A data‐based private learning framework for enhanced security against replay attacks in cyber‐physical systems
Summary This article develops a data‐based and private learning framework of the detection and mitigation against replay attacks for cyber‐physical systems. Optimal watermarking signals are added to assist in the detection of potential replay attacks. In order to improve the confidentiality of the o...
Saved in:
Published in | International journal of robust and nonlinear control Vol. 31; no. 6; pp. 1817 - 1833 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Bognor Regis
Wiley Subscription Services, Inc
01.04.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1049-8923 1099-1239 |
DOI | 10.1002/rnc.5040 |
Cover
Loading…
Abstract | Summary
This article develops a data‐based and private learning framework of the detection and mitigation against replay attacks for cyber‐physical systems. Optimal watermarking signals are added to assist in the detection of potential replay attacks. In order to improve the confidentiality of the output data, we first add a level of differential privacy. We then use a data‐based technique to learn the best defending strategy in the presence of worst case disturbances, stochastic noise, and replay attacks. A data‐based Neyman‐Pearson detector design is also proposed to identify replay attacks. Finally, simulation results show the efficacy of the proposed approach along with a comparison of our data‐based technique to a model‐based
one. |
---|---|
AbstractList | Summary
This article develops a data‐based and private learning framework of the detection and mitigation against replay attacks for cyber‐physical systems. Optimal watermarking signals are added to assist in the detection of potential replay attacks. In order to improve the confidentiality of the output data, we first add a level of differential privacy. We then use a data‐based technique to learn the best defending strategy in the presence of worst case disturbances, stochastic noise, and replay attacks. A data‐based Neyman‐Pearson detector design is also proposed to identify replay attacks. Finally, simulation results show the efficacy of the proposed approach along with a comparison of our data‐based technique to a model‐based
one. This article develops a data‐based and private learning framework of the detection and mitigation against replay attacks for cyber‐physical systems. Optimal watermarking signals are added to assist in the detection of potential replay attacks. In order to improve the confidentiality of the output data, we first add a level of differential privacy. We then use a data‐based technique to learn the best defending strategy in the presence of worst case disturbances, stochastic noise, and replay attacks. A data‐based Neyman‐Pearson detector design is also proposed to identify replay attacks. Finally, simulation results show the efficacy of the proposed approach along with a comparison of our data‐based technique to a model‐based one. |
Author | Zhai, Lijing Vamvoudakis, Kyriakos G. |
Author_xml | – sequence: 1 givenname: Lijing orcidid: 0000-0002-7474-6564 surname: Zhai fullname: Zhai, Lijing email: lzhai3@gatech.edu organization: Georgia Institute of Technology – sequence: 2 givenname: Kyriakos G. orcidid: 0000-0003-1978-4848 surname: Vamvoudakis fullname: Vamvoudakis, Kyriakos G. organization: Georgia Institute of Technology |
BookMark | eNp1kN1KAzEQhYNUsK2CjxDwxput2aT7k8tS_IOiIHq9zGZn27TbbE1Sy975CD6jT2JqvRKFgZlhvnMGzoD0TGuQkPOYjWLG-JU1apSwMTsi_ZhJGcVcyN5-Hssol1yckIFzS8bCjY_7xE5oBR4-3z9KcFjRjdVv4JE2CNZoM6e1hTXuWruidWspmgUYFTiHamu17yjMQRvnqcVNA2H1HtTKUW2o6kq0wXiz6JxW0FDXOY9rd0qOa2gcnv30IXm5uX6e3kWzx9v76WQWKcEzFqUVcBQyF6XMyzSVVZ0zmeUqztK0UikCK0uV1WkleZULJepyLBKeV6hCYVKLIbk4-G5s-7pF54tlu7UmvCx4wuI845Ingbo8UMq2zlmsixDBGmxXxKzYJ1qERIt9ogEd_UKV9uB1a7wF3fwliA6CnW6w-9e4eHqYfvNfsyKNig |
CitedBy_id | crossref_primary_10_1002_acs_3668 crossref_primary_10_1109_TFUZZ_2022_3185500 crossref_primary_10_1002_rnc_7616 crossref_primary_10_1109_TAC_2022_3174004 crossref_primary_10_1016_j_amc_2023_128127 crossref_primary_10_3390_electronics11193161 crossref_primary_10_1016_j_ijcip_2022_100540 crossref_primary_10_1016_j_automatica_2023_110912 crossref_primary_10_1002_rnc_6097 crossref_primary_10_3233_JIFS_235721 crossref_primary_10_1109_TII_2021_3137816 crossref_primary_10_1016_j_ins_2022_09_018 crossref_primary_10_1109_TCNS_2024_3401000 crossref_primary_10_1007_s12555_021_0601_3 crossref_primary_10_1080_00207721_2023_2300717 crossref_primary_10_1016_j_psep_2023_06_068 crossref_primary_10_1002_rnc_7706 crossref_primary_10_1002_asjc_3367 crossref_primary_10_1002_rnc_7206 crossref_primary_10_1002_rnc_7646 crossref_primary_10_1109_ACCESS_2022_3170487 crossref_primary_10_1002_acs_3730 crossref_primary_10_1002_acs_3577 crossref_primary_10_1109_JSYST_2022_3172397 crossref_primary_10_1109_TNNLS_2021_3111826 crossref_primary_10_1007_s00034_022_02214_0 crossref_primary_10_1109_TCYB_2023_3319647 crossref_primary_10_1016_j_isatra_2022_03_012 crossref_primary_10_1002_rnc_7854 crossref_primary_10_1002_rnc_5432 crossref_primary_10_1002_rnc_6169 crossref_primary_10_1109_TSMC_2024_3352557 crossref_primary_10_1016_j_ifacol_2023_10_1251 |
Cites_doi | 10.1109/SSCI.2017.8285298 10.1109/TAC.2013.2283096 10.1109/CDC.2017.8264421 10.1007/978-3-319-78384-0 10.1109/TAC.2014.2351671 10.1109/MCS.2012.2214134 10.1109/MSP.2011.67 10.1109/TDSC.2015.2509994 10.1109/ALLERTON.2009.5394956 10.1109/TSG.2017.2703842 10.1109/TCST.2013.2280899 10.1109/MCS.2014.2364724 10.1109/ComManTel.2013.6482409 10.1109/ACC.2015.7172127 10.1002/9781118122631 10.1109/MNET.2016.7437026 10.1109/CDC.1995.478953 10.1109/ACC.2016.7524930 10.1109/SmartGridComm.2017.8340720 10.1002/apmc.1988.051620106 10.1145/2976749.2978388 10.1049/PBCE081E 10.1145/2046684.2046692 10.23919/ACC.2018.8431397 10.1109/MCS.2016.2621461 10.1109/TAC.2013.2266831 10.1109/ARES.2016.2 10.1007/11761679_29 10.1109/ASCC.2017.8287297 10.1145/1128817.1128824 10.1109/CDC.2018.8619632 10.1109/IECON.2011.6120048 10.1016/j.ins.2018.12.091 10.1016/j.ifacol.2017.08.1502 10.1002/9781119174882 10.1109/JPROC.2016.2575064 10.1109/MCS.2014.2364709 10.1109/ACC.2015.7170734 10.1109/TSMCB.2006.880135 |
ContentType | Journal Article |
Copyright | 2020 John Wiley & Sons, Ltd. 2021 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2020 John Wiley & Sons, Ltd. – notice: 2021 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
DOI | 10.1002/rnc.5040 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1099-1239 |
EndPage | 1833 |
ExternalDocumentID | 10_1002_rnc_5040 RNC5040 |
Genre | article |
GrantInformation_xml | – fundername: ONR Minerva funderid: No. N00014-18-1-2160 – fundername: NSF funderid: Nos. CAREER CPS-1851588; S&AS 1849198 – fundername: Department of Energy funderid: No. DE-EE0008453 |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CMOOK CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M59 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ TUS UB1 V2E VH1 W8V W99 WBKPD WH7 WIH WIK WJL WLBEL WOHZO WQJ WRC WWI WXSBR WYISQ XG1 XV2 ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG AMVHM CITATION 7SC 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c3270-6da2e3983b98b669df80978c1766dc6ea0bbc7f6d92d83c3fb43528decdece5f3 |
IEDL.DBID | DR2 |
ISSN | 1049-8923 |
IngestDate | Fri Jul 25 12:19:32 EDT 2025 Thu Apr 24 22:59:10 EDT 2025 Tue Jul 01 02:06:58 EDT 2025 Wed Jan 22 16:29:49 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3270-6da2e3983b98b669df80978c1766dc6ea0bbc7f6d92d83c3fb43528decdece5f3 |
Notes | Funding information Department of Energy, No. DE‐EE0008453; NSF, Nos. CAREER CPS‐1851588; S&AS 1849198; ONR Minerva, No. N00014‐18‐1‐2160 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1978-4848 0000-0002-7474-6564 |
OpenAccessLink | https://www.osti.gov/biblio/1634178 |
PQID | 2501872925 |
PQPubID | 1026344 |
PageCount | 17 |
ParticipantIDs | proquest_journals_2501872925 crossref_primary_10_1002_rnc_5040 crossref_citationtrail_10_1002_rnc_5040 wiley_primary_10_1002_rnc_5040_RNC5040 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2021 2021-04-00 20210401 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: April 2021 |
PublicationDecade | 2020 |
PublicationPlace | Bognor Regis |
PublicationPlace_xml | – name: Bognor Regis |
PublicationTitle | International journal of robust and nonlinear control |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 35 2017; 8 2017; 4 2012 2011 2009 2016; 30 1974 1995 2006 1992; 15 1991 2019; 481 2012; 32 2014; 22 2018; 48 2006; 4052 2007; 37 2011; 9 2017; 50 2013; 58 2017; 37 2014; 59 2018 2017 2016 2015 2013 2018; 15 2017; 105 Werbos PJ (e_1_2_9_12_1) 1992; 15 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 Dwork C (e_1_2_9_32_1) 2006 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_33_1 Humayed A (e_1_2_9_19_1) 2017; 4 e_1_2_9_15_1 e_1_2_9_14_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 Scharf LL (e_1_2_9_39_1) 1991 e_1_2_9_41_1 e_1_2_9_42_1 e_1_2_9_20_1 e_1_2_9_40_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 Anderson BDO (e_1_2_9_38_1) 2012 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 Liu H (e_1_2_9_27_1) 2018; 48 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_29_1 |
References_xml | – year: 2011 – volume: 50 start-page: 7363 issue: 1 year: 2017 end-page: 7368 article-title: Detection and isolation of replay attacks through sensor watermarking publication-title: IFAC‐PapersOnLine – year: 2009 – volume: 37 start-page: 33 issue: 1 year: 2017 end-page: 52 article-title: Game theory‐based control system algorithms with real‐time reinforcement learning: how to solve multiplayer games online publication-title: IEEE Control Syst Mag – volume: 4 start-page: 1802 issue: 6 year: 2017 end-page: 1831 article-title: Cyber‐physical systems security–a survey publication-title: IEEE IoT J – volume: 35 start-page: 93 issue: 1 year: 2015 end-page: 109 article-title: Physical authentication of control systems: Designing watermarked control inputs to detect counterfeit sensor outputs publication-title: IEEE Control Syst Mag – volume: 32 start-page: 76 issue: 6 year: 2012 end-page: 105 article-title: Reinforcement learning and feedback control: using natural decision methods to design optimal adaptive controllers publication-title: IEEE Control Syst – volume: 35 start-page: 24 issue: 1 year: 2015 end-page: 45 article-title: Secure control systems: a quantitative risk management approach publication-title: IEEE Control Syst Mag – volume: 48 start-page: 1977 issue: 7 year: 2018 end-page: 1988 article-title: An on‐line design of physical watermarks publication-title: IEEE Trans Cybern – volume: 4052 start-page: 1 year: 2006 end-page: 12 – volume: 59 start-page: 341 issue: 2 year: 2014 end-page: 354 article-title: Differentially private filtering publication-title: IEEE Trans Automat Control – volume: 22 start-page: 1396 issue: 4 year: 2014 end-page: 1407 article-title: Detecting integrity attacks on SCADA systems publication-title: IEEE Trans Control Syst Tech – year: 2016 – year: 2018 – year: 2012 – volume: 105 start-page: 219 issue: 2 year: 2017 end-page: 240 article-title: Dynamic watermarking: active defense of networked cyber–physical systems publication-title: Proc IEEE – volume: 15 start-page: 493 year: 1992 end-page: 525 article-title: Approximate dynamic programming for real‐time control and neural modeling publication-title: Handbook Intell Control Neural fuzzy Adapt Approach – year: 2006 – volume: 9 start-page: 49 issue: 3 year: 2011 end-page: 51 article-title: Stuxnet: dissecting a cyberwarfare weapon publication-title: IEEE Sec Privacy – year: 1995 – year: 1974 – volume: 37 start-page: 240 issue: 1 year: 2007 end-page: 247 article-title: Adaptive critic designs for discrete‐time zero‐sum games with application to control publication-title: IEEE Trans Syst Man Cybern Part B (Cybern) – volume: 59 start-page: 3209 issue: 12 year: 2014 end-page: 3223 article-title: Detection in adversarial environments publication-title: IEEE Trans Automat Control – volume: 58 start-page: 2715 issue: 11 year: 2013 end-page: 2729 article-title: Attack detection and identification in cyber‐physical systems publication-title: IEEE Trans Automat Control – volume: 8 start-page: 2505 issue: 5 year: 2017 end-page: 2516 article-title: Real‐time detection of false data injection attacks in smart grid: a deep learning‐based intelligent mechanism publication-title: IEEE Trans Smart Grid – volume: 30 start-page: 62 issue: 2 year: 2016 end-page: 66 article-title: Privacy and performance trade‐off in cyber‐physical systems publication-title: IEEE Netw – year: 2017 – year: 1991 – year: 2015 – volume: 481 start-page: 432 year: 2019 end-page: 444 article-title: Stochastic coding detection scheme in cyber‐physical systems against replay attack publication-title: Inf Sci – volume: 15 start-page: 2 issue: 1 year: 2018 end-page: 13 article-title: A systems theoretic approach to the security threats in cyber physical systems applied to stuxnet publication-title: IEEE Trans Depend Sec Comput – year: 2013 – ident: e_1_2_9_17_1 doi: 10.1109/SSCI.2017.8285298 – ident: e_1_2_9_34_1 doi: 10.1109/TAC.2013.2283096 – ident: e_1_2_9_28_1 doi: 10.1109/CDC.2017.8264421 – ident: e_1_2_9_15_1 doi: 10.1007/978-3-319-78384-0 – ident: e_1_2_9_4_1 doi: 10.1109/TAC.2014.2351671 – ident: e_1_2_9_13_1 doi: 10.1109/MCS.2012.2214134 – ident: e_1_2_9_7_1 doi: 10.1109/MSP.2011.67 – ident: e_1_2_9_6_1 doi: 10.1109/TDSC.2015.2509994 – ident: e_1_2_9_24_1 doi: 10.1109/ALLERTON.2009.5394956 – ident: e_1_2_9_18_1 doi: 10.1109/TSG.2017.2703842 – ident: e_1_2_9_25_1 doi: 10.1109/TCST.2013.2280899 – ident: e_1_2_9_45_1 doi: 10.1109/MCS.2014.2364724 – ident: e_1_2_9_41_1 doi: 10.1109/ComManTel.2013.6482409 – ident: e_1_2_9_11_1 doi: 10.1109/ACC.2015.7172127 – volume: 15 start-page: 493 year: 1992 ident: e_1_2_9_12_1 article-title: Approximate dynamic programming for real‐time control and neural modeling publication-title: Handbook Intell Control Neural fuzzy Adapt Approach – ident: e_1_2_9_9_1 doi: 10.1002/9781118122631 – ident: e_1_2_9_2_1 doi: 10.1109/MNET.2016.7437026 – ident: e_1_2_9_10_1 doi: 10.1109/CDC.1995.478953 – ident: e_1_2_9_29_1 doi: 10.1109/ACC.2016.7524930 – ident: e_1_2_9_31_1 doi: 10.1109/SmartGridComm.2017.8340720 – ident: e_1_2_9_36_1 doi: 10.1002/apmc.1988.051620106 – ident: e_1_2_9_5_1 doi: 10.1145/2976749.2978388 – ident: e_1_2_9_14_1 doi: 10.1049/PBCE081E – ident: e_1_2_9_20_1 doi: 10.1145/2046684.2046692 – ident: e_1_2_9_35_1 doi: 10.23919/ACC.2018.8431397 – ident: e_1_2_9_16_1 doi: 10.1109/MCS.2016.2621461 – ident: e_1_2_9_22_1 doi: 10.1109/TAC.2013.2266831 – volume-title: Statistical Signal Processing: Detection, Estimation, and Time Series Analysis year: 1991 ident: e_1_2_9_39_1 – start-page: 1 volume-title: Differential Privacy. In: Lecture Notes in Computer Science year: 2006 ident: e_1_2_9_32_1 – ident: e_1_2_9_26_1 doi: 10.1109/ARES.2016.2 – ident: e_1_2_9_33_1 doi: 10.1007/11761679_29 – ident: e_1_2_9_44_1 doi: 10.1109/ASCC.2017.8287297 – ident: e_1_2_9_21_1 doi: 10.1145/1128817.1128824 – volume-title: Optimal Filtering year: 2012 ident: e_1_2_9_38_1 – ident: e_1_2_9_40_1 doi: 10.1109/CDC.2018.8619632 – ident: e_1_2_9_8_1 doi: 10.1109/IECON.2011.6120048 – ident: e_1_2_9_43_1 doi: 10.1016/j.ins.2018.12.091 – volume: 48 start-page: 1977 issue: 7 year: 2018 ident: e_1_2_9_27_1 article-title: An on‐line design of physical watermarks publication-title: IEEE Trans Cybern – ident: e_1_2_9_42_1 doi: 10.1016/j.ifacol.2017.08.1502 – ident: e_1_2_9_37_1 – ident: e_1_2_9_47_1 doi: 10.1002/9781119174882 – ident: e_1_2_9_30_1 doi: 10.1109/JPROC.2016.2575064 – ident: e_1_2_9_3_1 doi: 10.1109/MCS.2014.2364709 – ident: e_1_2_9_23_1 doi: 10.1109/ACC.2015.7170734 – volume: 4 start-page: 1802 issue: 6 year: 2017 ident: e_1_2_9_19_1 article-title: Cyber‐physical systems security–a survey publication-title: IEEE IoT J – ident: e_1_2_9_46_1 doi: 10.1109/TSMCB.2006.880135 |
SSID | ssj0009924 |
Score | 2.477004 |
Snippet | Summary
This article develops a data‐based and private learning framework of the detection and mitigation against replay attacks for cyber‐physical systems.... This article develops a data‐based and private learning framework of the detection and mitigation against replay attacks for cyber‐physical systems. Optimal... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1817 |
SubjectTerms | ADP CPS Learning Privacy Watermarking watermarking signals zero‐sum LQG games |
Title | A data‐based private learning framework for enhanced security against replay attacks in cyber‐physical systems |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frnc.5040 https://www.proquest.com/docview/2501872925 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEF3Ekx78FqtVVhA9xcZNsk2OpVhEsIdiQfAQ9rOKEkuaHvTkT_A3-kucSTatioIIgRDYXZKd2d034c0bQo6UCEPJtfQi6RsvjKzvAagPPMstuEzQNr7C3OGrPr8Yhpc30Y1jVWIuTKUPMfvhhiuj3K9xgQs5ac1FQ3NYPxGMB9svUrUQDw3mylFJUtWzBQDsxQBiat1Zn7Xqjl9Pojm8_AxSy1Omt0pu6_eryCUPp9NCnqqXb9KN__uANbLiwCftVN6yThZMtkGWP0kSbpK8Q5E0-v76huebpuMcy58Z6qpLjKit2VwU4C412V1JIaATVwePipG4B8hJczN-FPBYFJjFT-8zqp6lyWHgsXMNWqlIT7bIsHd-3b3wXF0GTwWsDdGmFswEYFGZxJLzRNsYs0EUak1qxY3wpVRty3XCdByowMoQNWS0UXCZyAbbZDF7yswOoQJDOBHxhDMDkV4MDhNZ6KutVlqrswY5qW2UKidajrUzHtNKbpmlMIspzmKDHM5ajiuhjh_aNGszp26pTlKGkoYQYrCoQY5Le_3aPx30u3jf_WvDPbLEkANTMn2aZLHIp2YfQEwhD0p3_QAlGfPT |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JSsRAEC1cDurBXRzXFkRPcWIn6UnwJKKM2xxEwYMQ0puKEodMPOjJT_Ab_RKrsjgqCiIEQqC6Sbqq0q-aqlcA6yrxfSm0dALpGscPrOsgqPccKyyajNcyrqLa4dOOaF_4R5fB5QDs1LUwJT_Ex4EbeUbxvyYHpwPpZp81NEMHCnDCQRimht5FPHXW546KorKjLUJgJ0QYUzPPurxZj_y6F_UB5meYWuwzBxNwVb9hmV5yt_WYyy31_I288Z-fMAnjFf5ku6XBTMGASadh7BMr4Qxku4zyRt9eXmmL06ybUQc0w6oGE9fM1gldDBEvM-lNkUXAelUrPJZcJ7eIOllmuvcJPuY5FfKz25SpJ2kynLhbWQcriaR7s3BxsH--13aq1gyO8ngLA06dcOOhUmUUSiEibUMqCFFEN6mVMIkrpWpZoSOuQ095VvpEI6ONwssE1puDofQhNfPAEorikkBEghsM9kK0mcDiWG210lptN2CzVlKsKt5yap9xH5eMyzzGVYxpFRuw9iHZLbk6fpBZqvUcV97aizmxGmKUwYMGbBQK-3V8fNbZo_vCXwVXYaR9fnoSnxx2jhdhlFNKTJH4swRDefZolhHT5HKlsN13SCD37g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9tAEB3aBEpzaJImIW7ddAOlPSlWV9JaOhq7xm0TU0wDgRyE9ss1MYqQlUN7yk_Ib-wvyYw-bKc0UAoCIdgV0s6M9o148wbgnUp8XwotnUC6xvED6zoI6j3HCosu43WNq6h2-GwsRuf-l4vgomZVUi1MpQ-x_OFGkVF-rynAM207K9HQHOMnwPs9hU1fuCF59GCyko6KoqqhLSJgJ0QU0wjPurzTzHy4Fa3w5TpKLbeZ4TZcNg9YsUuuTm4KeaJ-_aHd-H9vsAMvavTJepW77MITk76ErTVNwj3Ie4xYo79v72iD0yzLqf-ZYXV7iSmzDZ2LId5lJv1RcgjYom6Ex5JpMkPMyXKTzRO8LAoq42ezlKmf0uR446z2DVbJSC_24Xz46Xt_5NSNGRzl8S6mmzrhxkOTyiiUQkTahlQOokhsUithEldK1bVCR1yHnvKs9ElERhuFhwmsdwAb6XVqDoEllMMlgYgEN5jqhegxgcW52mqltfrYgg-NjWJVq5ZT84x5XOkt8xhXMaZVbMHxcmRWKXX8ZUy7MXNcx-oi5qRpiDkGD1rwvrTXo_PjybhP51f_OvAtPPs2GMann8dfX8NzTnyYkvXTho0ivzFvENAU8qj03HuWZPam |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+data%E2%80%90based+private+learning+framework+for+enhanced+security+against+replay+attacks+in+cyber%E2%80%90physical+systems&rft.jtitle=International+journal+of+robust+and+nonlinear+control&rft.au=Zhai%2C+Lijing&rft.au=Vamvoudakis%2C+Kyriakos+G&rft.date=2021-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1049-8923&rft.eissn=1099-1239&rft.volume=31&rft.issue=6&rft.spage=1817&rft.epage=1833&rft_id=info:doi/10.1002%2Frnc.5040&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1049-8923&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1049-8923&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1049-8923&client=summon |