Uncertainty relations for approximation and estimation

We present a versatile inequality of uncertainty relations which are useful when one approximates an observable and/or estimates a physical parameter based on the measurement of another observable. It is shown that the optimal choice for proxy functions used for the approximation is given by Aharono...

Full description

Saved in:
Bibliographic Details
Published inPhysics letters. A Vol. 380; no. 24; pp. 2045 - 2048
Main Authors Lee, Jaeha, Tsutsui, Izumi
Format Journal Article
LanguageEnglish
Published Elsevier B.V 27.05.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We present a versatile inequality of uncertainty relations which are useful when one approximates an observable and/or estimates a physical parameter based on the measurement of another observable. It is shown that the optimal choice for proxy functions used for the approximation is given by Aharonov's weak value, which also determines the classical Fisher information in parameter estimation, turning our inequality into the genuine Cramér–Rao inequality. Since the standard form of the uncertainty relation arises as a special case of our inequality, and since the parameter estimation is available as well, our inequality can treat both the position–momentum and the time–energy relations in one framework albeit handled differently. •Several inequalities interpreted as uncertainty relations for approximation/estimation are derived from a single ‘versatile inequality’.•The ‘versatile inequality’ sets a limit on the approximation of an observable and/or the estimation of a parameter by another observable.•The ‘versatile inequality’ turns into an elaboration of the Robertson–Kennard (Schrödinger) inequality and the Cramér–Rao inequality.•Both the position–momentum and the time–energy relation are treated in one framework.•In every case, Aharonov's weak value arises as a key geometrical ingredient, deciding the optimal choice for the proxy functions.
AbstractList We present a versatile inequality of uncertainty relations which are useful when one approximates an observable and/or estimates a physical parameter based on the measurement of another observable. It is shown that the optimal choice for proxy functions used for the approximation is given by Aharonov's weak value, which also determines the classical Fisher information in parameter estimation, turning our inequality into the genuine Cramér–Rao inequality. Since the standard form of the uncertainty relation arises as a special case of our inequality, and since the parameter estimation is available as well, our inequality can treat both the position–momentum and the time–energy relations in one framework albeit handled differently. •Several inequalities interpreted as uncertainty relations for approximation/estimation are derived from a single ‘versatile inequality’.•The ‘versatile inequality’ sets a limit on the approximation of an observable and/or the estimation of a parameter by another observable.•The ‘versatile inequality’ turns into an elaboration of the Robertson–Kennard (Schrödinger) inequality and the Cramér–Rao inequality.•Both the position–momentum and the time–energy relation are treated in one framework.•In every case, Aharonov's weak value arises as a key geometrical ingredient, deciding the optimal choice for the proxy functions.
We present a versatile inequality of uncertainty relations which are useful when one approximates an observable and/or estimates a physical parameter based on the measurement of another observable. It is shown that the optimal choice for proxy functions used for the approximation is given by Aharonov's weak value, which also determines the classical Fisher information in parameter estimation, turning our inequality into the genuine Cramer-Rao inequality. Since the standard form of the uncertainty relation arises as a special case of our inequality, and since the parameter estimation is available as well, our inequality can treat both the position-momentum and the time-energy relations in one framework albeit handled differently.
