Evidence for a Proximate Influence of Winter Temperature on Metabolism in Passerine Birds

The roles of ultimate and proximate factors in regulating basal and summit metabolic rates of passerine birds during winter have received little study, and the extent to which winter temperatures affect these variables is unknown. To address this question, we measured basal and summit (maximum cold‐...

Full description

Saved in:
Bibliographic Details
Published inPhysiological and biochemical zoology Vol. 72; no. 5; pp. 566 - 575
Main Authors Swanson, David L., Olmstead, Karen L.
Format Journal Article
LanguageEnglish
Published United States The University of Chicago Press 01.09.1999
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The roles of ultimate and proximate factors in regulating basal and summit metabolic rates of passerine birds during winter have received little study, and the extent to which winter temperatures affect these variables is unknown. To address this question, we measured basal and summit (maximum cold‐induced) metabolic rates in black‐capped chickadees (Poecile atricapillus), dark‐eyed juncos (Junco hyemalis), and American tree sparrows (Spizella arborea) during winters from 1991/1992 to 1997 in southeastern South Dakota. Both temperature and these metabolic rates varied within and among winters. Least‐squares regression revealed significant negative relationships for normalized basal and summit metabolism against mean winter temperature for all species pooled ( \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $R^{2}=0.62$ \end{document} to 0.69, \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $P\leq 0.001$ \end{document} ). Simple and multiple regressions were performed to analyze the influence of short‐term (0–7 d preceding testing), medium‐term (14–30 d before testing), and long‐term (100‐yr means for mean, minimum, and extreme low temperatures) temperature variables on whole‐animal and mass‐specific metabolic rates. Simple correlation coefficients for whole‐animal metabolic rates were highest ( \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $r=-0.48$ \end{document} to −0.75, \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $P< 0.01$ \end{document} ) for 14–30‐d temperature variables in chickadees and juncos and for 0–5‐d temperature variables ( \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $r=-0.54$ \end{document} to −0.68, \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $P< 0.01$ \end{document} ) in tree sparrows. For mass‐specific metabolic rates, simple correlation coefficients were again highest ( \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $r=-0.45$ \end{document} to −0.70, \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $P< 0.01$ \end{document} ) for 14–30‐d temperature variables in chickadees and juncos. Simple correlations for mass‐specific metabolic rates were highest for 7–14‐d temperature variables for tree sparrows ( \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $r=-0.67$ \end{document} to −0.68, \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $P< 0.01$ \end{document} ). Multiple regressions yielded modelR 2s ranging from 0.45 to 0.94 using a forward selection procedure and from 0.23 to 0.71 using a stepwise selection procedure. The partialR 2contributed from mass variation was small in all cases, ranging from 0.05 to 0.18, indicating that winter temperature was generally a good predictor of metabolic rate in these species. Metabolism was substantially correlated with short‐ and medium‐term temperature variables for all species (cumulative partial \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $R^{2}=0.31$ \end{document} to 0.70 for forward selection and 0.13 to 0.57 for stepwise selection) but, at most, only weakly so with long‐term temperature variables (cumulative partial \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $R^{2}=0$ \end{document} –0.11 for forward selection and 0–0.06 for stepwise selection). Thus, short‐ to medium‐term temperatures were better predictors of metabolic rates than long‐term temperatures. These data suggest a proximate role for winter temperature in regulating metabolism in these birds.
AbstractList The roles of ultimate and proximate factors in regulating basal and summit metabolic rates of passerine birds during winter have received little study, and the extent to which winter temperatures affect these variables is unknown. To address this question, we measured basal and summit (maximum cold-induced) metabolic rates in black-capped chickadees (Poecile atricapillus), dark-eyed juncos (Junco hyemalis), and American tree sparrows (Spizella arborea) during winters from 1991/1992 to 1997 in southeastern South Dakota. Both temperature and these metabolic rates varied within and among winters. Least-squares regression revealed significant negative relationships for normalized basal and summit metabolism against mean winter temperature for all species pooled (R2=0.62 to 0.69, P</=0.001). Simple and multiple regressions were performed to analyze the influence of short-term (0-7 d preceding testing), medium-term (14-30 d before testing), and long-term (100-yr means for mean, minimum, and extreme low temperatures) temperature variables on whole-animal and mass-specific metabolic rates. Simple correlation coefficients for whole-animal metabolic rates were highest (r=-0.48 to -0.75, P<0.01) for 14-30-d temperature variables in chickadees and juncos and for 0-5-d temperature variables (r=-0. 54 to -0.68, P<0.01) in tree sparrows. For mass-specific metabolic rates, simple correlation coefficients were again highest (r=-0.45 to -0.70, P<0.01) for 14-30-d temperature variables in chickadees and juncos. Simple correlations for mass-specific metabolic rates were highest for 7-14-d temperature variables for tree sparrows (r=-0.67 to -0.68, P<0.01). Multiple regressions yielded model R2s ranging from 0.45 to 0.94 using a forward selection procedure and from 0.23 to 0.71 using a stepwise selection procedure. The partial R2 contributed from mass variation was small in all cases, ranging from 0.05 to 0.18, indicating that winter temperature was generally a good predictor of metabolic rate in these species. Metabolism was substantially correlated with short- and medium-term temperature variables for all species (cumulative partial R2=0.31 to 0.70 for forward selection and 0.13 to 0.57 for stepwise selection) but, at most, only weakly so with long-term temperature variables (cumulative partial R2=0-0.11 for forward selection and 0-0.06 for stepwise selection). Thus, short- to medium-term temperatures were better predictors of metabolic rates than long-term temperatures. These data suggest a proximate role for winter temperature in regulating metabolism in these birds.
The roles of ultimate and proximate factors in regulating basal and summit metabolic rates of passerine birds during winter have received little study, and the extent to which winter temperatures affect these variables is unknown. To address this question, we measured basal and summit (maximum cold-induced) metabolic rates in black-capped chickadees (Poecile atricapillus), dark-eyed juncos (Junco hyemalis), and American tree sparrows (Spizella arborea) during winters from 1991/1992 to 1997 in southeastern South Dakota. Both temperature and these metabolic rates varied within and among winters. Least-squares regression revealed significant negative relationships for normalized basal and summit metabolism against mean winter temperature for all species pooled ( \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $$R^{2}=0.62$$ \end{document} to 0.69, \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $$P\leq 0.001$$ \end{document} ). Simple and multiple regressions were performed to analyze the influence of short-term (0-7 d preceding testing), medium-term (14-30 d before testing), and long-term (100-yr means for mean, minimum, and extreme low temperatures) temperature variables on whole-animal and mass-specific metabolic rates. Simple correlation coefficients for whole-animal metabolic rates were highest ( \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $$r=-0.48$$ \end{document} to −0.75, \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $$P< 0.01$$ \end{document} ) for 14-30-d temperature variables in chickadees and juncos and for 0-5-d temperature variables ( \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $$r=-0.54$$ \end{document} to −0.68, \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $$P< 0.01$$ \end{document} ) in tree sparrows. For mass-specific metabolic rates, simple correlation coefficients were again highest ( \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $$r=-0.45$$ \end{document} to −0.70, \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $$P< 0.01$$ \end{document} ) for 14-30-d temperature variables in chickadees and juncos. Simple correlations for mass-specific metabolic rates were highest for 7-14-d temperature variables for tree sparrows ( \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $$r=-0.67$$ \end{document} to −0.68, \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $$P< 0.01$$ \end{document} ). Multiple regressions yielded model R2s ranging from 0.45 to 0.94 using a forward selection procedure and from 0.23 to 0.71 using a stepwise selection procedure. The partial R2 contributed from mass variation was small in all cases, ranging from 0.05 to 0.18, indicating that winter temperature was generally a good predictor of metabolic rate in these species. Metabolism was substantially correlated with short- and medium-term temperature variables for all species (cumulative partial \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $$R^{2}=0.31$$ \end{document} to 0.70 for forward selection and 0.13 to 0.57 for stepwise selection) but, at most, only weakly so with long-term temperature variables (cumulative partial \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $$R^{2}=0$$ \end{document} -0.11 for forward selection and 0-0.06 for stepwise selection). Thus, short- to medium-term temperatures were better predictors of metabolic rates than long-term temperatures. These data suggest a proximate role for winter temperature in regulating metabolism in these birds.
The roles of ultimate and proximate factors in regulating basal and summit metabolic rates of passerine birds during winter have received little study, and the extent to which winter temperatures affect these variables is unknown. To address this question, we measured basal and summit (maximum cold-induced) metabolic rates in black-capped chickadees (Poecile atricapillus), dark-eyed juncos (Junco hyemalis), and American tree sparrows (Spizella arborea) during winters from 1991/1992 to 1997 in southeastern South Dakota. Both temperature and these metabolic rates varied within and among winters. Least-squares regression revealed significant negative relationships for normalized basal and summit metabolism against mean winter temperature for all species pooled (R2=0.62 to 0.69, P&lt;/=0.001). Simple and multiple regressions were performed to analyze the influence of short-term (0-7 d preceding testing), medium-term (14-30 d before testing), and long-term (100-yr means for mean, minimum, and extreme low temperatures) temperature variables on whole-animal and mass-specific metabolic rates. Simple correlation coefficients for whole-animal metabolic rates were highest (r=-0.48 to -0.75, P&lt;0.01) for 14-30-d temperature variables in chickadees and juncos and for 0-5-d temperature variables (r=-0. 54 to -0.68, P&lt;0.01) in tree sparrows. For mass-specific metabolic rates, simple correlation coefficients were again highest (r=-0.45 to -0.70, P&lt;0.01) for 14-30-d temperature variables in chickadees and juncos. Simple correlations for mass-specific metabolic rates were highest for 7-14-d temperature variables for tree sparrows (r=-0.67 to -0.68, P&lt;0.01). Multiple regressions yielded model R2s ranging from 0.45 to 0.94 using a forward selection procedure and from 0.23 to 0.71 using a stepwise selection procedure. The partial R2 contributed from mass variation was small in all cases, ranging from 0.05 to 0.18, indicating that winter temperature was generally a good predictor of metabolic rate in these species. Metabolism was substantially correlated with short- and medium-term temperature variables for all species (cumulative partial R2=0.31 to 0.70 for forward selection and 0.13 to 0.57 for stepwise selection) but, at most, only weakly so with long-term temperature variables (cumulative partial R2=0-0.11 for forward selection and 0-0.06 for stepwise selection). Thus, short- to medium-term temperatures were better predictors of metabolic rates than long-term temperatures. These data suggest a proximate role for winter temperature in regulating metabolism in these birds.
The roles of ultimate and proximate factors in regulating basal and summit metabolic rates of passerine birds during winter have received little study, and the extent to which winter temperatures affect these variables is unknown. To address this question, we measured basal and summit (maximum cold‐induced) metabolic rates in black‐capped chickadees (Poecile atricapillus), dark‐eyed juncos (Junco hyemalis), and American tree sparrows (Spizella arborea) during winters from 1991/1992 to 1997 in southeastern South Dakota. Both temperature and these metabolic rates varied within and among winters. Least‐squares regression revealed significant negative relationships for normalized basal and summit metabolism against mean winter temperature for all species pooled ( \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $R^{2}=0.62$ \end{document} to 0.69, \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $P\leq 0.001$ \end{document} ). Simple and multiple regressions were performed to analyze the influence of short‐term (0–7 d preceding testing), medium‐term (14–30 d before testing), and long‐term (100‐yr means for mean, minimum, and extreme low temperatures) temperature variables on whole‐animal and mass‐specific metabolic rates. Simple correlation coefficients for whole‐animal metabolic rates were highest ( \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $r=-0.48$ \end{document} to −0.75, \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $P< 0.01$ \end{document} ) for 14–30‐d temperature variables in chickadees and juncos and for 0–5‐d temperature variables ( \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $r=-0.54$ \end{document} to −0.68, \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $P< 0.01$ \end{document} ) in tree sparrows. For mass‐specific metabolic rates, simple correlation coefficients were again highest ( \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $r=-0.45$ \end{document} to −0.70, \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $P< 0.01$ \end{document} ) for 14–30‐d temperature variables in chickadees and juncos. Simple correlations for mass‐specific metabolic rates were highest for 7–14‐d temperature variables for tree sparrows ( \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $r=-0.67$ \end{document} to −0.68, \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $P< 0.01$ \end{document} ). Multiple regressions yielded modelR 2s ranging from 0.45 to 0.94 using a forward selection procedure and from 0.23 to 0.71 using a stepwise selection procedure. The partialR 2contributed from mass variation was small in all cases, ranging from 0.05 to 0.18, indicating that winter temperature was generally a good predictor of metabolic rate in these species. Metabolism was substantially correlated with short‐ and medium‐term temperature variables for all species (cumulative partial \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $R^{2}=0.31$ \end{document} to 0.70 for forward selection and 0.13 to 0.57 for stepwise selection) but, at most, only weakly so with long‐term temperature variables (cumulative partial \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $R^{2}=0$ \end{document} –0.11 for forward selection and 0–0.06 for stepwise selection). Thus, short‐ to medium‐term temperatures were better predictors of metabolic rates than long‐term temperatures. These data suggest a proximate role for winter temperature in regulating metabolism in these birds.
Author Swanson, David L.
Olmstead, Karen L.
Author_xml – sequence: 1
  givenname: David L.
  surname: Swanson
  fullname: Swanson, David L.
  email: dlswanso@usd.edu
– sequence: 2
  givenname: Karen L.
  surname: Olmstead
  fullname: Olmstead, Karen L.
  email: dlswanso@usd.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/10521324$$D View this record in MEDLINE/PubMed
BookMark eNpNkF1LwzAUhoMozk39B0ouxLtqvpo0lyp-geIuJuJVydpTzWiTmbSi_97ODufNyeHk4YH3HaNt5x0gdEjJGSWZPOdUSi230B5NuUpSpvn2amcsYf0coXGMC0IozYjeRSNKUkY5E3vo9frTluAKwJUP2OBp8F-2MS3ge1fV3e-Pr_CLdS0EPINmCcG0XeivDj9Ca-a-trHB1uGpiRGCdYAvbSjjPtqpTB3hYP1O0PPN9ezqLnl4ur2_unhICs5km5SiIioTnArNtdYVl1KlWsxlprigxmSScaNB6bTnGaNCZGnJVJmVZUXnfc4JOh28y-A_Ooht3thYQF0bB76LuSIZVymnG7AIPsYAVb4MfdTwnVOSr0rMhxJ78Hht7OYNlP-wobUeOBmArni3hXnzywAx5gvfBddH3XiOBmwRWx_-NJxQSQhT_Ae9UYG9
CitedBy_id crossref_primary_10_1002_jez_2790
crossref_primary_10_1007_s00442_022_05126_7
crossref_primary_10_1007_s00360_011_0625_8
crossref_primary_10_1007_s00360_008_0317_1
crossref_primary_10_1038_srep16600
crossref_primary_10_1111_j_1365_2435_2009_01646_x
crossref_primary_10_1002_jez_1908
crossref_primary_10_1086_676832
crossref_primary_10_1007_s00360_020_01273_6
crossref_primary_10_1111_brv_12602
crossref_primary_10_1016_j_jtherbio_2013_03_003
crossref_primary_10_1111_j_0014_3820_2005_tb01810_x
crossref_primary_10_3389_fphys_2022_961392
crossref_primary_10_1186_s40657_020_00222_9
crossref_primary_10_1007_s10646_024_02732_4
crossref_primary_10_1016_j_jtherbio_2015_05_003
crossref_primary_10_1086_688956
crossref_primary_10_1086_707679
crossref_primary_10_1007_s00442_018_04332_6
crossref_primary_10_1554_05_106
crossref_primary_10_1016_S0306_4565_03_00050_0
crossref_primary_10_1086_711370
crossref_primary_10_1007_s10336_015_1186_5
crossref_primary_10_1126_sciadv_abm0197
crossref_primary_10_1016_j_cbpa_2013_04_001
crossref_primary_10_1086_667989
crossref_primary_10_1007_s10336_023_02096_2
crossref_primary_10_1111_j_1365_2435_2011_01850_x
crossref_primary_10_3389_fphys_2018_01568
crossref_primary_10_1073_pnas_0702212104
crossref_primary_10_1007_s10336_015_1192_7
crossref_primary_10_3389_fevo_2024_1369761
crossref_primary_10_1016_j_jtherbio_2008_03_003
crossref_primary_10_1098_rstb_2020_0213
crossref_primary_10_1111_j_1558_5646_2008_00522_x
crossref_primary_10_1016_j_cbpa_2019_04_016
crossref_primary_10_1242_jeb_220137
crossref_primary_10_1242_jeb_113472
crossref_primary_10_1086_648395
crossref_primary_10_1656_058_020_0304
crossref_primary_10_1007_s00360_015_0888_6
crossref_primary_10_1152_ajpregu_00683_2006
crossref_primary_10_1242_jeb_221853
crossref_primary_10_1242_jeb_02024
crossref_primary_10_1016_j_jtherbio_2011_01_004
crossref_primary_10_1086_499984
crossref_primary_10_1242_jeb_02338
crossref_primary_10_1016_j_cbpb_2003_12_004
crossref_primary_10_1093_beheco_arr208
crossref_primary_10_1086_689274
crossref_primary_10_1086_689030
crossref_primary_10_1371_journal_pone_0034271
crossref_primary_10_1093_iob_obaa039
crossref_primary_10_1242_jeb_096677
crossref_primary_10_1016_j_avrs_2023_100084
crossref_primary_10_1111_j_1365_2435_2007_01255_x
crossref_primary_10_1111_j_1365_2435_2008_01382_x
crossref_primary_10_1016_j_jtherbio_2011_06_010
crossref_primary_10_1242_jeb_245772
crossref_primary_10_1152_ajpregu_00203_2019
crossref_primary_10_1093_cz_zoab037
crossref_primary_10_1007_s00360_019_01218_8
crossref_primary_10_1038_s41598_023_45291_0
crossref_primary_10_1016_j_jtherbio_2008_06_009
crossref_primary_10_1890_09_1951_1
crossref_primary_10_1016_j_mce_2020_111088
crossref_primary_10_1111_ibi_12142
crossref_primary_10_1242_jeb_073445
crossref_primary_10_1007_s00360_012_0676_5
crossref_primary_10_1111_j_1365_2435_2009_01561_x
crossref_primary_10_1371_journal_pone_0113617
crossref_primary_10_1007_s00360_023_01502_8
crossref_primary_10_1007_s00360_013_0798_4
crossref_primary_10_1016_j_anbehav_2017_01_016
crossref_primary_10_1016_j_jtherbio_2007_11_001
crossref_primary_10_1007_s00360_007_0218_8
crossref_primary_10_1073_pnas_0707683104
crossref_primary_10_1242_jeb_036319
crossref_primary_10_1242_jeb_085092
crossref_primary_10_1038_s41467_021_24588_6
crossref_primary_10_1242_jeb_244502
crossref_primary_10_1111_oik_05111
crossref_primary_10_1086_319658
crossref_primary_10_1007_s00360_016_1001_5
crossref_primary_10_3389_fphys_2021_691633
crossref_primary_10_1371_journal_pone_0068292
crossref_primary_10_1111_ibi_12558
crossref_primary_10_1111_ecog_01465
crossref_primary_10_1016_j_cbpa_2008_07_009
crossref_primary_10_1016_j_jtherbio_2012_10_001
crossref_primary_10_1086_591099
crossref_primary_10_1046_j_1474_919X_2003_00166_x
crossref_primary_10_1016_j_jtherbio_2009_06_008
crossref_primary_10_1098_rspb_2005_3415
crossref_primary_10_1038_s41598_023_36218_w
crossref_primary_10_1016_j_jtherbio_2011_07_011
crossref_primary_10_1186_s40657_019_0184_3
crossref_primary_10_1111_j_1600_048X_2013_05869_x
crossref_primary_10_1093_cz_zox020
Cites_doi 10.1111/j.1558-5646.1989.tb04220.x
10.1086/physzool.68.2.30166504
10.1152/ajplegacy.1974.226.3.490
10.2307/1939303
10.1086/physzool.69.5.30164255
10.1086/physzool.56.3.30152600
10.1086/physzool.64.6.30158232
10.1086/physzool.68.6.30163790
10.1007/BF00344730
10.1242/jeb.90.1.17
10.1016/0306-4565(93)90014-K
10.2307/3677259
10.2307/1368185
10.2307/1369467
10.1007/BF00367313
10.2307/5695
10.1016/0306-4565(96)00005-8
10.1152/jappl.1972.33.2.261
10.2307/1369954
ContentType Journal Article
Copyright 1999 by The University of Chicago. All rights reserved.
Copyright_xml – notice: 1999 by The University of Chicago. All rights reserved.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
DOI 10.1086/316696
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
DocumentTitleAlternate Temperature and Metabolism in Birds
EISSN 1537-5293
EndPage 575
ExternalDocumentID 10_1086_316696
10521324
316696
10.1086/316696
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
0R~
123
29O
2AX
36B
4.4
5.N
53G
9EF
AAHKG
AAXPP
ABABT
ABBHK
ABDBF
ABPLY
ABPPZ
ABTLG
ABXSQ
ACGFO
ACNCT
ADALM
ADTZG
ADULT
ADZLD
AENEX
AESBF
AEUPB
AFAZZ
AGCDD
AGUYK
ALMA_UNASSIGNED_HOLDINGS
AQVQM
AS~
CBGCD
CS3
CWIXF
D0L
DGPHC
DOOOF
DU5
DWIUU
EAD
EAP
EAS
EBC
EBD
EBS
EDH
EJD
EMB
EMK
EMOBN
EST
ESX
EZTEY
F5P
GTFYD
HTVGU
HZ~
JAAYA
JBMMH
JBS
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
MVM
NHB
O9-
RCP
SA0
SV3
TN5
TUS
UFCQG
WH7
XSW
ZCA
ZCG
~02
08R
ABPTK
UMP
ABPEO
ADACV
AHXOZ
CGR
CUY
CVF
ECM
EIF
IPSME
NPM
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c326t-d4f078431493999f3667594b687341aa8623a9e795c322214485d27d8ddf1b293
ISSN 1522-2152
IngestDate Fri Oct 25 22:51:16 EDT 2024
Fri Aug 23 00:58:13 EDT 2024
Tue Oct 15 23:19:09 EDT 2024
Tue Apr 25 18:49:45 EDT 2023
Fri Feb 02 07:03:50 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c326t-d4f078431493999f3667594b687341aa8623a9e795c322214485d27d8ddf1b293
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 10521324
PQID 70837531
PQPubID 23479
PageCount 10
ParticipantIDs pubmed_primary_10521324
crossref_primary_10_1086_316696
proquest_miscellaneous_70837531
jstor_primary_30160027
uchicagopress_journals_316696
PublicationCentury 1900
PublicationDate 19990900
1999 Sep-Oct
1999-09-00
19990901
PublicationDateYYYYMMDD 1999-09-01
PublicationDate_xml – month: 09
  year: 1999
  text: 19990900
PublicationDecade 1990
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Physiological and biochemical zoology
PublicationTitleAlternate Physiol Biochem Zool
PublicationYear 1999
Publisher The University of Chicago Press
Publisher_xml – name: The University of Chicago Press
References rf6
Rosenmann M. (rf22) 1974; 226
rf8
rf20
rf27
rf26
rf29
rf28
Bartholomew G.A. (rf1) 1981; 90
South Dakota Ornithologists' Union (rf24)
rf14
Haftorn S. (rf11) 1989; 101
rf13
Swanson D.L. (rf25) 1990; 107
Dawson W.R. (rf4) 1986
rf30
rf10
Gelineo S. (rf9)
rf31
Dawson W.R. (rf5)
rf19
Root T.L. (rf21)
rf16
rf18
rf17
SAS Institute (rf23)
rf3
References_xml – ident: rf18
  doi: 10.1111/j.1558-5646.1989.tb04220.x
– ident: rf19
  doi: 10.1086/physzool.68.2.30166504
– volume: 226
  start-page: 490
  year: 1974
  ident: rf22
  publication-title: Am J Physiol
  doi: 10.1152/ajplegacy.1974.226.3.490
  contributor:
    fullname: Rosenmann M.
– ident: rf20
  doi: 10.2307/1939303
– volume-title: Energetic features of avian thermoregulatory responses. Pp. 85–124 in C
  ident: rf5
  contributor:
    fullname: Dawson W.R.
– ident: rf8
  doi: 10.1086/physzool.69.5.30164255
– volume-title: Cold: Physiological and Biochemical Adaptations
  year: 1986
  ident: rf4
  contributor:
    fullname: Dawson W.R.
– ident: rf6
  doi: 10.1086/physzool.56.3.30152600
– ident: rf27
  doi: 10.1086/physzool.64.6.30158232
– ident: rf17
  doi: 10.1086/physzool.68.6.30163790
– ident: rf31
  doi: 10.1007/BF00344730
– volume: 90
  start-page: 17
  year: 1981
  ident: rf1
  publication-title: J Exp Biol
  doi: 10.1242/jeb.90.1.17
  contributor:
    fullname: Bartholomew G.A.
– ident: rf28
  doi: 10.1016/0306-4565(93)90014-K
– ident: rf14
  doi: 10.2307/3677259
– volume: 107
  start-page: 561
  year: 1990
  ident: rf25
  publication-title: Auk
  contributor:
    fullname: Swanson D.L.
– volume-title: SAS User's Guide
  ident: rf23
  contributor:
    fullname: SAS Institute
– volume: 101
  start-page: 217
  year: 1989
  ident: rf11
  publication-title: Wilson Bull
  contributor:
    fullname: Haftorn S.
– volume-title: The Birds of South Dakota, 2d ed
  ident: rf24
  contributor:
    fullname: South Dakota Ornithologists' Union
– ident: rf26
  doi: 10.2307/1368185
– ident: rf3
  doi: 10.2307/1369467
– volume-title: Atlas of Wintering North American Birds
  ident: rf21
  contributor:
    fullname: Root T.L.
– ident: rf16
  doi: 10.1007/BF00367313
– ident: rf10
  doi: 10.2307/5695
– ident: rf29
  doi: 10.1016/0306-4565(96)00005-8
– volume-title: Organ systems in adaptation: the temperature regulating system. Pp. 259–282 in D
  ident: rf9
  contributor:
    fullname: Gelineo S.
– ident: rf13
  doi: 10.1152/jappl.1972.33.2.261
– ident: rf30
  doi: 10.2307/1369954
SSID ssj0011809
Score 1.9202349
Snippet The roles of ultimate and proximate factors in regulating basal and summit metabolic rates of passerine birds during winter have received little study, and the...
The roles of ultimate and proximate factors in regulating basal and summit metabolic rates of passerine birds during winter have received little study, and the...
SourceID proquest
crossref
pubmed
uchicagopress
jstor
SourceType Aggregation Database
Index Database
Publisher
StartPage 566
SubjectTerms Acclimatization
Adaptation, Physiological
Animals
Climate models
Cold Temperature
Cold tolerance
Finishing
Lipid metabolism
Metabolism - physiology
Multiple regression
Seasons
Songbirds
Songbirds - physiology
Sparrows
Waterfowl
Winter
Title Evidence for a Proximate Influence of Winter Temperature on Metabolism in Passerine Birds
URI https://www.jstor.org/stable/10.1086/316696
https://www.journals.uchicago.edu/doi/abs/10.1086/316696
https://www.ncbi.nlm.nih.gov/pubmed/10521324
https://search.proquest.com/docview/70837531
Volume 72
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLWgFRIbxKswQMELdlWqmSS2k2UHqCpE2TAVhU1kx7YaCRI0TQXq13Ns5zWlSIVNNHmPfE-uz_V9EfJaJMwaOy8jYUodpZizIimsiLBn0ljzXKcuG_n4Iz86Sd-fstPRFeOzS1q1X15em1fyP1LFMcjVZcn-g2SHh-IAfkO-2ELC2N5Ixn1L0BAK6YL-f1VgoC4csms94rjgZ1cSYr23MmDIoYKy8xAcmxby_-Z6ZFTQg9K55R3jXFbrkPvbU1YfIzqoSLfOrirXZivUGbhsNtblP_2UfTaZj5bf-7A_LuN-HxDlU9D6c7pLwhuDqgJKVmc3iRvx6hSmruucG2abXsUKmL-hL2Kvg0U8wRqbKFTG-WRuZqHLyh9qf-69UMmC8_xKXe3O0Nm85DbZjqGXoBC3D5Zvl4eD28kVM_MFdru_PWlGFe7cYC8hgPU60-RqK5sJZVndJ_c6W4MeBOA8ILdM_ZDc-Rok9oh86eFDAR8q6QAfOsCHNpYG-NAJfGhT0xE-tKrpAB_q4fOYnBy-W705irpOG1EJ-t5GOrWgiuCSaQ7CmtuEw47MU8UzAZYjJczeROZG5Kx0njkY4RnTsdCZ1nahIMsdslU3tXlKKJtbrhjPU1suUiWkVLAwhFWJzDKeJGpGXvUjWPwIBVUKHwiR8SKM8Yzs-IEdTieuCuI8Fri1H-kCStB5tmRtmovzQsCQgN29mJEnQQCTR4OfwmiYkd0NiRTdZ3zevfTZ3176nNwdv4AXZKtdX5hd8NBWvezQ8xvrrolk
link.rule.ids 315,783,787,27936,27937
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evidence+for+a+Proximate+Influence+of+Winter+Temperature+on+Metabolism+in+Passerine+Birds&rft.jtitle=Physiological+and+biochemical+zoology&rft.au=Swanson%2C+David+L.&rft.au=Olmstead%2C+Karen+L.&rft.date=1999-09-01&rft.pub=The+University+of+Chicago+Press&rft.issn=1522-2152&rft.eissn=1537-5293&rft.volume=72&rft.issue=5&rft.spage=566&rft.epage=575&rft_id=info:doi/10.1086%2F316696&rft.externalDocID=10.1086%2F316696
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1522-2152&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1522-2152&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1522-2152&client=summon