Recent evidence for warmer and drier growing seasons in climate sensitive regions of Central America from multiple global datasets

Smallholder livelihoods throughout Central America are built on rain‐fed agriculture and depend on seasonal variations in temperature and precipitation. Recent climatic shifts in this highly diverse region are not well understood due to sparse observations, and as the skill of global climate product...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of climatology Vol. 42; no. 3; pp. 1399 - 1417
Main Authors Stewart, Iris T., Maurer, Edwin P., Stahl, Kerstin, Joseph, Kenneth
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 15.03.2022
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Smallholder livelihoods throughout Central America are built on rain‐fed agriculture and depend on seasonal variations in temperature and precipitation. Recent climatic shifts in this highly diverse region are not well understood due to sparse observations, and as the skill of global climate products have not been thoroughly evaluated. We examine the performance for several reanalysis and satellite‐based global climate data products (CHIRPS/CHIRTS, ERA5, MERRA‐2, PERSIANN‐CDR) as compared to the observation‐based GPCC precipitation dataset. These datasets are then used to evaluate the magnitude and spatial extent of hydroclimatic shifts and changes in aridity and drought over the last four decades. We focus on water‐limited regions that are important for rain‐fed agriculture and particularly vulnerable to further drying, and newly delineate those regions for Central America and Mexico by adapting prior definitions of the Central American Dry Corridor. Our results indicate that the CHIRPS dataset exhibits the greatest skill for the study area. A general warming of 0.2–0.8°C·decade−1 was found across the region, particularly for spring and winter, while widespread drying was indicated by several measures for the summer growing season. Changes in annual precipitation have been inconsistent, but show declines of 20–25% in eastern Honduras/Nicaragua and in several parts of Mexico. Some regions most vulnerable to drying have been subject to statistically significant trends towards summer drying, increases in drought and aridity driven by precipitation declines, and/or a lengthening of the winter dry season, highlighting areas where climate adaptation measures may be most urgent. Over the past four decades, precipitation trends are the main driver of drought trends, with temperature trends playing a small role. The most widespread drying and increases in aridity have occurred during the summer growing season. Based on delimitations of water‐limited and climate‐sensitive regions (brown shading) that are important for rain‐fed agriculture, some of these highly vulnerable regions overlap with areas of significant drying (red), highlighting potential prioritization areas for climate adaptation measures.
AbstractList Smallholder livelihoods throughout Central America are built on rain‐fed agriculture and depend on seasonal variations in temperature and precipitation. Recent climatic shifts in this highly diverse region are not well understood due to sparse observations, and as the skill of global climate products have not been thoroughly evaluated. We examine the performance for several reanalysis and satellite‐based global climate data products (CHIRPS/CHIRTS, ERA5, MERRA‐2, PERSIANN‐CDR) as compared to the observation‐based GPCC precipitation dataset. These datasets are then used to evaluate the magnitude and spatial extent of hydroclimatic shifts and changes in aridity and drought over the last four decades. We focus on water‐limited regions that are important for rain‐fed agriculture and particularly vulnerable to further drying, and newly delineate those regions for Central America and Mexico by adapting prior definitions of the Central American Dry Corridor. Our results indicate that the CHIRPS dataset exhibits the greatest skill for the study area. A general warming of 0.2–0.8°C·decade−1 was found across the region, particularly for spring and winter, while widespread drying was indicated by several measures for the summer growing season. Changes in annual precipitation have been inconsistent, but show declines of 20–25% in eastern Honduras/Nicaragua and in several parts of Mexico. Some regions most vulnerable to drying have been subject to statistically significant trends towards summer drying, increases in drought and aridity driven by precipitation declines, and/or a lengthening of the winter dry season, highlighting areas where climate adaptation measures may be most urgent.
Smallholder livelihoods throughout Central America are built on rain‐fed agriculture and depend on seasonal variations in temperature and precipitation. Recent climatic shifts in this highly diverse region are not well understood due to sparse observations, and as the skill of global climate products have not been thoroughly evaluated. We examine the performance for several reanalysis and satellite‐based global climate data products (CHIRPS/CHIRTS, ERA5, MERRA‐2, PERSIANN‐CDR) as compared to the observation‐based GPCC precipitation dataset. These datasets are then used to evaluate the magnitude and spatial extent of hydroclimatic shifts and changes in aridity and drought over the last four decades. We focus on water‐limited regions that are important for rain‐fed agriculture and particularly vulnerable to further drying, and newly delineate those regions for Central America and Mexico by adapting prior definitions of the Central American Dry Corridor. Our results indicate that the CHIRPS dataset exhibits the greatest skill for the study area. A general warming of 0.2–0.8°C·decade −1 was found across the region, particularly for spring and winter, while widespread drying was indicated by several measures for the summer growing season. Changes in annual precipitation have been inconsistent, but show declines of 20–25% in eastern Honduras/Nicaragua and in several parts of Mexico. Some regions most vulnerable to drying have been subject to statistically significant trends towards summer drying, increases in drought and aridity driven by precipitation declines, and/or a lengthening of the winter dry season, highlighting areas where climate adaptation measures may be most urgent.
Smallholder livelihoods throughout Central America are built on rain‐fed agriculture and depend on seasonal variations in temperature and precipitation. Recent climatic shifts in this highly diverse region are not well understood due to sparse observations, and as the skill of global climate products have not been thoroughly evaluated. We examine the performance for several reanalysis and satellite‐based global climate data products (CHIRPS/CHIRTS, ERA5, MERRA‐2, PERSIANN‐CDR) as compared to the observation‐based GPCC precipitation dataset. These datasets are then used to evaluate the magnitude and spatial extent of hydroclimatic shifts and changes in aridity and drought over the last four decades. We focus on water‐limited regions that are important for rain‐fed agriculture and particularly vulnerable to further drying, and newly delineate those regions for Central America and Mexico by adapting prior definitions of the Central American Dry Corridor. Our results indicate that the CHIRPS dataset exhibits the greatest skill for the study area. A general warming of 0.2–0.8°C·decade−1 was found across the region, particularly for spring and winter, while widespread drying was indicated by several measures for the summer growing season. Changes in annual precipitation have been inconsistent, but show declines of 20–25% in eastern Honduras/Nicaragua and in several parts of Mexico. Some regions most vulnerable to drying have been subject to statistically significant trends towards summer drying, increases in drought and aridity driven by precipitation declines, and/or a lengthening of the winter dry season, highlighting areas where climate adaptation measures may be most urgent. Over the past four decades, precipitation trends are the main driver of drought trends, with temperature trends playing a small role. The most widespread drying and increases in aridity have occurred during the summer growing season. Based on delimitations of water‐limited and climate‐sensitive regions (brown shading) that are important for rain‐fed agriculture, some of these highly vulnerable regions overlap with areas of significant drying (red), highlighting potential prioritization areas for climate adaptation measures.
Author Joseph, Kenneth
Stewart, Iris T.
Stahl, Kerstin
Maurer, Edwin P.
Author_xml – sequence: 1
  givenname: Iris T.
  orcidid: 0000-0002-0232-2367
  surname: Stewart
  fullname: Stewart, Iris T.
  email: istewartfrey@scu.edu
  organization: University of Freiburg
– sequence: 2
  givenname: Edwin P.
  orcidid: 0000-0001-7134-487X
  surname: Maurer
  fullname: Maurer, Edwin P.
  organization: Santa Clara University
– sequence: 3
  givenname: Kerstin
  orcidid: 0000-0002-2159-9441
  surname: Stahl
  fullname: Stahl, Kerstin
  organization: University of Freiburg
– sequence: 4
  givenname: Kenneth
  surname: Joseph
  fullname: Joseph, Kenneth
  organization: Santa Clara University
BookMark eNp1kEtLAzEUhYNUsK2CPyHgxs3Um5npPJZl8EmhILoeMsmdIWUmqUna0q2_3NS6El3lcb9zLudMyEgbjYRcM5gxgPhubcQsTxickTGDMo8AimJExlCUZVSkrLggE-fWAFCWLBuTz1cUqD3FnZKoBdLWWLrndkBLuZZUWhVunTV7pTvqkDujHVWail4N3GP40k55tUNqsVPHoWlpFSwt7-ki2CjBaWvNQIdt79WmR9r1pglDyT136N0lOW957_Dq55yS94f7t-opWq4en6vFMhJJnEOEKTRZKriEJm3bOcYsPCWXSZ60DZN5HrN5kYEMQVPOGI95EkOeihxSFCKZJ1Nyc_LdWPOxRefrtdlaHVbWcZaEOlhWsEDdnihhjXMW23pjQ1J7qBnUx4aDStTHhgM6-4UK5bkPJYTwqv9LEJ0Ee9Xj4V_j-mVVffNfF86P7w
CitedBy_id crossref_primary_10_1007_s00704_023_04358_8
crossref_primary_10_1002_joc_8468
crossref_primary_10_1007_s41748_022_00337_7
crossref_primary_10_1002_joc_8374
crossref_primary_10_3389_fclim_2024_1392033
crossref_primary_10_1029_2024PA005036
crossref_primary_10_3390_cli11060117
crossref_primary_10_1155_2024_5027669
crossref_primary_10_1002_joc_7745
crossref_primary_10_1016_j_envsci_2024_103678
crossref_primary_10_3389_fclim_2023_1215062
crossref_primary_10_1029_2023GL105391
crossref_primary_10_1002_joc_8571
crossref_primary_10_1007_s41748_023_00368_8
crossref_primary_10_1029_2022PA004445
crossref_primary_10_3354_cr01707
Cites_doi 10.1016/j.jhydrol.2013.05.004
10.1175/JCLI-D-16-0720.1
10.1002/joc.4267
10.2307/3001968
10.21105/joss.02042
10.1002/wcc.627
10.1175/1520-0477-83.8.1149
10.1088/1748-9326/ab5046
10.1002/joc.6276
10.1038/s41597-020-0453-3
10.1175/JHM-D-15-0192.1
10.1007/s12571-015-0446-9
10.1016/j.jhydrol.2019.01.036
10.1079/9781845933890.0000
10.1007/s00382-019-05045-z
10.1175/JCLI-D-16-0758.1
10.1002/qj.3803
10.3390/rs11172010
10.1007/s00382-011-1099-9
10.1175/BAMS-D-13-00068.1
10.1007/s00382-018-4381-2
10.1007/s10584-016-1786-y
10.3390/atmos8030052
10.5194/gmd-9-2755-2016
10.1029/2009JD012866
10.1175/1520-0493(1999)127<2204:FASOCR>2.0.CO;2
10.2307/1907187
10.1002/qj.3244
10.1175/JHM-D-15-0190.1
10.1007/s10584-016-1867-y
10.1177/0309133319860224
10.1002/joc.5925
10.1201/9781420004496
10.1093/biomet/69.1.242
10.1016/j.jhydrol.2020.124632
10.1175/1520-0442(1999)012<1577:TMDOMA>2.0.CO;2
10.1016/j.jhydrol.2012.01.011
10.3133/ds832
10.5194/hess-22-3515-2018
10.1111/geoa.12085
10.1007/s10584-016-1792-0
10.1002/joc.3972
10.5194/hess-23-207-2019
10.1016/j.jhydrol.2009.08.003
10.1029/2002JD002499
10.1175/BAMS-87-3-343
10.1038/s41586-019-1149-8
10.3390/atmos11040427
10.1088/1748-9326/ab5023
10.1175/JCLI-D-16-0570.1
10.1029/2005JD006119
10.1016/S0168-1923(96)02366-0
10.1371/journal.pone.0088463
10.1002/2017RG000574
10.1007/s10584-017-1920-5
10.1016/S0168-1923(98)00126-9
10.1038/sdata.2015.66
10.3354/cr01627
10.1016/j.rse.2020.111697
10.1175/JCLI-D-18-0698.1
10.1080/01621459.1968.10480934
10.1175/2009JCLI2909.1
10.15517/rbt.v66i1.33294
ContentType Journal Article
Copyright 2021 The Authors. published by John Wiley & Sons Ltd on behalf of Royal Meteorological Society.
2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. published by John Wiley & Sons Ltd on behalf of Royal Meteorological Society.
– notice: 2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7TG
7TN
F1W
H96
KL.
L.G
DOI 10.1002/joc.7310
DatabaseName Wiley Online Library Open Access
CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ASFA: Aquatic Sciences and Fisheries Abstracts
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Agriculture
EISSN 1097-0088
EndPage 1417
ExternalDocumentID 10_1002_joc_7310
JOC7310
Genre article
GeographicLocations Central America
Mexico
GeographicLocations_xml – name: Central America
– name: Mexico
GrantInformation_xml – fundername: Frias Institute of Advanced Studies (FRIAS)
– fundername: Deutsche Forschungsgemeinschaft
  funderid: STA 632/6‐1
– fundername: National Science Foundation
  funderid: BCS‐1539795
GroupedDBID .3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDH
F00
F01
F04
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WRC
WUPDE
WWD
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
7TG
7TN
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F1W
H96
KL.
L.G
ID FETCH-LOGICAL-c3270-e40b64cad0b4ff5e21b64dad373fb1d77215860d8994a11a2a32074c704ecc353
IEDL.DBID DR2
ISSN 0899-8418
IngestDate Sat Jul 19 23:11:41 EDT 2025
Tue Jul 01 01:20:51 EDT 2025
Thu Apr 24 22:57:21 EDT 2025
Wed Jan 22 16:25:08 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Attribution-NonCommercial
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3270-e40b64cad0b4ff5e21b64dad373fb1d77215860d8994a11a2a32074c704ecc353
Notes Funding information
Deutsche Forschungsgemeinschaft, Grant/Award Number: STA 632/6‐1; Frias Institute of Advanced Studies (FRIAS); National Science Foundation, Grant/Award Number: BCS‐1539795
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0232-2367
0000-0001-7134-487X
0000-0002-2159-9441
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjoc.7310
PQID 2639911681
PQPubID 996368
PageCount 19
ParticipantIDs proquest_journals_2639911681
crossref_primary_10_1002_joc_7310
crossref_citationtrail_10_1002_joc_7310
wiley_primary_10_1002_joc_7310_JOC7310
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 15 March 2022
PublicationDateYYYYMMDD 2022-03-15
PublicationDate_xml – month: 03
  year: 2022
  text: 15 March 2022
  day: 15
PublicationDecade 2020
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Bognor Regis
PublicationTitle International journal of climatology
PublicationYear 2022
Publisher John Wiley & Sons, Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley Subscription Services, Inc
References 2015; 35
2017; 8
2020; 240
1945; 1
2019; 52
2019; 11
1997; 85
2019; 14
2020; 11
2020; 54
2019; 569
1999; 127
1968; 63
2010; 23
2020; 7
1982; 69
2020; 5
2017; 30
2002; 83
2017a; 30
2019; 23
2010; 115
1999; 12
2014; 9
1999; 93
2021; 82
1948
2015; 2
2018; 144
2014; 832
2019; 3
2005; 110
2012
2020; 40
2020; 583
2019; 32
2015; 97
2015; 96
1945; 13
2019; 39
2009; 377
2006
1993
2020; 146
2011; 37
2018; 22
2016; 17
2018; 66
2012; 424
2016; 16
2015; 7
2017b; 30
2003; 108
2006; 87
2020
2019; 43
2015; 2015
2019
2018
2017
2009; 7
2017; 141
2015
2013; 495
2014
2013
2018; 56
2016; 9
2019; 571
e_1_2_8_28_1
e_1_2_8_47_1
Zee Arias A. (e_1_2_8_75_1) 2012
e_1_2_8_26_1
e_1_2_8_49_1
Peterson P. (e_1_2_8_58_1) 2015; 2015
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
Schneider U. (e_1_2_8_65_1) 2018
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
Gotlieb Y. (e_1_2_8_25_1) 2019; 3
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_51_1
e_1_2_8_74_1
Ziese M. (e_1_2_8_80_1) 2018
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
Wani S.P. (e_1_2_8_77_1) 2009
Kendall M.G. (e_1_2_8_39_1) 1948
Shukla P.R. (e_1_2_8_68_1) 2020
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_67_1
Copernicus Climate Change Service (C3S) (e_1_2_8_18_1) 2017
Pérez‐Briceño P.M. (e_1_2_8_57_1) 2016; 16
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
Global Modeling and Assimilation Office (GMAO) (e_1_2_8_24_1) 2015
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_79_1
Soroosh S. (e_1_2_8_70_1) 2014
Kreft S. (e_1_2_8_42_1) 2013
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
Mirzabaev A. (e_1_2_8_52_1) 2019
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – volume: 110
  year: 2005
  article-title: Changes in precipitation and temperature extremes in Central America and northern South America, 1961–2003
  publication-title: Journal of Geophysical Research
– volume: 141
  start-page: 123
  year: 2017
  end-page: 137
  article-title: Mapping climate change adaptive capacity and vulnerability of smallholder agricultural livelihoods in Central America: ranking and descriptive approaches to support adaptation strategies
  publication-title: Climatic Change
– volume: 141
  start-page: 13
  year: 2017
  end-page: 28
  article-title: Observed (1970–1999) climate variability in Central America using a high‐resolution meteorological dataset with implication to climate change studies
  publication-title: Climatic Change
– volume: 144
  start-page: 292
  year: 2018
  end-page: 312
  article-title: Validation of the CHIRPS satellite rainfall estimates over eastern Africa
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 377
  start-page: 80
  year: 2009
  end-page: 91
  article-title: Decomposition of the mean squared error and NSE performance criteria: implications for improving hydrological modelling
  publication-title: Journal of Hydrology
– volume: 87
  start-page: 343
  issue: 3
  year: 2006
  end-page: 360
  article-title: North American regional reanalysis
  publication-title: Bulletin of the American Meteorological Society
– volume: 9
  start-page: 2755
  issue: 8
  year: 2016
  end-page: 2769
  article-title: YAC 1.2. 0: new aspects for coupling software in Earth system modelling
  publication-title: Geoscientific Model Development
– volume: 66
  start-page: S153
  year: 2018
  end-page: S175
  article-title: A review of the main drivers and variability of Central America's climate and seasonal forecast systems
  publication-title: Revista de Biología Tropical
– volume: 571
  start-page: 50
  year: 2019
  end-page: 59
  article-title: Performance assessment of CHIRPS, MSWEP, SM2RAIN‐CCI, and TMPA precipitation products across India
  publication-title: Journal of Hydrology
– volume: 97
  start-page: 41
  year: 2015
  end-page: 59
  article-title: The caribbean low‐level jet, the inter‐tropical convergence zone and precipitation patterns in the intra‐americas sea: a proposed dynamical mechanism
  publication-title: Geografiska Annaler: Series A, Physical Geography
– volume: 13
  start-page: 245
  year: 1945
  end-page: 259
  article-title: Nonparametric tests against trend
  publication-title: Econometrica
– volume: 16
  start-page: 63
  year: 2016
  end-page: 75
  article-title: Distribución espacial de impactos de eventos hidrometeorológicos en América Central
  publication-title: Revista de Climatologia
– year: 2018
– volume: 69
  start-page: 242
  year: 1982
  end-page: 244
  article-title: Robust regression using repeated medians
  publication-title: Biometrika
– year: 2014
– volume: 9
  year: 2014
  article-title: An integrated framework for assessing vulnerability to climate change and developing adaptation strategies for coffee growing families in Mesoamerica
  publication-title: PLoS One
– volume: 127
  start-page: 2204
  issue: 9
  year: 1999
  end-page: 2210
  article-title: First‐and second‐order conservative remapping schemes for grids in spherical coordinates
  publication-title: Monthly Weather Review
– volume: 832
  start-page: 1
  year: 2014
  end-page: 12
– volume: 115
  year: 2010
  article-title: Variability and trends in dry day frequency and dry event length in the southwestern United States
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 30
  start-page: 1643
  year: 2017b
  end-page: 1664
  article-title: Land surface precipitation in MERRA‐2
  publication-title: Journal of Climate
– volume: 17
  start-page: 2061
  year: 2016
  end-page: 2076
  article-title: Assessing the efficacy of high‐resolution satellite‐based PERSIANN‐CDR precipitation product in simulating streamflow
  publication-title: Journal of Hydrometeorology
– volume: 14
  issue: 12
  year: 2019
  article-title: Multiscale trends and precipitation extremes in the Central American midsummer drought
  publication-title: Environmental Research Letters
– volume: 35
  start-page: 4027
  year: 2015
  end-page: 4040
  article-title: Candidate distributions for climatological drought indices (SPI and SPEI)
  publication-title: International Journal of Climatology
– volume: 108
  start-page: 1
  year: 2003
  end-page: 14
  article-title: Adjustment of global gridded precipitation for systematic bias
  publication-title: Journal of Geophysical Research
– volume: 35
  start-page: 196
  year: 2015
  end-page: 214
  article-title: Observed changes in dry day frequency and prolonged dry episodes in Northeast China
  publication-title: International Journal of Climatology
– volume: 583
  year: 2020
  article-title: Inter‐comparison of ERA‐5, ERA‐interim and GPCP rainfall over the last 40 years: process‐based analysis of systematic and random differences
  publication-title: Journal of Hydrology
– volume: 11
  year: 2020
  article-title: Assessing precipitation trends in the Americas with historical data: a review
  publication-title: WIREs Climate Change
– year: 1993
– year: 2019
– year: 2015
– volume: 37
  start-page: 605
  issue: 3–4
  year: 2011
  article-title: Climate change in Central America and Mexico: regional climate model validation and climate change projections
  publication-title: Climate Dynamics
– volume: 8
  start-page: 52
  year: 2017
  article-title: Evaluating the hydrological cycle over land using the newly‐corrected precipitation climatology from the Global Precipitation Climatology Centre (GPCC)
  publication-title: Atmosphere
– volume: 7
  start-page: 303
  year: 2015
  end-page: 321
  article-title: The coffee rust crises in Colombia and Central America (2008–2013): impacts, plausible causes and proposed solutions
  publication-title: Food Security
– volume: 17
  start-page: 1101
  year: 2016
  end-page: 1117
  article-title: A review of merged high‐resolution satellite precipitation product accuracy during the Tropical Rainfall Measuring Mission (TRMM) era
  publication-title: Journal of Hydrometeorology
– volume: 1
  start-page: 80
  year: 1945
  end-page: 83
  article-title: Individual comparisons by ranking methods
  publication-title: Biometric Bulletin
– volume: 54
  start-page: 1057
  year: 2020
  end-page: 1076
  article-title: Inter‐comparison of spatiotemporal features of precipitation extremes within six daily precipitation products
  publication-title: Climate Dynamics
– volume: 569
  start-page: 59
  year: 2019
  end-page: 65
  article-title: Twentieth‐century hydroclimate changes consistent with human influence
  publication-title: Nature
– volume: 7
  start-page: 1
  year: 2009
  end-page: 33
– volume: 146
  start-page: 1999
  year: 2020
  end-page: 2049
  article-title: The ERA5 global reanalysis
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 240
  year: 2020
  article-title: Have satellite precipitation products improved over last two decades? A comprehensive comparison of GPM IMERG with nine satellite and reanalysis datasets
  publication-title: Remote Sensing of Environment
– volume: 22
  start-page: 3515
  year: 2018
  end-page: 3532
  article-title: ERA‐5 and ERA‐Interim driven ISBA land surface model simulations: which one performs better?
  publication-title: Hydrology and Earth System Sciences
– volume: 39
  start-page: 1940
  year: 2019
  end-page: 1953
  article-title: Spatial and temporal patterns, trends and teleconnection of cumulative rainfall deficits across Central America
  publication-title: International Journal of Climatology
– year: 1948
– volume: 23
  start-page: 1696
  year: 2010
  end-page: 1718
  article-title: A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index
  publication-title: Journal of Climate
– volume: 141
  start-page: 29
  year: 2017
  end-page: 45
  article-title: Regional modeling of climate change impacts on smallholder agriculture and ecosystems in Central America
  publication-title: Climatic Change
– volume: 83
  start-page: 1149
  year: 2002
  end-page: 1166
  article-title: A review of twentieth‐century drought indices used in the United States
  publication-title: Bulletin of the American Meteorological Society
– volume: 495
  start-page: 94
  year: 2013
  end-page: 112
  article-title: Hydrological climate change projections for Central America
  publication-title: Journal of Hydrology
– volume: 11
  year: 2019
  article-title: Evaluating the drought‐monitoring utility of four satellite‐based quantitative precipitation estimation products at global scale
  publication-title: Remote Sensing
– volume: 5
  year: 2020
  article-title: MetSim: a Python package for estimation and disaggregation of meteorological data
  publication-title: Journal of Open Source Software
– volume: 14
  start-page: 124006
  year: 2019
  article-title: The aridity index under global warming
  publication-title: Environmental Research Letters
– volume: 56
  start-page: 79
  year: 2018
  end-page: 107
  article-title: A review of global precipitation data sets: data sources, estimation, and intercomparisons
  publication-title: Reviews of Geophysics
– volume: 2015
  year: 2015
  article-title: The climate hazards group infrared precipitation with stations (CHIRPS) v2.0 dataset: 35 year quasi‐global precipitation estimates for drought monitoring
  publication-title: AGU Fall Meeting
– volume: 43
  start-page: 627
  year: 2019
  end-page: 642
  article-title: Dynamical delimitation of the Central American Dry Corridor (CADC) using drought indices and aridity values
  publication-title: Progress in Physical Geography: Earth and Environment
– volume: 85
  start-page: 87
  year: 1997
  end-page: 98
  article-title: An improved method for estimating surface humidity from daily minimum temperature
  publication-title: Agricultural and Forest Meteorology
– volume: 63
  start-page: 1379
  year: 1968
  end-page: 1389
  article-title: Estimates of the regression coefficient based on Kendall's tau
  publication-title: Journal of the American Statistical Association
– year: 2012
– volume: 12
  start-page: 1577
  year: 1999
  end-page: 1588
  article-title: The midsummer drought over Mexico and Central America
  publication-title: Journal of Climate
– volume: 3
  start-page: 42
  year: 2019
  end-page: 51
  article-title: The Central American dry corridor: a consensus statement and its background
  publication-title: Revista Yu'am
– volume: 141
  start-page: 1
  year: 2017
  end-page: 12
  article-title: Climate change, ecosystems and smallholder agriculture in Central America: an introduction to the special issue
  publication-title: Climatic Change
– volume: 424
  start-page: 264
  year: 2012
  end-page: 277
  article-title: Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios
  publication-title: Journal of Hydrology
– volume: 30
  start-page: 5419
  year: 2017
  end-page: 5454
  article-title: The modern‐era retrospective analysis for research and applications, version 2 (MERRA‐2)
  publication-title: Journal of Climate
– volume: 52
  start-page: 4305
  issue: 7
  year: 2019
  end-page: 4328
  article-title: Dynamical downscaling of historical climate over CORDEX Central America domain with a regionally coupled atmosphere–ocean model
  publication-title: Climate Dynamics
– year: 2006
– year: 2020
– volume: 32
  start-page: 5639
  year: 2019
  end-page: 5658
  article-title: A high‐resolution 1983–2016 Tmax climate data record based on infrared temperatures and stations by the climate hazard center
  publication-title: Journal of Climate
– volume: 11
  year: 2020
  article-title: Aridity trends in Central America: a spatial correlation analysis
  publication-title: Atmosphere
– volume: 96
  start-page: 69
  year: 2015
  end-page: 83
  article-title: PERSIANN‐CDR: daily precipitation climate data record from multisatellite observations for hydrological and climate studies
  publication-title: Bulletin of the American Meteorological Society
– volume: 2
  start-page: 1
  issue: 1
  year: 2015
  end-page: 21
  article-title: The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes
  publication-title: Scientific Data
– volume: 40
  start-page: 1396
  year: 2020
  end-page: 1420
  article-title: Climatic trends and regional climate models intercomparison over the CORDEX‐CAM (Central America, Caribbean, and Mexico) domain
  publication-title: International Journal of Climatology
– year: 2017
– volume: 30
  start-page: 2937
  year: 2017a
  end-page: 2960
  article-title: Assessment of MERRA‐2 land surface hydrology estimates
  publication-title: Journal of Climate
– volume: 93
  start-page: 211
  year: 1999
  end-page: 228
  article-title: An improved algorithm for estimating incident daily solar radiation from measurements of temperature, humidity, and precipitation
  publication-title: Agricultural and Forest Meteorology
– volume: 7
  start-page: 1
  issue: 1
  year: 2020
  end-page: 18
  article-title: Version 4 of the CRU TS monthly high‐resolution gridded multivariate climate dataset
  publication-title: Scientific Data
– volume: 23
  start-page: 207
  year: 2019
  end-page: 224
  article-title: Daily evaluation of 26 precipitation datasets using stage‐IV gauge‐radar data for the CONUS
  publication-title: Hydrology and Earth System Sciences
– volume: 82
  start-page: 177
  year: 2021
  end-page: 189
  article-title: Mean temperature evolution on the Spanish mainland 1916–2015
  publication-title: Climate Research
– year: 2013
– ident: e_1_2_8_34_1
  doi: 10.1016/j.jhydrol.2013.05.004
– ident: e_1_2_8_61_1
  doi: 10.1175/JCLI-D-16-0720.1
– volume-title: ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate
  year: 2017
  ident: e_1_2_8_18_1
– ident: e_1_2_8_71_1
  doi: 10.1002/joc.4267
– ident: e_1_2_8_78_1
  doi: 10.2307/3001968
– ident: e_1_2_8_12_1
  doi: 10.21105/joss.02042
– ident: e_1_2_8_54_1
– ident: e_1_2_8_15_1
  doi: 10.1002/wcc.627
– ident: e_1_2_8_31_1
  doi: 10.1175/1520-0477-83.8.1149
– volume-title: Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO)
  year: 2012
  ident: e_1_2_8_75_1
– ident: e_1_2_8_26_1
  doi: 10.1088/1748-9326/ab5046
– ident: e_1_2_8_16_1
  doi: 10.1002/joc.6276
– ident: e_1_2_8_63_1
– volume: 16
  start-page: 63
  year: 2016
  ident: e_1_2_8_57_1
  article-title: Distribución espacial de impactos de eventos hidrometeorológicos en América Central
  publication-title: Revista de Climatologia
– ident: e_1_2_8_30_1
  doi: 10.1038/s41597-020-0453-3
– ident: e_1_2_8_8_1
  doi: 10.1175/JHM-D-15-0192.1
– volume-title: Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems
  year: 2019
  ident: e_1_2_8_52_1
– ident: e_1_2_8_9_1
  doi: 10.1007/s12571-015-0446-9
– ident: e_1_2_8_59_1
  doi: 10.1016/j.jhydrol.2019.01.036
– start-page: 1
  volume-title: Rainfed agriculture–past trends and future prospects
  year: 2009
  ident: e_1_2_8_77_1
  doi: 10.1079/9781845933890.0000
– ident: e_1_2_8_17_1
  doi: 10.1007/s00382-019-05045-z
– ident: e_1_2_8_23_1
  doi: 10.1175/JCLI-D-16-0758.1
– ident: e_1_2_8_32_1
  doi: 10.1002/qj.3803
– ident: e_1_2_8_79_1
  doi: 10.3390/rs11172010
– ident: e_1_2_8_38_1
  doi: 10.1007/s00382-011-1099-9
– ident: e_1_2_8_7_1
  doi: 10.1175/BAMS-D-13-00068.1
– ident: e_1_2_8_14_1
  doi: 10.1007/s00382-018-4381-2
– ident: e_1_2_8_33_1
  doi: 10.1007/s10584-016-1786-y
– ident: e_1_2_8_66_1
  doi: 10.3390/atmos8030052
– volume-title: Global Climate Risk Index 2014
  year: 2013
  ident: e_1_2_8_42_1
– ident: e_1_2_8_28_1
  doi: 10.5194/gmd-9-2755-2016
– ident: e_1_2_8_49_1
  doi: 10.1029/2009JD012866
– ident: e_1_2_8_37_1
  doi: 10.1175/1520-0493(1999)127<2204:FASOCR>2.0.CO;2
– ident: e_1_2_8_47_1
  doi: 10.2307/1907187
– ident: e_1_2_8_50_1
– ident: e_1_2_8_19_1
  doi: 10.1002/qj.3244
– ident: e_1_2_8_45_1
  doi: 10.1175/JHM-D-15-0190.1
– ident: e_1_2_8_29_1
  doi: 10.1007/s10584-016-1867-y
– ident: e_1_2_8_60_1
  doi: 10.1177/0309133319860224
– ident: e_1_2_8_53_1
  doi: 10.1002/joc.5925
– ident: e_1_2_8_56_1
  doi: 10.1201/9781420004496
– ident: e_1_2_8_69_1
  doi: 10.1093/biomet/69.1.242
– ident: e_1_2_8_55_1
  doi: 10.1016/j.jhydrol.2020.124632
– ident: e_1_2_8_44_1
  doi: 10.1175/1520-0442(1999)012<1577:TMDOMA>2.0.CO;2
– ident: e_1_2_8_41_1
  doi: 10.1016/j.jhydrol.2012.01.011
– ident: e_1_2_8_22_1
  doi: 10.3133/ds832
– volume-title: GPCC full data daily version.2018 at 1.0°: daily land‐surface precipitation from rain‐gauges built on GTS‐based and historic data
  year: 2018
  ident: e_1_2_8_80_1
– ident: e_1_2_8_4_1
  doi: 10.5194/hess-22-3515-2018
– ident: e_1_2_8_35_1
  doi: 10.1111/geoa.12085
– ident: e_1_2_8_13_1
  doi: 10.1007/s10584-016-1792-0
– ident: e_1_2_8_43_1
  doi: 10.1002/joc.3972
– volume: 2015
  start-page: NH41D‐05
  year: 2015
  ident: e_1_2_8_58_1
  article-title: The climate hazards group infrared precipitation with stations (CHIRPS) v2.0 dataset: 35 year quasi‐global precipitation estimates for drought monitoring
  publication-title: AGU Fall Meeting
– ident: e_1_2_8_11_1
  doi: 10.5194/hess-23-207-2019
– ident: e_1_2_8_27_1
  doi: 10.1016/j.jhydrol.2009.08.003
– ident: e_1_2_8_2_1
  doi: 10.1029/2002JD002499
– ident: e_1_2_8_51_1
  doi: 10.1175/BAMS-87-3-343
– ident: e_1_2_8_48_1
  doi: 10.1038/s41586-019-1149-8
– ident: e_1_2_8_5_1
  doi: 10.3390/atmos11040427
– ident: e_1_2_8_6_1
  doi: 10.1088/1748-9326/ab5023
– volume-title: NOAA climate data record (CDR) of precipitation estimation from remotely sensed information using artificial neural networks (PERSIANN‐CDR)
  year: 2014
  ident: e_1_2_8_70_1
– volume-title: MERRA‐2
  year: 2015
  ident: e_1_2_8_24_1
– ident: e_1_2_8_62_1
  doi: 10.1175/JCLI-D-16-0570.1
– ident: e_1_2_8_3_1
  doi: 10.1029/2005JD006119
– volume: 3
  start-page: 42
  year: 2019
  ident: e_1_2_8_25_1
  article-title: The Central American dry corridor: a consensus statement and its background
  publication-title: Revista Yu'am
– volume-title: GPCC monitoring product: near real‐time monthly land‐surface precipitation from rain‐gauges based on SYNOP and CLIMAT data
  year: 2018
  ident: e_1_2_8_65_1
– volume-title: Rank Correlation Methods
  year: 1948
  ident: e_1_2_8_39_1
– ident: e_1_2_8_40_1
  doi: 10.1016/S0168-1923(96)02366-0
– ident: e_1_2_8_10_1
  doi: 10.1371/journal.pone.0088463
– ident: e_1_2_8_72_1
  doi: 10.1002/2017RG000574
– ident: e_1_2_8_36_1
  doi: 10.1007/s10584-017-1920-5
– ident: e_1_2_8_74_1
  doi: 10.1016/S0168-1923(98)00126-9
– ident: e_1_2_8_20_1
  doi: 10.1038/sdata.2015.66
– ident: e_1_2_8_64_1
  doi: 10.3354/cr01627
– ident: e_1_2_8_73_1
  doi: 10.1016/j.rse.2020.111697
– ident: e_1_2_8_21_1
  doi: 10.1175/JCLI-D-18-0698.1
– ident: e_1_2_8_67_1
  doi: 10.1080/01621459.1968.10480934
– ident: e_1_2_8_76_1
  doi: 10.1175/2009JCLI2909.1
– ident: e_1_2_8_46_1
  doi: 10.15517/rbt.v66i1.33294
– volume-title: Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems
  year: 2020
  ident: e_1_2_8_68_1
SSID ssj0009916
Score 2.4723885
Snippet Smallholder livelihoods throughout Central America are built on rain‐fed agriculture and depend on seasonal variations in temperature and precipitation. Recent...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1399
SubjectTerms Agriculture
Annual precipitation
Aridity
Atmospheric precipitations
Central America
Climate
Climate adaptation
climate change
Climatic data
Datasets
Drought
dry corridor
Dry season
Drying
Global climate
Growing season
Livelihoods
Precipitation
Rain
Seasonal variation
Seasonal variations
Statistical analysis
Summer
Temperature variations
Winter
Title Recent evidence for warmer and drier growing seasons in climate sensitive regions of Central America from multiple global datasets
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjoc.7310
https://www.proquest.com/docview/2639911681
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZpTrm0TR902yRMoKQnb_T04xiWhBBIG0IDgR6MJEslbeot6w2FHvvLOyPb2aS0EHoysiVja0aaz-OZbxh7Wyk0QiFXmbV5lemgTeZi8Jl0poplNEFXlCh8-j4_vtAnl-ZyiKqkXJieH-LW4UYrI-3XtMCt6_ZXpKFf5n5aqJRdRaFahIfOV8xRBHsSgKyqrNSiHHlnudwfB963RCt4eRekJitz9IR9Gp-vDy75Or1Zuqn_-Qd14_-9wFP2eACfcNBryyZbC-0zNjlF3DxfJPc67MHs-gpBbGo9Z78QVaJVgjDUHgWEuPDDLr6FBdi2gYbq3cFn_JRHCwjkb0QlhqsWfLpLwFNtl6KTgCpA0MV5hMGjDMPfIqAUFxgjG6GnKAEKXe3CsnvBLo4OP86Os6FqQ-aVLHgWNHe59rbhTkcUthTYbGyjChWdaBDNC1PmvEHJaCuElVZJxDG-4BrVSRn1kq238za8YhCDK4zxIgTndINQlmsfcYOyPPIQI5-wd6MEaz9QmlNljeu6J2OWNc5xTXM8Ybu3Pb_3NB5_6bM1KkE9LOSuloTghMhLMWF7SZr_HF-ffJjR8fVDO75hG5KSKSg60Gyx9eXiJmwjxFm6HfZI6rOdpNK_Ad5x_Hc
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF9KfdAXv8XTqiNIfcp1P_OBT3JYztqrIC30QQi7m12pbXNyd0XwsX95ZzZJT0VBfAqb7IZkZzbz28nMbxh7VSk0QiFXmbV5lemgTeZi8Jl0poplNEFXlCg8O8inR3rv2BxvsDdDLkzHD3HtcKOVkb7XtMDJIb2zZg39OvfjQlF61Q0q6J32U5_W3FEEfBKErKqs1KIcmGe53BlG_mqL1gDzZ5ia7MzuHfZ5eMIuvOR0fLFyY__jN_LG_3yFu-x2jz_hbacw99hGaO-z0Qyh83yRPOywDZOzE8SxqfWAXSKwRMMEoS8_Cohy4btdnIcF2LaBhkrewRfczaMRBHI5oh7DSQs-3SXgqXaZApSAikDQxXmE3qkM_Q8joCwXGIIboWMpAYpeXYbV8iE72n13OJlmfeGGzCtZ8Cxo7nLtbcOdjihvKbDZ2EYVKjrRIKAXpsx5g6LRVggrrZIIZXzBNWqUMuoR22znbXjMIAZXGONFCM7pBtEs1z7iN8ryyEOMfMReDyKsfc9qTsU1zuqOj1nWOMc1zfGIvbzu-a1j8vhDn61BC-p-LS9rSSBOiLwUI7adxPnX8fXexwkdn_xrxxfs5vRwtl_vvz_48JTdkpRbQcGCZottrhYX4RkinpV7njT7CptA_7s
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF-kBfHF-omn1Y4g9SnX_crXo1w9arVVxELBh7CfUm1z5e5KwUf_cmc2Sc-KgvgUNtkNyc7szi-Tmd8w9qJWaIRCoTJjijrTQeeZjcFl0uZ1rGIedE2JwgeHxd6R3j_Oj_uoSsqF6fghrhxutDLSfk0L_NzHnRVp6NeZG5eKsqvWdcEr0ujdjyvqKMI9CUHWdVZpUQ3Es1zuDCOvm6IVvvwVpSYzM91gn4cH7KJLvo0vlnbsvv_G3fh_b3CH3e7RJ7zq1OUuuxHae2x0gMB5Nk_-ddiGyekJotjUus9-IKxEswShLz4KiHHh0szPwhxM68FTwTv4gt_yaAKBHI6oxXDSgkt3CXiqXaTwJKASEHRxFqF3KUP_uwgoxwWG0EboOEqAYlcXYbl4wI6mrz9N9rK-bEPmlCx5FjS3hXbGc6sjSlsKbHrjVamiFR7hvMirgnuUjDZCGGmURCDjSq5Rn1SuHrK1dtaGRwxisGWeOxGCtdojluXaRdyhDI88xMhH7OUgwcb1nOZUWuO06diYZYNz3NAcj9jzq57nHY_HH_psDkrQ9Ct50UiCcEIUlRix7STNv45v9t9P6Pj4XztusZsfdqfNuzeHb5-wW5ISKyhSMN9ka8v5RXiKcGdpnyW9_gnF1v5z
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+evidence+for+warmer+and+drier+growing+seasons+in+climate+sensitive+regions+of+Central+America+from+multiple+global+datasets&rft.jtitle=International+journal+of+climatology&rft.au=Stewart%2C+Iris+T.&rft.au=Maurer%2C+Edwin+P.&rft.au=Stahl%2C+Kerstin&rft.au=Joseph%2C+Kenneth&rft.date=2022-03-15&rft.issn=0899-8418&rft.eissn=1097-0088&rft.volume=42&rft.issue=3&rft.spage=1399&rft.epage=1417&rft_id=info:doi/10.1002%2Fjoc.7310&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_joc_7310
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0899-8418&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0899-8418&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0899-8418&client=summon