Author Tsutsui, Izumi
Lee, Jaeha
Author_xml – sequence: 1
  givenname: Jaeha
  surname: Lee
  fullname: Lee, Jaeha
  email: jlee@post.kek.jp
  organization: Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
– sequence: 2
  givenname: Izumi
  surname: Tsutsui
  fullname: Tsutsui, Izumi
  email: izumi.tsutsui@kek.jp
  organization: Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
BookMark eNqFkEFPwzAMhSM0JLbBX0A9cmlxkjZtbqAJBtIkDsA5Sl1PZOraknSI_XsyNs6crGc928_fjE26viPGrjlkHLi63WTDxz60NNpMRJ1BngHoMzblVSlTkQs9YVOQZZFqBfyCzULYAEQn6ClT7x2SH63rxn3iqbWj67uQrHuf2GHw_bfb_rYS2zUJhfEkL9n52raBrk51zl4fH94WT-nqZfm8uF-lKIUaU9QV1tiIWkKJQlUoZF0XmoumVJZXsgaLCgrMqQQoGg2FsrmupcYGBck5uzlujUE-d_G62bqA1La2o34XDK_iExVAqaNVHa3o-xA8rc3gY1a_NxzMAZPZmD9M5oDJQG4ipjh4dxyk-MaXI28COopQGucJR9P07r8VP_TJdvA
CitedBy_id crossref_primary_10_1016_j_physleta_2018_02_005
crossref_primary_10_1103_PhysRevResearch_3_L012011
crossref_primary_10_3390_e22111222
crossref_primary_10_1093_ptep_ptx024
crossref_primary_10_1016_j_physleta_2017_08_011
Cites_doi 10.1016/j.physleta.2003.12.001
10.1103/PhysRevLett.60.1351
10.1103/PhysRev.34.163
10.1007/s40509-015-0039-5
10.1007/BF01391200
10.1007/BF01397280
10.1103/PhysRevLett.60.2447
10.1103/PhysRevLett.104.020401
10.1103/PhysRevA.67.042105
10.1103/PhysRevA.64.052103
10.1016/j.physleta.2004.01.041
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright_xml – notice: 2016 Elsevier B.V.
DBID AAYXX
CITATION
7U5
8FD
H8D
L7M
DOI 10.1016/j.physleta.2016.04.009
DatabaseName CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1873-2429
EndPage 2048
ExternalDocumentID 10_1016_j_physleta_2016_04_009
S0375960116300731
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXUO
ABFNM
ABLJU
ABMAC
ABNEU
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
M38
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SPG
SSQ
SSZ
T5K
TN5
WH7
~02
~G-
29O
5VS
6TJ
8WZ
A6W
AAQFI
AAQXK
AAXKI
AAYJJ
AAYXX
ABDPE
ABXDB
ACKIV
ACNNM
ACRPL
ADIYS
ADMUD
ADNMO
AFJKZ
AKRWK
ASPBG
AVWKF
AZFZN
BBWZM
CITATION
FEDTE
FGOYB
HMV
HVGLF
HZ~
MVM
NDZJH
R2-
SEW
WUQ
XJT
XOL
YYP
ZCG
7U5
8FD
H8D
L7M
ID FETCH-LOGICAL-c326t-c98cbcd2b307c268c23bb5912d76a183b0ac605c4e7005d9056a49b39cdc2e3
IEDL.DBID AIKHN
ISSN 0375-9601
IngestDate Fri Oct 25 04:01:14 EDT 2024
Fri Dec 06 02:37:05 EST 2024
Fri Feb 23 02:18:24 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords Weak value
Uncertainty relation
Estimation theory
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c326t-c98cbcd2b307c268c23bb5912d76a183b0ac605c4e7005d9056a49b39cdc2e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1816080079
PQPubID 23500
PageCount 4
ParticipantIDs proquest_miscellaneous_1816080079
crossref_primary_10_1016_j_physleta_2016_04_009
elsevier_sciencedirect_doi_10_1016_j_physleta_2016_04_009
PublicationCentury 2000
PublicationDate 2016-05-27
PublicationDateYYYYMMDD 2016-05-27
PublicationDate_xml – month: 05
  year: 2016
  text: 2016-05-27
  day: 27
PublicationDecade 2010
PublicationTitle Physics letters. A
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Watanabe, Sagawa, Ueda, Watanabe, Sagawa, Ueda (br0060) 2010; 104
Robertson (br0030) 1929; 34
Cramér (br0090) 1946
Mori, Tsutsui, Mori, Tsutsui (br0130) 2015; 2
Arthurs, Goodman (br0040) 1988; 60
Aharonov, Albert, Vaidman (br0100) 1988; 60
Johansen (br0150) 2004; 322
Heisenberg (br0010) 1927; 43
Kennard (br0020) 1927; 44
Ozawa, Ozawa (br0050) 2003; 67
Mandelshtam, Tamm (br0070) 1945; 9
Lee, Tsutsui (br0120) 2016
Helstrom (br0080) 1976
Schrödinger (br0110) 1930; 14
Hall (br0140) 2001; 64
Hofmann (br0160) 2011; 83
Hall (10.1016/j.physleta.2016.04.009_br0140) 2001; 64
Lee (10.1016/j.physleta.2016.04.009_br0120) 2016
Robertson (10.1016/j.physleta.2016.04.009_br0030) 1929; 34
Watanabe (10.1016/j.physleta.2016.04.009_bib576174616E616265s1) 2010; 104
Heisenberg (10.1016/j.physleta.2016.04.009_br0010) 1927; 43
Ozawa (10.1016/j.physleta.2016.04.009_bib4F7A617761s2) 2004; 320
Hofmann (10.1016/j.physleta.2016.04.009_br0160) 2011; 83
Kennard (10.1016/j.physleta.2016.04.009_br0020) 1927; 44
Aharonov (10.1016/j.physleta.2016.04.009_br0100) 1988; 60
Ozawa (10.1016/j.physleta.2016.04.009_bib4F7A617761s1) 2003; 67
Helstrom (10.1016/j.physleta.2016.04.009_br0080) 1976
Arthurs (10.1016/j.physleta.2016.04.009_br0040) 1988; 60
Cramér (10.1016/j.physleta.2016.04.009_br0090) 1946
Mori (10.1016/j.physleta.2016.04.009_bib4D6F7269s2) 2015
Johansen (10.1016/j.physleta.2016.04.009_br0150) 2004; 322
Mandelshtam (10.1016/j.physleta.2016.04.009_br0070) 1945; 9
Mori (10.1016/j.physleta.2016.04.009_bib4D6F7269s1) 2015; 2
Watanabe (10.1016/j.physleta.2016.04.009_bib576174616E616265s2) 2011; 84
Schrödinger (10.1016/j.physleta.2016.04.009_br0110) 1930; 14
References_xml – volume: 9
  start-page: 122
  year: 1945
  ident: br0070
  publication-title: Izv. Akad. Nauk SSSR, Ser. Fiz.
  contributor:
    fullname: Tamm
– volume: 34
  start-page: 163
  year: 1929
  ident: br0030
  publication-title: Phys. Rev.
  contributor:
    fullname: Robertson
– volume: 60
  start-page: 2447
  year: 1988
  ident: br0040
  publication-title: Phys. Rev. Lett.
  contributor:
    fullname: Goodman
– volume: 322
  start-page: 298
  year: 2004
  end-page: 300
  ident: br0150
  publication-title: Phys. Lett. A
  contributor:
    fullname: Johansen
– volume: 104
  year: 2010
  ident: br0060
  publication-title: Phys. Rev. Lett.
  contributor:
    fullname: Ueda
– year: 1976
  ident: br0080
  article-title: Quantum Detection and Estimation Theory
  contributor:
    fullname: Helstrom
– year: 1946
  ident: br0090
  article-title: Mathematical Methods of Statistics
  contributor:
    fullname: Cramér
– volume: 67
  start-page: 367
  year: 2003
  ident: br0050
  publication-title: Phys. Rev. A
  contributor:
    fullname: Ozawa
– volume: 83
  year: 2011
  ident: br0160
  publication-title: Phys. Rev. A
  contributor:
    fullname: Hofmann
– volume: 14
  start-page: 296
  year: 1930
  ident: br0110
  publication-title: Phys.-Math. Kl.
  contributor:
    fullname: Schrödinger
– year: 2016
  ident: br0120
  publication-title: Prog. Theor. Exp. Phys.
  contributor:
    fullname: Tsutsui
– volume: 43
  start-page: 172
  year: 1927
  ident: br0010
  publication-title: Z. Phys.
  contributor:
    fullname: Heisenberg
– volume: 60
  start-page: 1351
  year: 1988
  ident: br0100
  publication-title: Phys. Rev. Lett.
  contributor:
    fullname: Vaidman
– volume: 64
  year: 2001
  ident: br0140
  publication-title: Phys. Rev. A
  contributor:
    fullname: Hall
– volume: 2
  start-page: 371
  year: 2015
  ident: br0130
  publication-title: Quantum Stud.: Math. Found.
  contributor:
    fullname: Tsutsui
– volume: 44
  start-page: 326
  year: 1927
  ident: br0020
  publication-title: Z. Phys.
  contributor:
    fullname: Kennard
– volume: 320
  start-page: 367
  year: 2004
  ident: 10.1016/j.physleta.2016.04.009_bib4F7A617761s2
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2003.12.001
  contributor:
    fullname: Ozawa
– volume: 60
  start-page: 1351
  year: 1988
  ident: 10.1016/j.physleta.2016.04.009_br0100
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.60.1351
  contributor:
    fullname: Aharonov
– volume: 14
  start-page: 296
  year: 1930
  ident: 10.1016/j.physleta.2016.04.009_br0110
  publication-title: Phys.-Math. Kl.
  contributor:
    fullname: Schrödinger
– volume: 84
  year: 2011
  ident: 10.1016/j.physleta.2016.04.009_bib576174616E616265s2
  publication-title: Phys. Rev. A
  contributor:
    fullname: Watanabe
– volume: 83
  year: 2011
  ident: 10.1016/j.physleta.2016.04.009_br0160
  publication-title: Phys. Rev. A
  contributor:
    fullname: Hofmann
– volume: 34
  start-page: 163
  year: 1929
  ident: 10.1016/j.physleta.2016.04.009_br0030
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.34.163
  contributor:
    fullname: Robertson
– volume: 2
  start-page: 371
  year: 2015
  ident: 10.1016/j.physleta.2016.04.009_bib4D6F7269s1
  publication-title: Quantum Stud.: Math. Found.
  doi: 10.1007/s40509-015-0039-5
  contributor:
    fullname: Mori
– year: 2015
  ident: 10.1016/j.physleta.2016.04.009_bib4D6F7269s2
  publication-title: Prog. Theor. Exp. Phys.
  contributor:
    fullname: Mori
– volume: 44
  start-page: 326
  year: 1927
  ident: 10.1016/j.physleta.2016.04.009_br0020
  publication-title: Z. Phys.
  doi: 10.1007/BF01391200
  contributor:
    fullname: Kennard
– volume: 43
  start-page: 172
  year: 1927
  ident: 10.1016/j.physleta.2016.04.009_br0010
  publication-title: Z. Phys.
  doi: 10.1007/BF01397280
  contributor:
    fullname: Heisenberg
– volume: 60
  start-page: 2447
  year: 1988
  ident: 10.1016/j.physleta.2016.04.009_br0040
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.60.2447
  contributor:
    fullname: Arthurs
– year: 2016
  ident: 10.1016/j.physleta.2016.04.009_br0120
  publication-title: Prog. Theor. Exp. Phys.
  contributor:
    fullname: Lee
– volume: 104
  year: 2010
  ident: 10.1016/j.physleta.2016.04.009_bib576174616E616265s1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.020401
  contributor:
    fullname: Watanabe
– volume: 9
  start-page: 122
  year: 1945
  ident: 10.1016/j.physleta.2016.04.009_br0070
  publication-title: Izv. Akad. Nauk SSSR, Ser. Fiz.
  contributor:
    fullname: Mandelshtam
– volume: 67
  year: 2003
  ident: 10.1016/j.physleta.2016.04.009_bib4F7A617761s1
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.67.042105
  contributor:
    fullname: Ozawa
– year: 1946
  ident: 10.1016/j.physleta.2016.04.009_br0090
  contributor:
    fullname: Cramér
– volume: 64
  year: 2001
  ident: 10.1016/j.physleta.2016.04.009_br0140
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.64.052103
  contributor:
    fullname: Hall
– year: 1976
  ident: 10.1016/j.physleta.2016.04.009_br0080
  contributor:
    fullname: Helstrom
– volume: 322
  start-page: 298
  year: 2004
  ident: 10.1016/j.physleta.2016.04.009_br0150
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2004.01.041
  contributor:
    fullname: Johansen
SSID ssj0001609
Score 2.2915916
Snippet We present a versatile inequality of uncertainty relations which are useful when one approximates an observable and/or estimates a physical parameter based on...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 2045
SubjectTerms Approximation
Estimation theory
Inequalities
Mathematical analysis
Optimization
Parameter estimation
Physical properties
Solid state physics
Uncertainty
Uncertainty relation
Weak value
Title Uncertainty relations for approximation and estimation
URI https://dx.doi.org/10.1016/j.physleta.2016.04.009
https://search.proquest.com/docview/1816080079
Volume 380
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA9zQ_AifuL8GBW8Zl3TJm2OYzim4i5zsFtI0gy2Qze2DvTi3-57_RAVwYPHhKaEX_Pe-72-jxByZwwDq5jMqROc00gnhiaJnFPmRMIdn4ObiwXOz2MxmkaPMz5rkEFdC4NplZXuL3V6oa2rGb9C018vFv4Eb28F_h0E2DUqxlrqFpgjjNW2-g9Po_GnQg5EmekBz1Nc8KVQeNnFHwiAELYgCkTR9RRzE3-3UT-0dWGChkfksOKOXr_c3jFpuOyE7Bc5nHZ7SsQUNl8E-PM3b1MnuXnASr2ic_jroixT9HSWethcoxyekcnw_mUwotW1CNQC18qplYk1NmUGxNMykVgWGsNlwNJYaJBQ09MWnBQbuRhELJVAcXQkTShtapkLz0kzW2XugniSu9DYyOhAuEhrbsC3sDjlQgy3ztvEr2FQ67L3haqTwpaqBk4hcKoXKQCuTWSNlvr2FRUo6D_X3tbwKjjiGLfQmVvttgpIiEBiG8vLf7z_ihzgCCP_LL4mzXyzczdAKHLTIXvd96BTHZsPl_zMOQ
link.rule.ids 314,780,784,4502,24116,27924,27925,45585,45679
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07a8MwEBYhpbRL6ZOmTxe6Oo5lS7bGEhrSNsmSBLIJSZYhGZyQONAu_e2984M-KHToaFk24vPp7pP13YmQe60pRMU4dS1nzA1VrN04FqlLLY-ZZSksczHBeTji_Wn4PGOzBunWuTAoq6x8f-nTC29dtXgVmt5qPvfGeHor8G_fx6pREeZS74QM2C8Ydfv9U-fh81LnAb1d7P4lTXjRxt8HgA8WIPJ5UfMUlYm_R6gfvroIQL1DclAxR-ehHNwRadjsmOwWCk6zOSF8CkMvtvfzN2ddS9wc4KROUTf8dV4mKToqSxwsrVFenpJx73HS7bvVoQiuAaaVu0bERpuEapichvLY0EBrJnyaRFzB_NQdZWCJYkIbwQRLBBAcFQodCJMYaoMz0syWmT0njmA20CbUyuc2VIppWFkYbLIBbramLeLVMMhVWflC1pKwhayBkwic7IQSgGsRUaMlv31DCe75z2fvanglGDjuWqjMLrcbCRSEI62NxMU_3n9L9vqT4UAOnkYvl2Qf76AGgEZXpJmvt_YaqEWubwrT-QBvd80S
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uncertainty+relations+for+approximation+and+estimation&rft.jtitle=Physics+letters.+A&rft.au=Lee%2C+Jaeha&rft.au=Tsutsui%2C+Izumi&rft.date=2016-05-27&rft.issn=0375-9601&rft.volume=380&rft.issue=24&rft.spage=2045&rft.epage=2048&rft_id=info:doi/10.1016%2Fj.physleta.2016.04.009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_physleta_2016_04_009
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0375-9601&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0375-9601&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0375-9601&client=summon