Graphite intercalation compounds

Solid-state physicists are turning more and more to complex synthetic materials in their search for novel phenomena and potentially useful properties. Many of these materials are highly anisotropic, so that interatomic interactions can for all practical purposes be neglected along one or two crystal...

Full description

Saved in:
Bibliographic Details
Published inPhysics today Vol. 31; no. 7; pp. 36 - 45
Main Authors Fischer, John E., Thompson, Thomas E.
Format Journal Article
LanguageEnglish
Published 01.07.1978
Online AccessGet full text
ISSN0031-9228
1945-0699
DOI10.1063/1.2995104

Cover

Loading…
Abstract Solid-state physicists are turning more and more to complex synthetic materials in their search for novel phenomena and potentially useful properties. Many of these materials are highly anisotropic, so that interatomic interactions can for all practical purposes be neglected along one or two crystal axes. One of the oldest classes of prototype systems for exploring phenomena predicted to occur in two-dimensional systems are graphite intercalation compounds. These consist of stacks of one or more layers of hexagonally arrayed carbon atoms, alternating with monolayers of guest atoms or molecules. Striking changes in the properties of both host and guest result from intercalation. In addition to their quasi-two-dimensional behavior, fundamental interest centers on their variable anisotropy, which results from the fact that the strength of the interlayer interactions depends on the nature of the intercalated species.
AbstractList Graphite intercalation compounds consist of stacks of one or more layers of hexagonally arrayed carbon atoms, alternating with monolayers of guest atoms or molecules. Striking changes in the properties of both host and guest result from intercalation. Graphite intercalation compounds are obtained by allowing atoms or molecules to diffuse into the relatively large two-dimensional gaps between adjacent hexagonal carbon layers. A descriptive introduction is given to the physics and chemistry of graphite intercalation compounds. The electronic properties of these compounds are the subject of much current activity. Donor intercalation produces n-type metals, whereas acceptors give p-type conduction. Recently obtained data imply that, with increasing intercalant concentration, the band structure progresses from a two-carrier semimetal (pure graphite), through one-carrier free-electron-like metal in the dilute regime, to a band-overlap metal at high concentration. Attention is also given to the band structure, the optimization of conductivity, vibrations and phase transitions, and approaches to synthetic materials.
Solid-state physicists are turning more and more to complex synthetic materials in their search for novel phenomena and potentially useful properties. Many of these materials are highly anisotropic, so that interatomic interactions can for all practical purposes be neglected along one or two crystal axes. One of the oldest classes of prototype systems for exploring phenomena predicted to occur in two-dimensional systems are graphite intercalation compounds. These consist of stacks of one or more layers of hexagonally arrayed carbon atoms, alternating with monolayers of guest atoms or molecules. Striking changes in the properties of both host and guest result from intercalation. In addition to their quasi-two-dimensional behavior, fundamental interest centers on their variable anisotropy, which results from the fact that the strength of the interlayer interactions depends on the nature of the intercalated species.
Author Fischer, John E.
Thompson, Thomas E.
Author_xml – sequence: 1
  givenname: John E.
  surname: Fischer
  fullname: Fischer, John E.
– sequence: 2
  givenname: Thomas E.
  surname: Thompson
  fullname: Thompson, Thomas E.
BookMark eNptkLFOwzAURS1UJNrCwB9kQmJI-57tOPaIKihIlVhgthzHEUZpHGxn4O8ptBPqdJdzr3TPgsyGMDhCbhFWCIKtcUWVqhD4BZmj4lUJQqkZmQMwLBWl8oosUvoEAA4U56TYRjN--OwKP2QXrelN9mEobNiPYRradE0uO9Mnd3PKJXl_enzbPJe71-3L5mFXWkZFLhvDpUAnsRI1WibRCNk42XBpOwrSWtM2UrWKYmewdq2VDVIheNdQVjPO2JLcHXfHGL4ml7Le-2Rd35vBhSlpyqAWSOkBvD-CNoaUouv0GP3exG-NoH8daNQnBwd2_Y-1Pv8dzNH4_kzjBzGeXgU
CitedBy_id crossref_primary_10_1143_JPSJ_51_63
crossref_primary_10_1002_ange_19830951204
crossref_primary_10_1103_PhysRevB_30_1062
crossref_primary_10_1103_PhysRevB_53_16621
crossref_primary_10_1103_PhysRevB_25_1726
crossref_primary_10_1103_PhysRevB_30_4856
crossref_primary_10_1002_adfm_201301792
crossref_primary_10_1016_0379_6779_82_90005_4
crossref_primary_10_1080_10587250008025480
crossref_primary_10_1103_PhysRevB_20_4889
crossref_primary_10_1103_PhysRevB_22_904
crossref_primary_10_1103_PhysRevB_28_7288
crossref_primary_10_1557_PROC_3_303
crossref_primary_10_1016_j_mee_2016_09_011
crossref_primary_10_1103_PhysRevB_41_5519
crossref_primary_10_1002_anie_198309501
crossref_primary_10_1103_PhysRevLett_43_68
crossref_primary_10_1557_PROC_20_63
crossref_primary_10_1103_PhysRevB_23_565
crossref_primary_10_1016_0378_4363_80_90270_3
crossref_primary_10_1103_PhysRevB_26_4680
crossref_primary_10_1088_0953_8984_9_45_012
crossref_primary_10_1002_jrs_1250100124
crossref_primary_10_1016_0008_6223_80_90036_6
crossref_primary_10_1016_0378_4363_80_90274_0
crossref_primary_10_1016_0378_4363_80_90285_5
crossref_primary_10_1016_j_carbon_2020_06_044
crossref_primary_10_1103_PhysRevB_47_9238
crossref_primary_10_1016_0378_4363_80_90266_1
crossref_primary_10_1016_0379_6779_81_90018_7
crossref_primary_10_1016_0079_6786_85_90005_6
crossref_primary_10_1103_PhysRevB_51_13586
crossref_primary_10_1002_adma_202209964
crossref_primary_10_1143_JPSJ_47_1125
crossref_primary_10_1007_s13369_020_04892_x
crossref_primary_10_1016_0379_6779_81_90045_X
crossref_primary_10_1002_adfm_200700425
crossref_primary_10_1103_PhysRevB_64_035404
crossref_primary_10_1016_0379_6779_80_90076_4
crossref_primary_10_1002_adma_202311655
crossref_primary_10_1140_epjp_s13360_020_00437_1
crossref_primary_10_3390_en14185819
crossref_primary_10_1088_0022_3719_15_7_014
crossref_primary_10_1016_0038_1098_92_90745_U
crossref_primary_10_1016_0379_6779_85_90089_X
crossref_primary_10_1016_S0009_2614_98_01356_6
crossref_primary_10_1103_PhysRevB_52_14935
crossref_primary_10_1103_PhysRevB_91_205412
crossref_primary_10_1103_PhysRevLett_44_200
crossref_primary_10_1016_j_carbon_2019_07_061
crossref_primary_10_1016_0038_1098_79_90898_6
crossref_primary_10_1103_PhysRevLett_44_1502
crossref_primary_10_1103_PhysRevB_21_730
crossref_primary_10_1103_PhysRevB_31_6669
crossref_primary_10_1103_PhysRevB_18_5190
crossref_primary_10_1088_0953_8984_6_15_017
crossref_primary_10_1016_0038_1098_80_90363_4
crossref_primary_10_1016_0038_1098_82_90453_7
crossref_primary_10_1063_1_3701267
crossref_primary_10_1039_D0TA08415H
crossref_primary_10_1103_PhysRevB_44_13237
crossref_primary_10_1016_0378_4363_80_90267_3
crossref_primary_10_1103_PhysRevB_20_2551
crossref_primary_10_1021_ja109412x
crossref_primary_10_1103_PhysRevB_22_6308
crossref_primary_10_1016_0038_1098_80_91089_3
crossref_primary_10_1016_0378_4363_80_90279_X
crossref_primary_10_1021_acsami_1c18777
crossref_primary_10_1016_0038_1098_82_90891_2
crossref_primary_10_1177_002199838702100608
crossref_primary_10_1007_s002570050136
crossref_primary_10_1103_PhysRevB_25_2983
crossref_primary_10_3390_c10040108
crossref_primary_10_1063_1_440164
crossref_primary_10_1016_0379_6779_81_90011_4
crossref_primary_10_1002_adma_202008432
crossref_primary_10_1002_pc_23461
crossref_primary_10_1021_jp0028960
crossref_primary_10_1103_PhysRevLett_43_882
crossref_primary_10_1088_0022_3719_13_27_009
crossref_primary_10_1016_0025_5408_79_90017_5
crossref_primary_10_1016_0378_4363_80_90272_7
crossref_primary_10_1063_PT_3_4359
crossref_primary_10_1016_0013_4686_81_85008_6
crossref_primary_10_1016_S0368_2048_98_00232_1
crossref_primary_10_1103_PhysRevB_33_4034
crossref_primary_10_1103_PhysRevB_44_7243
crossref_primary_10_1016_0168_7336_87_80103_1
crossref_primary_10_1103_PhysRevB_20_3351
crossref_primary_10_1016_0378_4363_80_90265_X
crossref_primary_10_1002_piuz_19790100502
crossref_primary_10_1016_S0022_1139_00_82582_8
crossref_primary_10_1063_1_440325
crossref_primary_10_1103_PhysRevB_25_4110
crossref_primary_10_1016_0378_4363_80_90215_6
crossref_primary_10_1103_PhysRevB_24_1000
crossref_primary_10_1016_0025_5416_79_90132_0
crossref_primary_10_1016_j_jpowsour_2003_11_018
crossref_primary_10_1143_JPSJ_52_223
crossref_primary_10_1038_351462a0
crossref_primary_10_1109_TED_2009_2024254
crossref_primary_10_1103_PhysRevLett_42_666
crossref_primary_10_1103_PhysRevB_23_4236
crossref_primary_10_1016_0378_4363_81_90206_0
crossref_primary_10_1021_cm3028324
crossref_primary_10_1103_PhysRevB_25_4189
crossref_primary_10_1103_PhysRevB_30_421
crossref_primary_10_1103_PhysRevLett_41_1417
crossref_primary_10_1103_PhysRevB_24_4764
crossref_primary_10_1039_C9NR00483A
crossref_primary_10_1016_0039_6028_95_00894_2
crossref_primary_10_1039_D4DT02196G
crossref_primary_10_1002_chin_197852364
crossref_primary_10_1016_0379_6779_80_90013_2
crossref_primary_10_1088_0022_3719_18_8_010
crossref_primary_10_1103_PhysRevLett_44_937
crossref_primary_10_1142_S0218126620501856
crossref_primary_10_1016_0013_4686_81_85038_4
crossref_primary_10_1016_0378_4363_81_90274_6
crossref_primary_10_1142_S0218126619300083
crossref_primary_10_1103_PhysRevLett_42_1410
crossref_primary_10_3389_fmats_2020_00219
crossref_primary_10_1016_0379_6779_83_90031_0
crossref_primary_10_1103_PhysRevB_22_606
crossref_primary_10_1103_PhysRevB_24_1065
crossref_primary_10_1103_PhysRevLett_51_430
crossref_primary_10_1016_0022_3697_92_90239_A
crossref_primary_10_1016_0378_4363_80_90284_3
crossref_primary_10_1080_01442358309353343
crossref_primary_10_1103_PhysRevB_23_6793
crossref_primary_10_1149_1_1345870
crossref_primary_10_1016_0008_6223_86_90277_0
crossref_primary_10_1016_S0009_2614_02_00148_3
crossref_primary_10_1103_PhysRevB_84_235133
crossref_primary_10_1016_0038_1098_80_90872_8
crossref_primary_10_1126_science_252_5010_1288
crossref_primary_10_1103_PhysRevLett_44_197
crossref_primary_10_1002_pssb_201451477
crossref_primary_10_1109_TED_2009_2026524
crossref_primary_10_1016_0379_6779_80_90050_8
crossref_primary_10_1103_PhysRevB_24_5037
crossref_primary_10_1016_0304_5102_82_80022_9
crossref_primary_10_1016_0025_5416_80_90072_5
crossref_primary_10_3390_nano14060540
crossref_primary_10_1016_j_nanoen_2016_12_051
crossref_primary_10_1103_PhysRevB_36_7590
Cites_doi 10.1063/1.1712323
10.1016/0025-5416(77)90020-9
10.1016/0025-5416(77)90004-0
10.1016/0025-5416(77)90005-2
10.1002/zaac.19542770307
10.1143/JPSJ.43.1237
ContentType Journal Article
DBID AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1063/1.2995104
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Technology Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1945-0699
EndPage 45
ExternalDocumentID 10_1063_1_2995104
GroupedDBID -DZ
-~X
.DC
.GJ
0ZJ
123
186
2-P
29O
3O-
53G
6TJ
85S
8WZ
97F
9M8
A6W
AABDS
AAGWI
AAGZG
AAPUP
AAWTO
AAYIH
AAYOK
AAYXX
ABCQX
ABEFU
ABFTF
ABJGX
ABJNI
ABPPZ
ABZEH
ACBEA
ACBRY
ACGFO
ACGOD
ACNCT
ACQAM
ADMHC
ADMLS
ADXHL
AEGXH
AEJMO
AENEX
AETEA
AFFNX
AGHSJ
AGKCL
AIAGR
AIDBO
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATXIE
BPZLN
CITATION
CS3
D0L
DU5
EBS
EJD
F5P
FA8
FDOHQ
H~9
L7B
M6X
M71
M73
NEJ
NEUPN
NHB
OHT
P2P
PQQKQ
RDFOP
RIP
RNS
RQS
RXW
S10
SJN
TAE
TN5
TWZ
UBY
UHB
UQL
VOH
WH7
XJT
XOL
YNT
YR5
YYP
YZZ
ZCA
ZCG
ZHY
ZKB
ZY4
~02
8FD
H8D
L7M
ID FETCH-LOGICAL-c326t-ba4861e815671c381a68be8b48cf208ccadb89d921fa17edc8b12664fb2373433
ISSN 0031-9228
IngestDate Fri Jul 11 14:21:23 EDT 2025
Tue Jul 01 03:07:30 EDT 2025
Thu Apr 24 23:12:30 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 7
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c326t-ba4861e815671c381a68be8b48cf208ccadb89d921fa17edc8b12664fb2373433
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 23076122
PQPubID 23500
PageCount 10
ParticipantIDs proquest_miscellaneous_23076122
crossref_primary_10_1063_1_2995104
crossref_citationtrail_10_1063_1_2995104
ProviderPackageCode CITATION
AAYXX
PublicationCentury 1900
PublicationDate 19780701
PublicationDateYYYYMMDD 1978-07-01
PublicationDate_xml – month: 07
  year: 1978
  text: 19780701
  day: 01
PublicationDecade 1970
PublicationTitle Physics today
PublicationYear 1978
References (2023070719553200800_r5) 1967; 47
2023070719553200800_r9a
(2023070719553200800_r10) 1977; 43
(2023070719553200800_r6) 1977; 31
(2023070719553200800_r11) 1977; 31
(2023070719553200800_r1) 1841; 21
(2023070719553200800_r2) 1932; 18
(2023070719553200800_r4) 1972; 327
(2023070719553200800_r7) 1954; 277
(2023070719553200800_r8) 1977; 31
2023070719553200800_r9
(2023070719553200800_r3) 1965; 43
References_xml – volume: 47
  start-page: 2978
  year: 1967
  ident: 2023070719553200800_r5
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1712323
– volume: 31
  start-page: 99
  year: 1977
  ident: 2023070719553200800_r11
  publication-title: Materials Sci. Eng.
  doi: 10.1016/0025-5416(77)90020-9
– volume: 18
  start-page: 1
  year: 1932
  ident: 2023070719553200800_r2
  publication-title: Z. Phys. Chem.
– volume: 43
  start-page: 1202
  year: 1965
  ident: 2023070719553200800_r3
  publication-title: J. Chem. Phys.
– volume: 21
  start-page: 129
  year: 1841
  ident: 2023070719553200800_r1
  publication-title: J. Prakt. Chem.
– volume: 31
  start-page: 1
  year: 1977
  ident: 2023070719553200800_r6
  publication-title: Mat. Sci. Eng.
  doi: 10.1016/0025-5416(77)90004-0
– ident: 2023070719553200800_r9a
– volume: 31
  start-page: 17
  year: 1977
  ident: 2023070719553200800_r8
  publication-title: Mat. Sci. Eng.
  doi: 10.1016/0025-5416(77)90005-2
– ident: 2023070719553200800_r9
– volume: 327
  start-page: 289
  year: 1972
  ident: 2023070719553200800_r4
  publication-title: Proc. Roy. Soc. A
– volume: 277
  start-page: 156
  year: 1954
  ident: 2023070719553200800_r7
  publication-title: Z. Anorg. Chem.
  doi: 10.1002/zaac.19542770307
– volume: 43
  start-page: 1237
  year: 1977
  ident: 2023070719553200800_r10
  publication-title: J. Phys. Soc. Japan
  doi: 10.1143/JPSJ.43.1237
SSID ssj0004021
Score 1.3968346
Snippet Solid-state physicists are turning more and more to complex synthetic materials in their search for novel phenomena and potentially useful properties. Many of...
Graphite intercalation compounds consist of stacks of one or more layers of hexagonally arrayed carbon atoms, alternating with monolayers of guest atoms or...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 36
Title Graphite intercalation compounds
URI https://www.proquest.com/docview/23076122
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA-6IXgRP3F-FvHgpXNp0qY9DnWOsc2DHewWmjQDQTrZuot_vS9t2q448OMSQgihfb_w8kv73u8hdAunshJuENkiYMqG-xfRPbiquIFyFaHS93SC82js9Sd0MHWnVWnJLLskFW35uTGv5D-owhjgqrNk_4BsuSgMQB_whRYQhvZXGD9rtWngjJnowwKsnaOpw8R1taTlOvPMQj2l1nNYi5vpvS0L0AZVTkIVJAJYmuE4z5TTQrms-DBgnB3BduCY3Gvj7IzLzb1VLj3yzYkCa9H3-TacVK4pDlwXqh6_8N5kOOTh0zTcRk0HGDr4xGb3cTR8rZJSO05ertA8RSHr5JH7cuk6GaifhdkBH-6jPcPMrW5u5gO0pZJDtGPMdoSswthWzdhWaexjNOk9hQ9925SXsCVw1tQWEfU9rLRcDsMSmEvk-UL5gvpy5nR82Nqx8IM4cPAswkzF0hcY6AydCYcwQgk5QY1knqhTZDEcsQ6N44gpfWEWguqIokx1dUawK1vornhPLo32ui4B8s6zGACPcMyNSVroppz6kQuObJp0XRiLgzvQ_3iiRM1XS67j-oG0Omc_zjhHu9WuuUCNdLFSl0CwUnFloPwCH3gkbQ
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graphite+intercalation+compounds&rft.jtitle=Physics+today&rft.au=Fischer%2C+J+E&rft.au=Thompson%2C+T+E&rft.date=1978-07-01&rft.issn=0031-9228&rft.volume=31&rft.spage=36&rft_id=info:doi/10.1063%2F1.2995104&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9228&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9228&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9228&client=summon