Uncertainty relations for approximation and estimation
We present a versatile inequality of uncertainty relations which are useful when one approximates an observable and/or estimates a physical parameter based on the measurement of another observable. It is shown that the optimal choice for proxy functions used for the approximation is given by Aharono...
Saved in:
Published in | Physics letters. A Vol. 380; no. 24; pp. 2045 - 2048 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
27.05.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We present a versatile inequality of uncertainty relations which are useful when one approximates an observable and/or estimates a physical parameter based on the measurement of another observable. It is shown that the optimal choice for proxy functions used for the approximation is given by Aharonov's weak value, which also determines the classical Fisher information in parameter estimation, turning our inequality into the genuine Cramér–Rao inequality. Since the standard form of the uncertainty relation arises as a special case of our inequality, and since the parameter estimation is available as well, our inequality can treat both the position–momentum and the time–energy relations in one framework albeit handled differently.
•Several inequalities interpreted as uncertainty relations for approximation/estimation are derived from a single ‘versatile inequality’.•The ‘versatile inequality’ sets a limit on the approximation of an observable and/or the estimation of a parameter by another observable.•The ‘versatile inequality’ turns into an elaboration of the Robertson–Kennard (Schrödinger) inequality and the Cramér–Rao inequality.•Both the position–momentum and the time–energy relation are treated in one framework.•In every case, Aharonov's weak value arises as a key geometrical ingredient, deciding the optimal choice for the proxy functions. |
---|---|
AbstractList | We present a versatile inequality of uncertainty relations which are useful when one approximates an observable and/or estimates a physical parameter based on the measurement of another observable. It is shown that the optimal choice for proxy functions used for the approximation is given by Aharonov's weak value, which also determines the classical Fisher information in parameter estimation, turning our inequality into the genuine Cramér–Rao inequality. Since the standard form of the uncertainty relation arises as a special case of our inequality, and since the parameter estimation is available as well, our inequality can treat both the position–momentum and the time–energy relations in one framework albeit handled differently.
•Several inequalities interpreted as uncertainty relations for approximation/estimation are derived from a single ‘versatile inequality’.•The ‘versatile inequality’ sets a limit on the approximation of an observable and/or the estimation of a parameter by another observable.•The ‘versatile inequality’ turns into an elaboration of the Robertson–Kennard (Schrödinger) inequality and the Cramér–Rao inequality.•Both the position–momentum and the time–energy relation are treated in one framework.•In every case, Aharonov's weak value arises as a key geometrical ingredient, deciding the optimal choice for the proxy functions. We present a versatile inequality of uncertainty relations which are useful when one approximates an observable and/or estimates a physical parameter based on the measurement of another observable. It is shown that the optimal choice for proxy functions used for the approximation is given by Aharonov's weak value, which also determines the classical Fisher information in parameter estimation, turning our inequality into the genuine Cramer-Rao inequality. Since the standard form of the uncertainty relation arises as a special case of our inequality, and since the parameter estimation is available as well, our inequality can treat both the position-momentum and the time-energy relations in one framework albeit handled differently. |
Author | Tsutsui, Izumi Lee, Jaeha |
Author_xml | – sequence: 1 givenname: Jaeha surname: Lee fullname: Lee, Jaeha email: jlee@post.kek.jp organization: Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan – sequence: 2 givenname: Izumi surname: Tsutsui fullname: Tsutsui, Izumi email: izumi.tsutsui@kek.jp organization: Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan |
BookMark | eNqFkEFPwzAMhSM0JLbBX0A9cmlxkjZtbqAJBtIkDsA5Sl1PZOraknSI_XsyNs6crGc928_fjE26viPGrjlkHLi63WTDxz60NNpMRJ1BngHoMzblVSlTkQs9YVOQZZFqBfyCzULYAEQn6ClT7x2SH63rxn3iqbWj67uQrHuf2GHw_bfb_rYS2zUJhfEkL9n52raBrk51zl4fH94WT-nqZfm8uF-lKIUaU9QV1tiIWkKJQlUoZF0XmoumVJZXsgaLCgrMqQQoGg2FsrmupcYGBck5uzlujUE-d_G62bqA1La2o34XDK_iExVAqaNVHa3o-xA8rc3gY1a_NxzMAZPZmD9M5oDJQG4ipjh4dxyk-MaXI28COopQGucJR9P07r8VP_TJdvA |
CitedBy_id | crossref_primary_10_1016_j_physleta_2018_02_005 crossref_primary_10_1103_PhysRevResearch_3_L012011 crossref_primary_10_3390_e22111222 crossref_primary_10_1093_ptep_ptx024 crossref_primary_10_1016_j_physleta_2017_08_011 |
Cites_doi | 10.1016/j.physleta.2003.12.001 10.1103/PhysRevLett.60.1351 10.1103/PhysRev.34.163 10.1007/s40509-015-0039-5 10.1007/BF01391200 10.1007/BF01397280 10.1103/PhysRevLett.60.2447 10.1103/PhysRevLett.104.020401 10.1103/PhysRevA.67.042105 10.1103/PhysRevA.64.052103 10.1016/j.physleta.2004.01.041 |
ContentType | Journal Article |
Copyright | 2016 Elsevier B.V. |
Copyright_xml | – notice: 2016 Elsevier B.V. |
DBID | AAYXX CITATION 7U5 8FD H8D L7M |
DOI | 10.1016/j.physleta.2016.04.009 |
DatabaseName | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1873-2429 |
EndPage | 2048 |
ExternalDocumentID | 10_1016_j_physleta_2016_04_009 S0375960116300731 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAXUO ABFNM ABLJU ABMAC ABNEU ABYKQ ACDAQ ACFVG ACGFS ACNCT ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM M38 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SPG SSQ SSZ T5K TN5 WH7 ~02 ~G- 29O 5VS 6TJ 8WZ A6W AAQFI AAQXK AAXKI AAYJJ AAYXX ABDPE ABXDB ACKIV ACNNM ACRPL ADIYS ADMUD ADNMO AFJKZ AKRWK ASPBG AVWKF AZFZN BBWZM CITATION FEDTE FGOYB HMV HVGLF HZ~ MVM NDZJH R2- SEW WUQ XJT XOL YYP ZCG 7U5 8FD H8D L7M |
ID | FETCH-LOGICAL-c326t-c98cbcd2b307c268c23bb5912d76a183b0ac605c4e7005d9056a49b39cdc2e3 |
IEDL.DBID | AIKHN |
ISSN | 0375-9601 |
IngestDate | Fri Oct 25 04:01:14 EDT 2024 Fri Dec 06 02:37:05 EST 2024 Fri Feb 23 02:18:24 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Keywords | Weak value Uncertainty relation Estimation theory |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c326t-c98cbcd2b307c268c23bb5912d76a183b0ac605c4e7005d9056a49b39cdc2e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1816080079 |
PQPubID | 23500 |
PageCount | 4 |
ParticipantIDs | proquest_miscellaneous_1816080079 crossref_primary_10_1016_j_physleta_2016_04_009 elsevier_sciencedirect_doi_10_1016_j_physleta_2016_04_009 |
PublicationCentury | 2000 |
PublicationDate | 2016-05-27 |
PublicationDateYYYYMMDD | 2016-05-27 |
PublicationDate_xml | – month: 05 year: 2016 text: 2016-05-27 day: 27 |
PublicationDecade | 2010 |
PublicationTitle | Physics letters. A |
PublicationYear | 2016 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Watanabe, Sagawa, Ueda, Watanabe, Sagawa, Ueda (br0060) 2010; 104 Robertson (br0030) 1929; 34 Cramér (br0090) 1946 Mori, Tsutsui, Mori, Tsutsui (br0130) 2015; 2 Arthurs, Goodman (br0040) 1988; 60 Aharonov, Albert, Vaidman (br0100) 1988; 60 Johansen (br0150) 2004; 322 Heisenberg (br0010) 1927; 43 Kennard (br0020) 1927; 44 Ozawa, Ozawa (br0050) 2003; 67 Mandelshtam, Tamm (br0070) 1945; 9 Lee, Tsutsui (br0120) 2016 Helstrom (br0080) 1976 Schrödinger (br0110) 1930; 14 Hall (br0140) 2001; 64 Hofmann (br0160) 2011; 83 Hall (10.1016/j.physleta.2016.04.009_br0140) 2001; 64 Lee (10.1016/j.physleta.2016.04.009_br0120) 2016 Robertson (10.1016/j.physleta.2016.04.009_br0030) 1929; 34 Watanabe (10.1016/j.physleta.2016.04.009_bib576174616E616265s1) 2010; 104 Heisenberg (10.1016/j.physleta.2016.04.009_br0010) 1927; 43 Ozawa (10.1016/j.physleta.2016.04.009_bib4F7A617761s2) 2004; 320 Hofmann (10.1016/j.physleta.2016.04.009_br0160) 2011; 83 Kennard (10.1016/j.physleta.2016.04.009_br0020) 1927; 44 Aharonov (10.1016/j.physleta.2016.04.009_br0100) 1988; 60 Ozawa (10.1016/j.physleta.2016.04.009_bib4F7A617761s1) 2003; 67 Helstrom (10.1016/j.physleta.2016.04.009_br0080) 1976 Arthurs (10.1016/j.physleta.2016.04.009_br0040) 1988; 60 Cramér (10.1016/j.physleta.2016.04.009_br0090) 1946 Mori (10.1016/j.physleta.2016.04.009_bib4D6F7269s2) 2015 Johansen (10.1016/j.physleta.2016.04.009_br0150) 2004; 322 Mandelshtam (10.1016/j.physleta.2016.04.009_br0070) 1945; 9 Mori (10.1016/j.physleta.2016.04.009_bib4D6F7269s1) 2015; 2 Watanabe (10.1016/j.physleta.2016.04.009_bib576174616E616265s2) 2011; 84 Schrödinger (10.1016/j.physleta.2016.04.009_br0110) 1930; 14 |
References_xml | – volume: 9 start-page: 122 year: 1945 ident: br0070 publication-title: Izv. Akad. Nauk SSSR, Ser. Fiz. contributor: fullname: Tamm – volume: 34 start-page: 163 year: 1929 ident: br0030 publication-title: Phys. Rev. contributor: fullname: Robertson – volume: 60 start-page: 2447 year: 1988 ident: br0040 publication-title: Phys. Rev. Lett. contributor: fullname: Goodman – volume: 322 start-page: 298 year: 2004 end-page: 300 ident: br0150 publication-title: Phys. Lett. A contributor: fullname: Johansen – volume: 104 year: 2010 ident: br0060 publication-title: Phys. Rev. Lett. contributor: fullname: Ueda – year: 1976 ident: br0080 article-title: Quantum Detection and Estimation Theory contributor: fullname: Helstrom – year: 1946 ident: br0090 article-title: Mathematical Methods of Statistics contributor: fullname: Cramér – volume: 67 start-page: 367 year: 2003 ident: br0050 publication-title: Phys. Rev. A contributor: fullname: Ozawa – volume: 83 year: 2011 ident: br0160 publication-title: Phys. Rev. A contributor: fullname: Hofmann – volume: 14 start-page: 296 year: 1930 ident: br0110 publication-title: Phys.-Math. Kl. contributor: fullname: Schrödinger – year: 2016 ident: br0120 publication-title: Prog. Theor. Exp. Phys. contributor: fullname: Tsutsui – volume: 43 start-page: 172 year: 1927 ident: br0010 publication-title: Z. Phys. contributor: fullname: Heisenberg – volume: 60 start-page: 1351 year: 1988 ident: br0100 publication-title: Phys. Rev. Lett. contributor: fullname: Vaidman – volume: 64 year: 2001 ident: br0140 publication-title: Phys. Rev. A contributor: fullname: Hall – volume: 2 start-page: 371 year: 2015 ident: br0130 publication-title: Quantum Stud.: Math. Found. contributor: fullname: Tsutsui – volume: 44 start-page: 326 year: 1927 ident: br0020 publication-title: Z. Phys. contributor: fullname: Kennard – volume: 320 start-page: 367 year: 2004 ident: 10.1016/j.physleta.2016.04.009_bib4F7A617761s2 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2003.12.001 contributor: fullname: Ozawa – volume: 60 start-page: 1351 year: 1988 ident: 10.1016/j.physleta.2016.04.009_br0100 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.60.1351 contributor: fullname: Aharonov – volume: 14 start-page: 296 year: 1930 ident: 10.1016/j.physleta.2016.04.009_br0110 publication-title: Phys.-Math. Kl. contributor: fullname: Schrödinger – volume: 84 year: 2011 ident: 10.1016/j.physleta.2016.04.009_bib576174616E616265s2 publication-title: Phys. Rev. A contributor: fullname: Watanabe – volume: 83 year: 2011 ident: 10.1016/j.physleta.2016.04.009_br0160 publication-title: Phys. Rev. A contributor: fullname: Hofmann – volume: 34 start-page: 163 year: 1929 ident: 10.1016/j.physleta.2016.04.009_br0030 publication-title: Phys. Rev. doi: 10.1103/PhysRev.34.163 contributor: fullname: Robertson – volume: 2 start-page: 371 year: 2015 ident: 10.1016/j.physleta.2016.04.009_bib4D6F7269s1 publication-title: Quantum Stud.: Math. Found. doi: 10.1007/s40509-015-0039-5 contributor: fullname: Mori – year: 2015 ident: 10.1016/j.physleta.2016.04.009_bib4D6F7269s2 publication-title: Prog. Theor. Exp. Phys. contributor: fullname: Mori – volume: 44 start-page: 326 year: 1927 ident: 10.1016/j.physleta.2016.04.009_br0020 publication-title: Z. Phys. doi: 10.1007/BF01391200 contributor: fullname: Kennard – volume: 43 start-page: 172 year: 1927 ident: 10.1016/j.physleta.2016.04.009_br0010 publication-title: Z. Phys. doi: 10.1007/BF01397280 contributor: fullname: Heisenberg – volume: 60 start-page: 2447 year: 1988 ident: 10.1016/j.physleta.2016.04.009_br0040 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.60.2447 contributor: fullname: Arthurs – year: 2016 ident: 10.1016/j.physleta.2016.04.009_br0120 publication-title: Prog. Theor. Exp. Phys. contributor: fullname: Lee – volume: 104 year: 2010 ident: 10.1016/j.physleta.2016.04.009_bib576174616E616265s1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.020401 contributor: fullname: Watanabe – volume: 9 start-page: 122 year: 1945 ident: 10.1016/j.physleta.2016.04.009_br0070 publication-title: Izv. Akad. Nauk SSSR, Ser. Fiz. contributor: fullname: Mandelshtam – volume: 67 year: 2003 ident: 10.1016/j.physleta.2016.04.009_bib4F7A617761s1 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.67.042105 contributor: fullname: Ozawa – year: 1946 ident: 10.1016/j.physleta.2016.04.009_br0090 contributor: fullname: Cramér – volume: 64 year: 2001 ident: 10.1016/j.physleta.2016.04.009_br0140 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.64.052103 contributor: fullname: Hall – year: 1976 ident: 10.1016/j.physleta.2016.04.009_br0080 contributor: fullname: Helstrom – volume: 322 start-page: 298 year: 2004 ident: 10.1016/j.physleta.2016.04.009_br0150 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2004.01.041 contributor: fullname: Johansen |
SSID | ssj0001609 |
Score | 2.2915916 |
Snippet | We present a versatile inequality of uncertainty relations which are useful when one approximates an observable and/or estimates a physical parameter based on... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 2045 |
SubjectTerms | Approximation Estimation theory Inequalities Mathematical analysis Optimization Parameter estimation Physical properties Solid state physics Uncertainty Uncertainty relation Weak value |
Title | Uncertainty relations for approximation and estimation |
URI | https://dx.doi.org/10.1016/j.physleta.2016.04.009 https://search.proquest.com/docview/1816080079 |
Volume | 380 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA9zQ_AifuL8GBW8Zl3TJm2OYzim4i5zsFtI0gy2Qze2DvTi3-57_RAVwYPHhKaEX_Pe-72-jxByZwwDq5jMqROc00gnhiaJnFPmRMIdn4ObiwXOz2MxmkaPMz5rkEFdC4NplZXuL3V6oa2rGb9C018vFv4Eb28F_h0E2DUqxlrqFpgjjNW2-g9Po_GnQg5EmekBz1Nc8KVQeNnFHwiAELYgCkTR9RRzE3-3UT-0dWGChkfksOKOXr_c3jFpuOyE7Bc5nHZ7SsQUNl8E-PM3b1MnuXnASr2ic_jroixT9HSWethcoxyekcnw_mUwotW1CNQC18qplYk1NmUGxNMykVgWGsNlwNJYaJBQ09MWnBQbuRhELJVAcXQkTShtapkLz0kzW2XugniSu9DYyOhAuEhrbsC3sDjlQgy3ztvEr2FQ67L3haqTwpaqBk4hcKoXKQCuTWSNlvr2FRUo6D_X3tbwKjjiGLfQmVvttgpIiEBiG8vLf7z_ihzgCCP_LL4mzXyzczdAKHLTIXvd96BTHZsPl_zMOQ |
link.rule.ids | 314,780,784,4502,24116,27924,27925,45585,45679 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07a8MwEBYhpbRL6ZOmTxe6Oo5lS7bGEhrSNsmSBLIJSZYhGZyQONAu_e2984M-KHToaFk24vPp7pP13YmQe60pRMU4dS1nzA1VrN04FqlLLY-ZZSksczHBeTji_Wn4PGOzBunWuTAoq6x8f-nTC29dtXgVmt5qPvfGeHor8G_fx6pREeZS74QM2C8Ydfv9U-fh81LnAb1d7P4lTXjRxt8HgA8WIPJ5UfMUlYm_R6gfvroIQL1DclAxR-ehHNwRadjsmOwWCk6zOSF8CkMvtvfzN2ddS9wc4KROUTf8dV4mKToqSxwsrVFenpJx73HS7bvVoQiuAaaVu0bERpuEapichvLY0EBrJnyaRFzB_NQdZWCJYkIbwQRLBBAcFQodCJMYaoMz0syWmT0njmA20CbUyuc2VIppWFkYbLIBbramLeLVMMhVWflC1pKwhayBkwic7IQSgGsRUaMlv31DCe75z2fvanglGDjuWqjMLrcbCRSEI62NxMU_3n9L9vqT4UAOnkYvl2Qf76AGgEZXpJmvt_YaqEWubwrT-QBvd80S |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uncertainty+relations+for+approximation+and+estimation&rft.jtitle=Physics+letters.+A&rft.au=Lee%2C+Jaeha&rft.au=Tsutsui%2C+Izumi&rft.date=2016-05-27&rft.issn=0375-9601&rft.volume=380&rft.issue=24&rft.spage=2045&rft.epage=2048&rft_id=info:doi/10.1016%2Fj.physleta.2016.04.009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_physleta_2016_04_009 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0375-9601&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0375-9601&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0375-9601&client=summon |