Investigation of Eco-friendly Perovskite Solar Cell Employing Niobium Pentoxide as Electron Transport Material using SCAPS-1D
Perovskite is the most appropriate material for designing of thin film solar cells. In this work, inorganic perovskite solar cell which is lead free, stable and eco-friendly has been proposed with configuration FTO/Nb 2 O 5 /CsSn 0.5 Ge 0.5 I 3 /Spiro-OMeTAD/Au. For high carrier mobility, Nb 2 O 5 i...
Saved in:
Published in | Transactions on electrical and electronic materials Vol. 25; no. 3; pp. 294 - 303 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Seoul
The Korean Institute of Electrical and Electronic Material Engineers (KIEEME)
01.06.2024
한국전기전자재료학회 |
Subjects | |
Online Access | Get full text |
ISSN | 1229-7607 2092-7592 |
DOI | 10.1007/s42341-024-00509-4 |
Cover
Abstract | Perovskite is the most appropriate material for designing of thin film solar cells. In this work, inorganic perovskite solar cell which is lead free, stable and eco-friendly has been proposed with configuration FTO/Nb
2
O
5
/CsSn
0.5
Ge
0.5
I
3
/Spiro-OMeTAD/Au. For high carrier mobility, Nb
2
O
5
is used as ETL layer in place of PCBM which also diminishes the cost of device. Proposed solar cell is investigated against limiting factors such as working point temperature, defect density, donor carrier concentration and thickness of perovskite absorber layer. The optimized performance of the proposed structure using Nb
2
O
5
as ETL layer are as follows: PCE = 28.25%, V
oc
= 1.2789 V, J
sc
= 26.3470 mA/cm
2
and FF = 83.85%. SCAPS-1D is employed for the simulation of proposed perovskite solar device. The proposed perovskite solar cell has the potential to revoke instability and toxicity issues which are the major concerns of present day’s solar cells. |
---|---|
AbstractList | Perovskite is the most appropriate material for designing of thin film solar cells. In this work, inorganic perovskite solar cell which is lead free, stable and eco-friendly has been proposed with configuration FTO/Nb
2
O
5
/CsSn
0.5
Ge
0.5
I
3
/Spiro-OMeTAD/Au. For high carrier mobility, Nb
2
O
5
is used as ETL layer in place of PCBM which also diminishes the cost of device. Proposed solar cell is investigated against limiting factors such as working point temperature, defect density, donor carrier concentration and thickness of perovskite absorber layer. The optimized performance of the proposed structure using Nb
2
O
5
as ETL layer are as follows: PCE = 28.25%, V
oc
= 1.2789 V, J
sc
= 26.3470 mA/cm
2
and FF = 83.85%. SCAPS-1D is employed for the simulation of proposed perovskite solar device. The proposed perovskite solar cell has the potential to revoke instability and toxicity issues which are the major concerns of present day’s solar cells. Perovskite is the most appropriate material for designing of thin fi lm solar cells. In this work, inorganic perovskite solar cell which is lead free, stable and eco-friendly has been proposed with confi guration FTO/Nb 2 O 5 /CsSn 0.5 Ge 0.5 I 3 /SpiroOMeTAD/Au. For high carrier mobility, Nb 2 O 5 is used as ETL layer in place of PCBM which also diminishes the cost of device. Proposed solar cell is investigated against limiting factors such as working point temperature, defect density, donor carrier concentration and thickness of perovskite absorber layer. The optimized performance of the proposed structure using Nb 2 O 5 as ETL layer are as follows: PCE = 28.25%, V oc = 1.2789 V, J sc = 26.3470 mA/cm 2 and FF = 83.85%. SCAPS-1D is employed for the simulation of proposed perovskite solar device. The proposed perovskite solar cell has the potential to revoke instability and toxicity issues which are the major concerns of present day’s solar cells. KCI Citation Count: 0 |
Author | Chauhan, R. K. Srivastava, Vaibhava Yadav, Shivangi Lohia, Pooja |
Author_xml | – sequence: 1 givenname: Vaibhava surname: Srivastava fullname: Srivastava, Vaibhava organization: Department of Electronics and Communication Engineering, Madan Mohan Malaviya University of Technology Gorakhpur – sequence: 2 givenname: R. K. surname: Chauhan fullname: Chauhan, R. K. organization: Department of Electronics and Communication Engineering, Madan Mohan Malaviya University of Technology Gorakhpur – sequence: 3 givenname: Pooja orcidid: 0000-0002-6079-7547 surname: Lohia fullname: Lohia, Pooja email: lohia.pooja6@gmail.com organization: Department of Electronics and Communication Engineering, Madan Mohan Malaviya University of Technology Gorakhpur – sequence: 4 givenname: Shivangi surname: Yadav fullname: Yadav, Shivangi organization: Department of Electronics and Communication Engineering, Madan Mohan Malaviya University of Technology Gorakhpur |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003088688$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kE2PUyEYRokZE-s4f8AVaxOUb8qyqVWbjDqxdU24XG6DpdAAndiF_12mdeViVm_y5pxncV6Dm5STB-Atwe8JxupD5ZRxgjDlCGOBNeIvwIxiTZESmt6AGaFUIyWxegXuag0DZlpITLScgT_r9OhrCzvbQk4wT3DlMppK8GmMZ_jgS36s-9A83ORoC1z6GOHqcIz5HNIOfgt5CKdD51LLv8Pooa1wFb1rpa9ti031mEuDX23zJdgIT_VJ2ywXDxtEPr4BLycbq7_7d2_Bz0-r7fILuv_-eb1c3CPHqGzISTYSOQolGRuHwTOBR-X7c6640MyTgVkunHNMY-aF4EQrxoieUzEoKQd2C95dd1OZzN4Fk2243F02-2IWP7ZrQ7CgnDPW4fkVdiXXWvxkXGiXPK3YEDtonrKba3bTs5tLdsO7Sv9TjyUcbDk_L7GrVDucdr6YX_lUUu_xnPUXVDuWvA |
CitedBy_id | crossref_primary_10_1007_s42341_024_00556_x crossref_primary_10_1016_j_solener_2024_113191 crossref_primary_10_1007_s12633_024_03063_z crossref_primary_10_1007_s11082_024_07487_0 crossref_primary_10_1016_j_ijhydene_2025_01_293 crossref_primary_10_1149_1945_7111_adab94 crossref_primary_10_1007_s11082_024_08022_x crossref_primary_10_1007_s11082_024_07491_4 crossref_primary_10_1016_j_ijhydene_2025_01_328 crossref_primary_10_1016_j_mtcomm_2024_108587 crossref_primary_10_1063_5_0220018 crossref_primary_10_1016_j_heliyon_2024_e32247 crossref_primary_10_1016_j_jpcs_2025_112622 |
Cites_doi | 10.1016/j.solener.2020.01.006 10.1088/1402-4896/ac9dc5 10.1007/s12596-022-00946-5 10.1016/j.ijleo.2020.165407 10.1680/jemmr.22.00059 10.1016/j.micrna.2022.207195 10.1016/j.ijleo.2020.166235 10.1166/sam.2023.4473 10.3390/mi13122073 10.1016/j.micrna.2022.207398 10.1680/jnaen.23.00023 10.1680/jemmr.22.00130 10.1166/jno.2023.3407 10.1088/2631-8695/acee45 10.1039/d3ra02910g 10.1007/s10854-020-04175-z 10.1016/j.optmat.2020.110565 10.1016/j.ijleo.2021.167498 10.1007/s12596-023-01449-7 10.1016/j.ijleo.2022.170357 10.1557/s43578-023-00992-0 10.1007/s42341-022-00412-w 10.1002/pssa.202300227 10.1016/j.rser.2018.04.069 10.1002/pssa.202300275 10.1111/jace.16080 10.1016/j.mtcomm.2023.105893 10.1016/j.micrna.2023.207691 10.1002/pip.3743 10.1166/sam.2022.4377 10.2298/CICEQ160518018I 10.1016/j.ijleo.2018.11.028 10.1016/j.tsf.2010.12.039 10.4236/mnsms.2019.94006 10.1007/s11082-021-02959-z 10.1016/j.solener.2020.07.012 10.1038/s41467-018-07951-y 10.1016/j.optmat.2020.109738 10.1021/acs.energyfuels.3c02361 10.1016/j.jmat.2021.04.002 10.1016/j.jpcs.2023.111631 10.1016/j.spmi.2021.106972 10.1007/978-981-19-2631-0_28 |
ContentType | Journal Article |
Copyright | The Korean Institute of Electrical and Electronic Material Engineers 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Korean Institute of Electrical and Electronic Material Engineers 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION ACYCR |
DOI | 10.1007/s42341-024-00509-4 |
DatabaseName | CrossRef Korean Citation Index |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2092-7592 |
EndPage | 303 |
ExternalDocumentID | oai_kci_go_kr_ARTI_10524433 10_1007_s42341_024_00509_4 |
GroupedDBID | -EM .UV 0R~ 406 9ZL AACDK AAHNG AAJBT AASML AATNV ABAKF ABDZT ABECU ABFTV ABKCH ABMQK ABTEG ABTKH ACAOD ACDTI ACHSB ACOKC ACPIV ACZOJ ADRFC ADURQ ADYFF AEFQL AEMSY AESKC AGDGC AGJBK AGMZJ AGQEE AIAKS AIGIU AILAN AITGF AJZVZ ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AXYYD BGNMA DPUIP EBLON EBS EJD FIGPU FINBP FNLPD FSGXE HZB IKXTQ IWAJR J-C JDI JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9J OK1 PT4 RNS ROL RSV SJYHP SNE SNPRN SOHCF SOJ SRMVM SSLCW STPWE UOJIU UTJUX VEKWB VFIZW ZMTXR AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION AAFGU ABFGW ABKAS ACBMV ACBRV ACBYP ACIGE ACIPQ ACTTH ACVWB ACWMK ACYCR ADMDM ADOXG AEFTE AESTI AEVTX AFNRJ AGGBP AIMYW AJDOV AKQUC |
ID | FETCH-LOGICAL-c326t-c63d16d57633dbbe350d7e63d874593e1b3a45ccc3903e5541973319825b766b3 |
ISSN | 1229-7607 |
IngestDate | Tue Jun 25 21:03:29 EDT 2024 Tue Jul 01 04:25:03 EDT 2025 Thu Apr 24 23:08:21 EDT 2025 Fri Feb 21 02:40:34 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Solar cells ETL Power conversion efficiency SCAPS-1D Lead-free |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c326t-c63d16d57633dbbe350d7e63d874593e1b3a45ccc3903e5541973319825b766b3 |
ORCID | 0000-0002-6079-7547 |
PageCount | 10 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_10524433 crossref_citationtrail_10_1007_s42341_024_00509_4 crossref_primary_10_1007_s42341_024_00509_4 springer_journals_10_1007_s42341_024_00509_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240600 2024-06-00 2024-06 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 6 year: 2024 text: 20240600 |
PublicationDecade | 2020 |
PublicationPlace | Seoul |
PublicationPlace_xml | – name: Seoul |
PublicationTitle | Transactions on electrical and electronic materials |
PublicationTitleAbbrev | Trans. Electr. Electron. Mater |
PublicationYear | 2024 |
Publisher | The Korean Institute of Electrical and Electronic Material Engineers (KIEEME) 한국전기전자재료학회 |
Publisher_xml | – name: The Korean Institute of Electrical and Electronic Material Engineers (KIEEME) – name: 한국전기전자재료학회 |
References | Umar, Yadav, Srivastava, Sadanand, Lohia, Dwivedi, Ibrahim, Alhamami, Qasem, Akbar (CR43) 2023; 14 Kumar, Chauhan (CR3) 2023 Madan, Shivani, Pandey, Sharma (CR7) 2020; 197 Mohandes, Moradi, Nadgaran (CR37) 2021; 53 Livingston, Prabu, Radhika, Kumar (CR11) 2023 CR18 Patel, Mishra, Soni (CR24) 2022; 165 Sadanand, Dwivedi (CR39) 2020 Hossain, Arnab, Samajdar, Rubel, Hossain, Islam, Das, Bencherif, Rahman, Madan, Pandey, Bhattarai, Amami, Dwivedi (CR44) 2023 Srivastava, Lohia, Chauhan (CR22) 2022; 59 Dixit, Punetha, Pandey (CR10) 2019; 179 Suresh Kumar, Chandra Babu Naidu (CR4) 2021; 940 Srivastava, Chauhan, Lohia (CR6) 2022 Umar, Yadav, Srivastava, Sadanand, Lohia, Dwivedi, Ibrahim, Akbar, Qasem, Baskoutas (CR34) 2023; 12 Srivastava, Chauhan, Lohia (CR23) 2023; 12 Srivastava, Chauhan, Lohia (CR38) 2022 Singh, Singh, Srivastava, Sadanand, Yadav, Lohia, Dwivedi (CR32) 2023 Decock, Khelifi, Burgelman (CR19) 2011; 519 Rai, Rai, Singh, Lohia, Dwivedi (CR25) 2020; 31 Irfan, Ahmad, Akhtar, Khan, Khan (CR15) 2018; 24 Tonui, Oseni, Sharma, Yan, Tessema Mola (CR1) 2018; 91 Patel, Rao, Mishra, Soni (CR17) 2021 Sadanand, Babu, Singh, Thakur, Dwivedi (CR40) 2021 Singh, Agarwal, Srivastava, Sadanand, Hossain, Pandey, Madan, Lohia, Dwivedi, Ouladsmane (CR29) 2023 Kaity, Shubham, Singh, Pandey (CR14) 2021 Coulibaly, Oyedele, Kre, Aka (CR26) 2019; 09 Khattak, Baig, Shuja, Beg, Soucase (CR30) 2020; 207 Srivastava, Sadanand, Rai, Lohia, Dwivedi, Qasem, Umar, Akbar, Algadi, Baskoutas (CR5) 2022 Srivastava, Chauhan, Lohia, Yadav (CR35) 2023; 184 Chaudhary, Verma, Chauhan (CR36) 2023; 5 Deo, Chauhan (CR2) 2023; 273 Chauhan, Agarwal, Srivastava, Sadanand, Hossain, Pandey, Madan, Lohia, Dwivedi, Amami (CR42) 2023; 183 Umar, Tiwari, Sadanand, Srivastava, Lohia, Dwivedi, Qasem, Akbar, Algadi, Baskoutas (CR20) 2022 Chen, Ju, Garces, Carl, Ono, Hawash, Zhang, Shen, Qi, Grimm, Pacifici, Zeng, Zhou, Padture (CR12) 2019; 10 CR21 Gupta, Srivastava, Yadav, Lohia, Dwivedi, Umar, Mahmoud (CR8) 2023; 18 Gupta, Yadav, Srivastava, Dwivedi, Lohia, Umar, Mahmoud (CR33) 2023; 15 Kumari, Pandey (CR9) 2022 Bhattarai, Pandey, Madan, Sahoo, Hossain, Wabaidur, Ansari (CR13) 2023; 35 Hossain, Uddin, Toki, Mohammed, Pandey, Madan, Rahman, Islam, Bhattarai, Bencherif, Samajdar, Amami, Dwivedi (CR41) 2023; 13 Abdelaziz, Zekry, Shaker, Abouelatta (CR27) 2020 Kumar, Raj, Kumar, Anshul (CR31) 2021; 111 Ücker, Gularte, Fernandes, Goetzke, Moreira, Raubach, Moreira, Cava (CR16) 2019; 102 Chauhan, Agarwal, Srivastava, Maurya, KhalidHossain, Madan, Rajesh, Yadav, Lohia, Dilip, Dwivedi, Alothman, Dilip (CR28) 2023 CL Ücker (509_CR16) 2019; 102 AB Coulibaly (509_CR26) 2019; 09 Sadanand (509_CR39) 2020 M Irfan (509_CR15) 2018; 24 MK Hossain (509_CR41) 2023; 13 K Decock (509_CR19) 2011; 519 S Kumar (509_CR3) 2023 A Gupta (509_CR8) 2023; 18 Sadanand (509_CR40) 2021 M Kumar (509_CR31) 2021; 111 P Chauhan (509_CR28) 2023 A Umar (509_CR34) 2023; 12 V Srivastava (509_CR38) 2022 A Umar (509_CR20) 2022 A Kaity (509_CR14) 2021 509_CR18 MK Hossain (509_CR44) 2023 D Kumari (509_CR9) 2022 N Rai (509_CR25) 2020; 31 P Tonui (509_CR1) 2018; 91 M Deo (509_CR2) 2023; 273 V Srivastava (509_CR22) 2022; 59 AK Patel (509_CR24) 2022; 165 V Srivastava (509_CR35) 2023; 184 AK Patel (509_CR17) 2021 509_CR21 LMM Livingston (509_CR11) 2023 P Srivastava (509_CR5) 2022 S Abdelaziz (509_CR27) 2020 S Bhattarai (509_CR13) 2023; 35 J Madan (509_CR7) 2020; 197 A Gupta (509_CR33) 2023; 15 A Umar (509_CR43) 2023; 14 AK Chaudhary (509_CR36) 2023; 5 H Dixit (509_CR10) 2019; 179 J Singh (509_CR32) 2023 A Mohandes (509_CR37) 2021; 53 P Chauhan (509_CR42) 2023; 183 V Srivastava (509_CR23) 2023; 12 J Singh (509_CR29) 2023 M Chen (509_CR12) 2019; 10 YH Khattak (509_CR30) 2020; 207 N Suresh Kumar (509_CR4) 2021; 940 V Srivastava (509_CR6) 2022 |
References_xml | – volume: 197 start-page: 212 year: 2020 end-page: 221 ident: CR7 article-title: Device simulation of 17.3% efficient lead-free all-perovskite tandem solar cell publication-title: Sol. Energy doi: 10.1016/j.solener.2020.01.006 – year: 2022 ident: CR5 article-title: Theoretical study of perovskite solar cell for enhancement of device performance using SCAPS-1D publication-title: Phys. Scr. doi: 10.1088/1402-4896/ac9dc5 – year: 2022 ident: CR38 article-title: Highly efficient cesium-based halide perovskite solar cell using SCAPS-1D software: theoretical study publication-title: J. Opt. (India) doi: 10.1007/s12596-022-00946-5 – ident: CR18 – year: 2020 ident: CR39 article-title: Modeling of CZTSSe solar photovoltaic cell for window layer optimization publication-title: Optik (Stuttgart) doi: 10.1016/j.ijleo.2020.165407 – volume: 59 start-page: 1 year: 2022 end-page: 10 ident: CR22 article-title: Theoretical study of a lead-free perovskite solar cell using ZnSe as ETL and PTAA as HTL publication-title: Emerg. Mater. Res. doi: 10.1680/jemmr.22.00059 – volume: 165 year: 2022 ident: CR24 article-title: Performance enhancement of CIGS solar cell with two dimensional MoS hole transport layer publication-title: Micro Nanostruct. doi: 10.1016/j.micrna.2022.207195 – year: 2021 ident: CR40 article-title: Optimization of photovoltaic solar cell performance via the earth abundant Zn3P2 back surface field publication-title: Optik (Stuttgart) doi: 10.1016/j.ijleo.2020.166235 – volume: 15 start-page: 655 year: 2023 end-page: 661 ident: CR33 article-title: Simulation of carbon-based perovskite solar cell using PBS-TBAI as a hole transport layer (HTL) publication-title: Sci. Adv. Mater. doi: 10.1166/sam.2023.4473 – year: 2022 ident: CR20 article-title: Modeling and simulation of tin sulfide (SnS)-based solar cell using ZnO as transparent conductive oxide (TCO) and NiO as hole transport layer (HTL) publication-title: Micromachines (Basel) doi: 10.3390/mi13122073 – year: 2022 ident: CR9 article-title: Effect of an ultra-thin 2D transport layer on eco-friendly perovskite/CIGS tandem solar cell: a numerical study publication-title: Micro Nanostruct. doi: 10.1016/j.micrna.2022.207398 – volume: 12 start-page: 1 year: 2023 end-page: 8 ident: CR23 article-title: Numerical analysis of Cs AgBiBr double-perovskite solar cell with optimized performance publication-title: Nanomater. Energy doi: 10.1680/jnaen.23.00023 – volume: 12 start-page: 1 year: 2023 end-page: 9 ident: CR34 article-title: Optimizing quantum dot solar cells: exploring defect density effects with PTAA HTL layer simulation using SCAPS-1D publication-title: Emerg. Mater. Res. doi: 10.1680/jemmr.22.00130 – volume: 18 start-page: 452 year: 2023 end-page: 458 ident: CR8 article-title: Performance enhancement of perovskite solar cell using SrTiO as electron transport layer publication-title: J. Nanoelectron. Optoelectron. doi: 10.1166/jno.2023.3407 – volume: 5 year: 2023 ident: CR36 article-title: Design of a low-cost, environment friendly perovskite solar cell with synergic effect of graphene oxide-based HTL and CH NH GeI as ETL publication-title: Eng. Res. Express doi: 10.1088/2631-8695/acee45 – volume: 13 start-page: 23514 year: 2023 end-page: 23537 ident: CR41 article-title: Achieving above 24% efficiency with non-toxic CsSnI perovskite solar cells by harnessing the potential of the absorber and charge transport layers publication-title: RSC Adv. doi: 10.1039/d3ra02910g – volume: 31 start-page: 16269 year: 2020 end-page: 16280 ident: CR25 article-title: Analysis of various ETL materials for an efficient perovskite solar cell by numerical simulation publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-020-04175-z – volume: 111 start-page: 110565 year: 2021 ident: CR31 article-title: Theoretical evidence of high power conversion efficiency in double perovskite solar cell device publication-title: Opt. Mater. (Amst.) doi: 10.1016/j.optmat.2020.110565 – year: 2021 ident: CR17 article-title: Numerical study of a high-performance thin film CIGS solar cell with a-Si and MoTe hole transport layer publication-title: Optik (Stuttgart) doi: 10.1016/j.ijleo.2021.167498 – year: 2023 ident: CR29 article-title: Attaining above 30% efficiency of PbS-based colloidal quantum dot solar cell using MoO and SnO as charge transport layers: a numerical approach publication-title: J. Opt. doi: 10.1007/s12596-023-01449-7 – ident: CR21 – volume: 273 year: 2023 ident: CR2 article-title: Tweaking the performance of thin film CIGS solar cell using InP as buffer layer publication-title: Optik (Stuttgart) doi: 10.1016/j.ijleo.2022.170357 – year: 2023 ident: CR3 article-title: Performance up-gradation of CIGS solar cell using Ag S quantum dot as buffer layer publication-title: J. Mater. Res. doi: 10.1557/s43578-023-00992-0 – year: 2022 ident: CR6 article-title: Investigating the performance of lead-free perovskite solar cells using various hole transport material by numerical simulation publication-title: Trans. Electr. Electron. Mater. doi: 10.1007/s42341-022-00412-w – year: 2023 ident: CR11 article-title: Simulation of native oxide-passivated CsSn Ge I highly stable lead-free inorganic perovskite solar cell publication-title: Physica Status Solidi (A) Appl. Mater. Sci. doi: 10.1002/pssa.202300227 – volume: 91 start-page: 1025 year: 2018 end-page: 1044 ident: CR1 article-title: Perovskites photovoltaic solar cells: An overview of current status publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2018.04.069 – year: 2023 ident: CR32 article-title: Performance enhancement of PbS-TBAI quantum dot solar cell with MoTe as hole transport layer publication-title: Physica Status Solidi (a) doi: 10.1002/pssa.202300275 – volume: 102 start-page: 1884 year: 2019 end-page: 1892 ident: CR16 article-title: Investigation of the properties of niobium pentoxide for use in dye-sensitized solar cells publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.16080 – volume: 35 year: 2023 ident: CR13 article-title: Numerical investigation of toxic free perovskite solar cells for achieving high efficiency publication-title: Mater. Today Commun. doi: 10.1016/j.mtcomm.2023.105893 – volume: 184 start-page: 207691 year: 2023 ident: CR35 article-title: Achieving above 25% efficiency from FA Cs Pb(I Br ) perovskite solar cell through harnessing the potential of absorber and charge transport layers publication-title: Micro Nanostruct. doi: 10.1016/j.micrna.2023.207691 – year: 2023 ident: CR28 article-title: Impact on generation and recombination rate in Cu ZnSnS (CZTS) solar cell for Ag S and In Se buffer layers with CuSbS back surface field layer Cu ZnSnS , CuSbS BSF layer, CZTS, In Se buffer layer, SCAPS-1D publication-title: Prog. Photovolt. doi: 10.1002/pip.3743 – volume: 14 start-page: 1741 year: 2023 end-page: 1749 ident: CR43 article-title: Simulation of efficient lead sulfide colloidal quantum dot solar cell using Spiro-OMeTAD as hole transport layer publication-title: Sci. Adv. Mater. doi: 10.1166/sam.2022.4377 – volume: 24 start-page: 51 year: 2018 end-page: 58 ident: CR15 article-title: Experimental and statistical study of leaching of niobium pentoxide from Pakistani ore publication-title: Chem. Ind. Chem. Eng. Q. doi: 10.2298/CICEQ160518018I – volume: 179 start-page: 969 year: 2019 end-page: 976 ident: CR10 article-title: Improvement in performance of lead free inverted perovskite solar cell by optimization of solar parameters publication-title: Optik (Stuttgart) doi: 10.1016/j.ijleo.2018.11.028 – volume: 519 start-page: 7481 year: 2011 end-page: 7484 ident: CR19 article-title: Modelling multivalent defects in thin film solar cells publication-title: Thin Solid Films doi: 10.1016/j.tsf.2010.12.039 – volume: 09 start-page: 97 year: 2019 end-page: 107 ident: CR26 article-title: Comparative study of lead-free perovskite solar cells using different hole transporter materials, modeling and numerical simulation of material publication-title: Science doi: 10.4236/mnsms.2019.94006 – volume: 53 start-page: 1 year: 2021 end-page: 22 ident: CR37 article-title: Perovskite using device simulation SCAPS - 1D publication-title: Opt. Quantum Electron doi: 10.1007/s11082-021-02959-z – volume: 207 start-page: 579 year: 2020 end-page: 591 ident: CR30 article-title: Numerical analysis guidelines for the design of efficient novel nip structures for perovskite solar cell publication-title: Sol. Energy doi: 10.1016/j.solener.2020.07.012 – volume: 10 start-page: 1 year: 2019 end-page: 8 ident: CR12 article-title: Highly stable and efficient all-inorganic lead-free perovskite solar cells with native-oxide passivation publication-title: Nat. Commun. doi: 10.1038/s41467-018-07951-y – year: 2020 ident: CR27 article-title: Investigating the performance of formamidinium tin-based perovskite solar cell by SCAPS device simulation publication-title: Opt. Mater. (Amst.) doi: 10.1016/j.optmat.2020.109738 – year: 2023 ident: CR44 article-title: Design insights into La NiMnO -based perovskite solar cells employing different charge transport layers: DFT and SCAPS-1D frameworks publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.3c02361 – volume: 940 start-page: 940 year: 2021 end-page: 956 ident: CR4 article-title: A review on perovskite solar cells (PSCs), materials and applications publication-title: J. Materiomics doi: 10.1016/j.jmat.2021.04.002 – volume: 183 start-page: 111631 year: 2023 ident: CR42 article-title: Kesterite CZTS based thin film solar cell: generation, recombination, and performance analysis publication-title: J. Phys. Chem. Solids doi: 10.1016/j.jpcs.2023.111631 – year: 2021 ident: CR14 article-title: Optimal design and photovoltaic performance of eco friendly, stable and efficient perovskite solar cell publication-title: Superlattices Microstruct. doi: 10.1016/j.spmi.2021.106972 – volume: 24 start-page: 51 year: 2018 ident: 509_CR15 publication-title: Chem. Ind. Chem. Eng. Q. doi: 10.2298/CICEQ160518018I – volume: 179 start-page: 969 year: 2019 ident: 509_CR10 publication-title: Optik (Stuttgart) doi: 10.1016/j.ijleo.2018.11.028 – volume: 5 year: 2023 ident: 509_CR36 publication-title: Eng. Res. Express doi: 10.1088/2631-8695/acee45 – year: 2023 ident: 509_CR32 publication-title: Physica Status Solidi (a) doi: 10.1002/pssa.202300275 – volume: 12 start-page: 1 year: 2023 ident: 509_CR34 publication-title: Emerg. Mater. Res. doi: 10.1680/jemmr.22.00130 – year: 2023 ident: 509_CR28 publication-title: Prog. Photovolt. doi: 10.1002/pip.3743 – year: 2021 ident: 509_CR17 publication-title: Optik (Stuttgart) doi: 10.1016/j.ijleo.2021.167498 – volume: 53 start-page: 1 year: 2021 ident: 509_CR37 publication-title: Opt. Quantum Electron doi: 10.1007/s11082-021-02959-z – volume: 10 start-page: 1 year: 2019 ident: 509_CR12 publication-title: Nat. Commun. doi: 10.1038/s41467-018-07951-y – volume: 35 year: 2023 ident: 509_CR13 publication-title: Mater. Today Commun. doi: 10.1016/j.mtcomm.2023.105893 – volume: 102 start-page: 1884 year: 2019 ident: 509_CR16 publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.16080 – ident: 509_CR21 doi: 10.1007/978-981-19-2631-0_28 – year: 2022 ident: 509_CR20 publication-title: Micromachines (Basel) doi: 10.3390/mi13122073 – year: 2023 ident: 509_CR11 publication-title: Physica Status Solidi (A) Appl. Mater. Sci. doi: 10.1002/pssa.202300227 – volume: 183 start-page: 111631 year: 2023 ident: 509_CR42 publication-title: J. Phys. Chem. Solids doi: 10.1016/j.jpcs.2023.111631 – year: 2022 ident: 509_CR6 publication-title: Trans. Electr. Electron. Mater. doi: 10.1007/s42341-022-00412-w – volume: 165 year: 2022 ident: 509_CR24 publication-title: Micro Nanostruct. doi: 10.1016/j.micrna.2022.207195 – volume: 59 start-page: 1 year: 2022 ident: 509_CR22 publication-title: Emerg. Mater. Res. doi: 10.1680/jemmr.22.00059 – volume: 273 year: 2023 ident: 509_CR2 publication-title: Optik (Stuttgart) doi: 10.1016/j.ijleo.2022.170357 – volume: 18 start-page: 452 year: 2023 ident: 509_CR8 publication-title: J. Nanoelectron. Optoelectron. doi: 10.1166/jno.2023.3407 – year: 2022 ident: 509_CR9 publication-title: Micro Nanostruct. doi: 10.1016/j.micrna.2022.207398 – ident: 509_CR18 – volume: 91 start-page: 1025 year: 2018 ident: 509_CR1 publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2018.04.069 – year: 2022 ident: 509_CR5 publication-title: Phys. Scr. doi: 10.1088/1402-4896/ac9dc5 – year: 2021 ident: 509_CR14 publication-title: Superlattices Microstruct. doi: 10.1016/j.spmi.2021.106972 – volume: 207 start-page: 579 year: 2020 ident: 509_CR30 publication-title: Sol. Energy doi: 10.1016/j.solener.2020.07.012 – year: 2023 ident: 509_CR3 publication-title: J. Mater. Res. doi: 10.1557/s43578-023-00992-0 – year: 2020 ident: 509_CR27 publication-title: Opt. Mater. (Amst.) doi: 10.1016/j.optmat.2020.109738 – year: 2023 ident: 509_CR29 publication-title: J. Opt. doi: 10.1007/s12596-023-01449-7 – volume: 15 start-page: 655 year: 2023 ident: 509_CR33 publication-title: Sci. Adv. Mater. doi: 10.1166/sam.2023.4473 – volume: 14 start-page: 1741 year: 2023 ident: 509_CR43 publication-title: Sci. Adv. Mater. doi: 10.1166/sam.2022.4377 – volume: 519 start-page: 7481 year: 2011 ident: 509_CR19 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2010.12.039 – volume: 111 start-page: 110565 year: 2021 ident: 509_CR31 publication-title: Opt. Mater. (Amst.) doi: 10.1016/j.optmat.2020.110565 – volume: 197 start-page: 212 year: 2020 ident: 509_CR7 publication-title: Sol. Energy doi: 10.1016/j.solener.2020.01.006 – volume: 09 start-page: 97 year: 2019 ident: 509_CR26 publication-title: Science doi: 10.4236/mnsms.2019.94006 – volume: 184 start-page: 207691 year: 2023 ident: 509_CR35 publication-title: Micro Nanostruct. doi: 10.1016/j.micrna.2023.207691 – year: 2023 ident: 509_CR44 publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.3c02361 – volume: 940 start-page: 940 year: 2021 ident: 509_CR4 publication-title: J. Materiomics doi: 10.1016/j.jmat.2021.04.002 – year: 2020 ident: 509_CR39 publication-title: Optik (Stuttgart) doi: 10.1016/j.ijleo.2020.165407 – volume: 13 start-page: 23514 year: 2023 ident: 509_CR41 publication-title: RSC Adv. doi: 10.1039/d3ra02910g – year: 2021 ident: 509_CR40 publication-title: Optik (Stuttgart) doi: 10.1016/j.ijleo.2020.166235 – volume: 31 start-page: 16269 year: 2020 ident: 509_CR25 publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-020-04175-z – volume: 12 start-page: 1 year: 2023 ident: 509_CR23 publication-title: Nanomater. Energy doi: 10.1680/jnaen.23.00023 – year: 2022 ident: 509_CR38 publication-title: J. Opt. (India) doi: 10.1007/s12596-022-00946-5 |
SSID | ssib039560196 ssj0000314789 |
Score | 2.384829 |
Snippet | Perovskite is the most appropriate material for designing of thin film solar cells. In this work, inorganic perovskite solar cell which is lead free, stable... Perovskite is the most appropriate material for designing of thin fi lm solar cells. In this work, inorganic perovskite solar cell which is lead free, stable... |
SourceID | nrf crossref springer |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 294 |
SubjectTerms | Chemistry and Materials Science Electronics and Microelectronics Instrumentation Materials Science Optical and Electronic Materials Regular Paper 전기공학 |
Title | Investigation of Eco-friendly Perovskite Solar Cell Employing Niobium Pentoxide as Electron Transport Material using SCAPS-1D |
URI | https://link.springer.com/article/10.1007/s42341-024-00509-4 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003088688 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Transactions on Electrical and Electronic Materials, 2024, 25(3), , pp.294-303 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELb2cYED4im6PGQJfAqpmjgvH9O0q-Wx1Yp20XKKHCfdhl0a1JeAC3-F38IvY-w4aUpRtXCpolEyqjtf7Rln_H0IvfQc4VpCHj-zg8x0eOCYbOwFpgg492jqpr5iYjodeCfnzpsL92Jv_6jRtbRcJG3x_a_nSv4nqmCDuMpTsv8Q2dopGOAa4gufEGH4vFGMGyQZKu0jkU3CTl8U5ljSF6fX32SHe7Gayy1aYyirWCOSm3Wlzq_cJRjkRZLLZnhYfIqveZoZfK7daIGcNf-5ccoXaljGUu0wDKPwbGhavWaCO1rrj6sXEaXMTk1J0FDd-ayd1Un9By7VsVfcGM7yFYesdVUvGe_bxtu2bA1YTtZoPiuKT9x4V0zy-r7hRL7YusyNjzzlq-aOhu2sO68UBkm_R5hLWET6Iem6JOyRfgTDJoGjLAHpdhqWiLA-YR19EcJTXRJSEkSVH6YuQrA05nnbZqbvlYK77UzZ7A6DYsMtpfmq-bxUYNapAVV0DNurTtloMofM1LFMNSDJqqNPL21QfP-x9G6QfF-JPL4s4qtZDKXM6xgSX0i9KN1Hh7bvyxaEw_C42x1UsyWVla2lyRJV3kEtx1eaj_Xo9CkxdVZ069ttZGL709l4qxlA5Viju-iOLo5wWCL9HtrLpvfR7QZl5gP0YwPzuBj_-tnEO17jHSu8Y4l3XOMda7zjGu-Yz8GFhiWusY4rrGOFdVxh_SE6P-6PohNTi4iYAiqThSlgxrG8FMpqStMkyajbSf0MjFLngdHMSih3XCEEZR2aQXJtMSljygLbTXzPS-gjdDAtptljhBMrSx2fc-FZKSx1nHE_FbIvMkgdKKtoC1nVDxoLzbAvhV6u45obXAUhhiDEKgix00JG_cyXkl9m590vIE4KKTsQ00KvqjjGeraa73B6dCOnT9Ct9X_1KTpYzJbZM8jHF8lzDczflsfSxg |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigation+of%C2%A0Eco-friendly+Perovskite+Solar+Cell+Employing+Niobium+Pentoxide+as%C2%A0Electron+Transport+Material+using+SCAPS-1D&rft.jtitle=Transactions+on+electrical+and+electronic+materials&rft.au=Vaibhava+Srivastava&rft.au=R.+K.+Chauhan&rft.au=Pooja+Lohia&rft.au=Shivangi+Yadav&rft.date=2024-06-01&rft.pub=%ED%95%9C%EA%B5%AD%EC%A0%84%EA%B8%B0%EC%A0%84%EC%9E%90%EC%9E%AC%EB%A3%8C%ED%95%99%ED%9A%8C&rft.issn=1229-7607&rft.eissn=2092-7592&rft.spage=294&rft.epage=303&rft_id=info:doi/10.1007%2Fs42341-024-00509-4&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_10524433 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1229-7607&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1229-7607&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1229-7607&client=summon |