Scalable Semi-Supervised Learning by Efficient Anchor Graph Regularization

Many graph-based semi-supervised learning methods for large datasets have been proposed to cope with the rapidly increasing size of data, such as Anchor Graph Regularization (AGR). This model builds a regularization framework by exploring the underlying structure of the whole dataset with both datap...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on knowledge and data engineering Vol. 28; no. 7; pp. 1864 - 1877
Main Authors Wang, Meng, Fu, Weijie, Hao, Shijie, Tao, Dacheng, Wu, Xindong
Format Journal Article
LanguageEnglish
Published New York IEEE 01.07.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1041-4347
1558-2191
DOI10.1109/TKDE.2016.2535367

Cover

Loading…
Abstract Many graph-based semi-supervised learning methods for large datasets have been proposed to cope with the rapidly increasing size of data, such as Anchor Graph Regularization (AGR). This model builds a regularization framework by exploring the underlying structure of the whole dataset with both datapoints and anchors. Nevertheless, AGR still has limitations in its two components: (1) in anchor graph construction, the estimation of the local weights between each datapoint and its neighboring anchors could be biased and relatively slow; and (2) in anchor graph regularization, the adjacency matrix that estimates the relationship between datapoints, is not sufficiently effective. In this paper, we develop an Efficient Anchor Graph Regularization (EAGR) by tackling these issues. First, we propose a fast local anchor embedding method, which reformulates the optimization of local weights and obtains an analytical solution. We show that this method better reconstructs datapoints with anchors and speeds up the optimizing process. Second, we propose a new adjacency matrix among anchors by considering the commonly linked datapoints, which leads to a more effective normalized graph Laplacian over anchors. We show that, with the novel local weight estimation and normalized graph Laplacian, EAGR is able to achieve better classification accuracy with much less computational costs. Experimental results on several publicly available datasets demonstrate the effectiveness of our approach.
AbstractList Many graph-based semi-supervised learning methods for large datasets have been proposed to cope with the rapidly increasing size of data, such as Anchor Graph Regularization (AGR). This model builds a regularization framework by exploring the underlying structure of the whole dataset with both datapoints and anchors. Nevertheless, AGR still has limitations in its two components: (1) in anchor graph construction, the estimation of the local weights between each datapoint and its neighboring anchors could be biased and relatively slow; and (2) in anchor graph regularization, the adjacency matrix that estimates the relationship between datapoints, is not sufficiently effective. In this paper, we develop an Efficient Anchor Graph Regularization (EAGR) by tackling these issues. First, we propose a fast local anchor embedding method, which reformulates the optimization of local weights and obtains an analytical solution. We show that this method better reconstructs datapoints with anchors and speeds up the optimizing process. Second, we propose a new adjacency matrix among anchors by considering the commonly linked datapoints, which leads to a more effective normalized graph Laplacian over anchors. We show that, with the novel local weight estimation and normalized graph Laplacian, EAGR is able to achieve better classification accuracy with much less computational costs. Experimental results on several publicly available datasets demonstrate the effectiveness of our approach.
Author Shijie Hao
Meng Wang
Weijie Fu
Dacheng Tao
Xindong Wu
Author_xml – sequence: 1
  givenname: Meng
  surname: Wang
  fullname: Wang, Meng
– sequence: 2
  givenname: Weijie
  surname: Fu
  fullname: Fu, Weijie
– sequence: 3
  givenname: Shijie
  surname: Hao
  fullname: Hao, Shijie
– sequence: 4
  givenname: Dacheng
  surname: Tao
  fullname: Tao, Dacheng
– sequence: 5
  givenname: Xindong
  surname: Wu
  fullname: Wu, Xindong
BookMark eNp9kD1PwzAQhi0EEuXjByCWSCwsKT5_1MmIoHxWQqIwW459AaPUKXaCBL-elFYMDCx3N7zP3enZI9uhDUjIEdAxAC3Pnu4vp2NGYTJmkks-UVtkBFIWOYMStoeZCsgFF2qX7KX0RiktVAEjcje3pjFVg9kcFz6f90uMHz6hy2ZoYvDhJas-s2lde-sxdNl5sK9tzK6jWb5mj_jSNyb6L9P5NhyQndo0CQ83fZ88X02fLm7y2cP17cX5LLecTbocReUsR85lYaVD54ZaCFBWMVEI5UohHXOuqlAoaSl1khllrKtLV4OBmu-T0_XeZWzfe0ydXvhksWlMwLZPGgomRTkRSgzRkz_Rt7aPYfhOgyplKYBSPqRgnbKxTSlirZfRL0z81ED1yq5e2dUru3pjd2DUH8b67kdDF41v_iWP16RHxN9LSjCqqOTfL0iJgQ
CODEN ITKEEH
CitedBy_id crossref_primary_10_1016_j_knosys_2018_04_017
crossref_primary_10_1109_ACCESS_2021_3138682
crossref_primary_10_1109_TKDE_2018_2831682
crossref_primary_10_1016_j_neucom_2016_11_002
crossref_primary_10_1109_TFUZZ_2023_3277692
crossref_primary_10_1016_j_engappai_2025_110194
crossref_primary_10_1016_j_ins_2020_05_018
crossref_primary_10_1080_1206212X_2017_1329262
crossref_primary_10_3934_mbe_2023505
crossref_primary_10_1145_3537900
crossref_primary_10_1016_j_neucom_2023_127173
crossref_primary_10_1109_TKDE_2019_2936475
crossref_primary_10_1109_TPAMI_2020_3011148
crossref_primary_10_1007_s11280_020_00794_y
crossref_primary_10_1109_TKDE_2018_2808953
crossref_primary_10_1109_TKDE_2022_3155450
crossref_primary_10_1016_j_eswa_2021_115539
crossref_primary_10_1016_j_knosys_2024_112329
crossref_primary_10_1109_TNNLS_2019_2947156
crossref_primary_10_1016_j_ins_2017_02_035
crossref_primary_10_1109_TNNLS_2022_3166931
crossref_primary_10_1016_j_knosys_2020_105974
crossref_primary_10_1016_j_neucom_2017_04_045
crossref_primary_10_1109_TNNLS_2019_2908504
crossref_primary_10_1016_j_asoc_2023_110053
crossref_primary_10_1109_TKDE_2018_2803821
crossref_primary_10_1016_j_ins_2018_03_051
crossref_primary_10_1080_01431161_2022_2048916
crossref_primary_10_3390_rs13030371
crossref_primary_10_1016_j_neucom_2020_09_069
crossref_primary_10_1007_s10489_021_02360_z
crossref_primary_10_3390_rs14010171
crossref_primary_10_1109_TKDE_2019_2893956
crossref_primary_10_1109_TKDE_2020_3015777
crossref_primary_10_1145_3643645
crossref_primary_10_1007_s10462_024_10785_4
crossref_primary_10_1109_TPAMI_2022_3187976
crossref_primary_10_1109_TNNLS_2019_2947740
crossref_primary_10_1109_TKDE_2020_3005978
crossref_primary_10_1109_TKDE_2020_2978844
crossref_primary_10_1016_j_neucom_2018_03_028
crossref_primary_10_1016_j_cie_2023_109627
crossref_primary_10_3390_s16070998
crossref_primary_10_1109_TKDE_2020_2968523
crossref_primary_10_1007_s00521_020_05078_0
crossref_primary_10_1016_j_neucom_2018_06_047
crossref_primary_10_1109_TKDE_2017_2785784
crossref_primary_10_1016_j_compeleceng_2022_107994
crossref_primary_10_1109_TNNLS_2022_3155478
crossref_primary_10_1109_LGRS_2021_3054032
crossref_primary_10_1007_s11042_021_10529_4
crossref_primary_10_1007_s11063_021_10453_6
crossref_primary_10_1109_TKDE_2022_3151315
crossref_primary_10_1109_TMM_2019_2931808
crossref_primary_10_1007_s10489_022_04333_2
crossref_primary_10_1109_TFUZZ_2024_3349637
crossref_primary_10_1109_TMM_2023_3340095
crossref_primary_10_1016_j_ijcce_2022_10_002
crossref_primary_10_1016_j_inffus_2024_102225
crossref_primary_10_3390_info15100591
crossref_primary_10_1109_TIP_2021_3082297
crossref_primary_10_1016_j_asoc_2023_111164
crossref_primary_10_1109_TKDE_2022_3181208
crossref_primary_10_1109_TKDE_2022_3146403
crossref_primary_10_1109_TCSVT_2017_2703920
crossref_primary_10_1109_TCSVT_2018_2869875
crossref_primary_10_2139_ssrn_4173735
crossref_primary_10_1016_j_jksuci_2023_03_014
crossref_primary_10_1007_s11517_024_03094_z
crossref_primary_10_1109_TKDE_2017_2701825
crossref_primary_10_1007_s13042_023_01894_7
crossref_primary_10_1016_j_ins_2017_08_033
crossref_primary_10_1109_TKDE_2018_2882197
crossref_primary_10_1016_j_jvcir_2017_07_005
crossref_primary_10_1016_j_neucom_2019_12_130
crossref_primary_10_1016_j_ins_2021_11_047
crossref_primary_10_1109_TPAMI_2022_3166894
crossref_primary_10_1109_ACCESS_2019_2914034
crossref_primary_10_1109_TPAMI_2019_2906603
crossref_primary_10_1007_s10489_022_03600_6
crossref_primary_10_1016_j_knosys_2019_105126
crossref_primary_10_1016_j_ins_2020_07_065
crossref_primary_10_1016_j_neucom_2019_08_036
crossref_primary_10_1109_TKDE_2022_3200685
crossref_primary_10_1109_TNNLS_2017_2777489
crossref_primary_10_1016_j_knosys_2020_106505
crossref_primary_10_1007_s10462_023_10397_4
crossref_primary_10_3390_math12203242
crossref_primary_10_1016_j_patcog_2017_09_043
crossref_primary_10_3390_app15052535
crossref_primary_10_1109_TBDATA_2017_2773096
crossref_primary_10_1016_j_eswa_2024_123402
crossref_primary_10_1007_s11042_019_7582_8
crossref_primary_10_1016_j_patcog_2024_110860
crossref_primary_10_1371_journal_pone_0288457
crossref_primary_10_1007_s00521_023_08548_3
crossref_primary_10_1016_j_engappai_2024_108215
crossref_primary_10_3233_IDA_194961
crossref_primary_10_1109_TCYB_2017_2761908
crossref_primary_10_1016_j_future_2019_05_033
crossref_primary_10_1016_j_neucom_2021_08_052
crossref_primary_10_1109_TMM_2019_2954741
crossref_primary_10_1007_s10994_021_05962_3
crossref_primary_10_1109_JSTARS_2021_3076085
crossref_primary_10_1109_TCYB_2018_2804326
crossref_primary_10_1109_TKDE_2017_2654445
crossref_primary_10_1109_TNNLS_2022_3157746
crossref_primary_10_1109_TCYB_2021_3061660
crossref_primary_10_1109_TNNLS_2021_3061164
crossref_primary_10_1016_j_patrec_2018_06_024
crossref_primary_10_1016_j_ins_2024_121786
crossref_primary_10_1016_j_neunet_2018_07_017
crossref_primary_10_3390_e21111125
crossref_primary_10_1109_TKDE_2019_2893638
crossref_primary_10_1007_s13042_019_01035_z
crossref_primary_10_1016_j_ins_2024_120934
crossref_primary_10_1109_TIP_2017_2745109
crossref_primary_10_1109_TKDE_2020_3024099
crossref_primary_10_1109_TCYB_2018_2883970
crossref_primary_10_1109_TMM_2024_3521778
crossref_primary_10_1109_TCSVT_2022_3197230
crossref_primary_10_3390_s19183867
crossref_primary_10_1016_j_ins_2017_02_009
crossref_primary_10_1109_TCYB_2019_2951207
crossref_primary_10_1016_j_knosys_2017_09_019
crossref_primary_10_1109_ACCESS_2023_3271730
crossref_primary_10_1145_3422181
crossref_primary_10_1016_j_neucom_2020_07_148
crossref_primary_10_1007_s10489_024_05962_5
crossref_primary_10_1016_j_neucom_2024_128367
crossref_primary_10_1109_TIP_2024_3444320
crossref_primary_10_1109_TNNLS_2020_2979607
crossref_primary_10_1109_TBDATA_2017_2757522
crossref_primary_10_1145_3376927
crossref_primary_10_1007_s11042_019_7567_7
crossref_primary_10_1007_s41060_023_00403_x
crossref_primary_10_1016_j_patrec_2018_08_008
crossref_primary_10_1109_TKDE_2017_2749574
crossref_primary_10_1109_TKDE_2017_2728531
crossref_primary_10_1016_j_ins_2021_08_099
crossref_primary_10_1109_TKDE_2018_2792021
crossref_primary_10_1109_TKDE_2021_3112520
crossref_primary_10_1109_ACCESS_2019_2893355
crossref_primary_10_1016_j_inffus_2021_11_014
crossref_primary_10_3233_JIFS_231116
crossref_primary_10_1007_s13369_024_09878_7
crossref_primary_10_1016_j_inffus_2023_101947
crossref_primary_10_1109_TETCI_2022_3224937
crossref_primary_10_1109_TPAMI_2022_3225461
crossref_primary_10_1007_s11831_021_09542_5
crossref_primary_10_1109_TCYB_2018_2824299
Cites_doi 10.1109/TCSVT.2009.2017400
10.1007/s10115-013-0715-x
10.1007/978-1-4419-8853-9
10.1145/2647868.2655035
10.1145/2623330.2623731
10.1109/ICTAI.2005.17
10.1023/B:MACH.0000033120.25363.1e
10.1109/TMM.2014.2298841
10.1007/s10115-014-0810-7
10.1109/ICASSP.2013.6638233
10.1109/CVPR.2012.6247790
10.1109/CVPR.2010.5540018
10.1109/CVPR.2015.7299066
10.1109/ICCV.2013.323
10.1109/TPAMI.2013.231
10.1109/CVPR.2010.5540120
10.1109/TKDE.2007.190646
10.1109/TKDE.2005.186
10.1109/JPROC.2012.2197809
10.1109/CVPR.1997.609451
10.1016/j.cviu.2014.04.001
10.1109/ICCV.2013.78
10.1142/S0218001414500013
10.1109/TKDE.2007.190672
10.2200/S00196ED1V01Y200906AIM006
10.1109/TCYB.2014.2358564
10.1109/TNNLS.2014.2315526
10.1145/1553374.1553531
10.1016/j.neucom.2014.08.035
10.1109/TKDE.2007.190644
10.1109/TIP.2015.2405479
10.1007/978-3-540-87479-9_48
10.1109/TIP.2015.2502147
10.1137/1.9781611972825.74
10.1016/0167-8655(94)00074-D
10.1126/science.290.5500.2323
10.1007/s10115-013-0702-2
10.1109/TMM.2013.2271746
10.1007/s10115-013-0706-y
10.1109/TKDE.2013.70
10.1145/1878137.1878142
10.1145/279943.279962
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1109/TKDE.2016.2535367
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database

Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-2191
EndPage 1877
ExternalDocumentID 4087035591
10_1109_TKDE_2016_2535367
7420705
Genre orig-research
GrantInformation_xml – fundername: Australian Research Council
  grantid: DP-140102164; FT-130101457
  funderid: 10.13039/501100000923
– fundername: Program for Changjiang Scholars and Innovative Research Team in University
– fundername: National Natural Science Foundation of China
  grantid: 61272393; 61322201; 61432019
  funderid: 10.13039/501100001809
– fundername: Ministry of Education
  grantid: IRT13059
  funderid: 10.13039/501100002701
– fundername: National 973 Program of China
  grantid: 2014CB347600; 2013CB329604
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c326t-e4bdc3e3358c5deddc5d8417c724847d945d2ddbbe475c00d52a7acdf9df1a1f3
IEDL.DBID RIE
ISSN 1041-4347
IngestDate Fri Jul 11 12:12:22 EDT 2025
Sun Jun 29 12:25:14 EDT 2025
Thu Apr 24 22:54:55 EDT 2025
Tue Jul 01 03:14:36 EDT 2025
Wed Aug 27 02:52:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Semi-supervised learning
local weight estimation
anchor graph
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c326t-e4bdc3e3358c5deddc5d8417c724847d945d2ddbbe475c00d52a7acdf9df1a1f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1795941003
PQPubID 85438
PageCount 14
ParticipantIDs proquest_journals_1795941003
crossref_primary_10_1109_TKDE_2016_2535367
crossref_citationtrail_10_1109_TKDE_2016_2535367
ieee_primary_7420705
proquest_miscellaneous_1825496474
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-July-1
2016-7-1
20160701
PublicationDateYYYYMMDD 2016-07-01
PublicationDate_xml – month: 07
  year: 2016
  text: 2016-July-1
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on knowledge and data engineering
PublicationTitleAbbrev TKDE
PublicationYear 2016
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref53
ref52
ref55
ref16
ref19
liu (ref23) 0
bishop (ref3) 2006
ref50
yang (ref44) 0
jaakkola (ref17) 0; 14
ref45
zelnik-manor (ref46) 0
ref48
melacci (ref26) 2011; 12
ref47
ref42
ref41
ref43
zhou (ref51) 0; 16
ref49
ref8
ref7
mohar (ref27) 1991; 2
ref9
ref4
ref6
ref40
ref35
ref34
ref37
elkan (ref10) 0; 3
ref36
ref31
ref30
ref33
ref32
ref2
nesterov (ref28) 2004; 87
ref1
ref39
ref38
liu (ref21) 0
zhu (ref54) 0; 3
cai (ref5) 2015; 45
ref24
ref25
ref20
ref22
fergus (ref11) 0
joachims (ref18) 0
ref29
References_xml – ident: ref40
  doi: 10.1109/TCSVT.2009.2017400
– ident: ref20
  doi: 10.1007/s10115-013-0715-x
– volume: 87
  year: 2004
  ident: ref28
  publication-title: Introductory Lectures on Convex Optimization
  doi: 10.1007/978-1-4419-8853-9
– ident: ref50
  doi: 10.1145/2647868.2655035
– ident: ref36
  doi: 10.1145/2623330.2623731
– ident: ref35
  doi: 10.1109/ICTAI.2005.17
– ident: ref2
  doi: 10.1023/B:MACH.0000033120.25363.1e
– ident: ref9
  doi: 10.1109/TMM.2014.2298841
– ident: ref25
  doi: 10.1007/s10115-014-0810-7
– ident: ref19
  doi: 10.1109/ICASSP.2013.6638233
– ident: ref38
  doi: 10.1109/CVPR.2012.6247790
– volume: 2
  start-page: 871
  year: 1991
  ident: ref27
  article-title: The laplacian spectrum of graphs
  publication-title: Graph Theory Combinatorics Appl
– ident: ref39
  doi: 10.1109/CVPR.2010.5540018
– ident: ref13
  doi: 10.1109/CVPR.2015.7299066
– volume: 14
  start-page: 945
  year: 0
  ident: ref17
  article-title: Partially labeled classification with Markov random walks
  publication-title: Proc Conf Adv Neural Inform Process Syst
– ident: ref8
  doi: 10.1109/ICCV.2013.323
– ident: ref29
  doi: 10.1109/TPAMI.2013.231
– ident: ref14
  doi: 10.1109/CVPR.2010.5540120
– volume: 3
  start-page: 147
  year: 0
  ident: ref10
  article-title: Using the triangle inequality to accelerate k-means
  publication-title: Proc 20th Int Conf Mach Learning
– ident: ref30
  doi: 10.1109/TKDE.2007.190646
– ident: ref53
  doi: 10.1109/TKDE.2005.186
– ident: ref22
  doi: 10.1109/JPROC.2012.2197809
– volume: 16
  start-page: 321
  year: 0
  ident: ref51
  article-title: Learning with local and global consistency
  publication-title: Proc Conf Adv Neural Inform Process Syst
– ident: ref1
  doi: 10.1109/CVPR.1997.609451
– year: 2006
  ident: ref3
  publication-title: Pattern Recognition and Machine Learning
– volume: 3
  start-page: 912
  year: 0
  ident: ref54
  article-title: Semi-supervised learning using Gaussian fields and harmonic functions
  publication-title: Proc 20th Int Conf Mach Learning
– ident: ref7
  doi: 10.1016/j.cviu.2014.04.001
– ident: ref42
  doi: 10.1109/ICCV.2013.78
– volume: 12
  start-page: 1149
  year: 2011
  ident: ref26
  article-title: Laplacian support vector machines trained in the primal
  publication-title: J Mach Learning Res
– ident: ref12
  doi: 10.1142/S0218001414500013
– ident: ref37
  doi: 10.1109/TKDE.2007.190672
– ident: ref55
  doi: 10.2200/S00196ED1V01Y200906AIM006
– volume: 45
  start-page: 1669
  year: 2015
  ident: ref5
  article-title: Large scale spectral clustering with landmark-based representation
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2014.2358564
– ident: ref48
  doi: 10.1109/TNNLS.2014.2315526
– ident: ref47
  doi: 10.1145/1553374.1553531
– ident: ref16
  doi: 10.1016/j.neucom.2014.08.035
– ident: ref52
  doi: 10.1109/TKDE.2007.190644
– ident: ref41
  doi: 10.1109/TIP.2015.2405479
– start-page: 679
  year: 0
  ident: ref21
  article-title: Large graph construction for scalable semi-supervised learning
  publication-title: Proc 27th Int Conf Mach Learning
– start-page: 1
  year: 0
  ident: ref23
  article-title: Hashing with graphs
  publication-title: Proc 28th Int Conf Mach Learning
– ident: ref15
  doi: 10.1007/978-3-540-87479-9_48
– ident: ref49
  doi: 10.1109/TIP.2015.2502147
– ident: ref33
  doi: 10.1137/1.9781611972825.74
– ident: ref6
  doi: 10.1016/0167-8655(94)00074-D
– ident: ref31
  doi: 10.1126/science.290.5500.2323
– ident: ref45
  doi: 10.1007/s10115-013-0702-2
– ident: ref32
  doi: 10.1109/TMM.2013.2271746
– ident: ref34
  doi: 10.1007/s10115-013-0706-y
– start-page: 522
  year: 0
  ident: ref11
  article-title: Semi-supervised learning in gigantic image collections
  publication-title: Proc Conf Adv Neural Inform Process Syst
– ident: ref43
  doi: 10.1109/TKDE.2013.70
– ident: ref24
  doi: 10.1145/1878137.1878142
– start-page: 200
  year: 0
  ident: ref18
  article-title: Transductive inference for text classification using support vector machines
  publication-title: Proc 16th Int Conf Mach Learning
– ident: ref4
  doi: 10.1145/279943.279962
– start-page: 831
  year: 0
  ident: ref44
  article-title: Clustering by low-rank doubly stochastic matrix decomposition
  publication-title: Proc 29th Int Conf Mach Learn
– start-page: 1601
  year: 0
  ident: ref46
  article-title: Self-tuning spectral clustering
  publication-title: Proc Conf Adv Neural Inform Process Syst
SSID ssj0008781
Score 2.5732884
Snippet Many graph-based semi-supervised learning methods for large datasets have been proposed to cope with the rapidly increasing size of data, such as Anchor Graph...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1864
SubjectTerms AGR
anchor graph
Anchors
Computational efficiency
Computational modeling
Construction
Estimation
Graphs
Laplace equations
Learning
local weight estimation
Optimization
Regularization
Semi-supervised learning
Semisupervised learning
Title Scalable Semi-Supervised Learning by Efficient Anchor Graph Regularization
URI https://ieeexplore.ieee.org/document/7420705
https://www.proquest.com/docview/1795941003
https://www.proquest.com/docview/1825496474
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4Bp3Jgy0tsochIPSGyxImdxxG1uyCq7YEFiVsUexyEoNnV7uZAf33HjjetAFW9RIlix5bHHs_EM98H8MWmL0YSs0AkUgX0UAZZIpKAV0mcVEIq4cCqxz-SqztxfS_v1-Csy4UxxrjgMzOwt-4sH6e6sb_KzsmNoxkq12GdHLc2V6vTulnqCEnJuyCfKBapP8HkYX5--_3b0AZxJYNIxjJ2lPJ_9iBHqvJGE7vtZdSD8apjbVTJ06BZqoH-9Qqz8X97_hG2vJ3JLtqJsQ1rpt6B3orDgfklvQObfwES7sL1hERmk6nYxPx8DCbNzKqShUHmcVgfmHphQwc7QQ2yi5q055xdWtRrduNo7ec-sXMP7kbD269XgWdbCDSZcMvACIU6NnEsMy3RINI1EzzVaSRoC8NcSIwQlTIilToMUUZlWmqscqx4yat4HzbqaW0OgKGsKqNyrnOlBYaoEoMRF4pT1ZIsnD6Eq_EvtIcit4wYz4VzScK8sCIrrMgKL7I-nHZVZi0Ox78K71oRdAX96PfhaCXkwq_URcEt2brgpNz6cNK9pjVmD07K2kwbKuPcaJrW4tP7Xz6ED7b9Noz3CDaW88Z8JmNlqY7dLP0Na5zlgQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BPUAPpbzEtrQ1EidEljix8ziidukWWA7sInGLYo-DqtIsWjaH9td37HgDolXFJUoUJ7E84_FMPPN9AAe2fDGSmAUikSqgizLIEpEEvEripBJSCQdWPbpMhtfi7EbeLMFRVwtjjHHJZ6ZvT91ePk51Y3-VHVMYRxoql-EVrfuSt9Vand3NUkdJSvEFRUWxSP0eJg_z48n5l4FN40r6kYxl7EjlH1chR6vyly12C8zpOowWXWvzSn70m7nq69_PUBtf2ve38MZ7muykVY0NWDL1JqwvWByYn9Sb8PoJJOEWnI1JaLacio3Nz-_BuLm3xuTBIPNIrLdM_WIDBzxBH2QnNdnPGftqca_ZlSO2n_nSzm24Ph1MPg8Dz7cQaHLi5oERCnVs4lhmWqJBpGMmeKrTSNAihrmQGCEqZUQqdRiijMq01FjlWPGSV_EOrNTT2uwCQ1lVRuVc50oLDFElBiMuFKdHS_JxehAuxr_QHozccmLcFS4oCfPCiqywIiu8yHpw2D1y3yJx_K_xlhVB19CPfg_2FkIu_Fx9KLilWxeczFsP9rvbNMvs1klZm2lDbVwgTYot3v37zZ9gdTgZXRQX3y7P38Oa7Uub1LsHK_NZYz6Q6zJXH53G_gGJGujK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scalable+Semi-Supervised+Learning+by+Efficient+Anchor+Graph+Regularization&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Wang%2C+Meng&rft.au=Fu%2C+Weijie&rft.au=Hao%2C+Shijie&rft.au=Tao%2C+Dacheng&rft.date=2016-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1041-4347&rft.eissn=1558-2191&rft.volume=28&rft.issue=7&rft.spage=1864&rft_id=info:doi/10.1109%2FTKDE.2016.2535367&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4087035591
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon