Evidence for a Proximate Influence of Winter Temperature on Metabolism in Passerine Birds
The roles of ultimate and proximate factors in regulating basal and summit metabolic rates of passerine birds during winter have received little study, and the extent to which winter temperatures affect these variables is unknown. To address this question, we measured basal and summit (maximum cold‐...
Saved in:
Published in | Physiological and biochemical zoology Vol. 72; no. 5; pp. 566 - 575 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
The University of Chicago Press
01.09.1999
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The roles of ultimate and proximate factors in regulating basal and summit metabolic rates of passerine birds during winter have received little study, and the extent to which winter temperatures affect these variables is unknown. To address this question, we measured basal and summit (maximum cold‐induced) metabolic rates in black‐capped chickadees (Poecile atricapillus), dark‐eyed juncos (Junco hyemalis), and American tree sparrows (Spizella arborea) during winters from 1991/1992 to 1997 in southeastern South Dakota. Both temperature and these metabolic rates varied within and among winters. Least‐squares regression revealed significant negative relationships for normalized basal and summit metabolism against mean winter temperature for all species pooled (
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $R^{2}=0.62$ \end{document}
to 0.69,
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $P\leq 0.001$ \end{document}
). Simple and multiple regressions were performed to analyze the influence of short‐term (0–7 d preceding testing), medium‐term (14–30 d before testing), and long‐term (100‐yr means for mean, minimum, and extreme low temperatures) temperature variables on whole‐animal and mass‐specific metabolic rates. Simple correlation coefficients for whole‐animal metabolic rates were highest (
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $r=-0.48$ \end{document}
to −0.75,
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $P< 0.01$ \end{document}
) for 14–30‐d temperature variables in chickadees and juncos and for 0–5‐d temperature variables (
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $r=-0.54$ \end{document}
to −0.68,
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $P< 0.01$ \end{document}
) in tree sparrows. For mass‐specific metabolic rates, simple correlation coefficients were again highest (
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $r=-0.45$ \end{document}
to −0.70,
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $P< 0.01$ \end{document}
) for 14–30‐d temperature variables in chickadees and juncos. Simple correlations for mass‐specific metabolic rates were highest for 7–14‐d temperature variables for tree sparrows (
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $r=-0.67$ \end{document}
to −0.68,
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $P< 0.01$ \end{document}
). Multiple regressions yielded modelR
2s ranging from 0.45 to 0.94 using a forward selection procedure and from 0.23 to 0.71 using a stepwise selection procedure. The partialR
2contributed from mass variation was small in all cases, ranging from 0.05 to 0.18, indicating that winter temperature was generally a good predictor of metabolic rate in these species. Metabolism was substantially correlated with short‐ and medium‐term temperature variables for all species (cumulative partial
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $R^{2}=0.31$ \end{document}
to 0.70 for forward selection and 0.13 to 0.57 for stepwise selection) but, at most, only weakly so with long‐term temperature variables (cumulative partial
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $R^{2}=0$ \end{document}
–0.11 for forward selection and 0–0.06 for stepwise selection). Thus, short‐ to medium‐term temperatures were better predictors of metabolic rates than long‐term temperatures. These data suggest a proximate role for winter temperature in regulating metabolism in these birds. |
---|---|
