Electrodeposited Cobalt Hydroxide Thin Films: A Comprehensive Investigation from Synthesis to Advanced Electrochemical Behavior for High-Performance Energy Storage

The synthesis and characterization of cobalt hydroxides generated from cobalt chloride precursors at various concentrations (0.1 to 0.5 M) by using cathodic electrochemical deposition technique for prospective energy storage application. The Co(OH) 2 thin films were discovered to have a crystalline...

Full description

Saved in:
Bibliographic Details
Published inTransactions on electrical and electronic materials Vol. 25; no. 5; pp. 589 - 599
Main Author Naeem, Sajid
Format Journal Article
LanguageEnglish
Published Seoul The Korean Institute of Electrical and Electronic Material Engineers (KIEEME) 01.10.2024
한국전기전자재료학회
Subjects
Online AccessGet full text
ISSN1229-7607
2092-7592
DOI10.1007/s42341-024-00542-3

Cover

Loading…
Abstract The synthesis and characterization of cobalt hydroxides generated from cobalt chloride precursors at various concentrations (0.1 to 0.5 M) by using cathodic electrochemical deposition technique for prospective energy storage application. The Co(OH) 2 thin films were discovered to have a crystalline structure with a crystallite size of ~ 40 nanometers, particle size of 180 nm, and a leaf-like morphology via XRD (X-ray Diffraction) and SEM (Scanning Electron Microscopy) respectively. Further properties were investigated by EDS (Energy-Dispersive X-ray Spectroscopy), FTIR (Fourier Transform Infrared Spectroscopy), and UV Vis Spectra (Ultraviolet-Visible Spectroscopy) analysis. The presence of cobalt hydroxide was confirmed by EDS, verifying the purity of the substance. Electrochemical characteristics, such as CV (Cyclic Voltammetry), GCD (Galvanostatic Charge-Discharge), and EIS (Electrochemical Impedance Spectroscopy) analysis, indicated capacitive behavior, confirming their feasibility for energy storage. The specific capacitances from 450 to 1250 F/g were measured from the GCD curve. The MATLAB study gave quantitative data on critical electrode characteristics which improved the understanding of the performance and a framework for further investigation in the development of sustainable energy solutions. Graphical Abstract
AbstractList The synthesis and characterization of cobalt hydroxides generated from cobalt chloride precursors at various concentrations (0.1 to 0.5 M) by using cathodic electrochemical deposition technique for prospective energy storage application. The Co(OH) 2 thin films were discovered to have a crystalline structure with a crystallite size of ~ 40 nanometers, particle size of 180 nm, and a leaf-like morphology via XRD (X-ray Diffraction) and SEM (Scanning Electron Microscopy) respectively. Further properties were investigated by EDS (Energy-Dispersive X-ray Spectroscopy), FTIR (Fourier Transform Infrared Spectroscopy), and UV Vis Spectra (Ultraviolet-Visible Spectroscopy) analysis. The presence of cobalt hydroxide was confirmed by EDS, verifying the purity of the substance. Electrochemical characteristics, such as CV (Cyclic Voltammetry), GCD (Galvanostatic Charge-Discharge), and EIS (Electrochemical Impedance Spectroscopy) analysis, indicated capacitive behavior, confirming their feasibility for energy storage. The specific capacitances from 450 to 1250 F/g were measured from the GCD curve. The MATLAB study gave quantitative data on critical electrode characteristics which improved the understanding of the performance and a framework for further investigation in the development of sustainable energy solutions. Graphical Abstract
The synthesis and characterization of cobalt hydroxides generated from cobalt chloride precursors at various concentrations (0.1 to 0.5 M) by using cathodic electrochemical deposition technique for prospective energy storage application. The Co(OH) 2 thin fi lms were discovered to have a crystalline structure with a crystallite size of ~ 40 nanometers, particle size of 180 nm, and a leaf-like morphology via XRD (X-ray Diff raction) and SEM (Scanning Electron Microscopy) respectively. Further properties were investigated by EDS (Energy-Dispersive X-ray Spectroscopy), FTIR (Fourier TransformInfrared Spectroscopy), and UV Vis Spectra (Ultraviolet-Visible Spectroscopy) analysis. The presence of cobalt hydroxide was confi rmed by EDS, verifying the purity of the substance. Electrochemical characteristics, such as CV (Cyclic Voltammetry), GCD (Galvanostatic Charge-Discharge), and EIS (Electrochemical Impedance Spectroscopy) analysis, indicated capacitive behavior, confi rming their feasibility for energy storage. The specifi c capacitances from 450 to 1250 F/g were measured from the GCD curve. The MATLAB study gave quantitative data on critical electrode characteristics which improved the understanding of the performance and a framework for further investigation in the development of sustainable energy solutions. KCI Citation Count: 0
Author Naeem, Sajid
Author_xml – sequence: 1
  givenname: Sajid
  orcidid: 0000-0001-9329-9651
  surname: Naeem
  fullname: Naeem, Sajid
  email: sajidnaeem@mmantc.edu.in
  organization: Department of Applied Sciences, Maulana Mukhtar Ahmad Nadvi Technical Campus (MMANTC)
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003129959$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kcFuEzEQhi1UJELpC3DyGWnBa--uY24hSkmkSiAazpbXHu-a7tqRbSLyPLxo3aSnHnoYzUjzf_NL879HVz54QOhjTT7XhPAvqaGsqStCm4qQtqEVe4MWlAha8VbQK7SoKRUV7wh_h25Scj1hou1ILboF-r-ZQOcYDBxCchkMXodeTRlvTyaGf84A3o_O41s3zekrXpX1fIgwgk_uCHjnj5CyG1R2wWMbw4zvTz6PkFzCOeCVOSqvy9VnGz3C7LSa8DcY1dGFiG2prRvG6ifEMs9PcrzxEIcTvs8hqgE-oLdWTQlunvs1-n272a-31d2P77v16q7SjHa5soYI0XR1IwjtNVkqoH0rOOOUUqZNbY0CYhlnDVWca9qrvu941zZAtTZLy67Rp8tdH6180E4G5c59CPIhytWv_U7WpGNLzkUR04tYx5BSBCsP0c0qnopEPsUiL7HIEos8xyJZgZYvIO3y-Xc5Kje9jrILmoqPHyDKP-Fv9OUfr1GP-_Wm7g
CitedBy_id crossref_primary_10_1007_s42452_024_06347_6
crossref_primary_10_1016_j_ijhydene_2025_01_293
crossref_primary_10_1007_s10971_024_06500_y
crossref_primary_10_1016_j_cej_2024_155284
crossref_primary_10_1007_s10854_024_14004_2
crossref_primary_10_1007_s10904_024_03569_4
Cites_doi 10.1007/978-3-031-40299-9
10.1021/jp908548f
10.1016/j.jpowsour.2010.06.042
10.1016/j.jpowsour.2008.02.017
10.1039/a807000h
10.1021/cr020731c
10.1016/j.est.2023.106713
10.1149/1.1865852
10.1038/nmat2297
10.1002/chem.201100727
10.1038/ncomms15194
10.1149/1.2140677
10.1039/B609621B
10.20964/2016.12.50
10.1021/jp9005718
10.1063/1.118568
10.1007/s12274-011-0129-6
10.1016/j.cej.2022.138613
10.1002/jccs.201200419
10.1016/j.elecom.2009.07.002
10.1002/cjoc.200690212
10.1016/j.jallcom.2023.169078
10.1016/j.nanoen.2018.08.013
10.1016/j.micromeso.2008.06.004
10.1039/D2TA07626H
10.1039/b418955h
10.1016/j.jpowsour.2006.02.065
10.1149/1.2059264
10.1021/acssuschemeng.2c05636
ContentType Journal Article
Copyright The Korean Institute of Electrical and Electronic Material Engineers 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Korean Institute of Electrical and Electronic Material Engineers 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
ACYCR
DOI 10.1007/s42341-024-00542-3
DatabaseName CrossRef
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2092-7592
EndPage 599
ExternalDocumentID oai_kci_go_kr_ARTI_10638779
10_1007_s42341_024_00542_3
GroupedDBID -EM
.UV
0R~
406
9ZL
AACDK
AAHNG
AAJBT
AASML
AATNV
ABAKF
ABDZT
ABECU
ABFTV
ABKCH
ABMQK
ABTEG
ABTKH
ACAOD
ACDTI
ACHSB
ACOKC
ACPIV
ACZOJ
ADRFC
ADURQ
ADYFF
AEFQL
AEMSY
AESKC
AGDGC
AGJBK
AGMZJ
AGQEE
AIAKS
AIGIU
AILAN
AITGF
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AXYYD
BGNMA
DPUIP
EBLON
EBS
EJD
FIGPU
FINBP
FNLPD
FSGXE
HZB
IKXTQ
IWAJR
J-C
JDI
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9J
OK1
PT4
RNS
ROL
RSV
SJYHP
SNE
SNPRN
SOHCF
SOJ
SRMVM
SSLCW
STPWE
UOJIU
UTJUX
VEKWB
VFIZW
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ACYCR
ID FETCH-LOGICAL-c326t-fd0994614902bc08ae2b597372223cd1fdae0f37342a77c2babb67654e2ccd8f3
ISSN 1229-7607
IngestDate Sun Oct 27 03:23:31 EDT 2024
Thu Apr 24 23:14:05 EDT 2025
Tue Jul 01 04:25:03 EDT 2025
Fri Feb 21 02:39:14 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Electrochemical deposition
Supercapacitor
MATLAB simulation
Material science
Cobalt hydroxides
Energy storage
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c326t-fd0994614902bc08ae2b597372223cd1fdae0f37342a77c2babb67654e2ccd8f3
ORCID 0000-0001-9329-9651
PageCount 11
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10638779
crossref_primary_10_1007_s42341_024_00542_3
crossref_citationtrail_10_1007_s42341_024_00542_3
springer_journals_10_1007_s42341_024_00542_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20241000
2024-10-00
2024-10
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 20241000
PublicationDecade 2020
PublicationPlace Seoul
PublicationPlace_xml – name: Seoul
PublicationTitle Transactions on electrical and electronic materials
PublicationTitleAbbrev Trans. Electr. Electron. Mater
PublicationYear 2024
Publisher The Korean Institute of Electrical and Electronic Material Engineers (KIEEME)
한국전기전자재료학회
Publisher_xml – name: The Korean Institute of Electrical and Electronic Material Engineers (KIEEME)
– name: 한국전기전자재료학회
References SunZZhaiYZhengLGuoWDongWFangZTangJCobalt-phthalocyanine-modified two-dimensional cobalt hydroxide complexes for highly selective electrocatalytic reduction of CO 2 to COJ. Mater. Chem. A2023113112311281:CAS:528:DC%2BB3sXkslyksw%3D%3D10.1039/D2TA07626H
MehdizadehRSaghatforoushLASanatiSSynthesis and characterization of ZnO and CuO and Co(OH)2 nanostructures by the solvothermal method without any additiveJ. Chin. Chem. Soc.20136033393441:CAS:528:DC%2BC3sXltlGltrw%3D10.1002/jccs.201200419
T. Deng, W. Zhang, O. Arcelus et al., Atomic-level energy storage mechanism of cobalt hydroxide electrode for pseudocapacitors. Nat. Commun., 8, 1, Article ID 15194, 2017
PoudelMBKimAALohaniPCYooDJKimHJAssembling zinc cobalt hydroxide/ternary sulfides heterostructure and iron oxide nanorods on three-dimensional hollow porous carbon nanofiber as high energy density hybrid supercapacitorJ. Energy Storage20236010671310.1016/j.est.2023.106713
JayashreeRSKamathPVElectrochemical synthesis of α-cobalt hydroxideJ. Mater. Chem.1999949619631:CAS:528:DyaK1MXitVCqurc%3D10.1039/a807000h
HosonoEFujiharaSHonmaIFabrication of morphology and crystal structure controlled nanorod and nanosheet cobalt hydroxide based on the difference of oxygen-solubility between water and methanol, and conversion into Co3O4J. Mater. Chem.200515193819451:CAS:528:DC%2BD2MXktVSjtbw%3D10.1039/b418955h
WangHLiangYMirfakhraiTChenZCasalongueHSDaiHAdvanced Asymmetrical Supercapacitors based on Graphene Hybrid materialsNano Res.2011487297361:CAS:528:DC%2BC3MXpvVymtb8%3D10.1007/s12274-011-0129-6
JingYHongweiLWaydeNRayLSynthesis and characterization of Cobalt Hydroxide, Cobalt Oxyhydroxide, and Cobalt Oxide NanodiscJ. Phys. Chem. C2010114111111910.1021/jp908548f
WangX-FZhengYRuanD-BA hybrid metal oxide supercapacitor in aqueous KOH ElectrolyteChin. J. Chem.2006249112611321:CAS:528:DC%2BD28XpvF2qtLs%3D10.1002/cjoc.200690212
GadwalMSMSartaleSDMatheVLPathanHMSubstrate assisted electrochemical deposition of patterned cobalt thin filmsElectrochem. Commun.2009118171117131:CAS:528:DC%2BD1MXps1WrtLY%3D10.1016/j.elecom.2009.07.002
JeevananPKoltypinYGedankenAMasataiYSynthesis of α-cobalt(II) hydroxide using ultrasound radiationJ. Mater. Chem.199992511514
MillerJMDunnBTranTDPekalaRWElectrochemical capacitors for energy managementJ. Electrochem. Soc.1997144588989107
RameshTNKamathPVShivakumaraCCorrelation of structural disorder with the reversible discharge capacity of nickel hydroxide electrodeJ. Electrochem. Soc.20051524A8068101:CAS:528:DC%2BD2MXjslSjtrk%3D10.1149/1.1865852
R. Waseem, A. Faizan, R. Nadeem, L. Yiwei, K. Ki-Hyun, Y. Jianhua, K. Sandeep, M. Andleeb, E. Eilhann, Recent advancements in supercapacitor technology. Nano Energy Volume. 52, 441–473 (October 2018)
ChengXTongYInterface coupling of cobalt hydroxide/molybdenum disulfide heterostructured nanosheet arrays for highly efficient hydrazine-assisted hydrogen generationACS Sustain. Chem. Eng.2023118321932271:CAS:528:DC%2BB3sXjt12kt74%3D10.1021/acssuschemeng.2c05636
XiaXTuJMaiYChenRWangXGuCZhaoXGraphene sheet/porous NiO hybrid film for supercapacitor applicationsChem. Eur. J.2011173910898109051:CAS:528:DC%2BC3MXhtVWisr7L10.1002/chem.20110072721837714
NiuCSichelEKHochRMoyDTennentHHigh-power electrochemical capacitors based on carbon nanotube electrodesAppl. Phys. Lett.199770148014821:CAS:528:DyaK2sXhvFelsbk%3D10.1063/1.118568
YargerMSSteinmillerEMChoiKSElectrochemical synthesis of cobalt hydroxide films with tunable interlayer spacingsChem. Commun.20071415916110.1039/B609621B
WangYYangWChenCDingRRonCFabrication and electrochemical characterization of cobalt-based layered double hydroxide nanosheet thin-film electrodesJ. Power Sources200818426826901:CAS:528:DC%2BD1cXhtVCqsbjP10.1016/j.jpowsour.2008.02.017
ZaharaddeenSubramaniCDashSA brief review on Electrode materials for SupercapacitorInt. J. Electrochem. Sci.201611106281064310.20964/2016.12.50
LeeJJangJYuTA facile aqueous-phase synthesis of co-based nanostructures composed of cobalt hydroxide and cobalt oxide for enhanced photocatalytic activity of dye-sensitized H2 productionJ. Alloys Compd.20239421690781:CAS:528:DC%2BB3sXisVKhtbc%3D10.1016/j.jallcom.2023.169078
SimonPGogotsiYMaterials for electrochemical capacitorsNat. Mater.2008758458541:CAS:528:DC%2BD1cXht12jtb%2FM10.1038/nmat229718956000
JayashreeRVishnuKElectrochemical synthesis of α-cobalt hydroxideJ. Mater. Chem.199999619631:CAS:528:DyaK1MXitVCqurc%3D10.1039/a807000h
XiaoboWBaiZDongZFuyanZFriction behavior of Mg–Al–CO3 layered double hydroxide prepared by magnesiteLubr. Eng.2001573639
ZhaoTJiangHMaJSurfactant-assisted electrochemical deposition of α-cobalt hydroxide for supercapacitorsJ. Power Sources201119628608641:CAS:528:DC%2BC3cXhtFOiu73L10.1016/j.jpowsour.2010.06.042
ZhouW-JXuM-WZhaoD-DXuC-LLiHLElectrodeposition and characterization of ordered mesoporous cobalt hydroxide films on different substrates for supercapacitorsMicroporous Mesoporous Mater.20091171–255601:CAS:528:DC%2BD1cXhsVSgsrvK10.1016/j.micromeso.2008.06.004
KamathPVDixitMIndiraLStabilized α - ni(OH)2 as Electrode Material for Alkaline secondary cellsJ. Electrochem. Soc.199414111295629591:CAS:528:DyaK2MXitVCju7o%3D10.1149/1.2059264
OswaldHRAsperRPreparation and Crystal Growth of materials with layered structures edited by Reidel D (Publishing CompanyHoland)19771711031:CAS:528:DyaE1cXpvVCitQ%3D%3D
WhittinghamMSLithium batteries and cathode materialsChem. Rev.200410410427143011:CAS:528:DC%2BD2cXnsVOnsbk%3D10.1021/cr020731c15669156
HuWFuHChenLWuXGengBHuangYZhengQSynthesis of amorphous nickel-cobalt hydroxides with high areal capacitance by one-step electrodeposition using polymeric additiveChem. Eng. J.20234511386131:CAS:528:DC%2BB38XitFGhtr%2FO10.1016/j.cej.2022.138613
ShardtYAIntroduction to MATLAB®Using MATLAB to Solve Statistical Problems: A Practical Guide to the Book Statistics for Chemical and Process Engineers2023ChamSpringer Nature Switzerland1710.1007/978-3-031-40299-9
ShaoYZSunJGaoLHydrothermal synthesis of hierarchical nanocolumns of cobalt hydroxide and cobalt oxideJ. Phys. Chem. C200911316656665721:CAS:528:DC%2BD1MXktFartLg%3D10.1021/jp9005718
MinMMachidaKJangJHNaoiKHydrous RuO2/carbon black nanocomposites with 3D porous structure by novel incipient wetness method for supercapacitorsJ. Electrochem. Soc.20061532A3343381:CAS:528:DC%2BD28XptVOjug%3D%3D10.1149/1.2140677
WuN-LNanocrystalline oxide supercapacitorsMater. Chem. Phys.2006751611
PandolfoAGHollenkampAFCarbon properties and their role in supercapacitorsJ. Power Sources2006157111271:CAS:528:DC%2BD28XltVOksbc%3D10.1016/j.jpowsour.2006.02.065
C Niu (542_CR20) 1997; 70
JM Miller (542_CR18) 1997; 144
542_CR1
AG Pandolfo (542_CR22) 2006; 157
542_CR7
M Min (542_CR19) 2006; 153
W Xiaobo (542_CR32) 2001; 57
MS Whittingham (542_CR29) 2004; 104
W Hu (542_CR13) 2023; 451
X-F Wang (542_CR27) 2006; 24
J Lee (542_CR14) 2023; 942
X Xia (542_CR31) 2011; 17
X Cheng (542_CR16) 2023; 11
Y Jing (542_CR3) 2010; 114
S Zaharaddeen (542_CR2) 2016; 11
N-L Wu (542_CR30) 2006; 75
R Mehdizadeh (542_CR17) 2013; 60
E Hosono (542_CR8) 2005; 15
HR Oswald (542_CR21) 1977; 1
RS Jayashree (542_CR9) 1999; 9
YZ Shao (542_CR24) 2009; 113
H Wang (542_CR26) 2011; 4
Y Wang (542_CR28) 2008; 184
YA Shardt (542_CR35) 2023
MS Yarger (542_CR33) 2007; 14
MSM Gadwal (542_CR5) 2009; 11
PV Kamath (542_CR11) 1994; 141
MB Poudel (542_CR15) 2023; 60
Z Sun (542_CR12) 2023; 11
TN Ramesh (542_CR23) 2005; 152
W-J Zhou (542_CR6) 2009; 117
P Simon (542_CR25) 2008; 7
T Zhao (542_CR34) 2011; 196
P Jeevanan (542_CR10) 1999; 9
R Jayashree (542_CR4) 1999; 9
References_xml – reference: NiuCSichelEKHochRMoyDTennentHHigh-power electrochemical capacitors based on carbon nanotube electrodesAppl. Phys. Lett.199770148014821:CAS:528:DyaK2sXhvFelsbk%3D10.1063/1.118568
– reference: PoudelMBKimAALohaniPCYooDJKimHJAssembling zinc cobalt hydroxide/ternary sulfides heterostructure and iron oxide nanorods on three-dimensional hollow porous carbon nanofiber as high energy density hybrid supercapacitorJ. Energy Storage20236010671310.1016/j.est.2023.106713
– reference: LeeJJangJYuTA facile aqueous-phase synthesis of co-based nanostructures composed of cobalt hydroxide and cobalt oxide for enhanced photocatalytic activity of dye-sensitized H2 productionJ. Alloys Compd.20239421690781:CAS:528:DC%2BB3sXisVKhtbc%3D10.1016/j.jallcom.2023.169078
– reference: ZaharaddeenSubramaniCDashSA brief review on Electrode materials for SupercapacitorInt. J. Electrochem. Sci.201611106281064310.20964/2016.12.50
– reference: WhittinghamMSLithium batteries and cathode materialsChem. Rev.200410410427143011:CAS:528:DC%2BD2cXnsVOnsbk%3D10.1021/cr020731c15669156
– reference: PandolfoAGHollenkampAFCarbon properties and their role in supercapacitorsJ. Power Sources2006157111271:CAS:528:DC%2BD28XltVOksbc%3D10.1016/j.jpowsour.2006.02.065
– reference: WangYYangWChenCDingRRonCFabrication and electrochemical characterization of cobalt-based layered double hydroxide nanosheet thin-film electrodesJ. Power Sources200818426826901:CAS:528:DC%2BD1cXhtVCqsbjP10.1016/j.jpowsour.2008.02.017
– reference: KamathPVDixitMIndiraLStabilized α - ni(OH)2 as Electrode Material for Alkaline secondary cellsJ. Electrochem. Soc.199414111295629591:CAS:528:DyaK2MXitVCju7o%3D10.1149/1.2059264
– reference: MehdizadehRSaghatforoushLASanatiSSynthesis and characterization of ZnO and CuO and Co(OH)2 nanostructures by the solvothermal method without any additiveJ. Chin. Chem. Soc.20136033393441:CAS:528:DC%2BC3sXltlGltrw%3D10.1002/jccs.201200419
– reference: SunZZhaiYZhengLGuoWDongWFangZTangJCobalt-phthalocyanine-modified two-dimensional cobalt hydroxide complexes for highly selective electrocatalytic reduction of CO 2 to COJ. Mater. Chem. A2023113112311281:CAS:528:DC%2BB3sXkslyksw%3D%3D10.1039/D2TA07626H
– reference: JingYHongweiLWaydeNRayLSynthesis and characterization of Cobalt Hydroxide, Cobalt Oxyhydroxide, and Cobalt Oxide NanodiscJ. Phys. Chem. C2010114111111910.1021/jp908548f
– reference: ChengXTongYInterface coupling of cobalt hydroxide/molybdenum disulfide heterostructured nanosheet arrays for highly efficient hydrazine-assisted hydrogen generationACS Sustain. Chem. Eng.2023118321932271:CAS:528:DC%2BB3sXjt12kt74%3D10.1021/acssuschemeng.2c05636
– reference: OswaldHRAsperRPreparation and Crystal Growth of materials with layered structures edited by Reidel D (Publishing CompanyHoland)19771711031:CAS:528:DyaE1cXpvVCitQ%3D%3D
– reference: R. Waseem, A. Faizan, R. Nadeem, L. Yiwei, K. Ki-Hyun, Y. Jianhua, K. Sandeep, M. Andleeb, E. Eilhann, Recent advancements in supercapacitor technology. Nano Energy Volume. 52, 441–473 (October 2018)
– reference: XiaXTuJMaiYChenRWangXGuCZhaoXGraphene sheet/porous NiO hybrid film for supercapacitor applicationsChem. Eur. J.2011173910898109051:CAS:528:DC%2BC3MXhtVWisr7L10.1002/chem.20110072721837714
– reference: XiaoboWBaiZDongZFuyanZFriction behavior of Mg–Al–CO3 layered double hydroxide prepared by magnesiteLubr. Eng.2001573639
– reference: HosonoEFujiharaSHonmaIFabrication of morphology and crystal structure controlled nanorod and nanosheet cobalt hydroxide based on the difference of oxygen-solubility between water and methanol, and conversion into Co3O4J. Mater. Chem.200515193819451:CAS:528:DC%2BD2MXktVSjtbw%3D10.1039/b418955h
– reference: MinMMachidaKJangJHNaoiKHydrous RuO2/carbon black nanocomposites with 3D porous structure by novel incipient wetness method for supercapacitorsJ. Electrochem. Soc.20061532A3343381:CAS:528:DC%2BD28XptVOjug%3D%3D10.1149/1.2140677
– reference: RameshTNKamathPVShivakumaraCCorrelation of structural disorder with the reversible discharge capacity of nickel hydroxide electrodeJ. Electrochem. Soc.20051524A8068101:CAS:528:DC%2BD2MXjslSjtrk%3D10.1149/1.1865852
– reference: ShaoYZSunJGaoLHydrothermal synthesis of hierarchical nanocolumns of cobalt hydroxide and cobalt oxideJ. Phys. Chem. C200911316656665721:CAS:528:DC%2BD1MXktFartLg%3D10.1021/jp9005718
– reference: ZhaoTJiangHMaJSurfactant-assisted electrochemical deposition of α-cobalt hydroxide for supercapacitorsJ. Power Sources201119628608641:CAS:528:DC%2BC3cXhtFOiu73L10.1016/j.jpowsour.2010.06.042
– reference: WangHLiangYMirfakhraiTChenZCasalongueHSDaiHAdvanced Asymmetrical Supercapacitors based on Graphene Hybrid materialsNano Res.2011487297361:CAS:528:DC%2BC3MXpvVymtb8%3D10.1007/s12274-011-0129-6
– reference: T. Deng, W. Zhang, O. Arcelus et al., Atomic-level energy storage mechanism of cobalt hydroxide electrode for pseudocapacitors. Nat. Commun., 8, 1, Article ID 15194, 2017
– reference: JeevananPKoltypinYGedankenAMasataiYSynthesis of α-cobalt(II) hydroxide using ultrasound radiationJ. Mater. Chem.199992511514
– reference: WangX-FZhengYRuanD-BA hybrid metal oxide supercapacitor in aqueous KOH ElectrolyteChin. J. Chem.2006249112611321:CAS:528:DC%2BD28XpvF2qtLs%3D10.1002/cjoc.200690212
– reference: HuWFuHChenLWuXGengBHuangYZhengQSynthesis of amorphous nickel-cobalt hydroxides with high areal capacitance by one-step electrodeposition using polymeric additiveChem. Eng. J.20234511386131:CAS:528:DC%2BB38XitFGhtr%2FO10.1016/j.cej.2022.138613
– reference: WuN-LNanocrystalline oxide supercapacitorsMater. Chem. Phys.2006751611
– reference: ShardtYAIntroduction to MATLAB®Using MATLAB to Solve Statistical Problems: A Practical Guide to the Book Statistics for Chemical and Process Engineers2023ChamSpringer Nature Switzerland1710.1007/978-3-031-40299-9
– reference: ZhouW-JXuM-WZhaoD-DXuC-LLiHLElectrodeposition and characterization of ordered mesoporous cobalt hydroxide films on different substrates for supercapacitorsMicroporous Mesoporous Mater.20091171–255601:CAS:528:DC%2BD1cXhsVSgsrvK10.1016/j.micromeso.2008.06.004
– reference: JayashreeRVishnuKElectrochemical synthesis of α-cobalt hydroxideJ. Mater. Chem.199999619631:CAS:528:DyaK1MXitVCqurc%3D10.1039/a807000h
– reference: JayashreeRSKamathPVElectrochemical synthesis of α-cobalt hydroxideJ. Mater. Chem.1999949619631:CAS:528:DyaK1MXitVCqurc%3D10.1039/a807000h
– reference: YargerMSSteinmillerEMChoiKSElectrochemical synthesis of cobalt hydroxide films with tunable interlayer spacingsChem. Commun.20071415916110.1039/B609621B
– reference: GadwalMSMSartaleSDMatheVLPathanHMSubstrate assisted electrochemical deposition of patterned cobalt thin filmsElectrochem. Commun.2009118171117131:CAS:528:DC%2BD1MXps1WrtLY%3D10.1016/j.elecom.2009.07.002
– reference: MillerJMDunnBTranTDPekalaRWElectrochemical capacitors for energy managementJ. Electrochem. Soc.1997144588989107
– reference: SimonPGogotsiYMaterials for electrochemical capacitorsNat. Mater.2008758458541:CAS:528:DC%2BD1cXht12jtb%2FM10.1038/nmat229718956000
– start-page: 1
  volume-title: Using MATLAB to Solve Statistical Problems: A Practical Guide to the Book Statistics for Chemical and Process Engineers
  year: 2023
  ident: 542_CR35
  doi: 10.1007/978-3-031-40299-9
– volume: 114
  start-page: 111
  issue: 1
  year: 2010
  ident: 542_CR3
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp908548f
– volume: 196
  start-page: 860
  issue: 2
  year: 2011
  ident: 542_CR34
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2010.06.042
– volume: 184
  start-page: 682
  issue: 2
  year: 2008
  ident: 542_CR28
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2008.02.017
– volume: 75
  start-page: 6
  issue: 1
  year: 2006
  ident: 542_CR30
  publication-title: Mater. Chem. Phys.
– volume: 9
  start-page: 961
  year: 1999
  ident: 542_CR4
  publication-title: J. Mater. Chem.
  doi: 10.1039/a807000h
– volume: 104
  start-page: 4271
  issue: 10
  year: 2004
  ident: 542_CR29
  publication-title: Chem. Rev.
  doi: 10.1021/cr020731c
– volume: 60
  start-page: 106713
  year: 2023
  ident: 542_CR15
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2023.106713
– volume: 9
  start-page: 961
  issue: 4
  year: 1999
  ident: 542_CR9
  publication-title: J. Mater. Chem.
  doi: 10.1039/a807000h
– volume: 152
  start-page: A806
  issue: 4
  year: 2005
  ident: 542_CR23
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1865852
– volume: 7
  start-page: 845
  issue: 5
  year: 2008
  ident: 542_CR25
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2297
– volume: 9
  start-page: 511
  issue: 2
  year: 1999
  ident: 542_CR10
  publication-title: J. Mater. Chem.
– volume: 17
  start-page: 10898
  issue: 39
  year: 2011
  ident: 542_CR31
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201100727
– ident: 542_CR7
  doi: 10.1038/ncomms15194
– volume: 153
  start-page: A334
  issue: 2
  year: 2006
  ident: 542_CR19
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2140677
– volume: 14
  start-page: 159
  year: 2007
  ident: 542_CR33
  publication-title: Chem. Commun.
  doi: 10.1039/B609621B
– volume: 11
  start-page: 10628
  year: 2016
  ident: 542_CR2
  publication-title: Int. J. Electrochem. Sci.
  doi: 10.20964/2016.12.50
– volume: 113
  start-page: 6566
  issue: 16
  year: 2009
  ident: 542_CR24
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp9005718
– volume: 70
  start-page: 1480
  year: 1997
  ident: 542_CR20
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.118568
– volume: 57
  start-page: 36
  year: 2001
  ident: 542_CR32
  publication-title: Lubr. Eng.
– volume: 144
  start-page: 89
  issue: 5889
  year: 1997
  ident: 542_CR18
  publication-title: J. Electrochem. Soc.
– volume: 4
  start-page: 729
  issue: 8
  year: 2011
  ident: 542_CR26
  publication-title: Nano Res.
  doi: 10.1007/s12274-011-0129-6
– volume: 451
  start-page: 138613
  year: 2023
  ident: 542_CR13
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.138613
– volume: 60
  start-page: 339
  issue: 3
  year: 2013
  ident: 542_CR17
  publication-title: J. Chin. Chem. Soc.
  doi: 10.1002/jccs.201200419
– volume: 11
  start-page: 1711
  issue: 8
  year: 2009
  ident: 542_CR5
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2009.07.002
– volume: 24
  start-page: 1126
  issue: 9
  year: 2006
  ident: 542_CR27
  publication-title: Chin. J. Chem.
  doi: 10.1002/cjoc.200690212
– volume: 942
  start-page: 169078
  year: 2023
  ident: 542_CR14
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2023.169078
– ident: 542_CR1
  doi: 10.1016/j.nanoen.2018.08.013
– volume: 117
  start-page: 55
  issue: 1–2
  year: 2009
  ident: 542_CR6
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2008.06.004
– volume: 11
  start-page: 1123
  issue: 3
  year: 2023
  ident: 542_CR12
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D2TA07626H
– volume: 15
  start-page: 1938
  year: 2005
  ident: 542_CR8
  publication-title: J. Mater. Chem.
  doi: 10.1039/b418955h
– volume: 157
  start-page: 11
  issue: 1
  year: 2006
  ident: 542_CR22
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2006.02.065
– volume: 141
  start-page: 2956
  issue: 11
  year: 1994
  ident: 542_CR11
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2059264
– volume: 1
  start-page: 71
  year: 1977
  ident: 542_CR21
  publication-title: Holand)
– volume: 11
  start-page: 3219
  issue: 8
  year: 2023
  ident: 542_CR16
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.2c05636
SSID ssib039560196
ssj0000314789
Score 2.3997831
Snippet The synthesis and characterization of cobalt hydroxides generated from cobalt chloride precursors at various concentrations (0.1 to 0.5 M) by using cathodic...
The synthesis and characterization of cobalt hydroxides generated from cobalt chloride precursors at various concentrations (0.1 to 0.5 M) by using cathodic...
SourceID nrf
crossref
springer
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 589
SubjectTerms Chemistry and Materials Science
Electronics and Microelectronics
Instrumentation
Materials Science
Optical and Electronic Materials
Regular Paper
전기공학
Title Electrodeposited Cobalt Hydroxide Thin Films: A Comprehensive Investigation from Synthesis to Advanced Electrochemical Behavior for High-Performance Energy Storage
URI https://link.springer.com/article/10.1007/s42341-024-00542-3
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003129959
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Transactions on Electrical and Electronic Materials, 2024, 25(5), , pp.589-599
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZ2eYEHxFWMm4zATyUocS6OeUu7TANpE9I2aW9RYjusbGunLEWMv8Mf5fiSLO3QNHiJIrdxmpyv9nfs75yD0HuZskpSoTwRJLUX8TrxKlUGHq0qmUSBDJjSjuLefrJ7FH05jo_X1t8OVEuLtvoofv01ruR_rAptYFcdJfsPlu07hQY4B_vCESwMxzvZOLc1bKQy0iu9Vquze7Sj3SvZzH9OpTJlOUc707Pzyy4E_fyiUSdOtT5IsqEFhzrS5OBqBpRQZykBUpp1AgF3I9FlF3BZFRsjUtRSEe_rIAAht_GEB-DOl8tSo8Pr6uRmm8IW4ekTFgxq8gCRtm-wXwIqv08lTAZKAYLTvXJxVs7K0d7i9KQtm1F2cl7qT-WPqd0tMH3qjZXlhQ0a9RI5C0WSbxMeEz4heUbGMcm2ST4hmU_SyLSkZOwPWiaE54T77iSDq8YkC0k66frh5iSDlsFwTyn3WGLr7n5Upo36HHyO2Fboc8N6bMscOYYQ25JONyYfqze5BIIaBZ5-IM2HqRdeT7WdvGBlBl7K9X0qpsW3eXHaFODRfC4CzSkZ4-tokzKmlQib2c54vN8NmqF2cAOXM9HQjzCImCn92D-dCxYzIaM3ft0SIVufNfUNTYChWocP0QPnI-HMAv4RWlOzx-j-IHPmE_R7FfrYQh_30Mca-thA_xPO8BLw8RLwsQY-7oGP2znugI9XgI874GMAO14FPrbAxw74T9HRTn442fVcvRFPgBPTerUEdykCvsp9Wgk_LRWtwN8OmebQQga1LJVfhyyMaMmYoFVZVQlL4khRIWRah8_Qxmw-U88RFsCiA57WqorriCU1p7FKktLnvkpEStUWCrqXXgiXjF_XhDkr-jTixlAFGKowhirCLTTqr7mwqWhu_fY7sKVB0y2o2kIfOlsXbmC7vKXTF3fq9CW6d_1_foU22mahXgN1b6s3Drx_AOn65s8
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrodeposited+Cobalt+Hydroxide+Thin+Films%3A+A+Comprehensive+Investigation+from+Synthesis+to+Advanced+Electrochemical+Behavior+for+High-Performance+Energy+Storage&rft.jtitle=Transactions+on+electrical+and+electronic+materials&rft.au=Sajid+Naeem%28Maulana+Mukhtar+Ahmad+Nadvi+Technical+Campus&rft.date=2024-10-01&rft.pub=%ED%95%9C%EA%B5%AD%EC%A0%84%EA%B8%B0%EC%A0%84%EC%9E%90%EC%9E%AC%EB%A3%8C%ED%95%99%ED%9A%8C&rft.issn=1229-7607&rft.eissn=2092-7592&rft.spage=589&rft.epage=599&rft_id=info:doi/10.1007%2Fs42341-024-00542-3&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_10638779
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1229-7607&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1229-7607&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1229-7607&client=summon