Applying a two‐dimensional hydrodynamic model to estimate fish stranding risk downstream from a hydropeaking hydroelectric station

Fish stranding is of global concern with increasing hydropower operations using hydropeaking to respond to fluctuating energy demand. Determining the effects hydropeaking has on fish communities is challenging because fish stranding is dependent on riverscape features, such as topography, bathymetry...

Full description

Saved in:
Bibliographic Details
Published inEcohydrology Vol. 16; no. 4
Main Authors Glowa, Sarah E., Kneale, Andrea J., Watkinson, Douglas A., Ghamry, Haitham K., Enders, Eva C., Jardine, Timothy D.
Format Journal Article
LanguageEnglish
Published Oxford Wiley Subscription Services, Inc 01.06.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Fish stranding is of global concern with increasing hydropower operations using hydropeaking to respond to fluctuating energy demand. Determining the effects hydropeaking has on fish communities is challenging because fish stranding is dependent on riverscape features, such as topography, bathymetry and substrate. By using a combination of physical habitat assessments, hydrodynamic modelling and empirical data on fish stranding, we estimated the number of fish stranding over a 5‐month period for three model years in a large Prairie river. More specifically, we modelled how many fish potentially stranded during the years 2019, 2020 and 2021 across a 16 km study reached downstream from E.B. Campbell Hydroelectric Station on the Saskatchewan River, Canada. Fish stranding densities calculated from data collected through remote photography and transect monitoring in 2021 were applied to the daily area subject to drying determined by the River2D hydrodynamic model. The cumulative area subject to change was 90.05, 53.02 and 80.74 km2 for years 2019, 2020 and 2021, respectively, from June to October. The highest number of stranded fish was estimated for the year 2021, where estimates ranged from 89,800 to 1,638,000 individuals based on remote photography and transect monitoring fish stranding densities, respectively, 157 to 2,856 fish stranded per hectare. Our approach of estimating fish stranding on a large scale allows for a greater understanding of the impact hydropeaking has on fish communities and can be applied to other riverscapes threatened by hydropeaking.
AbstractList Fish stranding is of global concern with increasing hydropower operations using hydropeaking to respond to fluctuating energy demand. Determining the effects hydropeaking has on fish communities is challenging because fish stranding is dependent on riverscape features, such as topography, bathymetry and substrate. By using a combination of physical habitat assessments, hydrodynamic modelling and empirical data on fish stranding, we estimated the number of fish stranding over a 5‐month period for three model years in a large Prairie river. More specifically, we modelled how many fish potentially stranded during the years 2019, 2020 and 2021 across a 16 km study reached downstream from E.B. Campbell Hydroelectric Station on the Saskatchewan River, Canada. Fish stranding densities calculated from data collected through remote photography and transect monitoring in 2021 were applied to the daily area subject to drying determined by the River2D hydrodynamic model. The cumulative area subject to change was 90.05, 53.02 and 80.74 km2 for years 2019, 2020 and 2021, respectively, from June to October. The highest number of stranded fish was estimated for the year 2021, where estimates ranged from 89,800 to 1,638,000 individuals based on remote photography and transect monitoring fish stranding densities, respectively, 157 to 2,856 fish stranded per hectare. Our approach of estimating fish stranding on a large scale allows for a greater understanding of the impact hydropeaking has on fish communities and can be applied to other riverscapes threatened by hydropeaking.
Fish stranding is of global concern with increasing hydropower operations using hydropeaking to respond to fluctuating energy demand. Determining the effects hydropeaking has on fish communities is challenging because fish stranding is dependent on riverscape features, such as topography, bathymetry and substrate. By using a combination of physical habitat assessments, hydrodynamic modelling and empirical data on fish stranding, we estimated the number of fish stranding over a 5‐month period for three model years in a large Prairie river. More specifically, we modelled how many fish potentially stranded during the years 2019, 2020 and 2021 across a 16 km study reached downstream from E.B. Campbell Hydroelectric Station on the Saskatchewan River, Canada. Fish stranding densities calculated from data collected through remote photography and transect monitoring in 2021 were applied to the daily area subject to drying determined by the River2D hydrodynamic model. The cumulative area subject to change was 90.05, 53.02 and 80.74 km 2 for years 2019, 2020 and 2021, respectively, from June to October. The highest number of stranded fish was estimated for the year 2021, where estimates ranged from 89,800 to 1,638,000 individuals based on remote photography and transect monitoring fish stranding densities, respectively, 157 to 2,856 fish stranded per hectare. Our approach of estimating fish stranding on a large scale allows for a greater understanding of the impact hydropeaking has on fish communities and can be applied to other riverscapes threatened by hydropeaking.
Author Watkinson, Douglas A.
Enders, Eva C.
Kneale, Andrea J.
Jardine, Timothy D.
Ghamry, Haitham K.
Glowa, Sarah E.
Author_xml – sequence: 1
  givenname: Sarah E.
  orcidid: 0000-0002-0711-6642
  surname: Glowa
  fullname: Glowa, Sarah E.
  email: sarah.glowa@dfo-mpo.gc.ca
  organization: University of Saskatchewan
– sequence: 2
  givenname: Andrea J.
  orcidid: 0000-0002-4501-6781
  surname: Kneale
  fullname: Kneale, Andrea J.
  organization: Freshwater Institute
– sequence: 3
  givenname: Douglas A.
  surname: Watkinson
  fullname: Watkinson, Douglas A.
  organization: Freshwater Institute
– sequence: 4
  givenname: Haitham K.
  surname: Ghamry
  fullname: Ghamry, Haitham K.
  organization: Freshwater Institute
– sequence: 5
  givenname: Eva C.
  orcidid: 0000-0003-2103-0359
  surname: Enders
  fullname: Enders, Eva C.
  organization: Institut Nationale de la Recherche Scientifique, Eau Terre Environnement Research Centre
– sequence: 6
  givenname: Timothy D.
  orcidid: 0000-0002-5917-9792
  surname: Jardine
  fullname: Jardine, Timothy D.
  organization: University of Saskatchewan
BookMark eNp1kLtOwzAYRi0EEm1B4hEssbCk-BInzlhV5SJV6gJz5MY2dZvEwU5VZWPgAXhGngSnQQwIJl90_mN_3xic1rZWAFxhNMUIkVtV2ClhFJ2AEc5oEiGWkdOfPY_Pwdj7LUIJjhkdgfdZ05SdqV-ggO3Bfr59SFOp2htbixJuOums7GpRmQJWVqoSthYq35pKtApq4zfQt07Usjc443dQ2kMdrpSooHa2CtqjpFFi1zPHgypV0bqg9K1ow0sX4EyL0qvL73UCnu8WT_OHaLm6f5zPllFBSYoiyTDN0oSLTMdE8jTTmhWaioIxriWhmLJMrddIYRyTjHKBiRaxxhxpweI0oxNwPXgbZ1_3IUa-tXsXgvqccEIwT1jCAzUdqMJZ753SeWGGf4akpswxyvum89B03jcdBm5-DTQuFOS6v9BoQA-mVN2_XL6Yr478F2Dkkpc
CitedBy_id crossref_primary_10_1002_rra_4277
crossref_primary_10_1016_j_ecoleng_2023_107101
crossref_primary_10_1002_eco_2584
Cites_doi 10.1016/j.geomorph.2015.01.030
10.3389/fenvs.2020.00120
10.1016/j.geomorph.2014.01.006
10.1086/622910
10.1007/S00027-014-0377-0
10.3390/su11061547
10.1002/RRA.1172
10.1002/RRA.4043
10.3389/FENVS.2022.966418/BIBTEX
10.1016/J.JENVMAN.2012.03.007
10.3390/w11020201
10.1515/9780887553745
10.29227/IM-2020-02-10
10.1002/ECO.2303
10.1016/J.SCITOTENV.2020.136579
10.1016/j.scitotenv.2016.10.029
10.3390/RS70506160
10.1007/S12205-012-0002-5
10.1577/T08-026.1
10.1051/limn/2009018
10.4236/jwarp.2017.92012
10.1002/rra.3625
10.1007/S11160-011-9211-0/TABLES/2
10.1080/02705060.2018.1496951
10.1016/J.GEOMORPH.2016.06.041
10.3390/F12020250
10.1002/RRA.3434
10.1080/07900627.2018.1558050
10.1002/ECO.2268
10.1016/j.isprsjprs.2014.02.013
10.1002/rra.408316
10.1177/0309133320964327
10.1577/1548-8675(2000)020<0791:PDOARS>2.3.CO;2
10.1007/s00244-016-0287-3
10.1002/ESP.3552
10.1139/cjfas-2015-0210
10.1016/J.SCITOTENV.2018.12.107
10.1088/1748-9326/ABCE26
10.1016/J.SCITOTENV.2016.08.080
10.1016/B978-0-12-819166-8.00171-7
10.1016/J.SCITOTENV.2016.09.208
10.1002/rra.3173
10.1016/j.ecoleng.2020.106035
10.1002/(SICI)1099-1646(199603)12:2/3
10.1016/J.SCITOTENV.2021.148999
ContentType Journal Article
Copyright 2023 John Wiley & Sons Ltd.
2023 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2023 John Wiley & Sons Ltd.
– notice: 2023 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7QH
7UA
C1K
F1W
H96
H97
L.G
DOI 10.1002/eco.2530
DatabaseName CrossRef
Aqualine
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Aqualine
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DeliveryMethod fulltext_linktorsrc
Discipline Ecology
EISSN 1936-0592
EndPage n/a
ExternalDocumentID 10_1002_eco_2530
ECO2530
Genre article
GrantInformation_xml – fundername: Fisheries and Oceans Canada's Freshwater Habitat Science Initiative
GroupedDBID 05W
0R~
1OC
31~
33P
3SF
4.4
4P2
52U
5DZ
5GY
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAIHA
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
C45
DCZOG
DR2
DRFUL
DRSTM
DU5
EBD
EBS
ECGQY
EDH
EJD
F1Z
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
IX1
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY.
MY~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P4E
ROL
SUPJJ
TEORI
W99
WBKPD
WIH
WIK
WOHZO
WUPDE
WXSBR
WYISQ
WYJ
XV2
ZZTAW
~S-
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7QH
7UA
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F1W
H96
H97
L.G
ID FETCH-LOGICAL-c3270-d5139768a9f42d879ff5cf3ac558fd231359ebb0e1142938a12fa4f180fa54793
IEDL.DBID DR2
ISSN 1936-0584
IngestDate Fri Jul 25 10:32:41 EDT 2025
Thu Apr 24 23:08:58 EDT 2025
Tue Jul 01 02:38:08 EDT 2025
Wed Jan 22 16:20:54 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3270-d5139768a9f42d879ff5cf3ac558fd231359ebb0e1142938a12fa4f180fa54793
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4501-6781
0000-0003-2103-0359
0000-0002-0711-6642
0000-0002-5917-9792
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/eco.2530
PQID 2822186568
PQPubID 866379
PageCount 15
ParticipantIDs proquest_journals_2822186568
crossref_citationtrail_10_1002_eco_2530
crossref_primary_10_1002_eco_2530
wiley_primary_10_1002_eco_2530_ECO2530
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2023
2023-06-00
20230601
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: June 2023
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Ecohydrology
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2009; 45
2019; 11
2015; 77
1973
2016; 73
2016; 71
2016; 269
2012; 16
2014; 213
2017; 9
2020; 8
2020; 1
2021; 796
2017; 33
2011; 20
2011; 21
2018; 33
1922; 30
2009; 25
2014; 92
2021; 45
2010
2019; 35
2015; 242
2009
2020; 36
1995
2002
2012; 103
2017; 575
1959
2015; 7
2009; 138
1996; 12
2016; 11
2021; 14
2021; 16
2021; 12
2004; 278
2022
2020
2019
1920
2016; 573
2016
2015
2022; 10
2013
2014; 39
2019; 657
2020; 158
2020; 713
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
Chow V. (e_1_2_8_13_1) 1959
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
RStudio Team (e_1_2_8_45_1) 2020
Stewart K. (e_1_2_8_49_1) 2004
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 213
  start-page: 166
  year: 2014
  end-page: 182
  article-title: Modeling the topography of shallow braided rivers using structure‐from‐motion photogrammetry
  publication-title: Geomorphology
– year: 2009
– volume: 7
  start-page: 6160
  issue: 5
  year: 2015
  end-page: 6195
  article-title: Topo‐bathymetric LiDAR for monitoring river morphodynamics and instream habitats—A case study at the Pielach River
  publication-title: Remote Sensing 2015
– volume: 269
  start-page: 186
  year: 2016
  end-page: 202
  article-title: Dam‐induced and natural channel changes in the Saskatchewan River below the E.B. Campbell Dam, Canada
  publication-title: Geomorphology
– start-page: 1
  year: 2022
  end-page: 16
  article-title: Evaluating the risk of fish stranding due to hydropeaking in a large continental river
  publication-title: River Research and Applications
– volume: 138
  start-page: 76
  issue: 1
  year: 2009
  end-page: 87
  article-title: Effects of hydropeaking on nearshore habitat use and growth of age‐0 rainbow trout in a large regulated river
  publication-title: Transactions of the American Fisheries Society
– volume: 657
  start-page: 1508
  year: 2019
  end-page: 1522
  article-title: Ecologically‐based criteria for hydropeaking mitigation: A review
  publication-title: Science of the Total Environment
– volume: 20
  start-page: 791
  issue: 3
  year: 2011
  end-page: 800
  article-title: Population dynamics of a reservoir sport fish community in response to hydrology
  publication-title: North American Journal of Fisheries Managment
– volume: 36
  start-page: 757
  issue: 5
  year: 2020
  end-page: 776
  article-title: Using two‐eyed seeing to bridge Western science and Indigenous knowledge systems and understand long‐term change in the Saskatchewan River Delta, Canada
  publication-title: International Journal of Water Resources Development
– volume: 36
  start-page: 1046
  issue: 7
  year: 2020
  end-page: 1055
  article-title: Energy stores and mercury concentrations in a common minnow (spottail shiner, Notropis hudsonius) associated with a peaking hydroelectric dam
  publication-title: River Research and Applications
– volume: 45
  start-page: 157
  issue: 3
  year: 2009
  end-page: 170
  article-title: Impact of hydropeaking on hyporheic invertebrates in an Alpine stream (Trentino, Italy)
  publication-title: International Journal of Limnology
– volume: 73
  start-page: 140
  issue: 1
  year: 2016
  end-page: 152
  article-title: Influence of hydrological connectivity on winter limnology in floodplain lakes of the Saskatchewan River Delta, Saskatchewan
  publication-title: Canadian Journal of Fisheries and Aquatic Sciences
– volume: 573
  start-page: 574
  year: 2016
  end-page: 584
  article-title: Modelling the effects of stranding on the Atlantic salmon population in the Dale River, Norway
  publication-title: Science of the Total Environment
– volume: 25
  start-page: 405
  issue: 4
  year: 2009
  end-page: 415
  article-title: The effects of flow reduction rates on fish stranding in British Columbia, Canada
  publication-title: River Research and Applications
– volume: 713
  year: 2020
  article-title: The monthly dynamics of blue water footprints and electricity generation of four types of hydropower plants in Ecuador
  publication-title: Science of the Total Environment
– year: 2022
  article-title: Integrating two‐dimensional water temperature simulations into a fish habitat model to improve hydro‐ and thermopeaking impact assessment
  publication-title: River Research and Applications
– volume: 10
  year: 2022
  article-title: Stranding of larval nase (Chondrostoma nasus L.) depending on bank slope, down‐ramping rate and daytime
  publication-title: Frontiers in Environmental Science
– volume: 71
  start-page: 157
  issue: 2
  year: 2016
  end-page: 170
  article-title: Historical and contemporary patterns of mercury in a hydroelectric reservoir and downstream fishery: Concentration decline in water and fishes
  publication-title: Archives of Environmental Contamination and Toxicology
– year: 1959
– volume: 278
  year: 2004
– volume: 21
  start-page: 713
  issue: 4
  year: 2011
  end-page: 731
  article-title: Hydropower‐related pulsed‐flow impacts on stream fishes: A brief review, conceptual model, knowledge gaps, and research needs
  publication-title: Reviews in Fish Biology and Fisheries
– volume: 1
  start-page: 65
  issue: 2
  year: 2020
  end-page: 74
  article-title: Experimental investigation on the performance of DJI phantom 4 RTK in the PPK mode for 3D mapping open‐pit mines
  publication-title: Polish Society for the Processing of Minerals
– volume: 11
  issue: 2
  year: 2019
  article-title: Performance of a two‐dimensional hydraulic model for the evaluation of stranding areas and characterization of rapid fluctuations in hydropeaking rivers
  publication-title: Water (Switzerland)
– year: 2019
– year: 1920
– year: 2015
– volume: 12
  start-page: 1
  issue: 2
  year: 2021
  end-page: 14
  article-title: Influence of agisoft metashape parameters on UAS structure from motion individual tree detection from canopy height models
  publication-title: Forests
– volume: 575
  start-page: 1515
  year: 2017
  end-page: 1521
  article-title: Effects of river bank heterogeneity and time of day on drift and stranding of juvenile European grayling (Thymallus thymallus L.) caused by hydropeaking
  publication-title: Science of the Total Environment
– volume: 33
  start-page: 413
  issue: 1
  year: 2018
  end-page: 428
  article-title: Modeling White Sucker (Catostomus commersonii) populations to assess commercial harvest influence on age structure
  publication-title: Journal of Freshwater Ecology
– volume: 12
  start-page: 317
  year: 1996
  end-page: 330
  article-title: Modelling temporal variations of physical habitat for brown trout (Salmo trutta) in hydropeaking conditions
  publication-title: Regulated Rivers: Research & Management
– volume: 77
  start-page: 161
  issue: 1
  year: 2015
  end-page: 170
  article-title: A global boom in hydropower dam construction
  publication-title: Aquatic Sciences
– volume: 14
  issue: 2
  year: 2021
  article-title: Automated analysis of lateral river connectivity and fish stranding risks—Part 1: Review, theory and algorithm
  publication-title: Ecohydrology
– volume: 16
  issue: 2
  year: 2021
  article-title: Hydropeaked rivers need attention
  publication-title: Environmental Research Letters
– volume: 14
  issue: 6
  year: 2021
  article-title: Automated analysis of lateral river connectivity and fish stranding risks. Part 2: Juvenile Chinook salmon stranding at a river rehabilitation site
  publication-title: Ecohydrology
– volume: 242
  start-page: 21
  year: 2015
  end-page: 28
  article-title: Measuring coral reef terrain roughness using “Structure‐from‐Motion” close‐range photogrammetry
  publication-title: Geomorphology
– volume: 11
  issue: 6
  year: 2019
  article-title: Life Stage‐Specific Hydropeaking Flow Rules
  publication-title: Sustainability
– year: 1973
– volume: 39
  start-page: 1622
  issue: 12
  year: 2014
  end-page: 1641
  article-title: Impact of channel bar form and grain size variability on estimated stranding risk of juvenile brown trout during hydropeaking
  publication-title: Earth Surface Processes and Landforms
– volume: 30
  start-page: 377
  year: 1922
  end-page: 392
  article-title: A scale of grade and class terms for clastic sediments
  publication-title: The Journal of Geology
– volume: 573
  start-page: 1660
  year: 2016
  end-page: 1672
  article-title: Hydrological and thermal effects of hydropeaking on early life stages of salmonids: A modelling approach for implementing mitigation strategies
  publication-title: Science of the Total Environment
– year: 2016
– year: 2010
– volume: 8
  year: 2020
  article-title: Hydropeaking operations of two run‐of‐river mega‐dams alter downstream hydrology of the largest Amazon tributary
  publication-title: Frontiers in Environmental Science
– volume: 158
  issue: April
  year: 2020
  article-title: New insights into hydropeaking mitigation assessment from a diversion hydropower plant: The GKI project (Tyrol, Austria)
  publication-title: Ecological Engineering
– volume: 45
  start-page: 427
  issue: 3
  year: 2021
  end-page: 445
  article-title: Mapping microhabitat structure and connectivity on a tropical inselberg using UAV remote sensing
  publication-title: Progress in Physical Geography
– volume: 35
  start-page: 714
  issue: 6
  year: 2019
  end-page: 724
  article-title: Seasonal effects of a hydropeaking dam on a downstream benthic macroinvertebrate community
  publication-title: River Research and Applications
– volume: 9
  start-page: 163
  issue: 2
  year: 2017
  end-page: 182
  article-title: Energetic consequences of stranding of juvenile Atlantic salmon (Salmo salar L.)
  publication-title: Journal of Water Resource and Protection
– start-page: 134
  year: 2022
  end-page: 149
– volume: 33
  start-page: 1246
  issue: 8
  year: 2017
  end-page: 1256
  article-title: Fish age and size distributions and species composition in a large, hydropeaking Prairie River
  publication-title: River Research and Applications
– year: 2002
– volume: 103
  start-page: 133
  year: 2012
  end-page: 141
  article-title: Fish stranding in freshwater systems: Sources, consequences, and mitigation
  publication-title: Journal of Environmental Management
– volume: 16
  start-page: 197
  issue: 2
  year: 2012
  end-page: 206
  article-title: Estimating stranding risk due to hydropeaking for juvenile European grayling considering river morphology
  publication-title: KSCE Journal of Civil Engineering
– year: 2020
– volume: 796
  year: 2021
  article-title: Modelling the downstream longitudinal effects of frequent hydropeaking on the spawning potential and stranding susceptibility of salmonids
  publication-title: Science of the Total Environment
– year: 1995
– volume: 11
  start-page: 326
  year: 2016
  end-page: 333
– volume: 92
  start-page: 79
  year: 2014
  end-page: 97
– year: 2013
– ident: e_1_2_8_35_1
  doi: 10.1016/j.geomorph.2015.01.030
– ident: e_1_2_8_3_1
  doi: 10.3389/fenvs.2020.00120
– ident: e_1_2_8_30_1
  doi: 10.1016/j.geomorph.2014.01.006
– ident: e_1_2_8_58_1
  doi: 10.1086/622910
– ident: e_1_2_8_60_1
  doi: 10.1007/S00027-014-0377-0
– ident: e_1_2_8_22_1
– ident: e_1_2_8_27_1
  doi: 10.3390/su11061547
– ident: e_1_2_8_29_1
  doi: 10.1002/RRA.1172
– ident: e_1_2_8_4_1
  doi: 10.1002/RRA.4043
– ident: e_1_2_8_21_1
  doi: 10.3389/FENVS.2022.966418/BIBTEX
– ident: e_1_2_8_41_1
  doi: 10.1016/J.JENVMAN.2012.03.007
– ident: e_1_2_8_31_1
  doi: 10.3390/w11020201
– volume-title: RStudio: Integrated Development for R. RStudio
  year: 2020
  ident: e_1_2_8_45_1
– volume-title: The freshwater fishes of Manitoba
  year: 2004
  ident: e_1_2_8_49_1
  doi: 10.1515/9780887553745
– ident: e_1_2_8_55_1
  doi: 10.29227/IM-2020-02-10
– ident: e_1_2_8_33_1
  doi: 10.1002/ECO.2303
– ident: e_1_2_8_53_1
  doi: 10.1016/J.SCITOTENV.2020.136579
– ident: e_1_2_8_6_1
  doi: 10.1016/j.scitotenv.2016.10.029
– ident: e_1_2_8_37_1
  doi: 10.3390/RS70506160
– ident: e_1_2_8_18_1
– ident: e_1_2_8_52_1
  doi: 10.1007/S12205-012-0002-5
– ident: e_1_2_8_32_1
  doi: 10.1577/T08-026.1
– ident: e_1_2_8_9_1
  doi: 10.1051/limn/2009018
– volume-title: Open channel hydraulics
  year: 1959
  ident: e_1_2_8_13_1
– ident: e_1_2_8_44_1
  doi: 10.4236/jwarp.2017.92012
– ident: e_1_2_8_42_1
– ident: e_1_2_8_50_1
– ident: e_1_2_8_25_1
  doi: 10.1002/rra.3625
– ident: e_1_2_8_59_1
  doi: 10.1007/S11160-011-9211-0/TABLES/2
– ident: e_1_2_8_8_1
  doi: 10.1080/02705060.2018.1496951
– ident: e_1_2_8_48_1
  doi: 10.1016/J.GEOMORPH.2016.06.041
– ident: e_1_2_8_20_1
– ident: e_1_2_8_51_1
  doi: 10.3390/F12020250
– ident: e_1_2_8_38_1
  doi: 10.1002/RRA.3434
– ident: e_1_2_8_11_1
– ident: e_1_2_8_56_1
– ident: e_1_2_8_2_1
  doi: 10.1080/07900627.2018.1558050
– ident: e_1_2_8_17_1
– ident: e_1_2_8_34_1
  doi: 10.1002/ECO.2268
– ident: e_1_2_8_14_1
  doi: 10.1016/j.isprsjprs.2014.02.013
– ident: e_1_2_8_23_1
  doi: 10.1002/rra.408316
– ident: e_1_2_8_43_1
– ident: e_1_2_8_5_1
  doi: 10.1177/0309133320964327
– ident: e_1_2_8_46_1
  doi: 10.1577/1548-8675(2000)020<0791:PDOARS>2.3.CO;2
– ident: e_1_2_8_16_1
– ident: e_1_2_8_24_1
  doi: 10.1007/s00244-016-0287-3
– ident: e_1_2_8_26_1
  doi: 10.1002/ESP.3552
– ident: e_1_2_8_19_1
– ident: e_1_2_8_36_1
  doi: 10.1139/cjfas-2015-0210
– ident: e_1_2_8_39_1
  doi: 10.1016/J.SCITOTENV.2018.12.107
– ident: e_1_2_8_57_1
– ident: e_1_2_8_7_1
  doi: 10.1088/1748-9326/ABCE26
– ident: e_1_2_8_47_1
  doi: 10.1016/J.SCITOTENV.2016.08.080
– ident: e_1_2_8_28_1
  doi: 10.1016/B978-0-12-819166-8.00171-7
– ident: e_1_2_8_12_1
  doi: 10.1016/J.SCITOTENV.2016.09.208
– ident: e_1_2_8_15_1
  doi: 10.1002/rra.3173
– ident: e_1_2_8_40_1
  doi: 10.1016/j.ecoleng.2020.106035
– ident: e_1_2_8_54_1
  doi: 10.1002/(SICI)1099-1646(199603)12:2/3
– ident: e_1_2_8_10_1
  doi: 10.1016/J.SCITOTENV.2021.148999
SSID ssj0061453
Score 2.3182437
Snippet Fish stranding is of global concern with increasing hydropower operations using hydropeaking to respond to fluctuating energy demand. Determining the effects...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Bathymetry
Energy demand
Fish
Hydrodynamics
Hydroelectric power
Monitoring
photogrammetry
Photography
River2D
Rivers
Saskatchewan River
Stranding
Substrates
wetted area
Title Applying a two‐dimensional hydrodynamic model to estimate fish stranding risk downstream from a hydropeaking hydroelectric station
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feco.2530
https://www.proquest.com/docview/2822186568
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSsQwFA0iCG58i49RIoiuOrZN06RLGUZEUEEUBBclTxR1ZnAqoisXfoDf6JeYm7TjAwVxVQpJ2jzvyeXccxHajEWcy8KyKE00izKVZZFITBJpxSkX3NrC63QfHuX7Z9nBOT2vWZUQCxP0IUYON9gZ_ryGDS7kcOdDNNTdztopJXBdB6oW4KGTkXKUMzpegNLBE3dhdka20Z2N052m4ldL9AEvP4NUb2X2ptFF83-BXHLdvq9kWz19k278Xwdm0FQNPvFuWC2zaMz05tBE1wtXP86jF4CkEPaEBa4e-m_Prxq0_4NuB7581O6wDQnssU-gg6s-BpEOB3oNtlfDSwx-Ex8mg4GyjjW4roHKfoshjMU16xsZGJ8CK7yEPDyuyWEgBSygs73uaWc_qrM0RIqkLI40BRCZc1HYLNWcFdZSZYlQlHKrHXwktDBSxgaidgvCRZJakdmEx1ZQ8OstovFev2eWEJZuRSWcMaEkyRhhPC9yzUgmiTGKUL6MtpsZK1UtYQ6ZNG7KIL6clm5MSxjTZbQxKjkIsh0_lGk1k17WG3dYAqs24Q7kuo9t-dn7tX7Z7RzDc-WvBVfRJCSrD0SzFhqv7u7NmoM0lVz3i_cdOsD2fw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSsQwFA2iiG58i28jiK46tk3TpLgSHRnfIAouhJLmgaLOiFMRXbnwA_xGv8TcZDo-UBBXpZCkzfOeXO49B6HlUIRpkRkWxJFiQSKTJBCRjgIlOeWCG5M5nu6Dw7Rxmuye0bMetF7lwnh-iK7DDXaGO69hg4NDeu2DNdRez2oxJfa-3geC3kCcv3Xc5Y6yZsdRUFqAYq_M1sxWzLNhvFbV_GqLPgDmZ5jq7Mz2MDqv_tCHl1zV7suiJp--kTf-swsjaKiDP_GGXzCjqEc3x1B_3XFXP46jF0ClkPmEBS4fWm_Prwro_z11B754VPa89Rr22Gno4LKFgafD4l6NzWX7AoPrxGXKYIhaxwq81xDNfoMhk8U26xq51U4Fy794KR7bZNvHBUyg0-36yWYj6Ag1BJLELAwUBRyZcpGZJFacZcZQaYiQlHKjLIIkNNNFEWpI3M0IF1FsRGIiHhpBwbU3iXqbraaeQriwiyrijAlZkIQRxtMsVYwkBdFaEsqn0Wo1ZbnssJiDmMZ17vmX49yOaQ5jOo2WuiVvPXPHD2XmqlnPO3u3nUNgbcQtzrUfW3HT92v9vL55BM-ZvxZcRAONk4P9fH_ncG8WDYJ2vY87m0O95d29nrcIpywW3Ep-B5CU-ps
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFA5SUfpSby2trhqh2KfZzkySSeZR2l3W3hSxUOhDyOTCinV3caeU7ZMP_gB_Y39Jc5KZXZUWSp-GgSQzuZ4vh3O-D6HNVKVFVTqe5JnhCdWUJiqzWWK0YEIJ58rA0314VAyO6d4JO2miKiEXJvJDzB1usDPCeQ0bfGLc9oI01N_Oujkj_rr-kBZpCbINu1_m1FHe6gQGSo9P_I3ZW9mWeDbNt9ua_5qiBb78G6UGM9N_gk7bH4zRJd-753XV1Zf_cTferwdP0UqDPvGHuFyeoQd29Bw96gXm6tkL9BswKeQ9YYXri_HVrz8GyP8jcQcezow_baOCPQ4KOrgeY2Dp8KjXYvdtOsTgOAl5Mhhi1rEB3zXEsv_AkMfimw2NTGzQwIovUYjHNzmNUQGr6Ljf-7ozSBqZhkSTnKeJYYAiC6FKR3MjeOkc044ozZhwxuNHwkpbVamFtN2SCJXlTlGXidQpBo69NbQ0Go_sOsKVX1KZ4FzpilBOuCjKwnBCK2KtJkxsoK12xqRuOMxBSuNMRvblXPoxlTCmG-jdvOQk8nbcUKbTTrpsdu5UQlhtJjzK9R97H2bv1vqyt_MJni_vWvAtevx5ty8PPh7tv0LLIFwfg846aKn-eW5fe3hTV2_COr4GtmP5Sg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Applying+a+two%E2%80%90dimensional+hydrodynamic+model+to+estimate+fish+stranding+risk+downstream+from+a+hydropeaking+hydroelectric+station&rft.jtitle=Ecohydrology&rft.au=Glowa%2C+Sarah+E.&rft.au=Kneale%2C+Andrea+J.&rft.au=Watkinson%2C+Douglas+A.&rft.au=Ghamry%2C+Haitham+K.&rft.date=2023-06-01&rft.issn=1936-0584&rft.eissn=1936-0592&rft.volume=16&rft.issue=4&rft_id=info:doi/10.1002%2Feco.2530&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_eco_2530
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0584&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0584&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0584&client=summon