AbstractList | The roles of ultimate and proximate factors in regulating basal and summit metabolic rates of passerine birds during winter have received little study, and the extent to which winter temperatures affect these variables is unknown. To address this question, we measured basal and summit (maximum cold-induced) metabolic rates in black-capped chickadees (Poecile atricapillus), dark-eyed juncos (Junco hyemalis), and American tree sparrows (Spizella arborea) during winters from 1991/1992 to 1997 in southeastern South Dakota. Both temperature and these metabolic rates varied within and among winters. Least-squares regression revealed significant negative relationships for normalized basal and summit metabolism against mean winter temperature for all species pooled (R2=0.62 to 0.69, P</=0.001). Simple and multiple regressions were performed to analyze the influence of short-term (0-7 d preceding testing), medium-term (14-30 d before testing), and long-term (100-yr means for mean, minimum, and extreme low temperatures) temperature variables on whole-animal and mass-specific metabolic rates. Simple correlation coefficients for whole-animal metabolic rates were highest (r=-0.48 to -0.75, P<0.01) for 14-30-d temperature variables in chickadees and juncos and for 0-5-d temperature variables (r=-0. 54 to -0.68, P<0.01) in tree sparrows. For mass-specific metabolic rates, simple correlation coefficients were again highest (r=-0.45 to -0.70, P<0.01) for 14-30-d temperature variables in chickadees and juncos. Simple correlations for mass-specific metabolic rates were highest for 7-14-d temperature variables for tree sparrows (r=-0.67 to -0.68, P<0.01). Multiple regressions yielded model R2s ranging from 0.45 to 0.94 using a forward selection procedure and from 0.23 to 0.71 using a stepwise selection procedure. The partial R2 contributed from mass variation was small in all cases, ranging from 0.05 to 0.18, indicating that winter temperature was generally a good predictor of metabolic rate in these species. Metabolism was substantially correlated with short- and medium-term temperature variables for all species (cumulative partial R2=0.31 to 0.70 for forward selection and 0.13 to 0.57 for stepwise selection) but, at most, only weakly so with long-term temperature variables (cumulative partial R2=0-0.11 for forward selection and 0-0.06 for stepwise selection). Thus, short- to medium-term temperatures were better predictors of metabolic rates than long-term temperatures. These data suggest a proximate role for winter temperature in regulating metabolism in these birds. The roles of ultimate and proximate factors in regulating basal and summit metabolic rates of passerine birds during winter have received little study, and the extent to which winter temperatures affect these variables is unknown. To address this question, we measured basal and summit (maximum cold-induced) metabolic rates in black-capped chickadees (Poecile atricapillus), dark-eyed juncos (Junco hyemalis), and American tree sparrows (Spizella arborea) during winters from 1991/1992 to 1997 in southeastern South Dakota. Both temperature and these metabolic rates varied within and among winters. Least-squares regression revealed significant negative relationships for normalized basal and summit metabolism against mean winter temperature for all species pooled ( \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $$R^{2}=0.62$$ \end{document} to 0.69, \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $$P\leq 0.001$$ \end{document} ). Simple and multiple regressions were performed to analyze the influence of short-term (0-7 d preceding testing), medium-term (14-30 d before testing), and long-term (100-yr means for mean, minimum, and extreme low temperatures) temperature variables on whole-animal and mass-specific metabolic rates. Simple correlation coefficients for whole-animal metabolic rates were highest ( \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $$r=-0.48$$ \end{document} to −0.75, \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $$P< 0.01$$ \end{document} ) for 14-30-d temperature variables in chickadees and juncos and for 0-5-d temperature variables ( \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $$r=-0.54$$ \end{document} to −0.68, \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $$P< 0.01$$ \end{document} ) in tree sparrows. For mass-specific metabolic rates, simple correlation coefficients were again highest ( \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $$r=-0.45$$ \end{document} to −0.70, \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $$P< 0.01$$ \end{document} ) for 14-30-d temperature variables in chickadees and juncos. Simple correlations for mass-specific metabolic rates were highest for 7-14-d temperature variables for tree sparrows ( \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $$r=-0.67$$ \end{document} to −0.68, \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $$P< 0.01$$ \end{document} ). Multiple regressions yielded model R2s ranging from 0.45 to 0.94 using a forward selection procedure and from 0.23 to 0.71 using a stepwise selection procedure. The partial R2 contributed from mass variation was small in all cases, ranging from 0.05 to 0.18, indicating that winter temperature was generally a good predictor of metabolic rate in these species. Metabolism was substantially correlated with short- and medium-term temperature variables for all species (cumulative partial \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $$R^{2}=0.31$$ \end{document} to 0.70 for forward selection and 0.13 to 0.57 for stepwise selection) but, at most, only weakly so with long-term temperature variables (cumulative partial \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $$R^{2}=0$$ \end{document} -0.11 for forward selection and 0-0.06 for stepwise selection). Thus, short- to medium-term temperatures were better predictors of metabolic rates than long-term temperatures. These data suggest a proximate role for winter temperature in regulating metabolism in these birds. The roles of ultimate and proximate factors in regulating basal and summit metabolic rates of passerine birds during winter have received little study, and the extent to which winter temperatures affect these variables is unknown. To address this question, we measured basal and summit (maximum cold-induced) metabolic rates in black-capped chickadees (Poecile atricapillus), dark-eyed juncos (Junco hyemalis), and American tree sparrows (Spizella arborea) during winters from 1991/1992 to 1997 in southeastern South Dakota. Both temperature and these metabolic rates varied within and among winters. Least-squares regression revealed significant negative relationships for normalized basal and summit metabolism against mean winter temperature for all species pooled (R2=0.62 to 0.69, P</=0.001). Simple and multiple regressions were performed to analyze the influence of short-term (0-7 d preceding testing), medium-term (14-30 d before testing), and long-term (100-yr means for mean, minimum, and extreme low temperatures) temperature variables on whole-animal and mass-specific metabolic rates. Simple correlation coefficients for whole-animal metabolic rates were highest (r=-0.48 to -0.75, P<0.01) for 14-30-d temperature variables in chickadees and juncos and for 0-5-d temperature variables (r=-0. 54 to -0.68, P<0.01) in tree sparrows. For mass-specific metabolic rates, simple correlation coefficients were again highest (r=-0.45 to -0.70, P<0.01) for 14-30-d temperature variables in chickadees and juncos. Simple correlations for mass-specific metabolic rates were highest for 7-14-d temperature variables for tree sparrows (r=-0.67 to -0.68, P<0.01). Multiple regressions yielded model R2s ranging from 0.45 to 0.94 using a forward selection procedure and from 0.23 to 0.71 using a stepwise selection procedure. The partial R2 contributed from mass variation was small in all cases, ranging from 0.05 to 0.18, indicating that winter temperature was generally a good predictor of metabolic rate in these species. Metabolism was substantially correlated with short- and medium-term temperature variables for all species (cumulative partial R2=0.31 to 0.70 for forward selection and 0.13 to 0.57 for stepwise selection) but, at most, only weakly so with long-term temperature variables (cumulative partial R2=0-0.11 for forward selection and 0-0.06 for stepwise selection). Thus, short- to medium-term temperatures were better predictors of metabolic rates than long-term temperatures. These data suggest a proximate role for winter temperature in regulating metabolism in these birds. The roles of ultimate and proximate factors in regulating basal and summit metabolic rates of passerine birds during winter have received little study, and the extent to which winter temperatures affect these variables is unknown. To address this question, we measured basal and summit (maximum cold‐induced) metabolic rates in black‐capped chickadees (Poecile atricapillus), dark‐eyed juncos (Junco hyemalis), and American tree sparrows (Spizella arborea) during winters from 1991/1992 to 1997 in southeastern South Dakota. Both temperature and these metabolic rates varied within and among winters. Least‐squares regression revealed significant negative relationships for normalized basal and summit metabolism against mean winter temperature for all species pooled ( \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $R^{2}=0.62$ \end{document} to 0.69, \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $P\leq 0.001$ \end{document} ). Simple and multiple regressions were performed to analyze the influence of short‐term (0–7 d preceding testing), medium‐term (14–30 d before testing), and long‐term (100‐yr means for mean, minimum, and extreme low temperatures) temperature variables on whole‐animal and mass‐specific metabolic rates. Simple correlation coefficients for whole‐animal metabolic rates were highest ( \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $r=-0.48$ \end{document} to −0.75, \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $P< 0.01$ \end{document} ) for 14–30‐d temperature variables in chickadees and juncos and for 0–5‐d temperature variables ( \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $r=-0.54$ \end{document} to −0.68, \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $P< 0.01$ \end{document} ) in tree sparrows. For mass‐specific metabolic rates, simple correlation coefficients were again highest ( \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $r=-0.45$ \end{document} to −0.70, \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $P< 0.01$ \end{document} ) for 14–30‐d temperature variables in chickadees and juncos. Simple correlations for mass‐specific metabolic rates were highest for 7–14‐d temperature variables for tree sparrows ( \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $r=-0.67$ \end{document} to −0.68, \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $P< 0.01$ \end{document} ). Multiple regressions yielded modelR 2s ranging from 0.45 to 0.94 using a forward selection procedure and from 0.23 to 0.71 using a stepwise selection procedure. The partialR 2contributed from mass variation was small in all cases, ranging from 0.05 to 0.18, indicating that winter temperature was generally a good predictor of metabolic rate in these species. Metabolism was substantially correlated with short‐ and medium‐term temperature variables for all species (cumulative partial \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $R^{2}=0.31$ \end{document} to 0.70 for forward selection and 0.13 to 0.57 for stepwise selection) but, at most, only weakly so with long‐term temperature variables (cumulative partial \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $R^{2}=0$ \end{document} –0.11 for forward selection and 0–0.06 for stepwise selection). Thus, short‐ to medium‐term temperatures were better predictors of metabolic rates than long‐term temperatures. These data suggest a proximate role for winter temperature in regulating metabolism in these birds. |
Author | Swanson, David L. Olmstead, Karen L. |
Author_xml | – sequence: 1 givenname: David L. surname: Swanson fullname: Swanson, David L. email: dlswanso@usd.edu – sequence: 2 givenname: Karen L. surname: Olmstead fullname: Olmstead, Karen L. email: dlswanso@usd.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/10521324$$D View this record in MEDLINE/PubMed |
BookMark | eNpNkF1LwzAUhoMozk39B0ouxLtqvpo0lyp-geIuJuJVydpTzWiTmbSi_97ODufNyeHk4YH3HaNt5x0gdEjJGSWZPOdUSi230B5NuUpSpvn2amcsYf0coXGMC0IozYjeRSNKUkY5E3vo9frTluAKwJUP2OBp8F-2MS3ge1fV3e-Pr_CLdS0EPINmCcG0XeivDj9Ca-a-trHB1uGpiRGCdYAvbSjjPtqpTB3hYP1O0PPN9ezqLnl4ur2_unhICs5km5SiIioTnArNtdYVl1KlWsxlprigxmSScaNB6bTnGaNCZGnJVJmVZUXnfc4JOh28y-A_Ooht3thYQF0bB76LuSIZVymnG7AIPsYAVb4MfdTwnVOSr0rMhxJ78Hht7OYNlP-wobUeOBmArni3hXnzywAx5gvfBddH3XiOBmwRWx_-NJxQSQhT_Ae9UYG9 |
CitedBy_id | crossref_primary_10_1002_jez_2790 crossref_primary_10_1007_s00442_022_05126_7 crossref_primary_10_1007_s00360_011_0625_8 crossref_primary_10_1007_s00360_008_0317_1 crossref_primary_10_1038_srep16600 crossref_primary_10_1111_j_1365_2435_2009_01646_x crossref_primary_10_1002_jez_1908 crossref_primary_10_1086_676832 crossref_primary_10_1007_s00360_020_01273_6 crossref_primary_10_1111_brv_12602 crossref_primary_10_1016_j_jtherbio_2013_03_003 crossref_primary_10_1111_j_0014_3820_2005_tb01810_x crossref_primary_10_3389_fphys_2022_961392 crossref_primary_10_1186_s40657_020_00222_9 crossref_primary_10_1007_s10646_024_02732_4 crossref_primary_10_1016_j_jtherbio_2015_05_003 crossref_primary_10_1086_688956 crossref_primary_10_1086_707679 crossref_primary_10_1007_s00442_018_04332_6 crossref_primary_10_1554_05_106 crossref_primary_10_1016_S0306_4565_03_00050_0 crossref_primary_10_1086_711370 crossref_primary_10_1007_s10336_015_1186_5 crossref_primary_10_1126_sciadv_abm0197 crossref_primary_10_1016_j_cbpa_2013_04_001 crossref_primary_10_1086_667989 crossref_primary_10_1007_s10336_023_02096_2 crossref_primary_10_1111_j_1365_2435_2011_01850_x crossref_primary_10_3389_fphys_2018_01568 crossref_primary_10_1073_pnas_0702212104 crossref_primary_10_1007_s10336_015_1192_7 crossref_primary_10_3389_fevo_2024_1369761 crossref_primary_10_1016_j_jtherbio_2008_03_003 crossref_primary_10_1098_rstb_2020_0213 crossref_primary_10_1111_j_1558_5646_2008_00522_x crossref_primary_10_1016_j_cbpa_2019_04_016 crossref_primary_10_1242_jeb_220137 crossref_primary_10_1242_jeb_113472 crossref_primary_10_1086_648395 crossref_primary_10_1656_058_020_0304 crossref_primary_10_1007_s00360_015_0888_6 crossref_primary_10_1152_ajpregu_00683_2006 crossref_primary_10_1242_jeb_221853 crossref_primary_10_1242_jeb_02024 crossref_primary_10_1016_j_jtherbio_2011_01_004 crossref_primary_10_1086_499984 crossref_primary_10_1242_jeb_02338 crossref_primary_10_1016_j_cbpb_2003_12_004 crossref_primary_10_1093_beheco_arr208 crossref_primary_10_1086_689274 crossref_primary_10_1086_689030 crossref_primary_10_1371_journal_pone_0034271 crossref_primary_10_1093_iob_obaa039 crossref_primary_10_1242_jeb_096677 crossref_primary_10_1016_j_avrs_2023_100084 crossref_primary_10_1111_j_1365_2435_2007_01255_x crossref_primary_10_1111_j_1365_2435_2008_01382_x crossref_primary_10_1016_j_jtherbio_2011_06_010 crossref_primary_10_1242_jeb_245772 crossref_primary_10_1152_ajpregu_00203_2019 crossref_primary_10_1093_cz_zoab037 crossref_primary_10_1007_s00360_019_01218_8 crossref_primary_10_1038_s41598_023_45291_0 crossref_primary_10_1016_j_jtherbio_2008_06_009 crossref_primary_10_1890_09_1951_1 crossref_primary_10_1016_j_mce_2020_111088 crossref_primary_10_1111_ibi_12142 crossref_primary_10_1242_jeb_073445 crossref_primary_10_1007_s00360_012_0676_5 crossref_primary_10_1111_j_1365_2435_2009_01561_x crossref_primary_10_1371_journal_pone_0113617 crossref_primary_10_1007_s00360_023_01502_8 crossref_primary_10_1007_s00360_013_0798_4 crossref_primary_10_1016_j_anbehav_2017_01_016 crossref_primary_10_1016_j_jtherbio_2007_11_001 crossref_primary_10_1007_s00360_007_0218_8 crossref_primary_10_1073_pnas_0707683104 crossref_primary_10_1242_jeb_036319 crossref_primary_10_1242_jeb_085092 crossref_primary_10_1038_s41467_021_24588_6 crossref_primary_10_1242_jeb_244502 crossref_primary_10_1111_oik_05111 crossref_primary_10_1086_319658 crossref_primary_10_1007_s00360_016_1001_5 crossref_primary_10_3389_fphys_2021_691633 crossref_primary_10_1371_journal_pone_0068292 crossref_primary_10_1111_ibi_12558 crossref_primary_10_1111_ecog_01465 crossref_primary_10_1016_j_cbpa_2008_07_009 crossref_primary_10_1016_j_jtherbio_2012_10_001 crossref_primary_10_1086_591099 crossref_primary_10_1046_j_1474_919X_2003_00166_x crossref_primary_10_1016_j_jtherbio_2009_06_008 crossref_primary_10_1098_rspb_2005_3415 crossref_primary_10_1038_s41598_023_36218_w crossref_primary_10_1016_j_jtherbio_2011_07_011 crossref_primary_10_1186_s40657_019_0184_3 crossref_primary_10_1111_j_1600_048X_2013_05869_x crossref_primary_10_1093_cz_zox020 |
Cites_doi | 10.1111/j.1558-5646.1989.tb04220.x 10.1086/physzool.68.2.30166504 10.1152/ajplegacy.1974.226.3.490 10.2307/1939303 10.1086/physzool.69.5.30164255 10.1086/physzool.56.3.30152600 10.1086/physzool.64.6.30158232 10.1086/physzool.68.6.30163790 10.1007/BF00344730 10.1242/jeb.90.1.17 10.1016/0306-4565(93)90014-K 10.2307/3677259 10.2307/1368185 10.2307/1369467 10.1007/BF00367313 10.2307/5695 10.1016/0306-4565(96)00005-8 10.1152/jappl.1972.33.2.261 10.2307/1369954 |
ContentType | Journal Article |
Copyright | 1999 by The University of Chicago. All rights reserved. |
Copyright_xml | – notice: 1999 by The University of Chicago. All rights reserved. |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
DOI | 10.1086/316696 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Zoology |
DocumentTitleAlternate | Temperature and Metabolism in Birds |
EISSN | 1537-5293 |
EndPage | 575 |
ExternalDocumentID | 10_1086_316696 10521324 316696 10.1086/316696 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -~X 0R~ 123 29O 2AX 36B 4.4 5.N 53G 9EF AAHKG AAXPP ABABT ABBHK ABDBF ABPLY ABPPZ ABTLG ABXSQ ACGFO ACNCT ADALM ADTZG ADULT ADZLD AENEX AESBF AEUPB AFAZZ AGCDD AGUYK ALMA_UNASSIGNED_HOLDINGS AQVQM AS~ CBGCD CS3 CWIXF D0L DGPHC DOOOF DU5 DWIUU EAD EAP EAS EBC EBD EBS EDH EJD EMB EMK EMOBN EST ESX EZTEY F5P GTFYD HTVGU HZ~ JAAYA JBMMH JBS JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST MVM NHB O9- RCP SA0 SV3 TN5 TUS UFCQG WH7 XSW ZCA ZCG ~02 08R ABPTK UMP ABPEO ADACV AHXOZ CGR CUY CVF ECM EIF IPSME NPM AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-c326t-d4f078431493999f3667594b687341aa8623a9e795c322214485d27d8ddf1b293 |
ISSN | 1522-2152 |
IngestDate | Fri Oct 25 22:51:16 EDT 2024 Fri Aug 23 00:58:13 EDT 2024 Tue Oct 15 23:19:09 EDT 2024 Tue Apr 25 18:49:45 EDT 2023 Fri Feb 02 07:03:50 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c326t-d4f078431493999f3667594b687341aa8623a9e795c322214485d27d8ddf1b293 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 10521324 |
PQID | 70837531 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | pubmed_primary_10521324 crossref_primary_10_1086_316696 proquest_miscellaneous_70837531 jstor_primary_30160027 uchicagopress_journals_316696 |
PublicationCentury | 1900 |
PublicationDate | 19990900 1999 Sep-Oct 1999-09-00 19990901 |
PublicationDateYYYYMMDD | 1999-09-01 |
PublicationDate_xml | – month: 09 year: 1999 text: 19990900 |
PublicationDecade | 1990 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Physiological and biochemical zoology |
PublicationTitleAlternate | Physiol Biochem Zool |
PublicationYear | 1999 |
Publisher | The University of Chicago Press |
Publisher_xml | – name: The University of Chicago Press |
References | rf6 Rosenmann M. (rf22) 1974; 226 rf8 rf20 rf27 rf26 rf29 rf28 Bartholomew G.A. (rf1) 1981; 90 South Dakota Ornithologists' Union (rf24) rf14 Haftorn S. (rf11) 1989; 101 rf13 Swanson D.L. (rf25) 1990; 107 Dawson W.R. (rf4) 1986 rf30 rf10 Gelineo S. (rf9) rf31 Dawson W.R. (rf5) rf19 Root T.L. (rf21) rf16 rf18 rf17 SAS Institute (rf23) rf3 |
References_xml | – ident: rf18 doi: 10.1111/j.1558-5646.1989.tb04220.x – ident: rf19 doi: 10.1086/physzool.68.2.30166504 – volume: 226 start-page: 490 year: 1974 ident: rf22 publication-title: Am J Physiol doi: 10.1152/ajplegacy.1974.226.3.490 contributor: fullname: Rosenmann M. – ident: rf20 doi: 10.2307/1939303 – volume-title: Energetic features of avian thermoregulatory responses. Pp. 85–124 in C ident: rf5 contributor: fullname: Dawson W.R. – ident: rf8 doi: 10.1086/physzool.69.5.30164255 – volume-title: Cold: Physiological and Biochemical Adaptations year: 1986 ident: rf4 contributor: fullname: Dawson W.R. – ident: rf6 doi: 10.1086/physzool.56.3.30152600 – ident: rf27 doi: 10.1086/physzool.64.6.30158232 – ident: rf17 doi: 10.1086/physzool.68.6.30163790 – ident: rf31 doi: 10.1007/BF00344730 – volume: 90 start-page: 17 year: 1981 ident: rf1 publication-title: J Exp Biol doi: 10.1242/jeb.90.1.17 contributor: fullname: Bartholomew G.A. – ident: rf28 doi: 10.1016/0306-4565(93)90014-K – ident: rf14 doi: 10.2307/3677259 – volume: 107 start-page: 561 year: 1990 ident: rf25 publication-title: Auk contributor: fullname: Swanson D.L. – volume-title: SAS User's Guide ident: rf23 contributor: fullname: SAS Institute – volume: 101 start-page: 217 year: 1989 ident: rf11 publication-title: Wilson Bull contributor: fullname: Haftorn S. – volume-title: The Birds of South Dakota, 2d ed ident: rf24 contributor: fullname: South Dakota Ornithologists' Union – ident: rf26 doi: 10.2307/1368185 – ident: rf3 doi: 10.2307/1369467 – volume-title: Atlas of Wintering North American Birds ident: rf21 contributor: fullname: Root T.L. – ident: rf16 doi: 10.1007/BF00367313 – ident: rf10 doi: 10.2307/5695 – ident: rf29 doi: 10.1016/0306-4565(96)00005-8 – volume-title: Organ systems in adaptation: the temperature regulating system. Pp. 259–282 in D ident: rf9 contributor: fullname: Gelineo S. – ident: rf13 doi: 10.1152/jappl.1972.33.2.261 – ident: rf30 doi: 10.2307/1369954 |
SSID | ssj0011809 |
Score | 1.9202349 |
Snippet | The roles of ultimate and proximate factors in regulating basal and summit metabolic rates of passerine birds during winter have received little study, and the... The roles of ultimate and proximate factors in regulating basal and summit metabolic rates of passerine birds during winter have received little study, and the... |
SourceID | proquest crossref pubmed uchicagopress jstor |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 566 |
SubjectTerms | Acclimatization Adaptation, Physiological Animals Climate models Cold Temperature Cold tolerance Finishing Lipid metabolism Metabolism - physiology Multiple regression Seasons Songbirds Songbirds - physiology Sparrows Waterfowl Winter |
Title | Evidence for a Proximate Influence of Winter Temperature on Metabolism in Passerine Birds |
URI | https://www.jstor.org/stable/10.1086/316696 https://www.journals.uchicago.edu/doi/abs/10.1086/316696 https://www.ncbi.nlm.nih.gov/pubmed/10521324 https://search.proquest.com/docview/70837531 |
Volume | 72 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLWgFRIbxKswQMELdlWqmSS2k2UHqCpE2TAVhU1kx7YaCRI0TQXq13Ns5zWlSIVNNHmPfE-uz_V9EfJaJMwaOy8jYUodpZizIimsiLBn0ljzXKcuG_n4Iz86Sd-fstPRFeOzS1q1X15em1fyP1LFMcjVZcn-g2SHh-IAfkO-2ELC2N5Ixn1L0BAK6YL-f1VgoC4csms94rjgZ1cSYr23MmDIoYKy8xAcmxby_-Z6ZFTQg9K55R3jXFbrkPvbU1YfIzqoSLfOrirXZivUGbhsNtblP_2UfTaZj5bf-7A_LuN-HxDlU9D6c7pLwhuDqgJKVmc3iRvx6hSmruucG2abXsUKmL-hL2Kvg0U8wRqbKFTG-WRuZqHLyh9qf-69UMmC8_xKXe3O0Nm85DbZjqGXoBC3D5Zvl4eD28kVM_MFdru_PWlGFe7cYC8hgPU60-RqK5sJZVndJ_c6W4MeBOA8ILdM_ZDc-Rok9oh86eFDAR8q6QAfOsCHNpYG-NAJfGhT0xE-tKrpAB_q4fOYnBy-W705irpOG1EJ-t5GOrWgiuCSaQ7CmtuEw47MU8UzAZYjJczeROZG5Kx0njkY4RnTsdCZ1nahIMsdslU3tXlKKJtbrhjPU1suUiWkVLAwhFWJzDKeJGpGXvUjWPwIBVUKHwiR8SKM8Yzs-IEdTieuCuI8Fri1H-kCStB5tmRtmovzQsCQgN29mJEnQQCTR4OfwmiYkd0NiRTdZ3zevfTZ3176nNwdv4AXZKtdX5hd8NBWvezQ8xvrrolk |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evidence+for+a+Proximate+Influence+of+Winter+Temperature+on+Metabolism+in+Passerine+Birds&rft.jtitle=Physiological+and+biochemical+zoology&rft.au=Swanson%2C+David+L.&rft.au=Olmstead%2C+Karen+L.&rft.date=1999-09-01&rft.pub=The+University+of+Chicago+Press&rft.issn=1522-2152&rft.eissn=1537-5293&rft.volume=72&rft.issue=5&rft.spage=566&rft.epage=575&rft_id=info:doi/10.1086%2F316696&rft.externalDocID=10.1086%2F316696 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1522-2152&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1522-2152&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1522-2152&client=summon |