A Machine-Learning Approach for the Exemplar Extraction of mmWave Industrial Wireless Channels

Industrial wireless channel modeling is essential for the development of Industrial Internet of Things (IIoT) wireless systems. Moreover, millimeter-wave (mmWave) wireless bands have a high potential to be used for IIoT applications because of their high data-rates and the better applicability of ha...

Full description

Saved in:
Bibliographic Details
Published inIEEE open journal of instrumentation and measurement Vol. 1; pp. 1 - 15
Main Authors Kashef, Mohamed, Vouras, Peter, Jones, Robert D., Candell, Richard, Remley, Kate A.
Format Journal Article
LanguageEnglish
Published IEEE 2022
Subjects
Online AccessGet full text
ISSN2768-7236
2768-7236
DOI10.1109/OJIM.2022.3181309

Cover

Loading…
Abstract Industrial wireless channel modeling is essential for the development of Industrial Internet of Things (IIoT) wireless systems. Moreover, millimeter-wave (mmWave) wireless bands have a high potential to be used for IIoT applications because of their high data-rates and the better applicability of having multiple antennas. As a result, we introduce an exemplar extraction approach to be applied on mmWave wireless channel measurements. A machine learning (ML) clustering scheme is used to divide the measured power-angle-delay-profiles into a number of groups with respect to the angle of arrival. Each of the groups is represented by a power-delay-profile (PDP) exemplar to provide a tractable way for testing and evaluation of mmWave IIoT wireless systems through compactly representing different groups based on their spatial characteristics. Hence, testing of wireless communications equipment can be performed over the exemplars to assess their spatial performance with a significantly reduced amount of data, allowing the development of lab-based device evaluation in a realistic, yet repeatable, test environment. Governing equations are provided in sufficient detail for users to implement the technique in their own labs.
AbstractList Industrial wireless channel modeling is essential for the development of Industrial Internet of Things (IIoT) wireless systems. Moreover, millimeter-wave (mmWave) wireless bands have a high potential to be used for IIoT applications because of their high data-rates and the better applicability of having multiple antennas. As a result, we introduce an exemplar extraction approach to be applied on mmWave wireless channel measurements. A machine learning (ML) clustering scheme is used to divide the measured power-angle-delay-profiles into a number of groups with respect to the angle of arrival. Each of the groups is represented by a power-delay-profile (PDP) exemplar to provide a tractable way for testing and evaluation of mmWave IIoT wireless systems through compactly representing different groups based on their spatial characteristics. Hence, testing of wireless communications equipment can be performed over the exemplars to assess their spatial performance with a significantly reduced amount of data, allowing the development of lab-based device evaluation in a realistic, yet repeatable, test environment. Governing equations are provided in sufficient detail for users to implement the technique in their own labs.
Author Candell, Richard
Remley, Kate A.
Jones, Robert D.
Kashef, Mohamed
Vouras, Peter
Author_xml – sequence: 1
  givenname: Mohamed
  orcidid: 0000-0002-6619-3509
  surname: Kashef
  fullname: Kashef, Mohamed
  email: mohamed.kashef@nist.gov
  organization: Communications Technology Laboratory, NIST, Gaithersburg, MD, USA
– sequence: 2
  givenname: Peter
  orcidid: 0000-0002-1654-3080
  surname: Vouras
  fullname: Vouras, Peter
  organization: Communications Technology Laboratory, NIST, Gaithersburg, MD, USA
– sequence: 3
  givenname: Robert D.
  orcidid: 0000-0001-8867-551X
  surname: Jones
  fullname: Jones, Robert D.
  organization: Communications Technology Laboratory, NIST, Boulder, CO, USA
– sequence: 4
  givenname: Richard
  orcidid: 0000-0002-6679-8823
  surname: Candell
  fullname: Candell, Richard
  organization: Communications Technology Laboratory, NIST, Gaithersburg, MD, USA
– sequence: 5
  givenname: Kate A.
  orcidid: 0000-0003-3220-5425
  surname: Remley
  fullname: Remley, Kate A.
  organization: Communications Technology Laboratory, NIST, Boulder, CO, USA
BookMark eNpNkM1OGzEUhS1EJSjwAIiNX2BS_2U8XkYRLUFBbEDsal17ronRxI7sKYK3Z9IgxOoeHd3zLb6f5DjlhIRccjbjnJlf97eru5lgQswk77hk5oicCt12jRayPf6WT8hFrS-MMdFpKRQ_JX8X9A78JiZs1gglxfRMF7tdyVNJQy503CC9fsPtboAyhbGAH2NONAe63T7BK9JV6v_VsUQY6FMsOGCtdLmBlHCo5-RHgKHixec9I4-_rx-WN836_s9quVg3Xop2bPoAzPm5ENq13nE19x5NK4TpGIYA3mvvvHZGSGXaDpnk0HvFpVPgORNOnpHVgdtneLG7ErdQ3m2GaP8XuTxbKGP0A9qJrrVUvQrCqE4xp_oWsO1lcHPlvJpY_MDyJddaMHzxOLN733bv2-5920_f0-bqsImI-PVvtJlz3ckPYcV-WQ
CODEN IOJIDM
Cites_doi 10.1109/MIE.2018.2873820
10.1109/OJAP.2022.3168401
10.1109/ICCW.2019.8756726
10.1109/ETFA.2005.1612506
10.1109/MCOM.2017.1600407CM
10.1109/JSAC.2019.2898756
10.1109/PIMRC.2016.7794728
10.1109/MCOM.2014.6736746
10.1109/ACCESS.2015.2486778
10.1109/TWC.2009.081088
10.1109/MAP.2016.2609815
10.1109/ACCESS.2020.2979220
10.1109/WCNC.2016.7564890
10.1109/MCOM.2014.6736750
10.1109/TCOMM.2018.2817199
10.1109/ICASSP39728.2021.9414262
10.1109/ARFTG47271.2020.9241381
10.1109/TWC.2010.06.081599
10.25046/aj030425
10.1109/49.16842
10.1109/RWS.2009.4957340
10.1109/GLOCOM.1996.587620
10.1109/7.705924
10.1109/MCOM.2015.7158274
10.1049/iet-com.2012.0028
10.1109/TAP.2016.2583475
10.1109/ISCID.2015.194
10.1109/JIOT.2020.3048992
10.1109/GLOCOM.2015.7417720
10.1109/ICIEA.2014.6931318
10.1109/TAES.1980.308885
10.1109/APS.2007.4396167
10.1109/WCSP.2018.8555681
10.1109/VETECF.2004.1399930
10.1109/MAP.2015.2501227
10.1007/s11063-018-9800-1
10.1109/TAP.2006.883962
10.1007/s41650-017-0004-z
10.6028/NIST.TN.1951
10.1109/LAWP.2018.2872051
10.1109/LAWP.2018.2869548
10.1109/ACCESS.2018.2812304
10.1109/MCOM.2018.1700874
10.1109/OJVT.2023.3239617
10.1109/CIMCA.2005.1631480
10.1109/TII.2019.2931703
10.1109/MWSYM.2019.8700781
10.1109/TAP.2018.2851927
10.1109/T-VT.1979.23789
ContentType Journal Article
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
DOA
DOI 10.1109/OJIM.2022.3181309
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2768-7236
EndPage 15
ExternalDocumentID oai_doaj_org_article_1457734d4f294840b4d6ae6d3fb54bc4
10_1109_OJIM_2022_3181309
9795178
Genre orig-research
GroupedDBID 0R~
97E
ABVLG
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
ESBDL
GROUPED_DOAJ
JAVBF
M~E
OCL
OK1
RIA
RIE
AAYXX
CITATION
ID FETCH-LOGICAL-c326t-dfa0bc5227b6cb145cce9622980effacc7cbc7b9234968e031adc413b4ac102b3
IEDL.DBID DOA
ISSN 2768-7236
IngestDate Wed Aug 27 01:28:03 EDT 2025
Tue Jul 01 04:14:45 EDT 2025
Wed Aug 27 02:23:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c326t-dfa0bc5227b6cb145cce9622980effacc7cbc7b9234968e031adc413b4ac102b3
ORCID 0000-0002-6619-3509
0000-0002-1654-3080
0000-0002-6679-8823
0000-0001-8867-551X
0000-0003-3220-5425
OpenAccessLink https://doaj.org/article/1457734d4f294840b4d6ae6d3fb54bc4
PageCount 15
ParticipantIDs ieee_primary_9795178
doaj_primary_oai_doaj_org_article_1457734d4f294840b4d6ae6d3fb54bc4
crossref_primary_10_1109_OJIM_2022_3181309
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationTitle IEEE open journal of instrumentation and measurement
PublicationTitleAbbrev OJIM
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref15
ref53
ref52
ref11
ref10
ref17
ref16
ref19
ref18
ref51
ref50
(ref57) 2021
ref46
ref45
Dupleich (ref14)
ref47
ref42
ref41
ref44
ref43
(ref48) 2018
ref49
ref8
ref7
ref4
ref6
ref5
(ref56) 2021
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
Kyrö (ref9)
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
(ref55) 2020
ref29
Pedregosa (ref54) 2011; 12
(ref3) 2019
References_xml – volume: 12
  start-page: 2825
  issue: 85
  year: 2011
  ident: ref54
  article-title: Scikit-Learn: Machine learning in Python
  publication-title: J. Mach. Learn. Res.
– ident: ref5
  doi: 10.1109/MIE.2018.2873820
– ident: ref16
  doi: 10.1109/OJAP.2022.3168401
– ident: ref30
  doi: 10.1109/ICCW.2019.8756726
– ident: ref20
  doi: 10.1109/ETFA.2005.1612506
– ident: ref38
  doi: 10.1109/MCOM.2017.1600407CM
– ident: ref41
  doi: 10.1109/JSAC.2019.2898756
– ident: ref47
  doi: 10.1109/PIMRC.2016.7794728
– volume-title: pyclustering.cluster.kmedoids.kmedoids Class Reference.
  year: 2021
  ident: ref56
– ident: ref34
  doi: 10.1109/MCOM.2014.6736746
– ident: ref12
  doi: 10.1109/ACCESS.2015.2486778
– ident: ref44
  doi: 10.1109/TWC.2009.081088
– ident: ref10
  doi: 10.1109/MAP.2016.2609815
– ident: ref28
  doi: 10.1109/ACCESS.2020.2979220
– ident: ref23
  doi: 10.1109/WCNC.2016.7564890
– ident: ref37
  doi: 10.1109/MCOM.2014.6736750
– ident: ref40
  doi: 10.1109/TCOMM.2018.2817199
– ident: ref33
  doi: 10.1109/ICASSP39728.2021.9414262
– ident: ref46
  doi: 10.1109/ARFTG47271.2020.9241381
– ident: ref27
  doi: 10.1109/TWC.2010.06.081599
– start-page: 1
  volume-title: Proc. 13th Eur. Conf. Antennas Propagat. (EuCAP)
  ident: ref14
  article-title: Multi-band indoor propagation characterization by measurements from 6 to 60 GHz
– ident: ref18
  doi: 10.25046/aj030425
– ident: ref19
  doi: 10.1109/49.16842
– ident: ref6
  doi: 10.1109/RWS.2009.4957340
– ident: ref7
  doi: 10.1109/GLOCOM.1996.587620
– ident: ref50
  doi: 10.1109/7.705924
– start-page: 1
  volume-title: Proc. 4th Eur. Conf. Antennas Propag.
  ident: ref9
  article-title: Long range wideband channel measurements at 81–86 GHz frequency range
– ident: ref35
  doi: 10.1109/MCOM.2015.7158274
– volume-title: Scikit-Learn User Guide: Clustering.
  year: 2021
  ident: ref57
– ident: ref24
  doi: 10.1049/iet-com.2012.0028
– ident: ref43
  doi: 10.1109/TAP.2016.2583475
– ident: ref53
  doi: 10.1109/ISCID.2015.194
– ident: ref4
  doi: 10.1109/JIOT.2020.3048992
– ident: ref11
  doi: 10.1109/GLOCOM.2015.7417720
– ident: ref52
  doi: 10.1109/ICIEA.2014.6931318
– ident: ref51
  doi: 10.1109/TAES.1980.308885
– volume-title: sklearn.metrics.silhouette_score.
  year: 2020
  ident: ref55
– ident: ref22
  doi: 10.1109/APS.2007.4396167
– ident: ref42
  doi: 10.1109/WCSP.2018.8555681
– ident: ref25
  doi: 10.1109/VETECF.2004.1399930
– ident: ref2
  doi: 10.1109/MAP.2015.2501227
– ident: ref32
  doi: 10.1007/s11063-018-9800-1
– ident: ref21
  doi: 10.1109/TAP.2006.883962
– ident: ref31
  doi: 10.1007/s41650-017-0004-z
– ident: ref17
  doi: 10.6028/NIST.TN.1951
– ident: ref15
  doi: 10.1109/LAWP.2018.2872051
– volume-title: MECA500 (R3) User Manual: Robot Firmware 7.0.6, Document Revision F
  year: 2018
  ident: ref48
– ident: ref29
  doi: 10.1109/LAWP.2018.2869548
– ident: ref8
  doi: 10.1109/ACCESS.2018.2812304
– ident: ref39
  doi: 10.1109/MCOM.2018.1700874
– ident: ref49
  doi: 10.1109/OJVT.2023.3239617
– ident: ref1
  doi: 10.1109/CIMCA.2005.1631480
– year: 2019
  ident: ref3
  article-title: Addition of indoor industrial channel model to document 38.901—Study on channel model for frequencies from 0.5 to 100 GHz
– ident: ref36
  doi: 10.1109/TII.2019.2931703
– ident: ref26
  doi: 10.1109/MWSYM.2019.8700781
– ident: ref13
  doi: 10.1109/TAP.2018.2851927
– ident: ref45
  doi: 10.1109/T-VT.1979.23789
SSID ssj0002873241
Score 2.1911452
Snippet Industrial wireless channel modeling is essential for the development of Industrial Internet of Things (IIoT) wireless systems. Moreover, millimeter-wave...
SourceID doaj
crossref
ieee
SourceType Open Website
Index Database
Publisher
StartPage 1
SubjectTerms Apertures
Channel modeling
clustering
Delays
exemplar channel
Feature extraction
Industrial Internet of Things
mmWave channels
NIST
unsupervised learning
Wireless communication
Wireless sensor networks
wireless systems
SummonAdditionalLinks – databaseName: IEEE/IET Electronic Library
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8QwDLaACQbeiOOlDEyIHtdc2iTjgUCAdLCAYKLKw2WAewj1EOLX46TleIiBLYqqKood-3NifwbY7zqPRqNNMml5QkohEi2NTrTOMOUSlfIx2-IqP78Vl_fZ_QwcTmthEDEmn2E7DONbvh-5SbgqO9KS8IBUszBLalbXak3vUwj5EzZIm4fLtKOPri8v-hQAck5xqSJTrX-4nsjQ_6OlSvQoZ0vQ_1xLnUjy1J5Utu3ef9E0_nexy7DYQEvWq3VhBWZwuAoL3wgH1-Chx_oxexKThlj1kfUaVnFG8JURHGSnbzgYU8BLg-qlrntgo5INBnfmFdlXrw8WMmefyVKyUKIwJCe7Drdnpzcn50nTYSFxBNuqxJemYx1BMGlzZ1OROYc651yrDpalcU4666QlECh0rpAMgPGO3J4VxhEysd0NmBuOhrgJzKAndOOVIosgSkWDXPLwTEuHnss0a8HB5-YX45pIo4gBSEcXQVJFkFTRSKoFx0E80w8DB3acoB0umiNFQUsmZVd4UXItKE61wucGc98tbSasEy1YC1KZ_qQRyNbf09swH1ZQ367swFz1MsFdwhuV3YuK9gFH6dMY
  priority: 102
  providerName: IEEE
Title A Machine-Learning Approach for the Exemplar Extraction of mmWave Industrial Wireless Channels
URI https://ieeexplore.ieee.org/document/9795178
https://doaj.org/article/1457734d4f294840b4d6ae6d3fb54bc4
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA6ykx5EneL8MXLwJIS1adokxykbczC9ONzJkl8VxHVjVPHk3-5LWud28uKlhFJC-F6S973m5XsIXSXGOiWdJinXlMCkYERyJYmUqYspd0LYkG1xn42mbDxLZxulvnxOWC0PXAPXi1nKecIsK6hkEI1oZjPlMpsUOmXaBCXQSEYbwdRr-GXEgSnEzTFmHMnew_huAuEgpRClCti45ZYjCnr9WwVWgn8ZHqD9hhjifj2gQ7TjyiO0tyEX2EbPfTwJuY-ONLKoL7jfaIJjIJ8YyBwefLr5EsJVaFSr-tYCXhR4Pn9SHw7_VurAPu_1DfY57C8YlOAij9F0OHi8HZGmPgIxQLoqYgsVaQMEiuvMaADKGCczSqWIXFEoY7jRhmugcExmwsHyVdaA09JMGeAVOjlBrXJRulOElbPATawQsJ5ZIaCRceoPWWHJUh6nHXT9A1a-rGUw8hA-RDL3yOYe2bxBtoNuPJzrD72CdXgBds0bu-Z_2bWD2t4Y604kh7FwcfYffZ-jXT_e-k_KBWpVq3d3Cdyi0t0wjeA5-Rp0w2XAb2T_y18
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB4BPQAHaKGIFCg-9IS6Iet41_YxIFCAJFxA5dSVH7McIAlCm6rqr2fsXcJDHHobWavVyGPPfGPPfAb40XUejUabZNLyhBaFSLQ0OtE6w5RLVMrHaotR3r8W5zfZzQL8nPfCIGIsPsN2EONdvp-6WTgqO9SS8IBUi_CJ4r7I6m6t-YkKYX9CB2lzdZl29OHl-dmQUkDOKTNV5Kz1m-ATOfrfPKoSY8rpOgyftalLSe7as8q23b93RI3_q-5nWGvAJevVq-ELLOBkA1ZfUQ5uwu8eG8b6SUwaatVb1mt4xRkBWEaAkJ38xfEDpbwkVI915wOblmw8_mX-IHt57YOF2tl78pUsNClMKMx-hevTk6vjftK8sZA4Am5V4kvTsY5AmLS5s6nInEOdc65VB8vSOCedddISDBQ6V0guwHhHgc8K4wib2O4WLE2mE9wGZtATvvFKkU8QpSIhlzxc1NK25zLNWnDwPPnFQ02lUcQUpKOLYKkiWKpoLNWCo2Ce-YeBBTsO0AwXzaaitCWTsiu8KLkWlKla4XODue-WNhPWiRZsBqvMf9IY5NvHw_uw3L8aDorB2ehiB1aCNvVZyy4sVY8z3CP0UdnvcdE9AX4g1mU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Machine-Learning+Approach+for+the+Exemplar+Extraction+of+mmWave+Industrial+Wireless+Channels&rft.jtitle=IEEE+open+journal+of+instrumentation+and+measurement&rft.au=Kashef%2C+Mohamed&rft.au=Vouras%2C+Peter&rft.au=Jones%2C+Robert+D.&rft.au=Candell%2C+Richard&rft.date=2022&rft.issn=2768-7236&rft.eissn=2768-7236&rft.volume=1&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1109%2FOJIM.2022.3181309&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_OJIM_2022_3181309
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2768-7236&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2768-7236&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2768-7236&client=summon