Bio-inspired spider-web-like membranes with a hierarchical structure for high performance lithium/sodium ion battery electrodes: the case of 3D freestanding and binder-free bismuth/CNF anodes
High gravimetric energy density and volumetric energy density energy storage devices are highly desirable due to the rapid development of electric vehicles, and portable and wearable electronic equipment. Electrospinning is a promising technology for preparing freestanding electrodes with high gravi...
Saved in:
Published in | Nanoscale Vol. 9; no. 35; pp. 13298 - 13304 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
21.09.2017
|
Online Access | Get full text |
Cover
Loading…
Abstract | High gravimetric energy density and volumetric energy density energy storage devices are highly desirable due to the rapid development of electric vehicles, and portable and wearable electronic equipment. Electrospinning is a promising technology for preparing freestanding electrodes with high gravimetric and volumetric energy density. However, the energy density of the traditional electrospun electrodes is restricted by the low mass loading of active materials (e.g. 20%-30 wt%). Herein, a biomimetic strategy inspired by the phenomenon of the sticky spider web is demonstrated as a high performance anode, which simultaneously improves the gravimetric and volumetric energy density. Freestanding carbon nanofiber (CNF) membranes containing over 50 wt% of bismuth were prepared by electrospinning and subsequent thermal treatment. Membranes consisting of CNF network structures bonded tightly with active Bi cluster materials, resulting in excellent mechanical protection and a fast charge transport path, which are difficult to achieve simultaneously. The composite membrane delivers high reversible capacity (483 mA h g
at 100 mA g
after 200 cycles) and high rate performance (242 mA h g
at 1 A g
) as a lithium-ion battery anode. For use as a sodium ion battery, the composite membrane also shows a high reversible specific capacity of 346 mA h g
and outstanding cycling performance (186 mA h g
at 50 mA g
after 100 cycles). This work offers a simple, low cost and eco-friendly method for fabricating free-standing and binder-free composite electrodes with high loading used in LIBs and SIBs. |
---|---|
AbstractList | High gravimetric energy density and volumetric energy density energy storage devices are highly desirable due to the rapid development of electric vehicles, and portable and wearable electronic equipment. Electrospinning is a promising technology for preparing freestanding electrodes with high gravimetric and volumetric energy density. However, the energy density of the traditional electrospun electrodes is restricted by the low mass loading of active materials (e.g. 20%-30 wt%). Herein, a biomimetic strategy inspired by the phenomenon of the sticky spider web is demonstrated as a high performance anode, which simultaneously improves the gravimetric and volumetric energy density. Freestanding carbon nanofiber (CNF) membranes containing over 50 wt% of bismuth were prepared by electrospinning and subsequent thermal treatment. Membranes consisting of CNF network structures bonded tightly with active Bi cluster materials, resulting in excellent mechanical protection and a fast charge transport path, which are difficult to achieve simultaneously. The composite membrane delivers high reversible capacity (483 mA h g
at 100 mA g
after 200 cycles) and high rate performance (242 mA h g
at 1 A g
) as a lithium-ion battery anode. For use as a sodium ion battery, the composite membrane also shows a high reversible specific capacity of 346 mA h g
and outstanding cycling performance (186 mA h g
at 50 mA g
after 100 cycles). This work offers a simple, low cost and eco-friendly method for fabricating free-standing and binder-free composite electrodes with high loading used in LIBs and SIBs. High gravimetric energy density and volumetric energy density energy storage devices are highly desirable due to the rapid development of electric vehicles, and portable and wearable electronic equipment. Electrospinning is a promising technology for preparing freestanding electrodes with high gravimetric and volumetric energy density. However, the energy density of the traditional electrospun electrodes is restricted by the low mass loading of active materials (e.g. 20%-30 wt%). Herein, a biomimetic strategy inspired by the phenomenon of the sticky spider web is demonstrated as a high performance anode, which simultaneously improves the gravimetric and volumetric energy density. Freestanding carbon nanofiber (CNF) membranes containing over 50 wt% of bismuth were prepared by electrospinning and subsequent thermal treatment. Membranes consisting of CNF network structures bonded tightly with active Bi cluster materials, resulting in excellent mechanical protection and a fast charge transport path, which are difficult to achieve simultaneously. The composite membrane delivers high reversible capacity (483 mA h g-1 at 100 mA g-1 after 200 cycles) and high rate performance (242 mA h g-1 at 1 A g-1) as a lithium-ion battery anode. For use as a sodium ion battery, the composite membrane also shows a high reversible specific capacity of 346 mA h g-1 and outstanding cycling performance (186 mA h g-1 at 50 mA g-1 after 100 cycles). This work offers a simple, low cost and eco-friendly method for fabricating free-standing and binder-free composite electrodes with high loading used in LIBs and SIBs. High gravimetric energy density and volumetric energy density energy storage devices are highly desirable due to the rapid development of electric vehicles, and portable and wearable electronic equipment. Electrospinning is a promising technology for preparing freestanding electrodes with high gravimetric and volumetric energy density. However, the energy density of the traditional electrospun electrodes is restricted by the low mass loading of active materials ( e.g. 20%–30 wt%). Herein, a biomimetic strategy inspired by the phenomenon of the sticky spider web is demonstrated as a high performance anode, which simultaneously improves the gravimetric and volumetric energy density. Freestanding carbon nanofiber (CNF) membranes containing over 50 wt% of bismuth were prepared by electrospinning and subsequent thermal treatment. Membranes consisting of CNF network structures bonded tightly with active Bi cluster materials, resulting in excellent mechanical protection and a fast charge transport path, which are difficult to achieve simultaneously. The composite membrane delivers high reversible capacity (483 mA h g −1 at 100 mA g −1 after 200 cycles) and high rate performance (242 mA h g −1 at 1 A g −1 ) as a lithium-ion battery anode. For use as a sodium ion battery, the composite membrane also shows a high reversible specific capacity of 346 mA h g −1 and outstanding cycling performance (186 mA h g −1 at 50 mA g −1 after 100 cycles). This work offers a simple, low cost and eco-friendly method for fabricating free-standing and binder-free composite electrodes with high loading used in LIBs and SIBs. |
Author | Lan, Jin-Le Jin, Yuqiang Lin, Yuan-Hua Yang, Xiaoping Yuan, Haocheng Yu, Yunhua |
Author_xml | – sequence: 1 givenname: Yuqiang surname: Jin fullname: Jin, Yuqiang email: lanjl@mail.buct.edu.cn, yangxp@mail.buct.edu.cn organization: State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China. lanjl@mail.buct.edu.cn yangxp@mail.buct.edu.cn – sequence: 2 givenname: Haocheng surname: Yuan fullname: Yuan, Haocheng – sequence: 3 givenname: Jin-Le surname: Lan fullname: Lan, Jin-Le – sequence: 4 givenname: Yunhua surname: Yu fullname: Yu, Yunhua – sequence: 5 givenname: Yuan-Hua surname: Lin fullname: Lin, Yuan-Hua – sequence: 6 givenname: Xiaoping surname: Yang fullname: Yang, Xiaoping |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28858353$$D View this record in MEDLINE/PubMed |
BookMark | eNo9Udtu1TAQtFARvcALH4D2ESGF2nHi2LyVAwWkqkgIniNfNo0hsQ-2o6pfx6_hQ0ufZrQ7M1rtnJKjEAMS8pLRt4xydW6HkGinWKufkJOWdrThfGiPHrnojslpzj8pFYoL_owct1L2kvf8hPx572PjQ977hA4qOEzNLZpm8b8QVlxN0gEz3Poyg4bZY9LJzt7qBXJJmy1bQphiqqubGfaYKl91sAhLtfhtPc_RVQAfAxhdCqY7wAVtSdFhfgdlRrA6I8QJ-AeYEmIuOjgfbqACGB8ONx3mled1K_P57vqy7g7-5-TppJeMLx7wjPy4_Ph997m5-vrpy-7iqrG8FaUxcjKiG1AboXrn-mFCowSfbIfIemmRMcO1tnqSUraCMi4V7WU7UGWUU46fkdf3ufsUf2_1wnH12eKy1O_ELY9M8a6VgklRpW_upTbFnBNO4z75Vae7kdHxUNi4G66__SvsoopfPeRuZkX3KP3fEP8LCiaXGg |
CitedBy_id | crossref_primary_10_1007_s12274_021_3334_y crossref_primary_10_1016_j_jallcom_2022_168207 crossref_primary_10_1021_acs_energyfuels_0c01490 crossref_primary_10_1002_adfm_201808745 crossref_primary_10_1016_j_jelechem_2019_04_073 crossref_primary_10_1016_j_mattod_2023_11_013 crossref_primary_10_1016_j_mtphys_2021_100486 crossref_primary_10_1016_j_jelechem_2018_12_037 crossref_primary_10_1002_pssr_201900209 crossref_primary_10_1007_s12598_020_01605_z crossref_primary_10_1016_j_mssp_2020_105359 crossref_primary_10_1039_C8TA11947C crossref_primary_10_3390_ma17010021 crossref_primary_10_1039_D4GC00638K crossref_primary_10_1021_acssuschemeng_0c01794 crossref_primary_10_1039_C7QI00762K crossref_primary_10_1186_s11671_020_03325_w crossref_primary_10_1007_s42765_021_00088_6 crossref_primary_10_1016_j_jpowsour_2021_230826 crossref_primary_10_1073_pnas_2305273120 crossref_primary_10_1002_smll_202302071 crossref_primary_10_1016_j_cej_2020_124111 crossref_primary_10_1016_j_ensm_2019_09_036 crossref_primary_10_1093_oxfmat_itac010 crossref_primary_10_1016_j_jiec_2021_10_019 crossref_primary_10_1016_j_jechem_2022_01_026 crossref_primary_10_1073_pnas_2101296118 crossref_primary_10_1002_adem_202201462 crossref_primary_10_1002_slct_201801774 crossref_primary_10_2139_ssrn_4191175 crossref_primary_10_1039_C8QM00497H crossref_primary_10_1039_D0NR07230C crossref_primary_10_1126_sciadv_abh3482 crossref_primary_10_1021_acssuschemeng_8b06149 crossref_primary_10_1002_adsu_202100236 crossref_primary_10_1002_aenm_202204376 crossref_primary_10_1002_adfm_202002885 crossref_primary_10_1002_celc_201800830 crossref_primary_10_1039_C8NR06797J crossref_primary_10_1021_acsami_2c19627 crossref_primary_10_1016_j_jelechem_2022_116855 crossref_primary_10_2139_ssrn_4046844 crossref_primary_10_1016_j_matpr_2022_04_531 crossref_primary_10_1016_j_seppur_2022_121375 crossref_primary_10_1002_smll_201900628 crossref_primary_10_1002_aenm_202001418 crossref_primary_10_1039_D0DT00480D crossref_primary_10_1177_10812865221136814 crossref_primary_10_1039_D0QI01158D crossref_primary_10_1039_D3TA04229D crossref_primary_10_1016_j_electacta_2022_141405 crossref_primary_10_1039_C9TA12770D crossref_primary_10_1007_s42242_018_0002_5 crossref_primary_10_1016_j_ensm_2023_03_023 crossref_primary_10_1002_advs_201900162 crossref_primary_10_1021_acs_nanolett_1c01000 crossref_primary_10_1016_j_colsurfa_2024_134123 crossref_primary_10_1016_j_ensm_2021_12_022 crossref_primary_10_1016_S1872_5805_23_60725_5 crossref_primary_10_1002_anie_202406513 crossref_primary_10_1016_j_est_2024_112291 crossref_primary_10_1002_smll_202004022 crossref_primary_10_1002_adfm_202000756 crossref_primary_10_1016_j_jallcom_2019_153036 crossref_primary_10_1021_acsanm_4c01276 crossref_primary_10_1002_smll_201903194 crossref_primary_10_1016_j_cej_2019_122558 crossref_primary_10_1016_S1872_2067_22_64177_9 crossref_primary_10_1002_chem_201801574 crossref_primary_10_1002_smll_202102233 crossref_primary_10_1016_j_jallcom_2022_165680 crossref_primary_10_1021_acs_jpcc_9b01807 crossref_primary_10_1016_j_jmps_2020_104096 crossref_primary_10_1002_advs_202201209 crossref_primary_10_1002_ange_202406513 crossref_primary_10_1016_j_mattod_2021_09_023 crossref_primary_10_1002_adma_201804833 crossref_primary_10_1088_1361_6528_abd581 crossref_primary_10_1016_j_ceramint_2018_03_213 crossref_primary_10_1039_D1QM00423A crossref_primary_10_1021_acsami_1c03042 crossref_primary_10_1080_1536383X_2018_1538131 crossref_primary_10_1021_acsaem_1c01518 |
Cites_doi | 10.1016/j.jpowsour.2008.09.097 10.1002/aenm.201600918 10.1021/acs.chemmater.6b03403 10.1021/acssuschemeng.5b01236 10.1016/j.nanoen.2016.02.001 10.1039/C5NR02711J 10.1016/j.jpowsour.2015.01.184 10.1080/10408436.2011.627096 10.1039/C4NR04378B 10.1002/ppsc.201500073 10.1038/nenergy.2016.71 10.1039/C6TA02796B 10.1016/S0378-7753(00)00599-1 10.1016/j.nanoen.2017.01.033 10.1002/anie.201410376 10.1016/j.chempr.2017.01.010 10.1002/chem.201503272 10.1039/C6RA19862G 10.1038/ncomms11774 10.1111/j.1530-9290.2011.00359.x 10.1016/j.nanoen.2013.12.017 10.1039/C7TA01443K 10.1016/j.nanoen.2014.12.012 10.1016/j.nanoen.2017.02.041 10.1021/ja304352n 10.1016/j.apenergy.2013.04.005 10.1016/j.jeurceramsoc.2009.05.018 10.1021/acs.accounts.5b00482 10.1016/j.pmatsci.2015.08.002 10.1039/C5NR06531C 10.1007/s11581-017-1975-3 10.1016/j.electacta.2010.01.059 10.1039/c2ee22085g 10.1016/j.chempr.2017.01.005 10.1039/C5NR02425K 10.1016/j.carbon.2012.07.039 10.1002/aenm.201400753 10.1016/j.cej.2017.03.054 10.1016/j.elecom.2017.05.011 10.1016/j.nanoen.2014.06.030 10.1002/smll.201501313 10.1021/acsami.6b01093 10.1016/j.chempr.2017.05.021 |
ContentType | Journal Article |
DBID | NPM AAYXX CITATION 7X8 |
DOI | 10.1039/c7nr04912a |
DatabaseName | PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2040-3372 |
EndPage | 13304 |
ExternalDocumentID | 10_1039_C7NR04912A 28858353 |
Genre | Journal Article |
GroupedDBID | --- -JG 0-7 0R~ 29M 4.4 53G 705 7~J AAEMU AAIWI AAJAE AANOJ AARTK AAWGC AAXHV ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFVBQ AGEGJ AGRSR AGSTE AHGCF AKBGW ALMA_UNASSIGNED_HOLDINGS ANBJS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K DU5 EBS ECGLT EE0 EF- EJD F5P GGIMP H13 HZ~ H~N J3I NPM O-G O9- OK1 P2P RAOCF RCNCU RNS RPMJG RRC RSCEA RVUXY AAYXX AHGXI ANLMG ASPBG AVWKF CAG CITATION COF FEDTE HVGLF J3G J3H L-8 R56 ROYLF SMJ 7X8 |
ID | FETCH-LOGICAL-c326t-b8fb647eab695dd57feb963fc4ee158ce11b3aacaf88826013890582709b9d9d3 |
ISSN | 2040-3364 |
IngestDate | Fri Oct 25 01:29:31 EDT 2024 Fri Aug 23 10:58:25 EDT 2024 Sat Sep 28 08:49:38 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 35 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c326t-b8fb647eab695dd57feb963fc4ee158ce11b3aacaf88826013890582709b9d9d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-9739-9622 0000-0001-6844-0879 |
PMID | 28858353 |
PQID | 1934286186 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1934286186 crossref_primary_10_1039_C7NR04912A pubmed_primary_28858353 |
PublicationCentury | 2000 |
PublicationDate | 2017-09-21 |
PublicationDateYYYYMMDD | 2017-09-21 |
PublicationDate_xml | – month: 09 year: 2017 text: 2017-09-21 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Nanoscale |
PublicationTitleAlternate | Nanoscale |
PublicationYear | 2017 |
References | Liu (C7NR04912A-(cit13)/*[position()=1]) 2015; 32 Tan (C7NR04912A-(cit8)/*[position()=1]) 2016; 7 Salvatierra (C7NR04912A-(cit9)/*[position()=1]) 2016; 6 Qiu (C7NR04912A-(cit26)/*[position()=1]) 2017; 320 Chen (C7NR04912A-(cit35)/*[position()=1]) 2017; 3 Joshi (C7NR04912A-(cit20)/*[position()=1]) 2016; 8 Zhong (C7NR04912A-(cit25)/*[position()=1]) 2012; 134 Miao (C7NR04912A-(cit31)/*[position()=1]) 2015; 7 Lin (C7NR04912A-(cit6)/*[position()=1]) 2012; 37 Liu (C7NR04912A-(cit37)/*[position()=1]) 2016; 4 Sivakkumar (C7NR04912A-(cit41)/*[position()=1]) 2010; 55 Vikström (C7NR04912A-(cit2)/*[position()=1]) 2013; 110 Luo (C7NR04912A-(cit4)/*[position()=1]) 2016; 49 Zhang (C7NR04912A-(cit27)/*[position()=1]) 2014; 9 Zhang (C7NR04912A-(cit10)/*[position()=1]) 2016; 76 Xu (C7NR04912A-(cit15)/*[position()=1]) 2015; 5 Yu (C7NR04912A-(cit7)/*[position()=1]) 2015; 7 Wang (C7NR04912A-(cit22)/*[position()=1]) 2015; 281 Yao (C7NR04912A-(cit33)/*[position()=1]) 2017; 2 Su (C7NR04912A-(cit36)/*[position()=1]) 2015; 12 Miao (C7NR04912A-(cit21)/*[position()=1]) 2015; 7 Liang (C7NR04912A-(cit42)/*[position()=1]) 2017; 33 Kundu (C7NR04912A-(cit5)/*[position()=1]) 2015; 54 Xie (C7NR04912A-(cit43)/*[position()=1]) 2017; 5 Liu (C7NR04912A-(cit11)/*[position()=1]) 2015; 7 Peng (C7NR04912A-(cit12)/*[position()=1]) 2016; 22 Zhao (C7NR04912A-(cit18)/*[position()=1]) 2016; 6 Liu (C7NR04912A-(cit38)/*[position()=1]) 2017; 81 Han (C7NR04912A-(cit23)/*[position()=1]) 2012; 50 Wang (C7NR04912A-(cit40)/*[position()=1]) 2015; 11 Song (C7NR04912A-(cit24)/*[position()=1]) 2014; 4 Zhang (C7NR04912A-(cit30)/*[position()=1]) 2017; 23 Chen (C7NR04912A-(cit32)/*[position()=1]) 2012; 5 Park (C7NR04912A-(cit16)/*[position()=1]) 2009; 186 Hardy (C7NR04912A-(cit19)/*[position()=1]) 2009; 29 Ni (C7NR04912A-(cit17)/*[position()=1]) 2017; 34 Sun (C7NR04912A-(cit1)/*[position()=1]) 2016; 1 Kumar (C7NR04912A-(cit39)/*[position()=1]) 2016; 28 Chen (C7NR04912A-(cit34)/*[position()=1]) 2017; 2 Crosnier (C7NR04912A-(cit44)/*[position()=1]) 2001; 94 Liu (C7NR04912A-(cit14)/*[position()=1]) 2016; 4 Yang (C7NR04912A-(cit29)/*[position()=1]) 2016; 22 Dai (C7NR04912A-(cit28)/*[position()=1]) 2014; 6 Gruber (C7NR04912A-(cit3)/*[position()=1]) 2011; 15 |
References_xml | – volume: 186 start-page: 206 year: 2009 ident: C7NR04912A-(cit16)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2008.09.097 contributor: fullname: Park – volume: 6 start-page: 1600918 year: 2016 ident: C7NR04912A-(cit9)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201600918 contributor: fullname: Salvatierra – volume: 28 start-page: 8930 year: 2016 ident: C7NR04912A-(cit39)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b03403 contributor: fullname: Kumar – volume: 4 start-page: 2951 year: 2016 ident: C7NR04912A-(cit14)/*[position()=1] publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.5b01236 contributor: fullname: Liu – volume: 22 start-page: 361 year: 2016 ident: C7NR04912A-(cit12)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.02.001 contributor: fullname: Peng – volume: 7 start-page: 11093 year: 2015 ident: C7NR04912A-(cit21)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C5NR02711J contributor: fullname: Miao – volume: 281 start-page: 285 year: 2015 ident: C7NR04912A-(cit22)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.01.184 contributor: fullname: Wang – volume: 37 start-page: 94 year: 2012 ident: C7NR04912A-(cit6)/*[position()=1] publication-title: Crit. Rev. Solid State Mater. Sci. doi: 10.1080/10408436.2011.627096 contributor: fullname: Lin – volume: 6 start-page: 13236 year: 2014 ident: C7NR04912A-(cit28)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C4NR04378B contributor: fullname: Dai – volume: 32 start-page: 952 year: 2015 ident: C7NR04912A-(cit13)/*[position()=1] publication-title: Part. Part. Syst. Charact. doi: 10.1002/ppsc.201500073 contributor: fullname: Liu – volume: 1 start-page: 16071 year: 2016 ident: C7NR04912A-(cit1)/*[position()=1] publication-title: Nat. Energy doi: 10.1038/nenergy.2016.71 contributor: fullname: Sun – volume: 4 start-page: 10098 year: 2016 ident: C7NR04912A-(cit37)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C6TA02796B contributor: fullname: Liu – volume: 94 start-page: 169 year: 2001 ident: C7NR04912A-(cit44)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/S0378-7753(00)00599-1 contributor: fullname: Crosnier – volume: 33 start-page: 213 year: 2017 ident: C7NR04912A-(cit42)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.01.033 contributor: fullname: Liang – volume: 54 start-page: 3431 year: 2015 ident: C7NR04912A-(cit5)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201410376 contributor: fullname: Kundu – volume: 2 start-page: 171 year: 2017 ident: C7NR04912A-(cit33)/*[position()=1] publication-title: Chem doi: 10.1016/j.chempr.2017.01.010 contributor: fullname: Yao – volume: 22 start-page: 2333 year: 2016 ident: C7NR04912A-(cit29)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201503272 contributor: fullname: Yang – volume: 6 start-page: 111976 year: 2016 ident: C7NR04912A-(cit18)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C6RA19862G contributor: fullname: Zhao – volume: 7 start-page: 11774 year: 2016 ident: C7NR04912A-(cit8)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms11774 contributor: fullname: Tan – volume: 15 start-page: 760 year: 2011 ident: C7NR04912A-(cit3)/*[position()=1] publication-title: J. Ind. Ecol. doi: 10.1111/j.1530-9290.2011.00359.x contributor: fullname: Gruber – volume: 4 start-page: 81 year: 2014 ident: C7NR04912A-(cit24)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2013.12.017 contributor: fullname: Song – volume: 5 start-page: 9661 year: 2017 ident: C7NR04912A-(cit43)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C7TA01443K contributor: fullname: Xie – volume: 12 start-page: 88 year: 2015 ident: C7NR04912A-(cit36)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.12.012 contributor: fullname: Su – volume: 34 start-page: 356 year: 2017 ident: C7NR04912A-(cit17)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.02.041 contributor: fullname: Ni – volume: 134 start-page: 14846 year: 2012 ident: C7NR04912A-(cit25)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja304352n contributor: fullname: Zhong – volume: 110 start-page: 252 year: 2013 ident: C7NR04912A-(cit2)/*[position()=1] publication-title: Appl. Energy doi: 10.1016/j.apenergy.2013.04.005 contributor: fullname: Vikström – volume: 29 start-page: 3007 year: 2009 ident: C7NR04912A-(cit19)/*[position()=1] publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2009.05.018 contributor: fullname: Hardy – volume: 49 start-page: 231 year: 2016 ident: C7NR04912A-(cit4)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.5b00482 contributor: fullname: Luo – volume: 76 start-page: 319 year: 2016 ident: C7NR04912A-(cit10)/*[position()=1] publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2015.08.002 contributor: fullname: Zhang – volume: 7 start-page: 19930 year: 2015 ident: C7NR04912A-(cit11)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C5NR06531C contributor: fullname: Liu – volume: 23 start-page: 1407 year: 2017 ident: C7NR04912A-(cit30)/*[position()=1] publication-title: Ionics doi: 10.1007/s11581-017-1975-3 contributor: fullname: Zhang – volume: 55 start-page: 3330 year: 2010 ident: C7NR04912A-(cit41)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2010.01.059 contributor: fullname: Sivakkumar – volume: 5 start-page: 7898 year: 2012 ident: C7NR04912A-(cit32)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/c2ee22085g contributor: fullname: Chen – volume: 2 start-page: 299 year: 2017 ident: C7NR04912A-(cit34)/*[position()=1] publication-title: Chem doi: 10.1016/j.chempr.2017.01.005 contributor: fullname: Chen – volume: 7 start-page: 11945 year: 2015 ident: C7NR04912A-(cit7)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C5NR02425K contributor: fullname: Yu – volume: 50 start-page: 1355 year: 2012 ident: C7NR04912A-(cit23)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2012.07.039 contributor: fullname: Han – volume: 5 start-page: 1400753 year: 2015 ident: C7NR04912A-(cit15)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201400753 contributor: fullname: Xu – volume: 320 start-page: 300 year: 2017 ident: C7NR04912A-(cit26)/*[position()=1] publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.03.054 contributor: fullname: Qiu – volume: 81 start-page: 10 year: 2017 ident: C7NR04912A-(cit38)/*[position()=1] publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2017.05.011 contributor: fullname: Liu – volume: 7 start-page: 11093 year: 2015 ident: C7NR04912A-(cit31)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C5NR02711J contributor: fullname: Miao – volume: 9 start-page: 61 year: 2014 ident: C7NR04912A-(cit27)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.06.030 contributor: fullname: Zhang – volume: 11 start-page: 5381 year: 2015 ident: C7NR04912A-(cit40)/*[position()=1] publication-title: Small doi: 10.1002/smll.201501313 contributor: fullname: Wang – volume: 8 start-page: 9446 year: 2016 ident: C7NR04912A-(cit20)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b01093 contributor: fullname: Joshi – volume: 3 start-page: 152 year: 2017 ident: C7NR04912A-(cit35)/*[position()=1] publication-title: Chem doi: 10.1016/j.chempr.2017.05.021 contributor: fullname: Chen |
SSID | ssj0069363 |
Score | 2.5435574 |
Snippet | High gravimetric energy density and volumetric energy density energy storage devices are highly desirable due to the rapid development of electric vehicles,... |
SourceID | proquest crossref pubmed |
SourceType | Aggregation Database Index Database |
StartPage | 13298 |
Title | Bio-inspired spider-web-like membranes with a hierarchical structure for high performance lithium/sodium ion battery electrodes: the case of 3D freestanding and binder-free bismuth/CNF anodes |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28858353 https://search.proquest.com/docview/1934286186 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3dj9JAEMA3ePeiD8bvw6-M0TdSKWy3H75x3CE5ERMDEZ-a3e3WI0qrQB_0__Hv8F9zpltKz5zJ6UtpFlgI82N2ZmdnhrEXxugw9I3reJGvHPwnuo50pecY3wuMn7pCl3ncb6f-eO6dLcSi1frZOLVUbNVL_ePSvJL_kSqOoVwpS_YfJFtPigN4j_LFK0oYr1eS8fEyd5YZxcrRbNxQr9c15R46X5afTWdlVugJoyar8tc61PW6jBtomyNS2OgBnTOkosVUwbjOIUDj_HxJLZBHmzzBmw5RospanN87VeucxB6nI8tVSxsS4CeddG1MnSxDu_KKCjKuHRrH-82qoJ2c0XA6wmdpjqZ5jLo-3-DXq2k7syUOPhbfEONPtYoq7LbtWFK_r_34xA7jm5yJ2b_YzpCdF7K5x4HrJoV9LHKm1IV9OvjIeXBBcUcNPrloaGH0sG1r62pJ79GmzaXrhcup3KoOsjV6Sr1-Y1XcnQSYvotH88kknp0uZtfYYR_1GSrSw8Gb49cfdku-j2N8V_uWR939fBetnb-4MKUpM7vFblY-CAwsULdZy2R32I1GZcq77FcTLfgDLajRAkILJDTRghotQJyA0IIGWlCh1bVgAYIFFViwB-sVIFZAWEGeAj-BJlaAD9DACiqsuggVWKjusfnodDYcO1WvD0ejA7F1VJgqUg9S-ZFIEhGkRuHakGrPmJ4Iten1FJdSyzREn9Av4-uuCPuBG6koiRJ-nx1keWaOGHCRCuOplHue9qQKJQ_RxxYhR29d60S02fOdTOKvtqRLXB7F4FE8DKbvS8kN2uzZTlwxalwKo-HvmhebGF0enI_6TLTZAyvHep5-SB8k-MMrvPsRu75n_TE7QOGYJ2jhbtXTiq_fV1SzKQ |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bio-inspired+spider-web-like+membranes+with+a+hierarchical+structure+for+high+performance+lithium%2Fsodium+ion+battery+electrodes%3A+the+case+of+3D+freestanding+and+binder-free+bismuth%2FCNF+anodes&rft.jtitle=Nanoscale&rft.au=Jin%2C+Yuqiang&rft.au=Yuan%2C+Haocheng&rft.au=Lan%2C+Jin-Le&rft.au=Yu%2C+Yunhua&rft.date=2017-09-21&rft.eissn=2040-3372&rft.volume=9&rft.issue=35&rft.spage=13298&rft.epage=13304&rft_id=info:doi/10.1039%2Fc7nr04912a&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon |