A Multimodal Data Processing System for LiDAR-Based Human Activity Recognition

Increasingly, the task of detecting and recognizing the actions of a human has been delegated to some form of neural network processing camera or wearable sensor data. Due to the degree to which the camera can be affected by lighting and wearable sensors scantiness, neither one modality can capture...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 52; no. 10; pp. 10027 - 10040
Main Authors Roche, Jamie, De-Silva, Varuna, Hook, Joosep, Moencks, Mirco, Kondoz, Ahmet
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.10.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Increasingly, the task of detecting and recognizing the actions of a human has been delegated to some form of neural network processing camera or wearable sensor data. Due to the degree to which the camera can be affected by lighting and wearable sensors scantiness, neither one modality can capture the required data to perform the task confidently. That being the case, range sensors, like light detection and ranging (LiDAR), can complement the process to perceive the environment more robustly. Most recently, researchers have been exploring ways to apply convolutional neural networks to 3-D data. These methods typically rely on a single modality and cannot draw on information from complementing sensor streams to improve accuracy. This article proposes a framework to tackle human activity recognition by leveraging the benefits of sensor fusion and multimodal machine learning. Given both RGB and point cloud data, our method describes the activities being performed by subjects using regions with a convolutional neural network (R-CNN) and a 3-D modified Fisher vector network. Evaluated on a custom captured multimodal dataset demonstrates that the model outputs remarkably accurate human activity classification (90%). Furthermore, this framework can be used for sports analytics, understanding social behavior, surveillance, and perhaps most notably by autonomous vehicles (AVs) to data-driven decision-making policies in urban areas and indoor environments.
AbstractList Increasingly, the task of detecting and recognizing the actions of a human has been delegated to some form of neural network processing camera or wearable sensor data. Due to the degree to which the camera can be affected by lighting and wearable sensors scantiness, neither one modality can capture the required data to perform the task confidently. That being the case, range sensors, like light detection and ranging (LiDAR), can complement the process to perceive the environment more robustly. Most recently, researchers have been exploring ways to apply convolutional neural networks to 3-D data. These methods typically rely on a single modality and cannot draw on information from complementing sensor streams to improve accuracy. This article proposes a framework to tackle human activity recognition by leveraging the benefits of sensor fusion and multimodal machine learning. Given both RGB and point cloud data, our method describes the activities being performed by subjects using regions with a convolutional neural network (R-CNN) and a 3-D modified Fisher vector network. Evaluated on a custom captured multimodal dataset demonstrates that the model outputs remarkably accurate human activity classification (90%). Furthermore, this framework can be used for sports analytics, understanding social behavior, surveillance, and perhaps most notably by autonomous vehicles (AVs) to data-driven decision-making policies in urban areas and indoor environments.Increasingly, the task of detecting and recognizing the actions of a human has been delegated to some form of neural network processing camera or wearable sensor data. Due to the degree to which the camera can be affected by lighting and wearable sensors scantiness, neither one modality can capture the required data to perform the task confidently. That being the case, range sensors, like light detection and ranging (LiDAR), can complement the process to perceive the environment more robustly. Most recently, researchers have been exploring ways to apply convolutional neural networks to 3-D data. These methods typically rely on a single modality and cannot draw on information from complementing sensor streams to improve accuracy. This article proposes a framework to tackle human activity recognition by leveraging the benefits of sensor fusion and multimodal machine learning. Given both RGB and point cloud data, our method describes the activities being performed by subjects using regions with a convolutional neural network (R-CNN) and a 3-D modified Fisher vector network. Evaluated on a custom captured multimodal dataset demonstrates that the model outputs remarkably accurate human activity classification (90%). Furthermore, this framework can be used for sports analytics, understanding social behavior, surveillance, and perhaps most notably by autonomous vehicles (AVs) to data-driven decision-making policies in urban areas and indoor environments.
Increasingly, the task of detecting and recognizing the actions of a human has been delegated to some form of neural network processing camera or wearable sensor data. Due to the degree to which the camera can be affected by lighting and wearable sensors scantiness, neither one modality can capture the required data to perform the task confidently. That being the case, range sensors, like light detection and ranging (LiDAR), can complement the process to perceive the environment more robustly. Most recently, researchers have been exploring ways to apply convolutional neural networks to 3-D data. These methods typically rely on a single modality and cannot draw on information from complementing sensor streams to improve accuracy. This article proposes a framework to tackle human activity recognition by leveraging the benefits of sensor fusion and multimodal machine learning. Given both RGB and point cloud data, our method describes the activities being performed by subjects using regions with a convolutional neural network (R-CNN) and a 3-D modified Fisher vector network. Evaluated on a custom captured multimodal dataset demonstrates that the model outputs remarkably accurate human activity classification (90%). Furthermore, this framework can be used for sports analytics, understanding social behavior, surveillance, and perhaps most notably by autonomous vehicles (AVs) to data-driven decision-making policies in urban areas and indoor environments.
Author Kondoz, Ahmet
De-Silva, Varuna
Moencks, Mirco
Roche, Jamie
Hook, Joosep
Author_xml – sequence: 1
  givenname: Jamie
  orcidid: 0000-0002-5449-3774
  surname: Roche
  fullname: Roche, Jamie
  email: a.j.roche@lboro.ac.uk
  organization: Institute for Digital Technologies, Loughborough University London, London, U.K
– sequence: 2
  givenname: Varuna
  surname: De-Silva
  fullname: De-Silva, Varuna
  organization: Institute for Digital Technologies, Loughborough University London, London, U.K
– sequence: 3
  givenname: Joosep
  surname: Hook
  fullname: Hook, Joosep
  organization: Institute for Digital Technologies, Loughborough University London, London, U.K
– sequence: 4
  givenname: Mirco
  orcidid: 0000-0003-1108-6455
  surname: Moencks
  fullname: Moencks, Mirco
  organization: Institute for Manufacturing, University of Cambridge, Cambridge, U.K
– sequence: 5
  givenname: Ahmet
  surname: Kondoz
  fullname: Kondoz, Ahmet
  organization: Institute for Digital Technologies, Loughborough University London, London, U.K
BookMark eNp9kMtr3DAQh0VJaR7NH1ByEeTSi7d6WzpudvOC7YM0PfQkZHkcFGwrkeTC_vfxsiGHHKrLiOH7zQzfMToY4wgIfaFkQSkx3-5Xfy8WjDC64ERLoc0HdMSo0hVjtTx4-6v6EJ3m_Ejmp-eW0Z_QIRdUKUbNEfqxxN-nvoQhtq7Ha1cc_pWih5zD-IB_b3OBAXcx4U1YL--qC5ehxTfT4Ea89CX8C2WL78DHhzGUEMfP6GPn-gynr_UE_bm6vF_dVJuf17er5abynKlSARe-la2WndSUCd5SRTnzQInjppNcSNWwRkmpPGmajnjgNeuAcN1Q0zaOn6Cv-7lPKT5PkIsdQvbQ926EOGXLpJDSGKHFjJ6_Qx_jlMb5OstqqrjQhJOZonvKp5hzgs4-pTC4tLWU2J1vu_Ntd77tq-85U7_L-FDcTkNJLvT_TZ7tkwEA3jYZoQSnnL8A0fyLTw
CODEN ITCEB8
CitedBy_id crossref_primary_10_32604_cmc_2024_052771
crossref_primary_10_5916_jamet_2023_47_2_84
crossref_primary_10_3390_s24020626
crossref_primary_10_1109_TCYB_2023_3300832
crossref_primary_10_1109_JSEN_2023_3310620
crossref_primary_10_1080_21642583_2025_2467083
crossref_primary_10_3390_electronics13071300
crossref_primary_10_3390_s23177357
crossref_primary_10_1109_LSENS_2023_3303081
crossref_primary_10_1016_j_patcog_2024_110811
crossref_primary_10_1109_JIOT_2023_3344179
crossref_primary_10_3390_rs16111968
crossref_primary_10_1016_j_aej_2024_12_097
crossref_primary_10_3390_jimaging11030091
crossref_primary_10_3758_s13428_022_01882_9
crossref_primary_10_1109_JIOT_2021_3127186
crossref_primary_10_3390_app142210764
crossref_primary_10_1109_LSENS_2023_3316882
crossref_primary_10_1038_s41598_022_24754_w
crossref_primary_10_1109_JSEN_2023_3300357
crossref_primary_10_1109_JSEN_2023_3344789
crossref_primary_10_3389_fnbot_2023_1121623
crossref_primary_10_1109_ACCESS_2024_3474100
crossref_primary_10_1109_JSEN_2024_3482291
Cites_doi 10.1109/TCE.2010.5681163
10.1109/CVPR.2016.609
10.1109/TPAMI.2016.2577031
10.1109/TITS.2015.2489261
10.1109/TPAMI.2018.2798607
10.1109/TITB.2005.856864
10.1109/ICORR.2015.7281257
10.1109/ICCV.2017.233
10.1016/j.imavis.2005.09.024
10.1016/j.procs.2016.09.126
10.23919/FUSION45008.2020.9190246
10.1109/CVPR.2018.00102
10.1109/TITS.2018.2836305
10.1145/2809695.2809718
10.1109/TPAMI.2016.2640292
10.1109/URAI.2011.6145923
10.3390/s101211322
10.3390/s151229858
10.1109/TCYB.2019.2960481
10.1145/3343031.3351170
10.1109/ITSC.2014.6958057
10.1017/S0305004100016297
10.1109/ICSPIS.2016.7869899
10.1016/j.patrec.2018.02.010
10.1109/CVPR.2015.7298594
10.1016/j.patrec.2008.08.002
10.1109/TIP.2019.2937724
10.1109/CVPR.2018.00472
10.1145/3017680.3022460
10.3390/s141222500
10.1016/j.eswa.2018.03.056
10.1109/LRA.2018.2850061
10.1109/BSN.2010.23
10.1109/TPAMI.2017.2771306
10.1109/IROS.2014.6943155
10.1109/IVS.2018.8500387
10.1109/CVPR.2018.00558
10.1017/9781108635592
10.1109/TII.2017.2712746
10.3390/s18082730
10.1016/j.medengphy.2015.06.009
10.1109/CVPR.2016.90
10.1109/TBME.2014.2307069
10.1109/TITS.2016.2601655
10.1155/2016/4351435
10.1109/TITS.2017.2686871
10.18653/v1/P17-5002
10.1097/01.anes.0000296537.62905.25
10.1109/TIP.2019.2937757
10.1136/bmj.1.5694.474
10.1109/CVPR42600.2020.00119
10.1109/JIOT.2020.2984544
10.1038/ajh.2009.45
10.1007/s11042-020-08747-3
10.1007/s42154-019-00083-z
10.1007/s10489-017-0976-2
10.1007/978-3-642-39314-3_1
10.4324/9781410605337-29
10.1109/TCYB.2020.2987575
10.1109/IndiaCom.2014.6828039
10.1109/CVPR.2017.365
10.1016/j.eswa.2014.04.037
10.1109/JSEN.2014.2331463
10.1007/s11263-009-0275-4
10.1109/ITSC.2015.174
10.1109/35.41402
10.3390/s17030529
10.5555/3295222.3295263
10.1007/s00500-012-0896-3
10.1109/TCYB.2019.2904901
10.1109/ICAR.2015.7251474
10.1109/TCYB.2020.2974688
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TCYB.2021.3085489
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 10040
ExternalDocumentID 10_1109_TCYB_2021_3085489
9464313
Genre orig-research
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c326t-e34cd5d85f581243d16132ce10a39f53456b2b6556c0bbf0ce372fe038b19dba3
IEDL.DBID RIE
ISSN 2168-2267
2168-2275
IngestDate Fri Jul 11 00:32:37 EDT 2025
Sun Jun 29 12:51:53 EDT 2025
Thu Apr 24 22:55:43 EDT 2025
Tue Jul 01 00:53:59 EDT 2025
Wed Aug 27 02:15:10 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c326t-e34cd5d85f581243d16132ce10a39f53456b2b6556c0bbf0ce372fe038b19dba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5449-3774
0000-0003-1108-6455
PMID 34166219
PQID 2716348030
PQPubID 85422
PageCount 14
ParticipantIDs crossref_primary_10_1109_TCYB_2021_3085489
proquest_miscellaneous_2545599484
proquest_journals_2716348030
crossref_citationtrail_10_1109_TCYB_2021_3085489
ieee_primary_9464313
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref59
ref14
ref58
ref52
ref11
ref10
ref16
ref19
ref18
ref51
Suganuma (ref50)
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
James (ref65)
ref8
ref7
ref9
ref4
ref6
Saracco (ref55) 2020
ref5
ref82
ref81
ref40
ref83
Krizhevsky (ref64) 2012
ref80
ref35
(ref53) 2006
ref79
ref34
ref78
Le (ref17)
ref37
ref36
ref31
ref75
ref30
ref74
ref33
ref77
ref32
ref76
ref2
ref1
ref39
ref38
ref71
ref70
ref73
ref72
Such (ref15) 2017
Saracco (ref54) 2020
ref24
ref68
ref23
ref67
Moencks (ref3) 2019
ref26
ref25
ref69
ref20
ref22
ref66
ref21
Byun (ref49)
ref28
ref27
Qi (ref63)
ref29
ref60
ref62
ref61
References_xml – ident: ref16
  doi: 10.1109/TCE.2010.5681163
– ident: ref59
  doi: 10.1109/CVPR.2016.609
– volume-title: LIDAR Hits Mass Market
  year: 2020
  ident: ref54
– ident: ref6
  doi: 10.1109/TPAMI.2016.2577031
– ident: ref51
  doi: 10.1109/TITS.2015.2489261
– ident: ref14
  doi: 10.1109/TPAMI.2018.2798607
– ident: ref34
  doi: 10.1109/TITB.2005.856864
– ident: ref38
  doi: 10.1109/ICORR.2015.7281257
– ident: ref75
  doi: 10.1109/ICCV.2017.233
– ident: ref2
  doi: 10.1016/j.imavis.2005.09.024
– ident: ref42
  doi: 10.1016/j.procs.2016.09.126
– ident: ref21
  doi: 10.23919/FUSION45008.2020.9190246
– ident: ref80
  doi: 10.1109/CVPR.2018.00102
– ident: ref4
  doi: 10.1109/TITS.2018.2836305
– ident: ref32
  doi: 10.1145/2809695.2809718
– ident: ref73
  doi: 10.1109/TPAMI.2016.2640292
– volume-title: Deep neuroevolution: Genetic algorithms are a competitive alternative for training deep neural networks for reinforcement learning
  year: 2017
  ident: ref15
– ident: ref43
  doi: 10.1109/URAI.2011.6145923
– ident: ref52
  doi: 10.3390/s101211322
– ident: ref33
  doi: 10.3390/s151229858
– ident: ref48
  doi: 10.1109/TCYB.2019.2960481
– ident: ref76
  doi: 10.1145/3343031.3351170
– volume-title: Light Field Technology—The Future of Photography?
  year: 2020
  ident: ref55
– ident: ref24
  doi: 10.1109/ITSC.2014.6958057
– ident: ref66
  doi: 10.1017/S0305004100016297
– volume-title: LiDAR—Overview of Technology, Applications, Market Features & Industry
  year: 2006
  ident: ref53
– ident: ref18
  doi: 10.1109/ICSPIS.2016.7869899
– ident: ref57
  doi: 10.1016/j.patrec.2018.02.010
– ident: ref67
  doi: 10.1109/CVPR.2015.7298594
– ident: ref36
  doi: 10.1016/j.patrec.2008.08.002
– ident: ref78
  doi: 10.1109/TIP.2019.2937724
– ident: ref81
  doi: 10.1109/CVPR.2018.00472
– ident: ref82
  doi: 10.1145/3017680.3022460
– ident: ref26
  doi: 10.3390/s141222500
– ident: ref58
  doi: 10.1016/j.eswa.2018.03.056
– ident: ref7
  doi: 10.1109/LRA.2018.2850061
– ident: ref35
  doi: 10.1109/BSN.2010.23
– ident: ref72
  doi: 10.1109/TPAMI.2017.2771306
– ident: ref83
  doi: 10.1109/IROS.2014.6943155
– ident: ref60
  doi: 10.1109/IVS.2018.8500387
– ident: ref74
  doi: 10.1109/CVPR.2018.00558
– ident: ref71
  doi: 10.1017/9781108635592
– ident: ref27
  doi: 10.1109/TII.2017.2712746
– ident: ref5
  doi: 10.3390/s18082730
– ident: ref31
  doi: 10.1016/j.medengphy.2015.06.009
– ident: ref44
  doi: 10.1109/CVPR.2016.90
– ident: ref25
  doi: 10.1109/TBME.2014.2307069
– ident: ref12
  doi: 10.1109/TITS.2016.2601655
– ident: ref46
  doi: 10.1155/2016/4351435
– ident: ref11
  doi: 10.1109/TITS.2017.2686871
– start-page: 215
  volume-title: Proc. SICE Annu. Conf. (SICE)
  ident: ref50
  article-title: Development of an autonomous vehicle—System overview of testride vehicle in the Tokyo motor show 2011
– volume-title: Proc. Workshop Plan. Percept. Navig. Intell. Veh.
  ident: ref49
  article-title: ESTRO: Design and development of intelligent autonomous vehicle for shuttle service in the ETRI
– start-page: 4
  volume-title: Proc. Conf. Assoc. Comput. Mech. Eng.
  ident: ref65
  article-title: Point cloud data from Photogrammetry techniques to generate 3D Geometry
– start-page: 1
  volume-title: Proc. MIT Sloan Sports Anal. Conf.
  ident: ref17
  article-title: Data-driven ghosting using deep imitation learning
– ident: ref13
  doi: 10.18653/v1/P17-5002
– ident: ref39
  doi: 10.1097/01.anes.0000296537.62905.25
– ident: ref77
  doi: 10.1109/TIP.2019.2937757
– ident: ref41
  doi: 10.1136/bmj.1.5694.474
– ident: ref79
  doi: 10.1109/CVPR42600.2020.00119
– ident: ref56
  doi: 10.1109/JIOT.2020.2984544
– ident: ref40
  doi: 10.1038/ajh.2009.45
– ident: ref45
  doi: 10.1007/s11042-020-08747-3
– ident: ref61
  doi: 10.1007/s42154-019-00083-z
– ident: ref19
  doi: 10.1007/s10489-017-0976-2
– ident: ref70
  doi: 10.1007/978-3-642-39314-3_1
– ident: ref68
  doi: 10.4324/9781410605337-29
– ident: ref9
  doi: 10.1109/TCYB.2020.2987575
– ident: ref22
  doi: 10.1109/IndiaCom.2014.6828039
– ident: ref1
  doi: 10.1109/CVPR.2017.365
– ident: ref29
  doi: 10.1016/j.eswa.2014.04.037
– ident: ref28
  doi: 10.1109/JSEN.2014.2331463
– volume-title: Advances in Neural Information Processing Systems 25
  year: 2012
  ident: ref64
  article-title: ImageNet
– ident: ref69
  doi: 10.1007/s11263-009-0275-4
– ident: ref23
  doi: 10.1109/ITSC.2015.174
– ident: ref8
  doi: 10.1109/35.41402
– ident: ref30
  doi: 10.3390/s17030529
– ident: ref62
  doi: 10.5555/3295222.3295263
– ident: ref20
  doi: 10.1007/s00500-012-0896-3
– ident: ref47
  doi: 10.1109/TCYB.2019.2904901
– volume-title: Adaptive feature processing for robust human activity recognition on a novel multi-modal dataset
  year: 2019
  ident: ref3
– ident: ref37
  doi: 10.1109/ICAR.2015.7251474
– ident: ref10
  doi: 10.1109/TCYB.2020.2974688
– start-page: 77
  volume-title: Proc. 30th IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR)
  ident: ref63
  article-title: PointNet: Deep learning on point sets for 3D classification and segmentation
SSID ssj0000816898
Score 2.4665036
Snippet Increasingly, the task of detecting and recognizing the actions of a human has been delegated to some form of neural network processing camera or wearable...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 10027
SubjectTerms Activity recognition
Artificial neural networks
Cameras
Convolutional neural network
Data processing
Decision making
faster RCNN
Fisher vector
Human activity recognition
human activity recognition (HAR)
Indoor environments
Laser radar
Lidar
Machine learning
Micromechanical devices
multimodal machine learning (ML)
Multisensor fusion
Neural networks
Sensors
Three-dimensional displays
Urban areas
Wearable sensors
Wearable technology
Title A Multimodal Data Processing System for LiDAR-Based Human Activity Recognition
URI https://ieeexplore.ieee.org/document/9464313
https://www.proquest.com/docview/2716348030
https://www.proquest.com/docview/2545599484
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT9wwFH6inHqhrOqURUbiUBAZHC9JfByW0agqHBBIcIriJRJqmyDIXPrr--x4IgSo4hbJdpT4-fl99ls-gANjXYV2v05yTwQoGJWJqiubSJvXNlfG8XChf3mVzW7Fjzt5twTHQy6Mcy4En7mxfwy-fNuaub8qO1EC7aenqP2EB7c-V2u4TwkEEoH6luFDgqgij07MlKqTm7P7UzwMsnTMEWOIwhcLxf07y5gvsfPCIgWKlTf7cjA20y9wufjMPsbk13je6bH5-6qC40f_YxVWIuokk36ZrMGSa9ZhLer1M_kei08fbsDVhISc3D-txQHnVVeRmEuANo709c0JAl3y8-F8cp2cohG0JHgCyMT0TBTkehGU1DabcDu9uDmbJZFzITEI5LrEcWGstIWspTf93CIi5My4lFZc1ZIj3tJMZ1JmhmpdUxRmzmpHeaFTZXXFt2C5aRv3FYhRyqbUUqdqIZzGxkIzjvpuKidx6AjoYt5LEwuSe16M32U4mFBVeqmVXmpllNoIjoYhj301jv913vBTP3SMsz6CnYVwy6ivzyXDYyMXBe54I9gfmlHTvPukalw7xz4INqVSohDf3n_zNnxmPjkihPrtwHL3NHe7CFk6vRfW6j9ktORB
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5V7aFcoC_EQgFX4kAR2Tp-JPFx-9ICu3uotlI5RfEjEqJNEM1e-PWMHW-EAFW9RbIdJR6P57Pn8QG8M9ZVaPfrJPdEgIJRmai6som0eW1zZRwPF_rzRTa9Fp9v5M0GfBxyYZxzIfjMjf1j8OXb1qz8VdmJEmg_PUXtFtp9mfbZWsONSqCQCOS3DB8SxBV5dGOmVJ0sz76e4nGQpWOOKEMUvlwo7uBZxnyRnT9sUiBZ-WdnDubm8hnM1x_aR5l8H686PTa__qrh-Ng_2YGnEXeSSb9QdmHDNXuwGzX7nryP5aeP92ExISEr9661OOC86ioSswnQypG-wjlBqEtm384nV8kpmkFLgi-ATEzPRUGu1mFJbXMA15cXy7NpElkXEoNQrkscF8ZKW8haeuPPLWJCzoxLacVVLTkiLs10JmVmqNY1RXHmrHaUFzpVVlf8OWw2beNeADFK2ZRa6lQthNPYWGjGUeNN5SQOHQFdz3tpYklyz4xxW4ajCVWll1rppVZGqY3gwzDkR1-P46HO-37qh45x1kdwuBZuGTX2vmR4cOSiwD1vBEdDM-qad6BUjWtX2McvO6VEIV7-_81vYXu6nM_K2afFl1fwhPlUiRD4dwib3c-Ve40AptNvwrr9DXhc54o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Multimodal+Data+Processing+System+for+LiDAR-Based+Human+Activity+Recognition&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Roche%2C+Jamie&rft.au=De-Silva%2C+Varuna&rft.au=Hook%2C+Joosep&rft.au=Moencks%2C+Mirco&rft.date=2022-10-01&rft.issn=2168-2275&rft.eissn=2168-2275&rft.volume=52&rft.issue=10&rft.spage=10027&rft_id=info:doi/10.1109%2FTCYB.2021.3085489&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon