Scalable Semi-Supervised Learning by Efficient Anchor Graph Regularization
Many graph-based semi-supervised learning methods for large datasets have been proposed to cope with the rapidly increasing size of data, such as Anchor Graph Regularization (AGR). This model builds a regularization framework by exploring the underlying structure of the whole dataset with both datap...
Saved in:
Published in | IEEE transactions on knowledge and data engineering Vol. 28; no. 7; pp. 1864 - 1877 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.07.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1041-4347 1558-2191 |
DOI | 10.1109/TKDE.2016.2535367 |
Cover
Loading…
Abstract | Many graph-based semi-supervised learning methods for large datasets have been proposed to cope with the rapidly increasing size of data, such as Anchor Graph Regularization (AGR). This model builds a regularization framework by exploring the underlying structure of the whole dataset with both datapoints and anchors. Nevertheless, AGR still has limitations in its two components: (1) in anchor graph construction, the estimation of the local weights between each datapoint and its neighboring anchors could be biased and relatively slow; and (2) in anchor graph regularization, the adjacency matrix that estimates the relationship between datapoints, is not sufficiently effective. In this paper, we develop an Efficient Anchor Graph Regularization (EAGR) by tackling these issues. First, we propose a fast local anchor embedding method, which reformulates the optimization of local weights and obtains an analytical solution. We show that this method better reconstructs datapoints with anchors and speeds up the optimizing process. Second, we propose a new adjacency matrix among anchors by considering the commonly linked datapoints, which leads to a more effective normalized graph Laplacian over anchors. We show that, with the novel local weight estimation and normalized graph Laplacian, EAGR is able to achieve better classification accuracy with much less computational costs. Experimental results on several publicly available datasets demonstrate the effectiveness of our approach. |
---|---|
AbstractList | Many graph-based semi-supervised learning methods for large datasets have been proposed to cope with the rapidly increasing size of data, such as Anchor Graph Regularization (AGR). This model builds a regularization framework by exploring the underlying structure of the whole dataset with both datapoints and anchors. Nevertheless, AGR still has limitations in its two components: (1) in anchor graph construction, the estimation of the local weights between each datapoint and its neighboring anchors could be biased and relatively slow; and (2) in anchor graph regularization, the adjacency matrix that estimates the relationship between datapoints, is not sufficiently effective. In this paper, we develop an Efficient Anchor Graph Regularization (EAGR) by tackling these issues. First, we propose a fast local anchor embedding method, which reformulates the optimization of local weights and obtains an analytical solution. We show that this method better reconstructs datapoints with anchors and speeds up the optimizing process. Second, we propose a new adjacency matrix among anchors by considering the commonly linked datapoints, which leads to a more effective normalized graph Laplacian over anchors. We show that, with the novel local weight estimation and normalized graph Laplacian, EAGR is able to achieve better classification accuracy with much less computational costs. Experimental results on several publicly available datasets demonstrate the effectiveness of our approach. |
Author | Shijie Hao Meng Wang Weijie Fu Dacheng Tao Xindong Wu |
Author_xml | – sequence: 1 givenname: Meng surname: Wang fullname: Wang, Meng – sequence: 2 givenname: Weijie surname: Fu fullname: Fu, Weijie – sequence: 3 givenname: Shijie surname: Hao fullname: Hao, Shijie – sequence: 4 givenname: Dacheng surname: Tao fullname: Tao, Dacheng – sequence: 5 givenname: Xindong surname: Wu fullname: Wu, Xindong |
BookMark | eNp9kD1PwzAQhi0EEuXjByCWSCwsKT5_1MmIoHxWQqIwW459AaPUKXaCBL-elFYMDCx3N7zP3enZI9uhDUjIEdAxAC3Pnu4vp2NGYTJmkks-UVtkBFIWOYMStoeZCsgFF2qX7KX0RiktVAEjcje3pjFVg9kcFz6f90uMHz6hy2ZoYvDhJas-s2lde-sxdNl5sK9tzK6jWb5mj_jSNyb6L9P5NhyQndo0CQ83fZ88X02fLm7y2cP17cX5LLecTbocReUsR85lYaVD54ZaCFBWMVEI5UohHXOuqlAoaSl1khllrKtLV4OBmu-T0_XeZWzfe0ydXvhksWlMwLZPGgomRTkRSgzRkz_Rt7aPYfhOgyplKYBSPqRgnbKxTSlirZfRL0z81ED1yq5e2dUru3pjd2DUH8b67kdDF41v_iWP16RHxN9LSjCqqOTfL0iJgQ |
CODEN | ITKEEH |
CitedBy_id | crossref_primary_10_1016_j_knosys_2018_04_017 crossref_primary_10_1109_ACCESS_2021_3138682 crossref_primary_10_1109_TKDE_2018_2831682 crossref_primary_10_1016_j_neucom_2016_11_002 crossref_primary_10_1109_TFUZZ_2023_3277692 crossref_primary_10_1016_j_engappai_2025_110194 crossref_primary_10_1016_j_ins_2020_05_018 crossref_primary_10_1080_1206212X_2017_1329262 crossref_primary_10_3934_mbe_2023505 crossref_primary_10_1145_3537900 crossref_primary_10_1016_j_neucom_2023_127173 crossref_primary_10_1109_TKDE_2019_2936475 crossref_primary_10_1109_TPAMI_2020_3011148 crossref_primary_10_1007_s11280_020_00794_y crossref_primary_10_1109_TKDE_2018_2808953 crossref_primary_10_1109_TKDE_2022_3155450 crossref_primary_10_1016_j_eswa_2021_115539 crossref_primary_10_1016_j_knosys_2024_112329 crossref_primary_10_1109_TNNLS_2019_2947156 crossref_primary_10_1016_j_ins_2017_02_035 crossref_primary_10_1109_TNNLS_2022_3166931 crossref_primary_10_1016_j_knosys_2020_105974 crossref_primary_10_1016_j_neucom_2017_04_045 crossref_primary_10_1109_TNNLS_2019_2908504 crossref_primary_10_1016_j_asoc_2023_110053 crossref_primary_10_1109_TKDE_2018_2803821 crossref_primary_10_1016_j_ins_2018_03_051 crossref_primary_10_1080_01431161_2022_2048916 crossref_primary_10_3390_rs13030371 crossref_primary_10_1016_j_neucom_2020_09_069 crossref_primary_10_1007_s10489_021_02360_z crossref_primary_10_3390_rs14010171 crossref_primary_10_1109_TKDE_2019_2893956 crossref_primary_10_1109_TKDE_2020_3015777 crossref_primary_10_1145_3643645 crossref_primary_10_1007_s10462_024_10785_4 crossref_primary_10_1109_TPAMI_2022_3187976 crossref_primary_10_1109_TNNLS_2019_2947740 crossref_primary_10_1109_TKDE_2020_3005978 crossref_primary_10_1109_TKDE_2020_2978844 crossref_primary_10_1016_j_neucom_2018_03_028 crossref_primary_10_1016_j_cie_2023_109627 crossref_primary_10_3390_s16070998 crossref_primary_10_1109_TKDE_2020_2968523 crossref_primary_10_1007_s00521_020_05078_0 crossref_primary_10_1016_j_neucom_2018_06_047 crossref_primary_10_1109_TKDE_2017_2785784 crossref_primary_10_1016_j_compeleceng_2022_107994 crossref_primary_10_1109_TNNLS_2022_3155478 crossref_primary_10_1109_LGRS_2021_3054032 crossref_primary_10_1007_s11042_021_10529_4 crossref_primary_10_1007_s11063_021_10453_6 crossref_primary_10_1109_TKDE_2022_3151315 crossref_primary_10_1109_TMM_2019_2931808 crossref_primary_10_1007_s10489_022_04333_2 crossref_primary_10_1109_TFUZZ_2024_3349637 crossref_primary_10_1109_TMM_2023_3340095 crossref_primary_10_1016_j_ijcce_2022_10_002 crossref_primary_10_1016_j_inffus_2024_102225 crossref_primary_10_3390_info15100591 crossref_primary_10_1109_TIP_2021_3082297 crossref_primary_10_1016_j_asoc_2023_111164 crossref_primary_10_1109_TKDE_2022_3181208 crossref_primary_10_1109_TKDE_2022_3146403 crossref_primary_10_1109_TCSVT_2017_2703920 crossref_primary_10_1109_TCSVT_2018_2869875 crossref_primary_10_2139_ssrn_4173735 crossref_primary_10_1016_j_jksuci_2023_03_014 crossref_primary_10_1007_s11517_024_03094_z crossref_primary_10_1109_TKDE_2017_2701825 crossref_primary_10_1007_s13042_023_01894_7 crossref_primary_10_1016_j_ins_2017_08_033 crossref_primary_10_1109_TKDE_2018_2882197 crossref_primary_10_1016_j_jvcir_2017_07_005 crossref_primary_10_1016_j_neucom_2019_12_130 crossref_primary_10_1016_j_ins_2021_11_047 crossref_primary_10_1109_TPAMI_2022_3166894 crossref_primary_10_1109_ACCESS_2019_2914034 crossref_primary_10_1109_TPAMI_2019_2906603 crossref_primary_10_1007_s10489_022_03600_6 crossref_primary_10_1016_j_knosys_2019_105126 crossref_primary_10_1016_j_ins_2020_07_065 crossref_primary_10_1016_j_neucom_2019_08_036 crossref_primary_10_1109_TKDE_2022_3200685 crossref_primary_10_1109_TNNLS_2017_2777489 crossref_primary_10_1016_j_knosys_2020_106505 crossref_primary_10_1007_s10462_023_10397_4 crossref_primary_10_3390_math12203242 crossref_primary_10_1016_j_patcog_2017_09_043 crossref_primary_10_3390_app15052535 crossref_primary_10_1109_TBDATA_2017_2773096 crossref_primary_10_1016_j_eswa_2024_123402 crossref_primary_10_1007_s11042_019_7582_8 crossref_primary_10_1016_j_patcog_2024_110860 crossref_primary_10_1371_journal_pone_0288457 crossref_primary_10_1007_s00521_023_08548_3 crossref_primary_10_1016_j_engappai_2024_108215 crossref_primary_10_3233_IDA_194961 crossref_primary_10_1109_TCYB_2017_2761908 crossref_primary_10_1016_j_future_2019_05_033 crossref_primary_10_1016_j_neucom_2021_08_052 crossref_primary_10_1109_TMM_2019_2954741 crossref_primary_10_1007_s10994_021_05962_3 crossref_primary_10_1109_JSTARS_2021_3076085 crossref_primary_10_1109_TCYB_2018_2804326 crossref_primary_10_1109_TKDE_2017_2654445 crossref_primary_10_1109_TNNLS_2022_3157746 crossref_primary_10_1109_TCYB_2021_3061660 crossref_primary_10_1109_TNNLS_2021_3061164 crossref_primary_10_1016_j_patrec_2018_06_024 crossref_primary_10_1016_j_ins_2024_121786 crossref_primary_10_1016_j_neunet_2018_07_017 crossref_primary_10_3390_e21111125 crossref_primary_10_1109_TKDE_2019_2893638 crossref_primary_10_1007_s13042_019_01035_z crossref_primary_10_1016_j_ins_2024_120934 crossref_primary_10_1109_TIP_2017_2745109 crossref_primary_10_1109_TKDE_2020_3024099 crossref_primary_10_1109_TCYB_2018_2883970 crossref_primary_10_1109_TMM_2024_3521778 crossref_primary_10_1109_TCSVT_2022_3197230 crossref_primary_10_3390_s19183867 crossref_primary_10_1016_j_ins_2017_02_009 crossref_primary_10_1109_TCYB_2019_2951207 crossref_primary_10_1016_j_knosys_2017_09_019 crossref_primary_10_1109_ACCESS_2023_3271730 crossref_primary_10_1145_3422181 crossref_primary_10_1016_j_neucom_2020_07_148 crossref_primary_10_1007_s10489_024_05962_5 crossref_primary_10_1016_j_neucom_2024_128367 crossref_primary_10_1109_TIP_2024_3444320 crossref_primary_10_1109_TNNLS_2020_2979607 crossref_primary_10_1109_TBDATA_2017_2757522 crossref_primary_10_1145_3376927 crossref_primary_10_1007_s11042_019_7567_7 crossref_primary_10_1007_s41060_023_00403_x crossref_primary_10_1016_j_patrec_2018_08_008 crossref_primary_10_1109_TKDE_2017_2749574 crossref_primary_10_1109_TKDE_2017_2728531 crossref_primary_10_1016_j_ins_2021_08_099 crossref_primary_10_1109_TKDE_2018_2792021 crossref_primary_10_1109_TKDE_2021_3112520 crossref_primary_10_1109_ACCESS_2019_2893355 crossref_primary_10_1016_j_inffus_2021_11_014 crossref_primary_10_3233_JIFS_231116 crossref_primary_10_1007_s13369_024_09878_7 crossref_primary_10_1016_j_inffus_2023_101947 crossref_primary_10_1109_TETCI_2022_3224937 crossref_primary_10_1109_TPAMI_2022_3225461 crossref_primary_10_1007_s11831_021_09542_5 crossref_primary_10_1109_TCYB_2018_2824299 |
Cites_doi | 10.1109/TCSVT.2009.2017400 10.1007/s10115-013-0715-x 10.1007/978-1-4419-8853-9 10.1145/2647868.2655035 10.1145/2623330.2623731 10.1109/ICTAI.2005.17 10.1023/B:MACH.0000033120.25363.1e 10.1109/TMM.2014.2298841 10.1007/s10115-014-0810-7 10.1109/ICASSP.2013.6638233 10.1109/CVPR.2012.6247790 10.1109/CVPR.2010.5540018 10.1109/CVPR.2015.7299066 10.1109/ICCV.2013.323 10.1109/TPAMI.2013.231 10.1109/CVPR.2010.5540120 10.1109/TKDE.2007.190646 10.1109/TKDE.2005.186 10.1109/JPROC.2012.2197809 10.1109/CVPR.1997.609451 10.1016/j.cviu.2014.04.001 10.1109/ICCV.2013.78 10.1142/S0218001414500013 10.1109/TKDE.2007.190672 10.2200/S00196ED1V01Y200906AIM006 10.1109/TCYB.2014.2358564 10.1109/TNNLS.2014.2315526 10.1145/1553374.1553531 10.1016/j.neucom.2014.08.035 10.1109/TKDE.2007.190644 10.1109/TIP.2015.2405479 10.1007/978-3-540-87479-9_48 10.1109/TIP.2015.2502147 10.1137/1.9781611972825.74 10.1016/0167-8655(94)00074-D 10.1126/science.290.5500.2323 10.1007/s10115-013-0702-2 10.1109/TMM.2013.2271746 10.1007/s10115-013-0706-y 10.1109/TKDE.2013.70 10.1145/1878137.1878142 10.1145/279943.279962 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
DOI | 10.1109/TKDE.2016.2535367 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Technology Research Database Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1558-2191 |
EndPage | 1877 |
ExternalDocumentID | 4087035591 10_1109_TKDE_2016_2535367 7420705 |
Genre | orig-research |
GrantInformation_xml | – fundername: Australian Research Council grantid: DP-140102164; FT-130101457 funderid: 10.13039/501100000923 – fundername: Program for Changjiang Scholars and Innovative Research Team in University – fundername: National Natural Science Foundation of China grantid: 61272393; 61322201; 61432019 funderid: 10.13039/501100001809 – fundername: Ministry of Education grantid: IRT13059 funderid: 10.13039/501100002701 – fundername: National 973 Program of China grantid: 2014CB347600; 2013CB329604 |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AGQYO AGSQL AHBIQ AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 UHB AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
ID | FETCH-LOGICAL-c326t-e4bdc3e3358c5deddc5d8417c724847d945d2ddbbe475c00d52a7acdf9df1a1f3 |
IEDL.DBID | RIE |
ISSN | 1041-4347 |
IngestDate | Fri Jul 11 12:12:22 EDT 2025 Sun Jun 29 12:25:14 EDT 2025 Thu Apr 24 22:54:55 EDT 2025 Tue Jul 01 03:14:36 EDT 2025 Wed Aug 27 02:52:17 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Semi-supervised learning local weight estimation anchor graph |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c326t-e4bdc3e3358c5deddc5d8417c724847d945d2ddbbe475c00d52a7acdf9df1a1f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1795941003 |
PQPubID | 85438 |
PageCount | 14 |
ParticipantIDs | proquest_journals_1795941003 crossref_primary_10_1109_TKDE_2016_2535367 crossref_citationtrail_10_1109_TKDE_2016_2535367 ieee_primary_7420705 proquest_miscellaneous_1825496474 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-July-1 2016-7-1 20160701 |
PublicationDateYYYYMMDD | 2016-07-01 |
PublicationDate_xml | – month: 07 year: 2016 text: 2016-July-1 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on knowledge and data engineering |
PublicationTitleAbbrev | TKDE |
PublicationYear | 2016 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref53 ref52 ref55 ref16 ref19 liu (ref23) 0 bishop (ref3) 2006 ref50 yang (ref44) 0 jaakkola (ref17) 0; 14 ref45 zelnik-manor (ref46) 0 ref48 melacci (ref26) 2011; 12 ref47 ref42 ref41 ref43 zhou (ref51) 0; 16 ref49 ref8 ref7 mohar (ref27) 1991; 2 ref9 ref4 ref6 ref40 ref35 ref34 ref37 elkan (ref10) 0; 3 ref36 ref31 ref30 ref33 ref32 ref2 nesterov (ref28) 2004; 87 ref1 ref39 ref38 liu (ref21) 0 zhu (ref54) 0; 3 cai (ref5) 2015; 45 ref24 ref25 ref20 ref22 fergus (ref11) 0 joachims (ref18) 0 ref29 |
References_xml | – ident: ref40 doi: 10.1109/TCSVT.2009.2017400 – ident: ref20 doi: 10.1007/s10115-013-0715-x – volume: 87 year: 2004 ident: ref28 publication-title: Introductory Lectures on Convex Optimization doi: 10.1007/978-1-4419-8853-9 – ident: ref50 doi: 10.1145/2647868.2655035 – ident: ref36 doi: 10.1145/2623330.2623731 – ident: ref35 doi: 10.1109/ICTAI.2005.17 – ident: ref2 doi: 10.1023/B:MACH.0000033120.25363.1e – ident: ref9 doi: 10.1109/TMM.2014.2298841 – ident: ref25 doi: 10.1007/s10115-014-0810-7 – ident: ref19 doi: 10.1109/ICASSP.2013.6638233 – ident: ref38 doi: 10.1109/CVPR.2012.6247790 – volume: 2 start-page: 871 year: 1991 ident: ref27 article-title: The laplacian spectrum of graphs publication-title: Graph Theory Combinatorics Appl – ident: ref39 doi: 10.1109/CVPR.2010.5540018 – ident: ref13 doi: 10.1109/CVPR.2015.7299066 – volume: 14 start-page: 945 year: 0 ident: ref17 article-title: Partially labeled classification with Markov random walks publication-title: Proc Conf Adv Neural Inform Process Syst – ident: ref8 doi: 10.1109/ICCV.2013.323 – ident: ref29 doi: 10.1109/TPAMI.2013.231 – ident: ref14 doi: 10.1109/CVPR.2010.5540120 – volume: 3 start-page: 147 year: 0 ident: ref10 article-title: Using the triangle inequality to accelerate k-means publication-title: Proc 20th Int Conf Mach Learning – ident: ref30 doi: 10.1109/TKDE.2007.190646 – ident: ref53 doi: 10.1109/TKDE.2005.186 – ident: ref22 doi: 10.1109/JPROC.2012.2197809 – volume: 16 start-page: 321 year: 0 ident: ref51 article-title: Learning with local and global consistency publication-title: Proc Conf Adv Neural Inform Process Syst – ident: ref1 doi: 10.1109/CVPR.1997.609451 – year: 2006 ident: ref3 publication-title: Pattern Recognition and Machine Learning – volume: 3 start-page: 912 year: 0 ident: ref54 article-title: Semi-supervised learning using Gaussian fields and harmonic functions publication-title: Proc 20th Int Conf Mach Learning – ident: ref7 doi: 10.1016/j.cviu.2014.04.001 – ident: ref42 doi: 10.1109/ICCV.2013.78 – volume: 12 start-page: 1149 year: 2011 ident: ref26 article-title: Laplacian support vector machines trained in the primal publication-title: J Mach Learning Res – ident: ref12 doi: 10.1142/S0218001414500013 – ident: ref37 doi: 10.1109/TKDE.2007.190672 – ident: ref55 doi: 10.2200/S00196ED1V01Y200906AIM006 – volume: 45 start-page: 1669 year: 2015 ident: ref5 article-title: Large scale spectral clustering with landmark-based representation publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2014.2358564 – ident: ref48 doi: 10.1109/TNNLS.2014.2315526 – ident: ref47 doi: 10.1145/1553374.1553531 – ident: ref16 doi: 10.1016/j.neucom.2014.08.035 – ident: ref52 doi: 10.1109/TKDE.2007.190644 – ident: ref41 doi: 10.1109/TIP.2015.2405479 – start-page: 679 year: 0 ident: ref21 article-title: Large graph construction for scalable semi-supervised learning publication-title: Proc 27th Int Conf Mach Learning – start-page: 1 year: 0 ident: ref23 article-title: Hashing with graphs publication-title: Proc 28th Int Conf Mach Learning – ident: ref15 doi: 10.1007/978-3-540-87479-9_48 – ident: ref49 doi: 10.1109/TIP.2015.2502147 – ident: ref33 doi: 10.1137/1.9781611972825.74 – ident: ref6 doi: 10.1016/0167-8655(94)00074-D – ident: ref31 doi: 10.1126/science.290.5500.2323 – ident: ref45 doi: 10.1007/s10115-013-0702-2 – ident: ref32 doi: 10.1109/TMM.2013.2271746 – ident: ref34 doi: 10.1007/s10115-013-0706-y – start-page: 522 year: 0 ident: ref11 article-title: Semi-supervised learning in gigantic image collections publication-title: Proc Conf Adv Neural Inform Process Syst – ident: ref43 doi: 10.1109/TKDE.2013.70 – ident: ref24 doi: 10.1145/1878137.1878142 – start-page: 200 year: 0 ident: ref18 article-title: Transductive inference for text classification using support vector machines publication-title: Proc 16th Int Conf Mach Learning – ident: ref4 doi: 10.1145/279943.279962 – start-page: 831 year: 0 ident: ref44 article-title: Clustering by low-rank doubly stochastic matrix decomposition publication-title: Proc 29th Int Conf Mach Learn – start-page: 1601 year: 0 ident: ref46 article-title: Self-tuning spectral clustering publication-title: Proc Conf Adv Neural Inform Process Syst |
SSID | ssj0008781 |
Score | 2.5732884 |
Snippet | Many graph-based semi-supervised learning methods for large datasets have been proposed to cope with the rapidly increasing size of data, such as Anchor Graph... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1864 |
SubjectTerms | AGR anchor graph Anchors Computational efficiency Computational modeling Construction Estimation Graphs Laplace equations Learning local weight estimation Optimization Regularization Semi-supervised learning Semisupervised learning |
Title | Scalable Semi-Supervised Learning by Efficient Anchor Graph Regularization |
URI | https://ieeexplore.ieee.org/document/7420705 https://www.proquest.com/docview/1795941003 https://www.proquest.com/docview/1825496474 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4Bp3Jgy0tsochIPSGyxImdxxG1uyCq7YEFiVsUexyEoNnV7uZAf33HjjetAFW9RIlix5bHHs_EM98H8MWmL0YSs0AkUgX0UAZZIpKAV0mcVEIq4cCqxz-SqztxfS_v1-Csy4UxxrjgMzOwt-4sH6e6sb_KzsmNoxkq12GdHLc2V6vTulnqCEnJuyCfKBapP8HkYX5--_3b0AZxJYNIxjJ2lPJ_9iBHqvJGE7vtZdSD8apjbVTJ06BZqoH-9Qqz8X97_hG2vJ3JLtqJsQ1rpt6B3orDgfklvQObfwES7sL1hERmk6nYxPx8DCbNzKqShUHmcVgfmHphQwc7QQ2yi5q055xdWtRrduNo7ec-sXMP7kbD269XgWdbCDSZcMvACIU6NnEsMy3RINI1EzzVaSRoC8NcSIwQlTIilToMUUZlWmqscqx4yat4HzbqaW0OgKGsKqNyrnOlBYaoEoMRF4pT1ZIsnD6Eq_EvtIcit4wYz4VzScK8sCIrrMgKL7I-nHZVZi0Ox78K71oRdAX96PfhaCXkwq_URcEt2brgpNz6cNK9pjVmD07K2kwbKuPcaJrW4tP7Xz6ED7b9Noz3CDaW88Z8JmNlqY7dLP0Na5zlgQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BPUAPpbzEtrQ1EidEljix8ziidukWWA7sInGLYo-DqtIsWjaH9td37HgDolXFJUoUJ7E84_FMPPN9AAe2fDGSmAUikSqgizLIEpEEvEripBJSCQdWPbpMhtfi7EbeLMFRVwtjjHHJZ6ZvT91ePk51Y3-VHVMYRxoql-EVrfuSt9Vand3NUkdJSvEFRUWxSP0eJg_z48n5l4FN40r6kYxl7EjlH1chR6vyly12C8zpOowWXWvzSn70m7nq69_PUBtf2ve38MZ7muykVY0NWDL1JqwvWByYn9Sb8PoJJOEWnI1JaLacio3Nz-_BuLm3xuTBIPNIrLdM_WIDBzxBH2QnNdnPGftqca_ZlSO2n_nSzm24Ph1MPg8Dz7cQaHLi5oERCnVs4lhmWqJBpGMmeKrTSNAihrmQGCEqZUQqdRiijMq01FjlWPGSV_EOrNTT2uwCQ1lVRuVc50oLDFElBiMuFKdHS_JxehAuxr_QHozccmLcFS4oCfPCiqywIiu8yHpw2D1y3yJx_K_xlhVB19CPfg_2FkIu_Fx9KLilWxeczFsP9rvbNMvs1klZm2lDbVwgTYot3v37zZ9gdTgZXRQX3y7P38Oa7Uub1LsHK_NZYz6Q6zJXH53G_gGJGujK |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scalable+Semi-Supervised+Learning+by+Efficient+Anchor+Graph+Regularization&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Wang%2C+Meng&rft.au=Fu%2C+Weijie&rft.au=Hao%2C+Shijie&rft.au=Tao%2C+Dacheng&rft.date=2016-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1041-4347&rft.eissn=1558-2191&rft.volume=28&rft.issue=7&rft.spage=1864&rft_id=info:doi/10.1109%2FTKDE.2016.2535367&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4087035591 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon |