A Machine-Learning Approach for the Exemplar Extraction of mmWave Industrial Wireless Channels
Industrial wireless channel modeling is essential for the development of Industrial Internet of Things (IIoT) wireless systems. Moreover, millimeter-wave (mmWave) wireless bands have a high potential to be used for IIoT applications because of their high data-rates and the better applicability of ha...
Saved in:
Published in | IEEE open journal of instrumentation and measurement Vol. 1; pp. 1 - 15 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
IEEE
2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2768-7236 2768-7236 |
DOI | 10.1109/OJIM.2022.3181309 |
Cover
Loading…
Abstract | Industrial wireless channel modeling is essential for the development of Industrial Internet of Things (IIoT) wireless systems. Moreover, millimeter-wave (mmWave) wireless bands have a high potential to be used for IIoT applications because of their high data-rates and the better applicability of having multiple antennas. As a result, we introduce an exemplar extraction approach to be applied on mmWave wireless channel measurements. A machine learning (ML) clustering scheme is used to divide the measured power-angle-delay-profiles into a number of groups with respect to the angle of arrival. Each of the groups is represented by a power-delay-profile (PDP) exemplar to provide a tractable way for testing and evaluation of mmWave IIoT wireless systems through compactly representing different groups based on their spatial characteristics. Hence, testing of wireless communications equipment can be performed over the exemplars to assess their spatial performance with a significantly reduced amount of data, allowing the development of lab-based device evaluation in a realistic, yet repeatable, test environment. Governing equations are provided in sufficient detail for users to implement the technique in their own labs. |
---|---|
AbstractList | Industrial wireless channel modeling is essential for the development of Industrial Internet of Things (IIoT) wireless systems. Moreover, millimeter-wave (mmWave) wireless bands have a high potential to be used for IIoT applications because of their high data-rates and the better applicability of having multiple antennas. As a result, we introduce an exemplar extraction approach to be applied on mmWave wireless channel measurements. A machine learning (ML) clustering scheme is used to divide the measured power-angle-delay-profiles into a number of groups with respect to the angle of arrival. Each of the groups is represented by a power-delay-profile (PDP) exemplar to provide a tractable way for testing and evaluation of mmWave IIoT wireless systems through compactly representing different groups based on their spatial characteristics. Hence, testing of wireless communications equipment can be performed over the exemplars to assess their spatial performance with a significantly reduced amount of data, allowing the development of lab-based device evaluation in a realistic, yet repeatable, test environment. Governing equations are provided in sufficient detail for users to implement the technique in their own labs. |
Author | Candell, Richard Remley, Kate A. Jones, Robert D. Kashef, Mohamed Vouras, Peter |
Author_xml | – sequence: 1 givenname: Mohamed orcidid: 0000-0002-6619-3509 surname: Kashef fullname: Kashef, Mohamed email: mohamed.kashef@nist.gov organization: Communications Technology Laboratory, NIST, Gaithersburg, MD, USA – sequence: 2 givenname: Peter orcidid: 0000-0002-1654-3080 surname: Vouras fullname: Vouras, Peter organization: Communications Technology Laboratory, NIST, Gaithersburg, MD, USA – sequence: 3 givenname: Robert D. orcidid: 0000-0001-8867-551X surname: Jones fullname: Jones, Robert D. organization: Communications Technology Laboratory, NIST, Boulder, CO, USA – sequence: 4 givenname: Richard orcidid: 0000-0002-6679-8823 surname: Candell fullname: Candell, Richard organization: Communications Technology Laboratory, NIST, Gaithersburg, MD, USA – sequence: 5 givenname: Kate A. orcidid: 0000-0003-3220-5425 surname: Remley fullname: Remley, Kate A. organization: Communications Technology Laboratory, NIST, Boulder, CO, USA |
BookMark | eNpNkM1OGzEUhS1EJSjwAIiNX2BS_2U8XkYRLUFBbEDsal17ronRxI7sKYK3Z9IgxOoeHd3zLb6f5DjlhIRccjbjnJlf97eru5lgQswk77hk5oicCt12jRayPf6WT8hFrS-MMdFpKRQ_JX8X9A78JiZs1gglxfRMF7tdyVNJQy503CC9fsPtboAyhbGAH2NONAe63T7BK9JV6v_VsUQY6FMsOGCtdLmBlHCo5-RHgKHixec9I4-_rx-WN836_s9quVg3Xop2bPoAzPm5ENq13nE19x5NK4TpGIYA3mvvvHZGSGXaDpnk0HvFpVPgORNOnpHVgdtneLG7ErdQ3m2GaP8XuTxbKGP0A9qJrrVUvQrCqE4xp_oWsO1lcHPlvJpY_MDyJddaMHzxOLN733bv2-5920_f0-bqsImI-PVvtJlz3ckPYcV-WQ |
CODEN | IOJIDM |
Cites_doi | 10.1109/MIE.2018.2873820 10.1109/OJAP.2022.3168401 10.1109/ICCW.2019.8756726 10.1109/ETFA.2005.1612506 10.1109/MCOM.2017.1600407CM 10.1109/JSAC.2019.2898756 10.1109/PIMRC.2016.7794728 10.1109/MCOM.2014.6736746 10.1109/ACCESS.2015.2486778 10.1109/TWC.2009.081088 10.1109/MAP.2016.2609815 10.1109/ACCESS.2020.2979220 10.1109/WCNC.2016.7564890 10.1109/MCOM.2014.6736750 10.1109/TCOMM.2018.2817199 10.1109/ICASSP39728.2021.9414262 10.1109/ARFTG47271.2020.9241381 10.1109/TWC.2010.06.081599 10.25046/aj030425 10.1109/49.16842 10.1109/RWS.2009.4957340 10.1109/GLOCOM.1996.587620 10.1109/7.705924 10.1109/MCOM.2015.7158274 10.1049/iet-com.2012.0028 10.1109/TAP.2016.2583475 10.1109/ISCID.2015.194 10.1109/JIOT.2020.3048992 10.1109/GLOCOM.2015.7417720 10.1109/ICIEA.2014.6931318 10.1109/TAES.1980.308885 10.1109/APS.2007.4396167 10.1109/WCSP.2018.8555681 10.1109/VETECF.2004.1399930 10.1109/MAP.2015.2501227 10.1007/s11063-018-9800-1 10.1109/TAP.2006.883962 10.1007/s41650-017-0004-z 10.6028/NIST.TN.1951 10.1109/LAWP.2018.2872051 10.1109/LAWP.2018.2869548 10.1109/ACCESS.2018.2812304 10.1109/MCOM.2018.1700874 10.1109/OJVT.2023.3239617 10.1109/CIMCA.2005.1631480 10.1109/TII.2019.2931703 10.1109/MWSYM.2019.8700781 10.1109/TAP.2018.2851927 10.1109/T-VT.1979.23789 |
ContentType | Journal Article |
DBID | 97E ESBDL RIA RIE AAYXX CITATION DOA |
DOI | 10.1109/OJIM.2022.3181309 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2768-7236 |
EndPage | 15 |
ExternalDocumentID | oai_doaj_org_article_1457734d4f294840b4d6ae6d3fb54bc4 10_1109_OJIM_2022_3181309 9795178 |
Genre | orig-research |
GroupedDBID | 0R~ 97E ABVLG ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS ESBDL GROUPED_DOAJ JAVBF M~E OCL OK1 RIA RIE AAYXX CITATION |
ID | FETCH-LOGICAL-c326t-dfa0bc5227b6cb145cce9622980effacc7cbc7b9234968e031adc413b4ac102b3 |
IEDL.DBID | DOA |
ISSN | 2768-7236 |
IngestDate | Wed Aug 27 01:28:03 EDT 2025 Tue Jul 01 04:14:45 EDT 2025 Wed Aug 27 02:23:55 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c326t-dfa0bc5227b6cb145cce9622980effacc7cbc7b9234968e031adc413b4ac102b3 |
ORCID | 0000-0002-6619-3509 0000-0002-1654-3080 0000-0002-6679-8823 0000-0001-8867-551X 0000-0003-3220-5425 |
OpenAccessLink | https://doaj.org/article/1457734d4f294840b4d6ae6d3fb54bc4 |
PageCount | 15 |
ParticipantIDs | ieee_primary_9795178 doaj_primary_oai_doaj_org_article_1457734d4f294840b4d6ae6d3fb54bc4 crossref_primary_10_1109_OJIM_2022_3181309 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220000 2022-00-00 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 20220000 |
PublicationDecade | 2020 |
PublicationTitle | IEEE open journal of instrumentation and measurement |
PublicationTitleAbbrev | OJIM |
PublicationYear | 2022 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref12 ref15 ref53 ref52 ref11 ref10 ref17 ref16 ref19 ref18 ref51 ref50 (ref57) 2021 ref46 ref45 Dupleich (ref14) ref47 ref42 ref41 ref44 ref43 (ref48) 2018 ref49 ref8 ref7 ref4 ref6 ref5 (ref56) 2021 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 Kyrö (ref9) ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 (ref55) 2020 ref29 Pedregosa (ref54) 2011; 12 (ref3) 2019 |
References_xml | – volume: 12 start-page: 2825 issue: 85 year: 2011 ident: ref54 article-title: Scikit-Learn: Machine learning in Python publication-title: J. Mach. Learn. Res. – ident: ref5 doi: 10.1109/MIE.2018.2873820 – ident: ref16 doi: 10.1109/OJAP.2022.3168401 – ident: ref30 doi: 10.1109/ICCW.2019.8756726 – ident: ref20 doi: 10.1109/ETFA.2005.1612506 – ident: ref38 doi: 10.1109/MCOM.2017.1600407CM – ident: ref41 doi: 10.1109/JSAC.2019.2898756 – ident: ref47 doi: 10.1109/PIMRC.2016.7794728 – volume-title: pyclustering.cluster.kmedoids.kmedoids Class Reference. year: 2021 ident: ref56 – ident: ref34 doi: 10.1109/MCOM.2014.6736746 – ident: ref12 doi: 10.1109/ACCESS.2015.2486778 – ident: ref44 doi: 10.1109/TWC.2009.081088 – ident: ref10 doi: 10.1109/MAP.2016.2609815 – ident: ref28 doi: 10.1109/ACCESS.2020.2979220 – ident: ref23 doi: 10.1109/WCNC.2016.7564890 – ident: ref37 doi: 10.1109/MCOM.2014.6736750 – ident: ref40 doi: 10.1109/TCOMM.2018.2817199 – ident: ref33 doi: 10.1109/ICASSP39728.2021.9414262 – ident: ref46 doi: 10.1109/ARFTG47271.2020.9241381 – ident: ref27 doi: 10.1109/TWC.2010.06.081599 – start-page: 1 volume-title: Proc. 13th Eur. Conf. Antennas Propagat. (EuCAP) ident: ref14 article-title: Multi-band indoor propagation characterization by measurements from 6 to 60 GHz – ident: ref18 doi: 10.25046/aj030425 – ident: ref19 doi: 10.1109/49.16842 – ident: ref6 doi: 10.1109/RWS.2009.4957340 – ident: ref7 doi: 10.1109/GLOCOM.1996.587620 – ident: ref50 doi: 10.1109/7.705924 – start-page: 1 volume-title: Proc. 4th Eur. Conf. Antennas Propag. ident: ref9 article-title: Long range wideband channel measurements at 81–86 GHz frequency range – ident: ref35 doi: 10.1109/MCOM.2015.7158274 – volume-title: Scikit-Learn User Guide: Clustering. year: 2021 ident: ref57 – ident: ref24 doi: 10.1049/iet-com.2012.0028 – ident: ref43 doi: 10.1109/TAP.2016.2583475 – ident: ref53 doi: 10.1109/ISCID.2015.194 – ident: ref4 doi: 10.1109/JIOT.2020.3048992 – ident: ref11 doi: 10.1109/GLOCOM.2015.7417720 – ident: ref52 doi: 10.1109/ICIEA.2014.6931318 – ident: ref51 doi: 10.1109/TAES.1980.308885 – volume-title: sklearn.metrics.silhouette_score. year: 2020 ident: ref55 – ident: ref22 doi: 10.1109/APS.2007.4396167 – ident: ref42 doi: 10.1109/WCSP.2018.8555681 – ident: ref25 doi: 10.1109/VETECF.2004.1399930 – ident: ref2 doi: 10.1109/MAP.2015.2501227 – ident: ref32 doi: 10.1007/s11063-018-9800-1 – ident: ref21 doi: 10.1109/TAP.2006.883962 – ident: ref31 doi: 10.1007/s41650-017-0004-z – ident: ref17 doi: 10.6028/NIST.TN.1951 – ident: ref15 doi: 10.1109/LAWP.2018.2872051 – volume-title: MECA500 (R3) User Manual: Robot Firmware 7.0.6, Document Revision F year: 2018 ident: ref48 – ident: ref29 doi: 10.1109/LAWP.2018.2869548 – ident: ref8 doi: 10.1109/ACCESS.2018.2812304 – ident: ref39 doi: 10.1109/MCOM.2018.1700874 – ident: ref49 doi: 10.1109/OJVT.2023.3239617 – ident: ref1 doi: 10.1109/CIMCA.2005.1631480 – year: 2019 ident: ref3 article-title: Addition of indoor industrial channel model to document 38.901—Study on channel model for frequencies from 0.5 to 100 GHz – ident: ref36 doi: 10.1109/TII.2019.2931703 – ident: ref26 doi: 10.1109/MWSYM.2019.8700781 – ident: ref13 doi: 10.1109/TAP.2018.2851927 – ident: ref45 doi: 10.1109/T-VT.1979.23789 |
SSID | ssj0002873241 |
Score | 2.1911452 |
Snippet | Industrial wireless channel modeling is essential for the development of Industrial Internet of Things (IIoT) wireless systems. Moreover, millimeter-wave... |
SourceID | doaj crossref ieee |
SourceType | Open Website Index Database Publisher |
StartPage | 1 |
SubjectTerms | Apertures Channel modeling clustering Delays exemplar channel Feature extraction Industrial Internet of Things mmWave channels NIST unsupervised learning Wireless communication Wireless sensor networks wireless systems |
SummonAdditionalLinks | – databaseName: IEEE/IET Electronic Library dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8QwDLaACQbeiOOlDEyIHtdc2iTjgUCAdLCAYKLKw2WAewj1EOLX46TleIiBLYqqKood-3NifwbY7zqPRqNNMml5QkohEi2NTrTOMOUSlfIx2-IqP78Vl_fZ_QwcTmthEDEmn2E7DONbvh-5SbgqO9KS8IBUszBLalbXak3vUwj5EzZIm4fLtKOPri8v-hQAck5xqSJTrX-4nsjQ_6OlSvQoZ0vQ_1xLnUjy1J5Utu3ef9E0_nexy7DYQEvWq3VhBWZwuAoL3wgH1-Chx_oxexKThlj1kfUaVnFG8JURHGSnbzgYU8BLg-qlrntgo5INBnfmFdlXrw8WMmefyVKyUKIwJCe7Drdnpzcn50nTYSFxBNuqxJemYx1BMGlzZ1OROYc651yrDpalcU4666QlECh0rpAMgPGO3J4VxhEysd0NmBuOhrgJzKAndOOVIosgSkWDXPLwTEuHnss0a8HB5-YX45pIo4gBSEcXQVJFkFTRSKoFx0E80w8DB3acoB0umiNFQUsmZVd4UXItKE61wucGc98tbSasEy1YC1KZ_qQRyNbf09swH1ZQ367swFz1MsFdwhuV3YuK9gFH6dMY priority: 102 providerName: IEEE |
Title | A Machine-Learning Approach for the Exemplar Extraction of mmWave Industrial Wireless Channels |
URI | https://ieeexplore.ieee.org/document/9795178 https://doaj.org/article/1457734d4f294840b4d6ae6d3fb54bc4 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA6ykx5EneL8MXLwJIS1adokxykbczC9ONzJkl8VxHVjVPHk3-5LWud28uKlhFJC-F6S973m5XsIXSXGOiWdJinXlMCkYERyJYmUqYspd0LYkG1xn42mbDxLZxulvnxOWC0PXAPXi1nKecIsK6hkEI1oZjPlMpsUOmXaBCXQSEYbwdRr-GXEgSnEzTFmHMnew_huAuEgpRClCti45ZYjCnr9WwVWgn8ZHqD9hhjifj2gQ7TjyiO0tyEX2EbPfTwJuY-ONLKoL7jfaIJjIJ8YyBwefLr5EsJVaFSr-tYCXhR4Pn9SHw7_VurAPu_1DfY57C8YlOAij9F0OHi8HZGmPgIxQLoqYgsVaQMEiuvMaADKGCczSqWIXFEoY7jRhmugcExmwsHyVdaA09JMGeAVOjlBrXJRulOElbPATawQsJ5ZIaCRceoPWWHJUh6nHXT9A1a-rGUw8hA-RDL3yOYe2bxBtoNuPJzrD72CdXgBds0bu-Z_2bWD2t4Y604kh7FwcfYffZ-jXT_e-k_KBWpVq3d3Cdyi0t0wjeA5-Rp0w2XAb2T_y18 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB4BPQAHaKGIFCg-9IS6Iet41_YxIFCAJFxA5dSVH7McIAlCm6rqr2fsXcJDHHobWavVyGPPfGPPfAb40XUejUabZNLyhBaFSLQ0OtE6w5RLVMrHaotR3r8W5zfZzQL8nPfCIGIsPsN2EONdvp-6WTgqO9SS8IBUi_CJ4r7I6m6t-YkKYX9CB2lzdZl29OHl-dmQUkDOKTNV5Kz1m-ATOfrfPKoSY8rpOgyftalLSe7as8q23b93RI3_q-5nWGvAJevVq-ELLOBkA1ZfUQ5uwu8eG8b6SUwaatVb1mt4xRkBWEaAkJ38xfEDpbwkVI915wOblmw8_mX-IHt57YOF2tl78pUsNClMKMx-hevTk6vjftK8sZA4Am5V4kvTsY5AmLS5s6nInEOdc65VB8vSOCedddISDBQ6V0guwHhHgc8K4wib2O4WLE2mE9wGZtATvvFKkU8QpSIhlzxc1NK25zLNWnDwPPnFQ02lUcQUpKOLYKkiWKpoLNWCo2Ce-YeBBTsO0AwXzaaitCWTsiu8KLkWlKla4XODue-WNhPWiRZsBqvMf9IY5NvHw_uw3L8aDorB2ehiB1aCNvVZyy4sVY8z3CP0UdnvcdE9AX4g1mU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Machine-Learning+Approach+for+the+Exemplar+Extraction+of+mmWave+Industrial+Wireless+Channels&rft.jtitle=IEEE+open+journal+of+instrumentation+and+measurement&rft.au=Kashef%2C+Mohamed&rft.au=Vouras%2C+Peter&rft.au=Jones%2C+Robert+D.&rft.au=Candell%2C+Richard&rft.date=2022&rft.issn=2768-7236&rft.eissn=2768-7236&rft.volume=1&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1109%2FOJIM.2022.3181309&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_OJIM_2022_3181309 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2768-7236&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2768-7236&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2768-7236&client=summon |