Bio-inspired spider-web-like membranes with a hierarchical structure for high performance lithium/sodium ion battery electrodes: the case of 3D freestanding and binder-free bismuth/CNF anodes

High gravimetric energy density and volumetric energy density energy storage devices are highly desirable due to the rapid development of electric vehicles, and portable and wearable electronic equipment. Electrospinning is a promising technology for preparing freestanding electrodes with high gravi...

Full description

Saved in:
Bibliographic Details
Published inNanoscale Vol. 9; no. 35; pp. 13298 - 13304
Main Authors Jin, Yuqiang, Yuan, Haocheng, Lan, Jin-Le, Yu, Yunhua, Lin, Yuan-Hua, Yang, Xiaoping
Format Journal Article
LanguageEnglish
Published England 21.09.2017
Online AccessGet full text

Cover

Loading…
Abstract High gravimetric energy density and volumetric energy density energy storage devices are highly desirable due to the rapid development of electric vehicles, and portable and wearable electronic equipment. Electrospinning is a promising technology for preparing freestanding electrodes with high gravimetric and volumetric energy density. However, the energy density of the traditional electrospun electrodes is restricted by the low mass loading of active materials (e.g. 20%-30 wt%). Herein, a biomimetic strategy inspired by the phenomenon of the sticky spider web is demonstrated as a high performance anode, which simultaneously improves the gravimetric and volumetric energy density. Freestanding carbon nanofiber (CNF) membranes containing over 50 wt% of bismuth were prepared by electrospinning and subsequent thermal treatment. Membranes consisting of CNF network structures bonded tightly with active Bi cluster materials, resulting in excellent mechanical protection and a fast charge transport path, which are difficult to achieve simultaneously. The composite membrane delivers high reversible capacity (483 mA h g at 100 mA g after 200 cycles) and high rate performance (242 mA h g at 1 A g ) as a lithium-ion battery anode. For use as a sodium ion battery, the composite membrane also shows a high reversible specific capacity of 346 mA h g and outstanding cycling performance (186 mA h g at 50 mA g after 100 cycles). This work offers a simple, low cost and eco-friendly method for fabricating free-standing and binder-free composite electrodes with high loading used in LIBs and SIBs.
AbstractList High gravimetric energy density and volumetric energy density energy storage devices are highly desirable due to the rapid development of electric vehicles, and portable and wearable electronic equipment. Electrospinning is a promising technology for preparing freestanding electrodes with high gravimetric and volumetric energy density. However, the energy density of the traditional electrospun electrodes is restricted by the low mass loading of active materials (e.g. 20%-30 wt%). Herein, a biomimetic strategy inspired by the phenomenon of the sticky spider web is demonstrated as a high performance anode, which simultaneously improves the gravimetric and volumetric energy density. Freestanding carbon nanofiber (CNF) membranes containing over 50 wt% of bismuth were prepared by electrospinning and subsequent thermal treatment. Membranes consisting of CNF network structures bonded tightly with active Bi cluster materials, resulting in excellent mechanical protection and a fast charge transport path, which are difficult to achieve simultaneously. The composite membrane delivers high reversible capacity (483 mA h g at 100 mA g after 200 cycles) and high rate performance (242 mA h g at 1 A g ) as a lithium-ion battery anode. For use as a sodium ion battery, the composite membrane also shows a high reversible specific capacity of 346 mA h g and outstanding cycling performance (186 mA h g at 50 mA g after 100 cycles). This work offers a simple, low cost and eco-friendly method for fabricating free-standing and binder-free composite electrodes with high loading used in LIBs and SIBs.
High gravimetric energy density and volumetric energy density energy storage devices are highly desirable due to the rapid development of electric vehicles, and portable and wearable electronic equipment. Electrospinning is a promising technology for preparing freestanding electrodes with high gravimetric and volumetric energy density. However, the energy density of the traditional electrospun electrodes is restricted by the low mass loading of active materials (e.g. 20%-30 wt%). Herein, a biomimetic strategy inspired by the phenomenon of the sticky spider web is demonstrated as a high performance anode, which simultaneously improves the gravimetric and volumetric energy density. Freestanding carbon nanofiber (CNF) membranes containing over 50 wt% of bismuth were prepared by electrospinning and subsequent thermal treatment. Membranes consisting of CNF network structures bonded tightly with active Bi cluster materials, resulting in excellent mechanical protection and a fast charge transport path, which are difficult to achieve simultaneously. The composite membrane delivers high reversible capacity (483 mA h g-1 at 100 mA g-1 after 200 cycles) and high rate performance (242 mA h g-1 at 1 A g-1) as a lithium-ion battery anode. For use as a sodium ion battery, the composite membrane also shows a high reversible specific capacity of 346 mA h g-1 and outstanding cycling performance (186 mA h g-1 at 50 mA g-1 after 100 cycles). This work offers a simple, low cost and eco-friendly method for fabricating free-standing and binder-free composite electrodes with high loading used in LIBs and SIBs.
High gravimetric energy density and volumetric energy density energy storage devices are highly desirable due to the rapid development of electric vehicles, and portable and wearable electronic equipment. Electrospinning is a promising technology for preparing freestanding electrodes with high gravimetric and volumetric energy density. However, the energy density of the traditional electrospun electrodes is restricted by the low mass loading of active materials ( e.g. 20%–30 wt%). Herein, a biomimetic strategy inspired by the phenomenon of the sticky spider web is demonstrated as a high performance anode, which simultaneously improves the gravimetric and volumetric energy density. Freestanding carbon nanofiber (CNF) membranes containing over 50 wt% of bismuth were prepared by electrospinning and subsequent thermal treatment. Membranes consisting of CNF network structures bonded tightly with active Bi cluster materials, resulting in excellent mechanical protection and a fast charge transport path, which are difficult to achieve simultaneously. The composite membrane delivers high reversible capacity (483 mA h g −1 at 100 mA g −1 after 200 cycles) and high rate performance (242 mA h g −1 at 1 A g −1 ) as a lithium-ion battery anode. For use as a sodium ion battery, the composite membrane also shows a high reversible specific capacity of 346 mA h g −1 and outstanding cycling performance (186 mA h g −1 at 50 mA g −1 after 100 cycles). This work offers a simple, low cost and eco-friendly method for fabricating free-standing and binder-free composite electrodes with high loading used in LIBs and SIBs.
Author Lan, Jin-Le
Jin, Yuqiang
Lin, Yuan-Hua
