Geometry-Guided Dense Perspective Network for Speech-Driven Facial Animation

Realistic speech-driven 3D facial animation is a challenging problem due to the complex relationship between speech and face. In this paper, we propose a deep architecture, called Geometry-guided Dense Perspective Network (GDPnet) , to achieve speaker-independent realistic 3D facial animation. The e...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on visualization and computer graphics Vol. 28; no. 12; pp. 4873 - 4886
Main Authors Liu, Jingying, Hui, Binyuan, Li, Kun, Liu, Yunke, Lai, Yu-Kun, Zhang, Yuxiang, Liu, Yebin, Yang, Jingyu
Format Journal Article
LanguageEnglish
Published New York IEEE 01.12.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1077-2626
1941-0506
1941-0506
DOI10.1109/TVCG.2021.3107669

Cover

Loading…
Abstract Realistic speech-driven 3D facial animation is a challenging problem due to the complex relationship between speech and face. In this paper, we propose a deep architecture, called Geometry-guided Dense Perspective Network (GDPnet) , to achieve speaker-independent realistic 3D facial animation. The encoder is designed with dense connections to strengthen feature propagation and encourage the re-use of audio features, and the decoder is integrated with an attention mechanism to adaptively recalibrate point-wise feature responses by explicitly modeling interdependencies between different neuron units. We also introduce a non-linear face reconstruction representation as a guidance of latent space to obtain more accurate deformation, which helps solve the geometry-related deformation and is good for generalization across subjects. Huber and HSIC (Hilbert-Schmidt Independence Criterion) constraints are adopted to promote the robustness of our model and to better exploit the non-linear and high-order correlations. Experimental results on the public dataset and real scanned dataset validate the superiority of our proposed GDPnet compared with state-of-the-art model. The code is available for research purposes at http://cic.tju.edu.cn/faculty/likun/projects/GDPnet .
AbstractList Realistic speech-driven 3D facial animation is a challenging problem due to the complex relationship between speech and face. In this paper, we propose a deep architecture, called Geometry-guided Dense Perspective Network (GDPnet) , to achieve speaker-independent realistic 3D facial animation. The encoder is designed with dense connections to strengthen feature propagation and encourage the re-use of audio features, and the decoder is integrated with an attention mechanism to adaptively recalibrate point-wise feature responses by explicitly modeling interdependencies between different neuron units. We also introduce a non-linear face reconstruction representation as a guidance of latent space to obtain more accurate deformation, which helps solve the geometry-related deformation and is good for generalization across subjects. Huber and HSIC (Hilbert-Schmidt Independence Criterion) constraints are adopted to promote the robustness of our model and to better exploit the non-linear and high-order correlations. Experimental results on the public dataset and real scanned dataset validate the superiority of our proposed GDPnet compared with state-of-the-art model. The code is available for research purposes at http://cic.tju.edu.cn/faculty/likun/projects/GDPnet .
Realistic speech-driven 3D facial animation is a challenging problem due to the complex relationship between speech and face. In this paper, we propose a deep architecture, called Geometry-guided Dense Perspective Network (GDPnet), to achieve speaker-independent realistic 3D facial animation. The encoder is designed with dense connections to strengthen feature propagation and encourage the re-use of audio features, and the decoder is integrated with an attention mechanism to adaptively recalibrate point-wise feature responses by explicitly modeling interdependencies between different neuron units. We also introduce a non-linear face reconstruction representation as a guidance of latent space to obtain more accurate deformation, which helps solve the geometry-related deformation and is good for generalization across subjects. Huber and HSIC (Hilbert-Schmidt Independence Criterion) constraints are adopted to promote the robustness of our model and to better exploit the non-linear and high-order correlations. Experimental results on the public dataset and real scanned dataset validate the superiority of our proposed GDPnet compared with state-of-the-art model. The code is available for research purposes at http://cic.tju.edu.cn/faculty/likun/projects/GDPnet.Realistic speech-driven 3D facial animation is a challenging problem due to the complex relationship between speech and face. In this paper, we propose a deep architecture, called Geometry-guided Dense Perspective Network (GDPnet), to achieve speaker-independent realistic 3D facial animation. The encoder is designed with dense connections to strengthen feature propagation and encourage the re-use of audio features, and the decoder is integrated with an attention mechanism to adaptively recalibrate point-wise feature responses by explicitly modeling interdependencies between different neuron units. We also introduce a non-linear face reconstruction representation as a guidance of latent space to obtain more accurate deformation, which helps solve the geometry-related deformation and is good for generalization across subjects. Huber and HSIC (Hilbert-Schmidt Independence Criterion) constraints are adopted to promote the robustness of our model and to better exploit the non-linear and high-order correlations. Experimental results on the public dataset and real scanned dataset validate the superiority of our proposed GDPnet compared with state-of-the-art model. The code is available for research purposes at http://cic.tju.edu.cn/faculty/likun/projects/GDPnet.
Author Lai, Yu-Kun
Li, Kun
Liu, Yunke
Hui, Binyuan
Liu, Yebin
Zhang, Yuxiang
Yang, Jingyu
Liu, Jingying
Author_xml – sequence: 1
  givenname: Jingying
  surname: Liu
  fullname: Liu, Jingying
  email: 981132775@qq.com
  organization: College of Intelligence and Computing, Tianjin University, Tianjin, China
– sequence: 2
  givenname: Binyuan
  surname: Hui
  fullname: Hui, Binyuan
  email: huybery@gmail.com
  organization: College of Intelligence and Computing, Tianjin University, Tianjin, China
– sequence: 3
  givenname: Kun
  orcidid: 0000-0003-2326-0166
  surname: Li
  fullname: Li, Kun
  email: lik@tju.edu.cn
  organization: College of Intelligence and Computing, Tianjin University, Tianjin, China
– sequence: 4
  givenname: Yunke
  surname: Liu
  fullname: Liu, Yunke
  email: 787782917@qq.com
  organization: College of Intelligence and Computing, Tianjin University, Tianjin, China
– sequence: 5
  givenname: Yu-Kun
  orcidid: 0000-0002-2094-5680
  surname: Lai
  fullname: Lai, Yu-Kun
  email: Yukun.Lai@cs.cardiff.ac.uk
  organization: School of Computer Science and Informatics, Cardiff University, Cardiff, U.K
– sequence: 6
  givenname: Yuxiang
  surname: Zhang
  fullname: Zhang, Yuxiang
  email: yx-z19@mails.tsinghua.edu.cn
  organization: Department of Automation, Tsinghua University, Beijing, China
– sequence: 7
  givenname: Yebin
  orcidid: 0000-0003-3215-0225
  surname: Liu
  fullname: Liu, Yebin
  email: liuyebin@mail.tsinghua.edu.cn
  organization: Department of Automation, Tsinghua University, Beijing, China
– sequence: 8
  givenname: Jingyu
  orcidid: 0000-0002-7521-7920
  surname: Yang
  fullname: Yang, Jingyu
  email: yjy@tju.edu.cn
  organization: School of Electrical and Information Engineering, Tianjin University, Tianjin, China
BookMark eNp9kEtPGzEURq2KqjzKD6jYjMSmm0nv9XO8RKGESlFBKmVrTTx3VMNkHOxJK_49ToO6YNGVr-Tz3cc5ZgdjHImxTwgzRLBf7u7nixkHjjOBYLS279gRWok1KNAHpQZjaq65PmTHOT8AoJSN_cAOhZTSCgtHbLmguKYpPdeLbeioqy5pzFTdUsob8lP4TdV3mv7E9Fj1MVU_NkT-V32ZysdYXbU-tEN1MYZ1O4U4fmTv-3bIdPr6nrCfV1_v5tf18mbxbX6xrL3geqo73vWSENsGhOQr8n2PZXmjFZfYIGoUoFSvpAVpQGAnWttzL9Gv9GrFlThhn_d9Nyk-bSlPbh2yp2FoR4rb7LjSGsooowt6_gZ9iNs0lu0cN7xRBhprCmX2lE8x50S982H6e9KU2jA4BLcT7nbC3U64exVekvgmuUnFRnr-b-ZsnwlE9I-35XqplXgBjHeJoA
CODEN ITVGEA
CitedBy_id crossref_primary_10_1109_LSP_2024_3356415
crossref_primary_10_1109_TVCG_2024_3371064
crossref_primary_10_1109_TCSVT_2024_3386836
crossref_primary_10_1007_s40747_024_01481_5
crossref_primary_10_1145_3676165
crossref_primary_10_1109_ACCESS_2024_3440335
crossref_primary_10_3390_electronics12234788
crossref_primary_10_1007_s00500_023_09292_5
crossref_primary_10_1016_j_vrih_2023_08_006
crossref_primary_10_1109_TPAMI_2024_3376710
Cites_doi 10.1007/978-3-030-01219-9_43
10.1145/2070781.2024163
10.1109/CVPR.2019.01034
10.1145/2929464.2929475
10.1145/3382507.3418815
10.1109/CVPR.2018.00766
10.1109/TVCG.2006.90
10.1109/CVPR.2019.01223
10.1145/971478.971488
10.21437/Interspeech.2016-483
10.1145/2010324.1964972
10.1145/2897824.2925984
10.1109/TPAMI.2019.2913372
10.1109/CVPR.2015.7298657
10.1007/11564089_7
10.1007/s11042-014-2156-2
10.1155/2009/191940
10.1007/978-3-642-04898-2_616
10.1109/CVPR.2016.90
10.1145/3242969.3243017
10.1109/TNN.2002.1021892
10.1145/3072959.3073658
10.1609/aaai.v34i04.5950
10.1109/TVCG.2007.22
10.1109/CVPRW.2017.287
10.1109/ICCV.2011.6126510
10.1145/1095878.1095881
10.1111/cgf.13830
10.1214/aoms/1177703732
10.1609/aaai.v33i01.33015525
10.1145/2816795.2818122
10.1145/3072959.3073640
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TVCG.2021.3107669
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0506
EndPage 4886
ExternalDocumentID 10_1109_TVCG_2021_3107669
9524465
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62171317; 62122058; 61771339
  funderid: 10.13039/501100001809
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TN5
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c326t-d2df4e11a80342becff1669765241811613055f549047031d3a9f2c41cb6bb253
IEDL.DBID RIE
ISSN 1077-2626
1941-0506
IngestDate Thu Jul 10 17:52:32 EDT 2025
Mon Jun 30 04:48:22 EDT 2025
Tue Jul 01 03:58:58 EDT 2025
Thu Apr 24 23:00:58 EDT 2025
Wed Aug 27 02:29:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c326t-d2df4e11a80342becff1669765241811613055f549047031d3a9f2c41cb6bb253
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3215-0225
0000-0002-7521-7920
0000-0003-2326-0166
0000-0002-2094-5680
PMID 34449390
PQID 2728570897
PQPubID 75741
PageCount 14
ParticipantIDs proquest_journals_2728570897
crossref_citationtrail_10_1109_TVCG_2021_3107669
ieee_primary_9524465
crossref_primary_10_1109_TVCG_2021_3107669
proquest_miscellaneous_2566032676
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on visualization and computer graphics
PublicationTitleAbbrev TVCG
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref15
ref14
ref31
ref30
hannun (ref12) 2014
ref33
ref11
ref32
ref2
ref39
ref17
karras (ref20) 2017; 36
ref38
ref19
ref18
zhou (ref43) 2018; 37
kim (ref21) 2018; 37
abadi (ref1) 2016
kingma (ref22) 2014
edwards (ref7) 2016; 35
fisher (ref8) 1986
taylor (ref36) 2017; 36
ref24
ref23
ref26
ref42
ref41
ref28
ref27
ref29
taylor (ref37) 2012
ref9
ref4
ref3
ref6
suwajanakorn (ref34) 2017; 36
glorot (ref10) 2011
ref5
ref40
li (ref25) 2017; 36
huang (ref16) 2016
References_xml – ident: ref31
  doi: 10.1007/978-3-030-01219-9_43
– ident: ref9
  doi: 10.1145/2070781.2024163
– ident: ref5
  doi: 10.1109/CVPR.2019.01034
– ident: ref38
  doi: 10.1145/2929464.2929475
– ident: ref23
  doi: 10.1145/3382507.3418815
– ident: ref40
  doi: 10.1109/CVPR.2018.00766
– ident: ref42
  doi: 10.1109/TVCG.2006.90
– start-page: 93
  year: 1986
  ident: ref8
  article-title: The DARPA speech recognition research database: Specifications and status
  publication-title: Proc DARPA Workshop Speech Recognize
– ident: ref18
  doi: 10.1109/CVPR.2019.01223
– ident: ref19
  doi: 10.1145/971478.971488
– ident: ref35
  doi: 10.21437/Interspeech.2016-483
– start-page: 2261
  year: 2016
  ident: ref16
  article-title: Densely connected convolutional networks
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: ref39
  doi: 10.1145/2010324.1964972
– volume: 35
  start-page: 1
  year: 2016
  ident: ref7
  article-title: JALI: An animator-centric viseme model for expressive lip synchronization
  publication-title: ACM Trans Graph
  doi: 10.1145/2897824.2925984
– ident: ref15
  doi: 10.1109/TPAMI.2019.2913372
– ident: ref2
  doi: 10.1109/CVPR.2015.7298657
– year: 2014
  ident: ref22
  article-title: Adam: A method for stochastic optimization
– volume: 37
  start-page: 1
  year: 2018
  ident: ref43
  article-title: Visemenet: Audio-driven animator-centric speech animation
  publication-title: ACM Trans Graph
– ident: ref11
  doi: 10.1007/11564089_7
– ident: ref6
  doi: 10.1007/s11042-014-2156-2
– ident: ref33
  doi: 10.1155/2009/191940
– ident: ref32
  doi: 10.1007/978-3-642-04898-2_616
– year: 2016
  ident: ref1
  article-title: TensorFlow: Large-scale machine learning on heterogeneous distributed systems
– ident: ref13
  doi: 10.1109/CVPR.2016.90
– ident: ref30
  doi: 10.1145/3242969.3243017
– ident: ref14
  doi: 10.1109/TNN.2002.1021892
– start-page: 315
  year: 2011
  ident: ref10
  article-title: Deep sparse rectifier neural networks
  publication-title: Proc 14th Int Conf Artif Intell Statist
– year: 2014
  ident: ref12
  article-title: Deep speech: Scaling up end-to-end speech recognition
– volume: 36
  start-page: 1
  year: 2017
  ident: ref20
  article-title: Audio-driven facial animation by joint end-to-end learning of pose and emotion
  publication-title: ACM Trans Graph
  doi: 10.1145/3072959.3073658
– ident: ref27
  doi: 10.1609/aaai.v34i04.5950
– volume: 36
  start-page: 1
  year: 2017
  ident: ref25
  article-title: Learning a model of facial shape and expression from 4D scans
  publication-title: ACM Trans Graph
– ident: ref28
  doi: 10.1109/TVCG.2007.22
– start-page: 275
  year: 2012
  ident: ref37
  article-title: Dynamic units of visual speech
  publication-title: Proc ACM SIGGRAPH/Eurographics Symp Comput Animation
– ident: ref29
  doi: 10.1109/CVPRW.2017.287
– ident: ref4
  doi: 10.1109/ICCV.2011.6126510
– volume: 37
  start-page: 1
  year: 2018
  ident: ref21
  article-title: Deep video portraits
  publication-title: ACM Trans Graph
– ident: ref3
  doi: 10.1145/1095878.1095881
– ident: ref24
  doi: 10.1111/cgf.13830
– volume: 36
  start-page: 1
  year: 2017
  ident: ref36
  article-title: A deep learning approach for generalized speech animation
  publication-title: ACM Trans Graph
– ident: ref17
  doi: 10.1214/aoms/1177703732
– ident: ref41
  doi: 10.1609/aaai.v33i01.33015525
– ident: ref26
  doi: 10.1145/2816795.2818122
– volume: 36
  start-page: 1
  year: 2017
  ident: ref34
  article-title: Synthesizing obama: Learning lip sync from audio
  publication-title: ACM Trans Graph
  doi: 10.1145/3072959.3073640
SSID ssj0014489
Score 2.475106
Snippet Realistic speech-driven 3D facial animation is a challenging problem due to the complex relationship between speech and face. In this paper, we propose a deep...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4873
SubjectTerms 3D facial animation
Animation
Coders
Correlation
Datasets
Decoding
Deformation
Face recognition
Facial animation
Geometry
geometry-guided
Image reconstruction
Solid modeling
speaker-independent
Speech
Speech-driven
Three-dimensional displays
Title Geometry-Guided Dense Perspective Network for Speech-Driven Facial Animation
URI https://ieeexplore.ieee.org/document/9524465
https://www.proquest.com/docview/2728570897
https://www.proquest.com/docview/2566032676
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbanuBAgYLYUpCROCG8tR0_1seqZbdCtEKiRb1FdjwWFW22WpID_HrGSTZUtELcItmJnBk_5vPMfEPIW4gmKjCR-RAQoMyCZ0F6zqyuNLboyLuqJSen5vhcfbzQFxvk_ZgLAwBd8BlM82Pny4_Lqs1XZftOy8zvtUk2Ebj1uVqjxwBhhuvjCy2TaKUPHkzB3f7Z18MFIkEpEKAibDeZKbRQSrki78S3jqOuvsqdTbk7aebb5GQ9xj7A5Pu0bcK0-vUXfeP__sRj8mgwOelBP0eekA2on5KHt4gId8inBSyvoVn9ZIv2MkKkR4hugX7-k4lJT_t4cYpGLv1yA1B9Y0ervFXSuc_X7vSgvuzTIJ-R8_mHs8NjNtRZYBUabw2LMiYFQvhZ5gNEpaYkUErW4EjRABAZYmidEElylenuY-FdkpUSVTAhSF08J1v1soYXhOqCQ4RkQXuhvFXOuGSTSTo4zZWwE8LX4i6rgYQ818K4Kjswwl2ZlVVmZZWDsibk3fjKTc_A8a_OO1niY8dB2BOyt9ZpOazRH6W0MrP7zxyO6s3YjKsru0x8DcsW-6C1y1FI1uze_-WX5IHMCRFdgMse2WpWLbxCM6UJr7v5-RuEFuAi
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-N8QA8jI8x0TEgSDwh0jmO7dSP00ZboK2Q6NDeIjs-iwlIpy552P76nZM0TIAQb5HsRM6dP-7nu_sdwBt0yglULjbWEkAZWRNbblicyUJSi3SsqVoyX6jpqfh4Js-24F2fC4OITfAZDsNj48t3q6IOV2WHWvLA73UH7sqQjNtma_U-AwIauo0wzGJOdnrnw0yYPlx-PZ4QFuQJQVQC7ipwhaZCCJ2GvfjWgdRUWPljW27OmvFDmG9G2YaYfB_WlR0W178ROP7vbzyCnc7ojI7aWfIYtrB8Ag9uURHuwmyCq59Yra_iSX3u0EUnhG8x-vwrFzNatBHjEZm50ZcLxOJbfLIOm2U0NuHiPToqz9tEyKdwOn6_PJ7GXaWFuCDzrYodd15gkphRYAQktXqfkJQyRSMlEyAJIENKT1iSiUB471KjPS9EUlhlLZfpHmyXqxKfQSRThg59htIkwmRCK-0zr7y0WjKRZANgG3HnRUdDHqph_MgbOMJ0HpSVB2XlnbIG8LZ_5aLl4PhX590g8b5jJ-wBHGx0mner9DLnGQ_8_iNNo3rdN9P6Ck4TU-Kqpj5k7zISUqb2__7lV3BvupzP8tmHxafncJ-H9Igm3OUAtqt1jS_IaKnsy2au3gBfo-Nq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Geometry-Guided+Dense+Perspective+Network+for+Speech-Driven+Facial+Animation&rft.jtitle=IEEE+transactions+on+visualization+and+computer+graphics&rft.au=Liu%2C+Jingying&rft.au=Hui%2C+Binyuan&rft.au=Li%2C+Kun&rft.au=Liu%2C+Yunke&rft.date=2022-12-01&rft.pub=IEEE&rft.issn=1077-2626&rft.volume=28&rft.issue=12&rft.spage=4873&rft.epage=4886&rft_id=info:doi/10.1109%2FTVCG.2021.3107669&rft_id=info%3Apmid%2F34449390&rft.externalDocID=9524465
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-2626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-2626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-2626&client=summon