysis Summer Temperature variations Winter |
Title | Recent evidence for warmer and drier growing seasons in climate sensitive regions of Central America from multiple global datasets |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjoc.7310 https://www.proquest.com/docview/2639911681 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZpTrm0TR902yRMoKQnb_T04xiWhBBIG0IDgR6MJEslbeot6w2FHvvLOyPb2aS0EHoysiVja0aaz-OZbxh7Wyk0QiFXmbV5lemgTeZi8Jl0poplNEFXlCh8-j4_vtAnl-ZyiKqkXJieH-LW4UYrI-3XtMCt6_ZXpKFf5n5aqJRdRaFahIfOV8xRBHsSgKyqrNSiHHlnudwfB963RCt4eRekJitz9IR9Gp-vDy75Or1Zuqn_-Qd14_-9wFP2eACfcNBryyZbC-0zNjlF3DxfJPc67MHs-gpBbGo9Z78QVaJVgjDUHgWEuPDDLr6FBdi2gYbq3cFn_JRHCwjkb0QlhqsWfLpLwFNtl6KTgCpA0MV5hMGjDMPfIqAUFxgjG6GnKAEKXe3CsnvBLo4OP86Os6FqQ-aVLHgWNHe59rbhTkcUthTYbGyjChWdaBDNC1PmvEHJaCuElVZJxDG-4BrVSRn1kq238za8YhCDK4zxIgTndINQlmsfcYOyPPIQI5-wd6MEaz9QmlNljeu6J2OWNc5xTXM8Ybu3Pb_3NB5_6bM1KkE9LOSuloTghMhLMWF7SZr_HF-ffJjR8fVDO75hG5KSKSg60Gyx9eXiJmwjxFm6HfZI6rOdpNK_Ad5x_Hc |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF9KfdAXv8XTqiNIfcp1P_OBT3JYztqrIC30QQi7m12pbXNyd0XwsX95ZzZJT0VBfAqb7IZkZzbz28nMbxh7VSk0QiFXmbV5lemgTeZi8Jl0poplNEFXlCg8O8inR3rv2BxvsDdDLkzHD3HtcKOVkb7XtMDJIb2zZg39OvfjQlF61Q0q6J32U5_W3FEEfBKErKqs1KIcmGe53BlG_mqL1gDzZ5ia7MzuHfZ5eMIuvOR0fLFyY__jN_LG_3yFu-x2jz_hbacw99hGaO-z0Qyh83yRPOywDZOzE8SxqfWAXSKwRMMEoS8_Cohy4btdnIcF2LaBhkrewRfczaMRBHI5oh7DSQs-3SXgqXaZApSAikDQxXmE3qkM_Q8joCwXGIIboWMpAYpeXYbV8iE72n13OJlmfeGGzCtZ8Cxo7nLtbcOdjihvKbDZ2EYVKjrRIKAXpsx5g6LRVggrrZIIZXzBNWqUMuoR22znbXjMIAZXGONFCM7pBtEs1z7iN8ryyEOMfMReDyKsfc9qTsU1zuqOj1nWOMc1zfGIvbzu-a1j8vhDn61BC-p-LS9rSSBOiLwUI7adxPnX8fXexwkdn_xrxxfs5vRwtl_vvz_48JTdkpRbQcGCZottrhYX4RkinpV7njT7CptA_7s |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF-kBfHF-omn1Y4g9SnX_crXo1w9arVVxELBh7CfUm1z5e5KwUf_cmc2Sc-KgvgUNtkNyc7szi-Tmd8w9qJWaIRCoTJjijrTQeeZjcFl0uZ1rGIedE2JwgeHxd6R3j_Oj_uoSsqF6fghrhxutDLSfk0L_NzHnRVp6NeZG5eKsqvWdcEr0ujdjyvqKMI9CUHWdVZpUQ3Es1zuDCOvm6IVvvwVpSYzM91gn4cH7KJLvo0vlnbsvv_G3fh_b3CH3e7RJ7zq1OUuuxHae2x0gMB5Nk_-ddiGyekJotjUus9-IKxEswShLz4KiHHh0szPwhxM68FTwTv4gt_yaAKBHI6oxXDSgkt3CXiqXaTwJKASEHRxFqF3KUP_uwgoxwWG0EboOEqAYlcXYbl4wI6mrz9N9rK-bEPmlCx5FjS3hXbGc6sjSlsKbHrjVamiFR7hvMirgnuUjDZCGGmURCDjSq5Rn1SuHrK1dtaGRwxisGWeOxGCtdojluXaRdyhDI88xMhH7OUgwcb1nOZUWuO06diYZYNz3NAcj9jzq57nHY_HH_psDkrQ9Ct50UiCcEIUlRix7STNv45v9t9P6Pj4XztusZsfdqfNuzeHb5-wW5ISKyhSMN9ka8v5RXiKcGdpnyW9_gnF1v5z |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+evidence+for+warmer+and+drier+growing+seasons+in+climate+sensitive+regions+of+Central+America+from+multiple+global+datasets&rft.jtitle=International+journal+of+climatology&rft.au=Stewart%2C+Iris+T.&rft.au=Maurer%2C+Edwin+P.&rft.au=Stahl%2C+Kerstin&rft.au=Joseph%2C+Kenneth&rft.date=2022-03-15&rft.issn=0899-8418&rft.eissn=1097-0088&rft.volume=42&rft.issue=3&rft.spage=1399&rft.epage=1417&rft_id=info:doi/10.1002%2Fjoc.7310&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_joc_7310 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0899-8418&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0899-8418&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0899-8418&client=summon |