Yang, Xiaoping
Yuan, Haocheng
Yu, Yunhua
Author_xml – sequence: 1
  givenname: Yuqiang
  surname: Jin
  fullname: Jin, Yuqiang
  email: lanjl@mail.buct.edu.cn, yangxp@mail.buct.edu.cn
  organization: State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China. lanjl@mail.buct.edu.cn yangxp@mail.buct.edu.cn
– sequence: 2
  givenname: Haocheng
  surname: Yuan
  fullname: Yuan, Haocheng
– sequence: 3
  givenname: Jin-Le
  surname: Lan
  fullname: Lan, Jin-Le
– sequence: 4
  givenname: Yunhua
  surname: Yu
  fullname: Yu, Yunhua
– sequence: 5
  givenname: Yuan-Hua
  surname: Lin
  fullname: Lin, Yuan-Hua
– sequence: 6
  givenname: Xiaoping
  surname: Yang
  fullname: Yang, Xiaoping
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28858353$$D View this record in MEDLINE/PubMed
BookMark eNo9Udtu1TAQtFARvcALH4D2ESGF2nHi2LyVAwWkqkgIniNfNo0hsQ-2o6pfx6_hQ0ufZrQ7M1rtnJKjEAMS8pLRt4xydW6HkGinWKufkJOWdrThfGiPHrnojslpzj8pFYoL_owct1L2kvf8hPx572PjQ977hA4qOEzNLZpm8b8QVlxN0gEz3Poyg4bZY9LJzt7qBXJJmy1bQphiqqubGfaYKl91sAhLtfhtPc_RVQAfAxhdCqY7wAVtSdFhfgdlRrA6I8QJ-AeYEmIuOjgfbqACGB8ONx3mled1K_P57vqy7g7-5-TppJeMLx7wjPy4_Ph997m5-vrpy-7iqrG8FaUxcjKiG1AboXrn-mFCowSfbIfIemmRMcO1tnqSUraCMi4V7WU7UGWUU46fkdf3ufsUf2_1wnH12eKy1O_ELY9M8a6VgklRpW_upTbFnBNO4z75Vae7kdHxUNi4G66__SvsoopfPeRuZkX3KP3fEP8LCiaXGg
CitedBy_id crossref_primary_10_1007_s12274_021_3334_y
crossref_primary_10_1016_j_jallcom_2022_168207
crossref_primary_10_1021_acs_energyfuels_0c01490
crossref_primary_10_1002_adfm_201808745
crossref_primary_10_1016_j_jelechem_2019_04_073
crossref_primary_10_1016_j_mattod_2023_11_013
crossref_primary_10_1016_j_mtphys_2021_100486
crossref_primary_10_1016_j_jelechem_2018_12_037
crossref_primary_10_1002_pssr_201900209
crossref_primary_10_1007_s12598_020_01605_z
crossref_primary_10_1016_j_mssp_2020_105359
crossref_primary_10_1039_C8TA11947C
crossref_primary_10_3390_ma17010021
crossref_primary_10_1039_D4GC00638K
crossref_primary_10_1021_acssuschemeng_0c01794
crossref_primary_10_1039_C7QI00762K
crossref_primary_10_1186_s11671_020_03325_w
crossref_primary_10_1007_s42765_021_00088_6
crossref_primary_10_1016_j_jpowsour_2021_230826
crossref_primary_10_1073_pnas_2305273120
crossref_primary_10_1002_smll_202302071
crossref_primary_10_1016_j_cej_2020_124111
crossref_primary_10_1016_j_ensm_2019_09_036
crossref_primary_10_1093_oxfmat_itac010
crossref_primary_10_1016_j_jiec_2021_10_019
crossref_primary_10_1016_j_jechem_2022_01_026
crossref_primary_10_1073_pnas_2101296118
crossref_primary_10_1002_adem_202201462
crossref_primary_10_1002_slct_201801774
crossref_primary_10_2139_ssrn_4191175
crossref_primary_10_1039_C8QM00497H
crossref_primary_10_1039_D0NR07230C
crossref_primary_10_1126_sciadv_abh3482
crossref_primary_10_1021_acssuschemeng_8b06149
crossref_primary_10_1002_adsu_202100236
crossref_primary_10_1002_aenm_202204376
crossref_primary_10_1002_adfm_202002885
crossref_primary_10_1002_celc_201800830
crossref_primary_10_1039_C8NR06797J
crossref_primary_10_1021_acsami_2c19627
crossref_primary_10_1016_j_jelechem_2022_116855
crossref_primary_10_2139_ssrn_4046844
crossref_primary_10_1016_j_matpr_2022_04_531
crossref_primary_10_1016_j_seppur_2022_121375
crossref_primary_10_1002_smll_201900628
crossref_primary_10_1002_aenm_202001418
crossref_primary_10_1039_D0DT00480D
crossref_primary_10_1177_10812865221136814
crossref_primary_10_1039_D0QI01158D
crossref_primary_10_1039_D3TA04229D
crossref_primary_10_1016_j_electacta_2022_141405
crossref_primary_10_1039_C9TA12770D
crossref_primary_10_1007_s42242_018_0002_5
crossref_primary_10_1016_j_ensm_2023_03_023
crossref_primary_10_1002_advs_201900162
crossref_primary_10_1021_acs_nanolett_1c01000
crossref_primary_10_1016_j_colsurfa_2024_134123
crossref_primary_10_1016_j_ensm_2021_12_022
crossref_primary_10_1016_S1872_5805_23_60725_5
crossref_primary_10_1002_anie_202406513
crossref_primary_10_1016_j_est_2024_112291
crossref_primary_10_1002_smll_202004022
crossref_primary_10_1002_adfm_202000756
crossref_primary_10_1016_j_jallcom_2019_153036
crossref_primary_10_1021_acsanm_4c01276
crossref_primary_10_1002_smll_201903194
crossref_primary_10_1016_j_cej_2019_122558
crossref_primary_10_1016_S1872_2067_22_64177_9
crossref_primary_10_1002_chem_201801574
crossref_primary_10_1002_smll_202102233
crossref_primary_10_1016_j_jallcom_2022_165680
crossref_primary_10_1021_acs_jpcc_9b01807
crossref_primary_10_1016_j_jmps_2020_104096
crossref_primary_10_1002_advs_202201209
crossref_primary_10_1002_ange_202406513
crossref_primary_10_1016_j_mattod_2021_09_023
crossref_primary_10_1002_adma_201804833
crossref_primary_10_1088_1361_6528_abd581
crossref_primary_10_1016_j_ceramint_2018_03_213
crossref_primary_10_1039_D1QM00423A
crossref_primary_10_1021_acsami_1c03042
crossref_primary_10_1080_1536383X_2018_1538131
crossref_primary_10_1021_acsaem_1c01518
Cites_doi 10.1016/j.jpowsour.2008.09.097
10.1002/aenm.201600918
10.1021/acs.chemmater.6b03403
10.1021/acssuschemeng.5b01236
10.1016/j.nanoen.2016.02.001
10.1039/C5NR02711J
10.1016/j.jpowsour.2015.01.184
10.1080/10408436.2011.627096
10.1039/C4NR04378B
10.1002/ppsc.201500073
10.1038/nenergy.2016.71
10.1039/C6TA02796B
10.1016/S0378-7753(00)00599-1
10.1016/j.nanoen.2017.01.033
10.1002/anie.201410376
10.1016/j.chempr.2017.01.010
10.1002/chem.201503272
10.1039/C6RA19862G
10.1038/ncomms11774
10.1111/j.1530-9290.2011.00359.x
10.1016/j.nanoen.2013.12.017
10.1039/C7TA01443K
10.1016/j.nanoen.2014.12.012
10.1016/j.nanoen.2017.02.041
10.1021/ja304352n
10.1016/j.apenergy.2013.04.005
10.1016/j.jeurceramsoc.2009.05.018
10.1021/acs.accounts.5b00482
10.1016/j.pmatsci.2015.08.002
10.1039/C5NR06531C
10.1007/s11581-017-1975-3
10.1016/j.electacta.2010.01.059
10.1039/c2ee22085g
10.1016/j.chempr.2017.01.005
10.1039/C5NR02425K
10.1016/j.carbon.2012.07.039
10.1002/aenm.201400753
10.1016/j.cej.2017.03.054
10.1016/j.elecom.2017.05.011
10.1016/j.nanoen.2014.06.030
10.1002/smll.201501313
10.1021/acsami.6b01093
10.1016/j.chempr.2017.05.021
ContentType Journal Article
DBID NPM
AAYXX
CITATION
7X8
DOI 10.1039/c7nr04912a
DatabaseName PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2040-3372
EndPage 13304
ExternalDocumentID 10_1039_C7NR04912A
28858353
Genre Journal Article
GroupedDBID ---
-JG
0-7
0R~
29M
4.4
53G
705
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANBJS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
DU5
EBS
ECGLT
EE0
EF-
EJD
F5P
GGIMP
H13
HZ~
H~N
J3I
NPM
O-G
O9-
OK1
P2P
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
RVUXY
AAYXX
AHGXI
ANLMG
ASPBG
AVWKF
CAG
CITATION
COF
FEDTE
HVGLF
J3G
J3H
L-8
R56
ROYLF
SMJ
7X8
ID FETCH-LOGICAL-c326t-b8fb647eab695dd57feb963fc4ee158ce11b3aacaf88826013890582709b9d9d3
ISSN 2040-3364
IngestDate Fri Oct 25 01:29:31 EDT 2024
Fri Aug 23 10:58:25 EDT 2024
Sat Sep 28 08:49:38 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 35
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c326t-b8fb647eab695dd57feb963fc4ee158ce11b3aacaf88826013890582709b9d9d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9739-9622
0000-0001-6844-0879
PMID 28858353
PQID 1934286186
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_1934286186
crossref_primary_10_1039_C7NR04912A
pubmed_primary_28858353
PublicationCentury 2000
PublicationDate 2017-09-21
PublicationDateYYYYMMDD 2017-09-21
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-09-21
  day: 21
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nanoscale
PublicationTitleAlternate Nanoscale
PublicationYear 2017
References Liu (C7NR04912A-(cit13)/*[position()=1]) 2015; 32
Tan (C7NR04912A-(cit8)/*[position()=1]) 2016; 7
Salvatierra (C7NR04912A-(cit9)/*[position()=1]) 2016; 6
Qiu (C7NR04912A-(cit26)/*[position()=1]) 2017; 320
Chen (C7NR04912A-(cit35)/*[position()=1]) 2017; 3
Joshi (C7NR04912A-(cit20)/*[position()=1]) 2016; 8
Zhong (C7NR04912A-(cit25)/*[position()=1]) 2012; 134
Miao (C7NR04912A-(cit31)/*[position()=1]) 2015; 7
Lin (C7NR04912A-(cit6)/*[position()=1]) 2012; 37
Liu (C7NR04912A-(cit37)/*[position()=1]) 2016; 4
Sivakkumar (C7NR04912A-(cit41)/*[position()=1]) 2010; 55
Vikström (C7NR04912A-(cit2)/*[position()=1]) 2013; 110
Luo (C7NR04912A-(cit4)/*[position()=1]) 2016; 49
Zhang (C7NR04912A-(cit27)/*[position()=1]) 2014; 9
Zhang (C7NR04912A-(cit10)/*[position()=1]) 2016; 76
Xu (C7NR04912A-(cit15)/*[position()=1]) 2015; 5
Yu (C7NR04912A-(cit7)/*[position()=1]) 2015; 7
Wang (C7NR04912A-(cit22)/*[position()=1]) 2015; 281
Yao (C7NR04912A-(cit33)/*[position()=1]) 2017; 2
Su (C7NR04912A-(cit36)/*[position()=1]) 2015; 12
Miao (C7NR04912A-(cit21)/*[position()=1]) 2015; 7
Liang (C7NR04912A-(cit42)/*[position()=1]) 2017; 33
Kundu (C7NR04912A-(cit5)/*[position()=1]) 2015; 54
Xie (C7NR04912A-(cit43)/*[position()=1]) 2017; 5
Liu (C7NR04912A-(cit11)/*[position()=1]) 2015; 7
Peng (C7NR04912A-(cit12)/*[position()=1]) 2016; 22
Zhao (C7NR04912A-(cit18)/*[position()=1]) 2016; 6
Liu (C7NR04912A-(cit38)/*[position()=1]) 2017; 81
Han (C7NR04912A-(cit23)/*[position()=1]) 2012; 50
Wang (C7NR04912A-(cit40)/*[position()=1]) 2015; 11
Song (C7NR04912A-(cit24)/*[position()=1]) 2014; 4
Zhang (C7NR04912A-(cit30)/*[position()=1]) 2017; 23
Chen (C7NR04912A-(cit32)/*[position()=1]) 2012; 5
Park (C7NR04912A-(cit16)/*[position()=1]) 2009; 186
Hardy (C7NR04912A-(cit19)/*[position()=1]) 2009; 29
Ni (C7NR04912A-(cit17)/*[position()=1]) 2017; 34
Sun (C7NR04912A-(cit1)/*[position()=1]) 2016; 1
Kumar (C7NR04912A-(cit39)/*[position()=1]) 2016; 28
Chen (C7NR04912A-(cit34)/*[position()=1]) 2017; 2
Crosnier (C7NR04912A-(cit44)/*[position()=1]) 2001; 94
Liu (C7NR04912A-(cit14)/*[position()=1]) 2016; 4
Yang (C7NR04912A-(cit29)/*[position()=1]) 2016; 22
Dai (C7NR04912A-(cit28)/*[position()=1]) 2014; 6
Gruber (C7NR04912A-(cit3)/*[position()=1]) 2011; 15
References_xml – volume: 186
  start-page: 206
  year: 2009
  ident: C7NR04912A-(cit16)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2008.09.097
  contributor:
    fullname: Park
– volume: 6
  start-page: 1600918
  year: 2016
  ident: C7NR04912A-(cit9)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201600918
  contributor:
    fullname: Salvatierra
– volume: 28
  start-page: 8930
  year: 2016
  ident: C7NR04912A-(cit39)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b03403
  contributor:
    fullname: Kumar
– volume: 4
  start-page: 2951
  year: 2016
  ident: C7NR04912A-(cit14)/*[position()=1]
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.5b01236
  contributor:
    fullname: Liu
– volume: 22
  start-page: 361
  year: 2016
  ident: C7NR04912A-(cit12)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.02.001
  contributor:
    fullname: Peng
– volume: 7
  start-page: 11093
  year: 2015
  ident: C7NR04912A-(cit21)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C5NR02711J
  contributor:
    fullname: Miao
– volume: 281
  start-page: 285
  year: 2015
  ident: C7NR04912A-(cit22)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.01.184
  contributor:
    fullname: Wang
– volume: 37
  start-page: 94
  year: 2012
  ident: C7NR04912A-(cit6)/*[position()=1]
  publication-title: Crit. Rev. Solid State Mater. Sci.
  doi: 10.1080/10408436.2011.627096
  contributor:
    fullname: Lin
– volume: 6
  start-page: 13236
  year: 2014
  ident: C7NR04912A-(cit28)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C4NR04378B
  contributor:
    fullname: Dai
– volume: 32
  start-page: 952
  year: 2015
  ident: C7NR04912A-(cit13)/*[position()=1]
  publication-title: Part. Part. Syst. Charact.
  doi: 10.1002/ppsc.201500073
  contributor:
    fullname: Liu
– volume: 1
  start-page: 16071
  year: 2016
  ident: C7NR04912A-(cit1)/*[position()=1]
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.71
  contributor:
    fullname: Sun
– volume: 4
  start-page: 10098
  year: 2016
  ident: C7NR04912A-(cit37)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA02796B
  contributor:
    fullname: Liu
– volume: 94
  start-page: 169
  year: 2001
  ident: C7NR04912A-(cit44)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(00)00599-1
  contributor:
    fullname: Crosnier
– volume: 33
  start-page: 213
  year: 2017
  ident: C7NR04912A-(cit42)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.01.033
  contributor:
    fullname: Liang
– volume: 54
  start-page: 3431
  year: 2015
  ident: C7NR04912A-(cit5)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201410376
  contributor:
    fullname: Kundu
– volume: 2
  start-page: 171
  year: 2017
  ident: C7NR04912A-(cit33)/*[position()=1]
  publication-title: Chem
  doi: 10.1016/j.chempr.2017.01.010
  contributor:
    fullname: Yao
– volume: 22
  start-page: 2333
  year: 2016
  ident: C7NR04912A-(cit29)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201503272
  contributor:
    fullname: Yang
– volume: 6
  start-page: 111976
  year: 2016
  ident: C7NR04912A-(cit18)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C6RA19862G
  contributor:
    fullname: Zhao
– volume: 7
  start-page: 11774
  year: 2016
  ident: C7NR04912A-(cit8)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11774
  contributor:
    fullname: Tan
– volume: 15
  start-page: 760
  year: 2011
  ident: C7NR04912A-(cit3)/*[position()=1]
  publication-title: J. Ind. Ecol.
