Electrodeposited Cobalt Hydroxide Thin Films: A Comprehensive Investigation from Synthesis to Advanced Electrochemical Behavior for High-Performance Energy Storage
The synthesis and characterization of cobalt hydroxides generated from cobalt chloride precursors at various concentrations (0.1 to 0.5 M) by using cathodic electrochemical deposition technique for prospective energy storage application. The Co(OH) 2 thin films were discovered to have a crystalline...
Saved in:
Published in | Transactions on electrical and electronic materials Vol. 25; no. 5; pp. 589 - 599 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Seoul
The Korean Institute of Electrical and Electronic Material Engineers (KIEEME)
01.10.2024
한국전기전자재료학회 |
Subjects | |
Online Access | Get full text |
ISSN | 1229-7607 2092-7592 |
DOI | 10.1007/s42341-024-00542-3 |
Cover
Loading…
Abstract | The synthesis and characterization of cobalt hydroxides generated from cobalt chloride precursors at various concentrations (0.1 to 0.5 M) by using cathodic electrochemical deposition technique for prospective energy storage application. The Co(OH)
2
thin films were discovered to have a crystalline structure with a crystallite size of ~ 40 nanometers, particle size of 180 nm, and a leaf-like morphology via XRD (X-ray Diffraction) and SEM (Scanning Electron Microscopy) respectively. Further properties were investigated by EDS (Energy-Dispersive X-ray Spectroscopy), FTIR (Fourier Transform Infrared Spectroscopy), and UV Vis Spectra (Ultraviolet-Visible Spectroscopy) analysis. The presence of cobalt hydroxide was confirmed by EDS, verifying the purity of the substance. Electrochemical characteristics, such as CV (Cyclic Voltammetry), GCD (Galvanostatic Charge-Discharge), and EIS (Electrochemical Impedance Spectroscopy) analysis, indicated capacitive behavior, confirming their feasibility for energy storage. The specific capacitances from 450 to 1250 F/g were measured from the GCD curve. The MATLAB study gave quantitative data on critical electrode characteristics which improved the understanding of the performance and a framework for further investigation in the development of sustainable energy solutions.
Graphical Abstract |
---|---|
AbstractList | The synthesis and characterization of cobalt hydroxides generated from cobalt chloride precursors at various concentrations (0.1 to 0.5 M) by using cathodic electrochemical deposition technique for prospective energy storage application. The Co(OH)
2
thin films were discovered to have a crystalline structure with a crystallite size of ~ 40 nanometers, particle size of 180 nm, and a leaf-like morphology via XRD (X-ray Diffraction) and SEM (Scanning Electron Microscopy) respectively. Further properties were investigated by EDS (Energy-Dispersive X-ray Spectroscopy), FTIR (Fourier Transform Infrared Spectroscopy), and UV Vis Spectra (Ultraviolet-Visible Spectroscopy) analysis. The presence of cobalt hydroxide was confirmed by EDS, verifying the purity of the substance. Electrochemical characteristics, such as CV (Cyclic Voltammetry), GCD (Galvanostatic Charge-Discharge), and EIS (Electrochemical Impedance Spectroscopy) analysis, indicated capacitive behavior, confirming their feasibility for energy storage. The specific capacitances from 450 to 1250 F/g were measured from the GCD curve. The MATLAB study gave quantitative data on critical electrode characteristics which improved the understanding of the performance and a framework for further investigation in the development of sustainable energy solutions.
Graphical Abstract The synthesis and characterization of cobalt hydroxides generated from cobalt chloride precursors at various concentrations (0.1 to 0.5 M) by using cathodic electrochemical deposition technique for prospective energy storage application. The Co(OH) 2 thin fi lms were discovered to have a crystalline structure with a crystallite size of ~ 40 nanometers, particle size of 180 nm, and a leaf-like morphology via XRD (X-ray Diff raction) and SEM (Scanning Electron Microscopy) respectively. Further properties were investigated by EDS (Energy-Dispersive X-ray Spectroscopy), FTIR (Fourier TransformInfrared Spectroscopy), and UV Vis Spectra (Ultraviolet-Visible Spectroscopy) analysis. The presence of cobalt hydroxide was confi rmed by EDS, verifying the purity of the substance. Electrochemical characteristics, such as CV (Cyclic Voltammetry), GCD (Galvanostatic Charge-Discharge), and EIS (Electrochemical Impedance Spectroscopy) analysis, indicated capacitive behavior, confi rming their feasibility for energy storage. The specifi c capacitances from 450 to 1250 F/g were measured from the GCD curve. The MATLAB study gave quantitative data on critical electrode characteristics which improved the understanding of the performance and a framework for further investigation in the development of sustainable energy solutions. KCI Citation Count: 0 |
Author | Naeem, Sajid |
Author_xml | – sequence: 1 givenname: Sajid orcidid: 0000-0001-9329-9651 surname: Naeem fullname: Naeem, Sajid email: sajidnaeem@mmantc.edu.in organization: Department of Applied Sciences, Maulana Mukhtar Ahmad Nadvi Technical Campus (MMANTC) |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003129959$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kcFuEzEQhi1UJELpC3DyGWnBa--uY24hSkmkSiAazpbXHu-a7tqRbSLyPLxo3aSnHnoYzUjzf_NL879HVz54QOhjTT7XhPAvqaGsqStCm4qQtqEVe4MWlAha8VbQK7SoKRUV7wh_h25Scj1hou1ILboF-r-ZQOcYDBxCchkMXodeTRlvTyaGf84A3o_O41s3zekrXpX1fIgwgk_uCHjnj5CyG1R2wWMbw4zvTz6PkFzCOeCVOSqvy9VnGz3C7LSa8DcY1dGFiG2prRvG6ifEMs9PcrzxEIcTvs8hqgE-oLdWTQlunvs1-n272a-31d2P77v16q7SjHa5soYI0XR1IwjtNVkqoH0rOOOUUqZNbY0CYhlnDVWca9qrvu941zZAtTZLy67Rp8tdH6180E4G5c59CPIhytWv_U7WpGNLzkUR04tYx5BSBCsP0c0qnopEPsUiL7HIEos8xyJZgZYvIO3y-Xc5Kje9jrILmoqPHyDKP-Fv9OUfr1GP-_Wm7g |
CitedBy_id | crossref_primary_10_1007_s42452_024_06347_6 crossref_primary_10_1016_j_ijhydene_2025_01_293 crossref_primary_10_1007_s10971_024_06500_y crossref_primary_10_1016_j_cej_2024_155284 crossref_primary_10_1007_s10854_024_14004_2 crossref_primary_10_1007_s10904_024_03569_4 |
Cites_doi | 10.1007/978-3-031-40299-9 10.1021/jp908548f 10.1016/j.jpowsour.2010.06.042 10.1016/j.jpowsour.2008.02.017 10.1039/a807000h 10.1021/cr020731c 10.1016/j.est.2023.106713 10.1149/1.1865852 10.1038/nmat2297 10.1002/chem.201100727 10.1038/ncomms15194 10.1149/1.2140677 10.1039/B609621B 10.20964/2016.12.50 10.1021/jp9005718 10.1063/1.118568 10.1007/s12274-011-0129-6 10.1016/j.cej.2022.138613 10.1002/jccs.201200419 10.1016/j.elecom.2009.07.002 10.1002/cjoc.200690212 10.1016/j.jallcom.2023.169078 10.1016/j.nanoen.2018.08.013 10.1016/j.micromeso.2008.06.004 10.1039/D2TA07626H 10.1039/b418955h 10.1016/j.jpowsour.2006.02.065 10.1149/1.2059264 10.1021/acssuschemeng.2c05636 |
ContentType | Journal Article |
Copyright | The Korean Institute of Electrical and Electronic Material Engineers 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Korean Institute of Electrical and Electronic Material Engineers 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION ACYCR |
DOI | 10.1007/s42341-024-00542-3 |
DatabaseName | CrossRef Korean Citation Index |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2092-7592 |
EndPage | 599 |
ExternalDocumentID | oai_kci_go_kr_ARTI_10638779 10_1007_s42341_024_00542_3 |
GroupedDBID | -EM .UV 0R~ 406 9ZL AACDK AAHNG AAJBT AASML AATNV ABAKF ABDZT ABECU ABFTV ABKCH ABMQK ABTEG ABTKH ACAOD ACDTI ACHSB ACOKC ACPIV ACZOJ ADRFC ADURQ ADYFF AEFQL AEMSY AESKC AGDGC AGJBK AGMZJ AGQEE AIAKS AIGIU AILAN AITGF AJZVZ ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AXYYD BGNMA DPUIP EBLON EBS EJD FIGPU FINBP FNLPD FSGXE HZB IKXTQ IWAJR J-C JDI JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9J OK1 PT4 RNS ROL RSV SJYHP SNE SNPRN SOHCF SOJ SRMVM SSLCW STPWE UOJIU UTJUX VEKWB VFIZW ZMTXR AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ACYCR |
ID | FETCH-LOGICAL-c326t-fd0994614902bc08ae2b597372223cd1fdae0f37342a77c2babb67654e2ccd8f3 |
ISSN | 1229-7607 |
IngestDate | Sun Oct 27 03:23:31 EDT 2024 Thu Apr 24 23:14:05 EDT 2025 Tue Jul 01 04:25:03 EDT 2025 Fri Feb 21 02:39:14 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Electrochemical deposition Supercapacitor MATLAB simulation Material science Cobalt hydroxides Energy storage |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c326t-fd0994614902bc08ae2b597372223cd1fdae0f37342a77c2babb67654e2ccd8f3 |
ORCID | 0000-0001-9329-9651 |
PageCount | 11 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_10638779 crossref_primary_10_1007_s42341_024_00542_3 crossref_citationtrail_10_1007_s42341_024_00542_3 springer_journals_10_1007_s42341_024_00542_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20241000 2024-10-00 2024-10 |
PublicationDateYYYYMMDD | 2024-10-01 |
PublicationDate_xml | – month: 10 year: 2024 text: 20241000 |
PublicationDecade | 2020 |
PublicationPlace | Seoul |
PublicationPlace_xml | – name: Seoul |
PublicationTitle | Transactions on electrical and electronic materials |
PublicationTitleAbbrev | Trans. Electr. Electron. Mater |
PublicationYear | 2024 |
Publisher | The Korean Institute of Electrical and Electronic Material Engineers (KIEEME) 한국전기전자재료학회 |
Publisher_xml | – name: The Korean Institute of Electrical and Electronic Material Engineers (KIEEME) – name: 한국전기전자재료학회 |
References | SunZZhaiYZhengLGuoWDongWFangZTangJCobalt-phthalocyanine-modified two-dimensional cobalt hydroxide complexes for highly selective electrocatalytic reduction of CO 2 to COJ. Mater. Chem. A2023113112311281:CAS:528:DC%2BB3sXkslyksw%3D%3D10.1039/D2TA07626H MehdizadehRSaghatforoushLASanatiSSynthesis and characterization of ZnO and CuO and Co(OH)2 nanostructures by the solvothermal method without any additiveJ. Chin. Chem. Soc.20136033393441:CAS:528:DC%2BC3sXltlGltrw%3D10.1002/jccs.201200419 T. Deng, W. Zhang, O. Arcelus et al., Atomic-level energy storage mechanism of cobalt hydroxide electrode for pseudocapacitors. Nat. Commun., 8, 1, Article ID 15194, 2017 PoudelMBKimAALohaniPCYooDJKimHJAssembling zinc cobalt hydroxide/ternary sulfides heterostructure and iron oxide nanorods on three-dimensional hollow porous carbon nanofiber as high energy density hybrid supercapacitorJ. Energy Storage20236010671310.1016/j.est.2023.106713 JayashreeRSKamathPVElectrochemical synthesis of α-cobalt hydroxideJ. Mater. Chem.1999949619631:CAS:528:DyaK1MXitVCqurc%3D10.1039/a807000h HosonoEFujiharaSHonmaIFabrication of morphology and crystal structure controlled nanorod and nanosheet cobalt hydroxide based on the difference of oxygen-solubility between water and methanol, and conversion into Co3O4J. Mater. Chem.200515193819451:CAS:528:DC%2BD2MXktVSjtbw%3D10.1039/b418955h WangHLiangYMirfakhraiTChenZCasalongueHSDaiHAdvanced Asymmetrical Supercapacitors based on Graphene Hybrid materialsNano Res.2011487297361:CAS:528:DC%2BC3MXpvVymtb8%3D10.1007/s12274-011-0129-6 JingYHongweiLWaydeNRayLSynthesis and characterization of Cobalt Hydroxide, Cobalt Oxyhydroxide, and Cobalt Oxide NanodiscJ. Phys. Chem. C2010114111111910.1021/jp908548f WangX-FZhengYRuanD-BA hybrid metal oxide supercapacitor in aqueous KOH ElectrolyteChin. J. Chem.2006249112611321:CAS:528:DC%2BD28XpvF2qtLs%3D10.1002/cjoc.200690212 GadwalMSMSartaleSDMatheVLPathanHMSubstrate assisted electrochemical deposition of patterned cobalt thin filmsElectrochem. Commun.2009118171117131:CAS:528:DC%2BD1MXps1WrtLY%3D10.1016/j.elecom.2009.07.002 JeevananPKoltypinYGedankenAMasataiYSynthesis of α-cobalt(II) hydroxide using ultrasound radiationJ. Mater. Chem.199992511514 MillerJMDunnBTranTDPekalaRWElectrochemical capacitors for energy managementJ. Electrochem. Soc.1997144588989107 RameshTNKamathPVShivakumaraCCorrelation of structural disorder with the reversible discharge capacity of nickel hydroxide electrodeJ. Electrochem. Soc.20051524A8068101:CAS:528:DC%2BD2MXjslSjtrk%3D10.1149/1.1865852 R. Waseem, A. Faizan, R. Nadeem, L. Yiwei, K. Ki-Hyun, Y. Jianhua, K. Sandeep, M. Andleeb, E. Eilhann, Recent advancements in supercapacitor technology. Nano Energy Volume. 52, 441–473 (October 2018) ChengXTongYInterface coupling of cobalt hydroxide/molybdenum disulfide heterostructured nanosheet arrays for highly efficient hydrazine-assisted hydrogen generationACS Sustain. Chem. Eng.2023118321932271:CAS:528:DC%2BB3sXjt12kt74%3D10.1021/acssuschemeng.2c05636 XiaXTuJMaiYChenRWangXGuCZhaoXGraphene sheet/porous NiO hybrid film for supercapacitor applicationsChem. Eur. J.2011173910898109051:CAS:528:DC%2BC3MXhtVWisr7L10.1002/chem.20110072721837714 NiuCSichelEKHochRMoyDTennentHHigh-power electrochemical capacitors based on carbon nanotube electrodesAppl. Phys. Lett.199770148014821:CAS:528:DyaK2sXhvFelsbk%3D10.1063/1.118568 YargerMSSteinmillerEMChoiKSElectrochemical synthesis of cobalt hydroxide films with tunable interlayer spacingsChem. Commun.20071415916110.1039/B609621B WangYYangWChenCDingRRonCFabrication and electrochemical characterization of cobalt-based layered double hydroxide nanosheet thin-film electrodesJ. Power Sources200818426826901:CAS:528:DC%2BD1cXhtVCqsbjP10.1016/j.jpowsour.2008.02.017 ZaharaddeenSubramaniCDashSA brief review on Electrode materials for SupercapacitorInt. J. Electrochem. Sci.201611106281064310.20964/2016.12.50 LeeJJangJYuTA facile aqueous-phase synthesis of co-based nanostructures composed of cobalt hydroxide and cobalt oxide for enhanced photocatalytic activity of dye-sensitized H2 productionJ. Alloys Compd.20239421690781:CAS:528:DC%2BB3sXisVKhtbc%3D10.1016/j.jallcom.2023.169078 SimonPGogotsiYMaterials for electrochemical capacitorsNat. Mater.2008758458541:CAS:528:DC%2BD1cXht12jtb%2FM10.1038/nmat229718956000 JayashreeRVishnuKElectrochemical synthesis of α-cobalt hydroxideJ. Mater. Chem.199999619631:CAS:528:DyaK1MXitVCqurc%3D10.1039/a807000h XiaoboWBaiZDongZFuyanZFriction behavior of Mg–Al–CO3 layered double hydroxide prepared by magnesiteLubr. Eng.2001573639 ZhaoTJiangHMaJSurfactant-assisted electrochemical deposition of α-cobalt hydroxide for supercapacitorsJ. Power Sources201119628608641:CAS:528:DC%2BC3cXhtFOiu73L10.1016/j.jpowsour.2010.06.042 ZhouW-JXuM-WZhaoD-DXuC-LLiHLElectrodeposition and characterization of ordered mesoporous cobalt hydroxide films on different substrates for supercapacitorsMicroporous Mesoporous Mater.20091171–255601:CAS:528:DC%2BD1cXhsVSgsrvK10.1016/j.micromeso.2008.06.004 KamathPVDixitMIndiraLStabilized α - ni(OH)2 as Electrode Material for Alkaline secondary cellsJ. Electrochem. Soc.199414111295629591:CAS:528:DyaK2MXitVCju7o%3D10.1149/1.2059264 OswaldHRAsperRPreparation and Crystal Growth of materials with layered structures edited by Reidel D (Publishing CompanyHoland)19771711031:CAS:528:DyaE1cXpvVCitQ%3D%3D WhittinghamMSLithium batteries and cathode materialsChem. Rev.200410410427143011:CAS:528:DC%2BD2cXnsVOnsbk%3D10.1021/cr020731c15669156 HuWFuHChenLWuXGengBHuangYZhengQSynthesis of amorphous nickel-cobalt hydroxides with high areal capacitance by one-step electrodeposition using polymeric additiveChem. Eng. J.20234511386131:CAS:528:DC%2BB38XitFGhtr%2FO10.1016/j.cej.2022.138613 ShardtYAIntroduction to MATLAB®Using MATLAB to Solve Statistical Problems: A Practical Guide to the Book Statistics for Chemical and Process Engineers2023ChamSpringer Nature Switzerland1710.1007/978-3-031-40299-9 ShaoYZSunJGaoLHydrothermal synthesis of hierarchical nanocolumns of cobalt hydroxide and cobalt oxideJ. Phys. Chem. C200911316656665721:CAS:528:DC%2BD1MXktFartLg%3D10.1021/jp9005718 MinMMachidaKJangJHNaoiKHydrous RuO2/carbon black nanocomposites with 3D porous structure by novel incipient wetness method for supercapacitorsJ. Electrochem. Soc.20061532A3343381:CAS:528:DC%2BD28XptVOjug%3D%3D10.1149/1.2140677 WuN-LNanocrystalline oxide supercapacitorsMater. Chem. Phys.2006751611 PandolfoAGHollenkampAFCarbon properties and their role in supercapacitorsJ. Power Sources2006157111271:CAS:528:DC%2BD28XltVOksbc%3D10.1016/j.jpowsour.2006.02.065 C Niu (542_CR20) 1997; 70 JM Miller (542_CR18) 1997; 144 542_CR1 AG Pandolfo (542_CR22) 2006; 157 542_CR7 M Min (542_CR19) 2006; 153 W Xiaobo (542_CR32) 2001; 57 MS Whittingham (542_CR29) 2004; 104 W Hu (542_CR13) 2023; 451 X-F Wang (542_CR27) 2006; 24 J Lee (542_CR14) 2023; 942 X Xia (542_CR31) 2011; 17 X Cheng (542_CR16) 2023; 11 Y Jing (542_CR3) 2010; 114 S Zaharaddeen (542_CR2) 2016; 11 N-L Wu (542_CR30) 2006; 75 R Mehdizadeh (542_CR17) 2013; 60 E Hosono (542_CR8) 2005; 15 HR Oswald (542_CR21) 1977; 1 RS Jayashree (542_CR9) 1999; 9 YZ Shao (542_CR24) 2009; 113 H Wang (542_CR26) 2011; 4 Y Wang (542_CR28) 2008; 184 YA Shardt (542_CR35) 2023 MS Yarger (542_CR33) 2007; 14 MSM Gadwal (542_CR5) 2009; 11 PV Kamath (542_CR11) 1994; 141 MB Poudel (542_CR15) 2023; 60 Z Sun (542_CR12) 2023; 11 TN Ramesh (542_CR23) 2005; 152 W-J Zhou (542_CR6) 2009; 117 P Simon (542_CR25) 2008; 7 T Zhao (542_CR34) 2011; 196 P Jeevanan (542_CR10) 1999; 9 R Jayashree (542_CR4) 1999; 9 |
References_xml | – reference: NiuCSichelEKHochRMoyDTennentHHigh-power electrochemical capacitors based on carbon nanotube electrodesAppl. Phys. Lett.199770148014821:CAS:528:DyaK2sXhvFelsbk%3D10.1063/1.118568 – reference: PoudelMBKimAALohaniPCYooDJKimHJAssembling zinc cobalt hydroxide/ternary sulfides heterostructure and iron oxide nanorods on three-dimensional hollow porous carbon nanofiber as high energy density hybrid supercapacitorJ. Energy Storage20236010671310.1016/j.est.2023.106713 – reference: LeeJJangJYuTA facile aqueous-phase synthesis of co-based nanostructures composed of cobalt hydroxide and cobalt oxide for enhanced photocatalytic activity of dye-sensitized H2 productionJ. Alloys Compd.20239421690781:CAS:528:DC%2BB3sXisVKhtbc%3D10.1016/j.jallcom.2023.169078 – reference: ZaharaddeenSubramaniCDashSA brief review on Electrode materials for SupercapacitorInt. J. Electrochem. Sci.201611106281064310.20964/2016.12.50 – reference: WhittinghamMSLithium batteries and cathode materialsChem. Rev.200410410427143011:CAS:528:DC%2BD2cXnsVOnsbk%3D10.1021/cr020731c15669156 – reference: PandolfoAGHollenkampAFCarbon properties and their role in supercapacitorsJ. Power Sources2006157111271:CAS:528:DC%2BD28XltVOksbc%3D10.1016/j.jpowsour.2006.02.065 – reference: WangYYangWChenCDingRRonCFabrication and electrochemical characterization of cobalt-based layered double hydroxide nanosheet thin-film electrodesJ. Power Sources200818426826901:CAS:528:DC%2BD1cXhtVCqsbjP10.1016/j.jpowsour.2008.02.017 – reference: KamathPVDixitMIndiraLStabilized α - ni(OH)2 as Electrode Material for Alkaline secondary cellsJ. Electrochem. Soc.199414111295629591:CAS:528:DyaK2MXitVCju7o%3D10.1149/1.2059264 – reference: MehdizadehRSaghatforoushLASanatiSSynthesis and characterization of ZnO and CuO and Co(OH)2 nanostructures by the solvothermal method without any additiveJ. Chin. Chem. Soc.20136033393441:CAS:528:DC%2BC3sXltlGltrw%3D10.1002/jccs.201200419 – reference: SunZZhaiYZhengLGuoWDongWFangZTangJCobalt-phthalocyanine-modified two-dimensional cobalt hydroxide complexes for highly selective electrocatalytic reduction of CO 2 to COJ. Mater. Chem. A2023113112311281:CAS:528:DC%2BB3sXkslyksw%3D%3D10.1039/D2TA07626H – reference: JingYHongweiLWaydeNRayLSynthesis and characterization of Cobalt Hydroxide, Cobalt Oxyhydroxide, and Cobalt Oxide NanodiscJ. Phys. Chem. C2010114111111910.1021/jp908548f – reference: ChengXTongYInterface coupling of cobalt hydroxide/molybdenum disulfide heterostructured nanosheet arrays for highly efficient hydrazine-assisted hydrogen generationACS Sustain. Chem. Eng.2023118321932271:CAS:528:DC%2BB3sXjt12kt74%3D10.1021/acssuschemeng.2c05636 – reference: OswaldHRAsperRPreparation and Crystal Growth of materials with layered structures edited by Reidel D (Publishing CompanyHoland)19771711031:CAS:528:DyaE1cXpvVCitQ%3D%3D – reference: R. Waseem, A. Faizan, R. Nadeem, L. Yiwei, K. Ki-Hyun, Y. Jianhua, K. Sandeep, M. Andleeb, E. Eilhann, Recent advancements in supercapacitor technology. Nano Energy Volume. 52, 441–473 (October 2018) – reference: XiaXTuJMaiYChenRWangXGuCZhaoXGraphene sheet/porous NiO hybrid film for supercapacitor applicationsChem. Eur. J.2011173910898109051:CAS:528:DC%2BC3MXhtVWisr7L10.1002/chem.20110072721837714 – reference: XiaoboWBaiZDongZFuyanZFriction behavior of Mg–Al–CO3 layered double hydroxide prepared by magnesiteLubr. Eng.2001573639 – reference: HosonoEFujiharaSHonmaIFabrication of morphology and crystal structure controlled nanorod and nanosheet cobalt hydroxide based on the difference of oxygen-solubility between water and methanol, and conversion into Co3O4J. Mater. Chem.200515193819451:CAS:528:DC%2BD2MXktVSjtbw%3D10.1039/b418955h – reference: MinMMachidaKJangJHNaoiKHydrous RuO2/carbon black nanocomposites with 3D porous structure by novel incipient wetness method for supercapacitorsJ. Electrochem. Soc.20061532A3343381:CAS:528:DC%2BD28XptVOjug%3D%3D10.1149/1.2140677 – reference: RameshTNKamathPVShivakumaraCCorrelation of structural disorder with the reversible discharge capacity of nickel hydroxide electrodeJ. Electrochem. Soc.20051524A8068101:CAS:528:DC%2BD2MXjslSjtrk%3D10.1149/1.1865852 – reference: ShaoYZSunJGaoLHydrothermal synthesis of hierarchical nanocolumns of cobalt hydroxide and cobalt oxideJ. Phys. Chem. C200911316656665721:CAS:528:DC%2BD1MXktFartLg%3D10.1021/jp9005718 – reference: ZhaoTJiangHMaJSurfactant-assisted electrochemical deposition of α-cobalt hydroxide for supercapacitorsJ. Power Sources201119628608641:CAS:528:DC%2BC3cXhtFOiu73L10.1016/j.jpowsour.2010.06.042 – reference: WangHLiangYMirfakhraiTChenZCasalongueHSDaiHAdvanced Asymmetrical Supercapacitors based on Graphene Hybrid materialsNano Res.2011487297361:CAS:528:DC%2BC3MXpvVymtb8%3D10.1007/s12274-011-0129-6 – reference: T. Deng, W. Zhang, O. Arcelus et al., Atomic-level energy storage mechanism of cobalt hydroxide electrode for pseudocapacitors. Nat. Commun., 8, 1, Article ID 15194, 2017 – reference: JeevananPKoltypinYGedankenAMasataiYSynthesis of α-cobalt(II) hydroxide using ultrasound radiationJ. Mater. Chem.199992511514 – reference: WangX-FZhengYRuanD-BA hybrid metal oxide supercapacitor in aqueous KOH ElectrolyteChin. J. Chem.2006249112611321:CAS:528:DC%2BD28XpvF2qtLs%3D10.1002/cjoc.200690212 – reference: HuWFuHChenLWuXGengBHuangYZhengQSynthesis of amorphous nickel-cobalt hydroxides with high areal capacitance by one-step electrodeposition using polymeric additiveChem. Eng. J.20234511386131:CAS:528:DC%2BB38XitFGhtr%2FO10.1016/j.cej.2022.138613 – reference: WuN-LNanocrystalline oxide supercapacitorsMater. Chem. Phys.2006751611 – reference: ShardtYAIntroduction to MATLAB®Using MATLAB to Solve Statistical Problems: A Practical Guide to the Book Statistics for Chemical and Process Engineers2023ChamSpringer Nature Switzerland1710.1007/978-3-031-40299-9 – reference: ZhouW-JXuM-WZhaoD-DXuC-LLiHLElectrodeposition and characterization of ordered mesoporous cobalt hydroxide films on different substrates for supercapacitorsMicroporous Mesoporous Mater.20091171–255601:CAS:528:DC%2BD1cXhsVSgsrvK10.1016/j.micromeso.2008.06.004 – reference: JayashreeRVishnuKElectrochemical synthesis of α-cobalt hydroxideJ. Mater. Chem.199999619631:CAS:528:DyaK1MXitVCqurc%3D10.1039/a807000h – reference: JayashreeRSKamathPVElectrochemical synthesis of α-cobalt hydroxideJ. Mater. Chem.1999949619631:CAS:528:DyaK1MXitVCqurc%3D10.1039/a807000h – reference: YargerMSSteinmillerEMChoiKSElectrochemical synthesis of cobalt hydroxide films with tunable interlayer spacingsChem. Commun.20071415916110.1039/B609621B – reference: GadwalMSMSartaleSDMatheVLPathanHMSubstrate assisted electrochemical deposition of patterned cobalt thin filmsElectrochem. Commun.2009118171117131:CAS:528:DC%2BD1MXps1WrtLY%3D10.1016/j.elecom.2009.07.002 – reference: MillerJMDunnBTranTDPekalaRWElectrochemical capacitors for energy managementJ. Electrochem. Soc.1997144588989107 – reference: SimonPGogotsiYMaterials for electrochemical capacitorsNat. Mater.2008758458541:CAS:528:DC%2BD1cXht12jtb%2FM10.1038/nmat229718956000 – start-page: 1 volume-title: Using MATLAB to Solve Statistical Problems: A Practical Guide to the Book Statistics for Chemical and Process Engineers year: 2023 ident: 542_CR35 doi: 10.1007/978-3-031-40299-9 – volume: 114 start-page: 111 issue: 1 year: 2010 ident: 542_CR3 publication-title: J. Phys. Chem. C doi: 10.1021/jp908548f – volume: 196 start-page: 860 issue: 2 year: 2011 ident: 542_CR34 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2010.06.042 – volume: 184 start-page: 682 issue: 2 year: 2008 ident: 542_CR28 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2008.02.017 – volume: 75 start-page: 6 issue: 1 year: 2006 ident: 542_CR30 publication-title: Mater. Chem. Phys. – volume: 9 start-page: 961 year: 1999 ident: 542_CR4 publication-title: J. Mater. Chem. doi: 10.1039/a807000h – volume: 104 start-page: 4271 issue: 10 year: 2004 ident: 542_CR29 publication-title: Chem. Rev. doi: 10.1021/cr020731c – volume: 60 start-page: 106713 year: 2023 ident: 542_CR15 publication-title: J. Energy Storage doi: 10.1016/j.est.2023.106713 – volume: 9 start-page: 961 issue: 4 year: 1999 ident: 542_CR9 publication-title: J. Mater. Chem. doi: 10.1039/a807000h – volume: 152 start-page: A806 issue: 4 year: 2005 ident: 542_CR23 publication-title: J. Electrochem. Soc. doi: 10.1149/1.1865852 – volume: 7 start-page: 845 issue: 5 year: 2008 ident: 542_CR25 publication-title: Nat. Mater. doi: 10.1038/nmat2297 – volume: 9 start-page: 511 issue: 2 year: 1999 ident: 542_CR10 publication-title: J. Mater. Chem. – volume: 17 start-page: 10898 issue: 39 year: 2011 ident: 542_CR31 publication-title: Chem. Eur. J. doi: 10.1002/chem.201100727 – ident: 542_CR7 doi: 10.1038/ncomms15194 – volume: 153 start-page: A334 issue: 2 year: 2006 ident: 542_CR19 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2140677 – volume: 14 start-page: 159 year: 2007 ident: 542_CR33 publication-title: Chem. Commun. doi: 10.1039/B609621B – volume: 11 start-page: 10628 year: 2016 ident: 542_CR2 publication-title: Int. J. Electrochem. Sci. doi: 10.20964/2016.12.50 – volume: 113 start-page: 6566 issue: 16 year: 2009 ident: 542_CR24 publication-title: J. Phys. Chem. C doi: 10.1021/jp9005718 – volume: 70 start-page: 1480 year: 1997 ident: 542_CR20 publication-title: Appl. Phys. Lett. doi: 10.1063/1.118568 – volume: 57 start-page: 36 year: 2001 ident: 542_CR32 publication-title: Lubr. Eng. – volume: 144 start-page: 89 issue: 5889 year: 1997 ident: 542_CR18 publication-title: J. Electrochem. Soc. – volume: 4 start-page: 729 issue: 8 year: 2011 ident: 542_CR26 publication-title: Nano Res. doi: 10.1007/s12274-011-0129-6 – volume: 451 start-page: 138613 year: 2023 ident: 542_CR13 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.138613 – volume: 60 start-page: 339 issue: 3 year: 2013 ident: 542_CR17 publication-title: J. Chin. Chem. Soc. doi: 10.1002/jccs.201200419 – volume: 11 start-page: 1711 issue: 8 year: 2009 ident: 542_CR5 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2009.07.002 – volume: 24 start-page: 1126 issue: 9 year: 2006 ident: 542_CR27 publication-title: Chin. J. Chem. doi: 10.1002/cjoc.200690212 – volume: 942 start-page: 169078 year: 2023 ident: 542_CR14 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2023.169078 – ident: 542_CR1 doi: 10.1016/j.nanoen.2018.08.013 – volume: 117 start-page: 55 issue: 1–2 year: 2009 ident: 542_CR6 publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2008.06.004 – volume: 11 start-page: 1123 issue: 3 year: 2023 ident: 542_CR12 publication-title: J. Mater. Chem. A doi: 10.1039/D2TA07626H – volume: 15 start-page: 1938 year: 2005 ident: 542_CR8 publication-title: J. Mater. Chem. doi: 10.1039/b418955h – volume: 157 start-page: 11 issue: 1 year: 2006 ident: 542_CR22 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2006.02.065 – volume: 141 start-page: 2956 issue: 11 year: 1994 ident: 542_CR11 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2059264 – volume: 1 start-page: 71 year: 1977 ident: 542_CR21 publication-title: Holand) – volume: 11 start-page: 3219 issue: 8 year: 2023 ident: 542_CR16 publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.2c05636 |
SSID | ssib039560196 ssj0000314789 |
Score | 2.3997831 |
Snippet | The synthesis and characterization of cobalt hydroxides generated from cobalt chloride precursors at various concentrations (0.1 to 0.5 M) by using cathodic... The synthesis and characterization of cobalt hydroxides generated from cobalt chloride precursors at various concentrations (0.1 to 0.5 M) by using cathodic... |
SourceID | nrf crossref springer |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 589 |
SubjectTerms | Chemistry and Materials Science Electronics and Microelectronics Instrumentation Materials Science Optical and Electronic Materials Regular Paper 전기공학 |
Title | Electrodeposited Cobalt Hydroxide Thin Films: A Comprehensive Investigation from Synthesis to Advanced Electrochemical Behavior for High-Performance Energy Storage |
URI | https://link.springer.com/article/10.1007/s42341-024-00542-3 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003129959 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Transactions on Electrical and Electronic Materials, 2024, 25(5), , pp.589-599 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZ2eYEHxFWMm4zATyUocS6OeUu7TANpE9I2aW9RYjusbGunLEWMv8Mf5fiSLO3QNHiJIrdxmpyv9nfs75yD0HuZskpSoTwRJLUX8TrxKlUGHq0qmUSBDJjSjuLefrJ7FH05jo_X1t8OVEuLtvoofv01ruR_rAptYFcdJfsPlu07hQY4B_vCESwMxzvZOLc1bKQy0iu9Vquze7Sj3SvZzH9OpTJlOUc707Pzyy4E_fyiUSdOtT5IsqEFhzrS5OBqBpRQZykBUpp1AgF3I9FlF3BZFRsjUtRSEe_rIAAht_GEB-DOl8tSo8Pr6uRmm8IW4ekTFgxq8gCRtm-wXwIqv08lTAZKAYLTvXJxVs7K0d7i9KQtm1F2cl7qT-WPqd0tMH3qjZXlhQ0a9RI5C0WSbxMeEz4heUbGMcm2ST4hmU_SyLSkZOwPWiaE54T77iSDq8YkC0k66frh5iSDlsFwTyn3WGLr7n5Upo36HHyO2Fboc8N6bMscOYYQ25JONyYfqze5BIIaBZ5-IM2HqRdeT7WdvGBlBl7K9X0qpsW3eXHaFODRfC4CzSkZ4-tokzKmlQib2c54vN8NmqF2cAOXM9HQjzCImCn92D-dCxYzIaM3ft0SIVufNfUNTYChWocP0QPnI-HMAv4RWlOzx-j-IHPmE_R7FfrYQh_30Mca-thA_xPO8BLw8RLwsQY-7oGP2znugI9XgI874GMAO14FPrbAxw74T9HRTn442fVcvRFPgBPTerUEdykCvsp9Wgk_LRWtwN8OmebQQga1LJVfhyyMaMmYoFVZVQlL4khRIWRah8_Qxmw-U88RFsCiA57WqorriCU1p7FKktLnvkpEStUWCrqXXgiXjF_XhDkr-jTixlAFGKowhirCLTTqr7mwqWhu_fY7sKVB0y2o2kIfOlsXbmC7vKXTF3fq9CW6d_1_foU22mahXgN1b6s3Drx_AOn65s8 |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrodeposited+Cobalt+Hydroxide+Thin+Films%3A+A+Comprehensive+Investigation+from+Synthesis+to+Advanced+Electrochemical+Behavior+for+High-Performance+Energy+Storage&rft.jtitle=Transactions+on+electrical+and+electronic+materials&rft.au=Sajid+Naeem%28Maulana+Mukhtar+Ahmad+Nadvi+Technical+Campus&rft.date=2024-10-01&rft.pub=%ED%95%9C%EA%B5%AD%EC%A0%84%EA%B8%B0%EC%A0%84%EC%9E%90%EC%9E%AC%EB%A3%8C%ED%95%99%ED%9A%8C&rft.issn=1229-7607&rft.eissn=2092-7592&rft.spage=589&rft.epage=599&rft_id=info:doi/10.1007%2Fs42341-024-00542-3&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_10638779 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1229-7607&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1229-7607&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1229-7607&client=summon |