  doi: 10.1111/j.1530-9290.2011.00359.x
  contributor:
    fullname: Gruber
– volume: 4
  start-page: 81
  year: 2014
  ident: C7NR04912A-(cit24)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2013.12.017
  contributor:
    fullname: Song
– volume: 5
  start-page: 9661
  year: 2017
  ident: C7NR04912A-(cit43)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA01443K
  contributor:
    fullname: Xie
– volume: 12
  start-page: 88
  year: 2015
  ident: C7NR04912A-(cit36)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.12.012
  contributor:
    fullname: Su
– volume: 34
  start-page: 356
  year: 2017
  ident: C7NR04912A-(cit17)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.02.041
  contributor:
    fullname: Ni
– volume: 134
  start-page: 14846
  year: 2012
  ident: C7NR04912A-(cit25)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja304352n
  contributor:
    fullname: Zhong
– volume: 110
  start-page: 252
  year: 2013
  ident: C7NR04912A-(cit2)/*[position()=1]
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2013.04.005
  contributor:
    fullname: Vikström
– volume: 29
  start-page: 3007
  year: 2009
  ident: C7NR04912A-(cit19)/*[position()=1]
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2009.05.018
  contributor:
    fullname: Hardy
– volume: 49
  start-page: 231
  year: 2016
  ident: C7NR04912A-(cit4)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.5b00482
  contributor:
    fullname: Luo
– volume: 76
  start-page: 319
  year: 2016
  ident: C7NR04912A-(cit10)/*[position()=1]
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2015.08.002
  contributor:
    fullname: Zhang
– volume: 7
  start-page: 19930
  year: 2015
  ident: C7NR04912A-(cit11)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C5NR06531C
  contributor:
    fullname: Liu
– volume: 23
  start-page: 1407
  year: 2017
  ident: C7NR04912A-(cit30)/*[position()=1]
  publication-title: Ionics
  doi: 10.1007/s11581-017-1975-3
  contributor:
    fullname: Zhang
– volume: 55
  start-page: 3330
  year: 2010
  ident: C7NR04912A-(cit41)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2010.01.059
  contributor:
    fullname: Sivakkumar
– volume: 5
  start-page: 7898
  year: 2012
  ident: C7NR04912A-(cit32)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee22085g
  contributor:
    fullname: Chen
– volume: 2
  start-page: 299
  year: 2017
  ident: C7NR04912A-(cit34)/*[position()=1]
  publication-title: Chem
  doi: 10.1016/j.chempr.2017.01.005
  contributor:
    fullname: Chen
– volume: 7
  start-page: 11945
  year: 2015
  ident: C7NR04912A-(cit7)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C5NR02425K
  contributor:
    fullname: Yu
– volume: 50
  start-page: 1355
  year: 2012
  ident: C7NR04912A-(cit23)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2012.07.039
  contributor:
    fullname: Han
– volume: 5
  start-page: 1400753
  year: 2015
  ident: C7NR04912A-(cit15)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201400753
  contributor:
    fullname: Xu
– volume: 320
  start-page: 300
  year: 2017
  ident: C7NR04912A-(cit26)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.03.054
  contributor:
    fullname: Qiu
– volume: 81
  start-page: 10
  year: 2017
  ident: C7NR04912A-(cit38)/*[position()=1]
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2017.05.011
  contributor:
    fullname: Liu
– volume: 7
  start-page: 11093
  year: 2015
  ident: C7NR04912A-(cit31)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C5NR02711J
  contributor:
    fullname: Miao
– volume: 9
  start-page: 61
  year: 2014
  ident: C7NR04912A-(cit27)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.06.030
  contributor:
    fullname: Zhang
– volume: 11
  start-page: 5381
  year: 2015
  ident: C7NR04912A-(cit40)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201501313
  contributor:
    fullname: Wang
– volume: 8
  start-page: 9446
  year: 2016
  ident: C7NR04912A-(cit20)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b01093
  contributor:
    fullname: Joshi
– volume: 3
  start-page: 152
  year: 2017
  ident: C7NR04912A-(cit35)/*[position()=1]
  publication-title: Chem
  doi: 10.1016/j.chempr.2017.05.021
  contributor:
    fullname: Chen
SSID ssj0069363
Score 2.5435574
Snippet High gravimetric energy density and volumetric energy density energy storage devices are highly desirable due to the rapid development of electric vehicles,...
SourceID proquest
crossref
pubmed
SourceType Aggregation Database
Index Database
StartPage 13298
Title Bio-inspired spider-web-like membranes with a hierarchical structure for high performance lithium/sodium ion battery electrodes: the case of 3D freestanding and binder-free bismuth/CNF anodes
URI https://www.ncbi.nlm.nih.gov/pubmed/28858353
https://search.proquest.com/docview/1934286186
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3dj9JAEMA3ePeiD8bvw6-M0TdSKWy3H75x3CE5ERMDEZ-a3e3WI0qrQB_0__Hv8F9zpltKz5zJ6UtpFlgI82N2ZmdnhrEXxugw9I3reJGvHPwnuo50pecY3wuMn7pCl3ncb6f-eO6dLcSi1frZOLVUbNVL_ePSvJL_kSqOoVwpS_YfJFtPigN4j_LFK0oYr1eS8fEyd5YZxcrRbNxQr9c15R46X5afTWdlVugJoyar8tc61PW6jBtomyNS2OgBnTOkosVUwbjOIUDj_HxJLZBHmzzBmw5RospanN87VeucxB6nI8tVSxsS4CeddG1MnSxDu_KKCjKuHRrH-82qoJ2c0XA6wmdpjqZ5jLo-3-DXq2k7syUOPhbfEONPtYoq7LbtWFK_r_34xA7jm5yJ2b_YzpCdF7K5x4HrJoV9LHKm1IV9OvjIeXBBcUcNPrloaGH0sG1r62pJ79GmzaXrhcup3KoOsjV6Sr1-Y1XcnQSYvotH88kknp0uZtfYYR_1GSrSw8Gb49cfdku-j2N8V_uWR939fBetnb-4MKUpM7vFblY-CAwsULdZy2R32I1GZcq77FcTLfgDLajRAkILJDTRghotQJyA0IIGWlCh1bVgAYIFFViwB-sVIFZAWEGeAj-BJlaAD9DACiqsuggVWKjusfnodDYcO1WvD0ejA7F1VJgqUg9S-ZFIEhGkRuHakGrPmJ4Iten1FJdSyzREn9Av4-uuCPuBG6koiRJ-nx1keWaOGHCRCuOplHue9qQKJQ_RxxYhR29d60S02fOdTOKvtqRLXB7F4FE8DKbvS8kN2uzZTlwxalwKo-HvmhebGF0enI_6TLTZAyvHep5-SB8k-MMrvPsRu75n_TE7QOGYJ2jhbtXTiq_fV1SzKQ
link.rule.ids 315,783,787,27936,27937
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bio-inspired+spider-web-like+membranes+with+a+hierarchical+structure+for+high+performance+lithium%2Fsodium+ion+battery+electrodes%3A+the+case+of+3D+freestanding+and+binder-free+bismuth%2FCNF+anodes&rft.jtitle=Nanoscale&rft.au=Jin%2C+Yuqiang&rft.au=Yuan%2C+Haocheng&rft.au=Lan%2C+Jin-Le&rft.au=Yu%2C+Yunhua&rft.date=2017-09-21&rft.eissn=2040-3372&rft.volume=9&rft.issue=35&rft.spage=13298&rft.epage=13304&rft_id=info:doi/10.1039%2Fc7nr04912a&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon