m6A-modified lincRNA Dubr is required for neuronal development by stabilizing YTHDF1/3 and facilitating mRNA translation

Long intergenic noncoding RNAs (lincRNAs) are crucial regulators in numerous biological processes. However, the functions and mechanisms of m6A-modified lincRNAs in neuronal development remain unclear. Here, we report an m6A-modified lincRNA, Dppa2 upstream binding RNA (Dubr), abundantly expressed a...

Full description

Saved in:
Bibliographic Details
Published inCell reports (Cambridge) Vol. 41; no. 8; p. 111693
Main Authors Huang, Jiansong, Jiang, Bowen, Li, Guo-Wei, Zheng, Dandan, Li, Mingyi, Xie, Xuan, Pan, Yuxiang, Wei, Manyi, Liu, Xiaoyan, Jiang, Xingyu, Zhang, Xu, Yang, Li, Bao, Lan, Wang, Bin
Format Journal Article
LanguageEnglish
Published 22.11.2022
Online AccessGet full text

Cover

Loading…
Abstract Long intergenic noncoding RNAs (lincRNAs) are crucial regulators in numerous biological processes. However, the functions and mechanisms of m6A-modified lincRNAs in neuronal development remain unclear. Here, we report an m6A-modified lincRNA, Dppa2 upstream binding RNA (Dubr), abundantly expressed at the early developmental stage of dorsal root ganglion (DRG) and cerebral cortex. Silencing Dubr impairs axon elongation of DRG neurons and axon projection and migration of cortical neurons, whereas lacking m6A modification of Dubr fully loses its functions. Mechanically, Dubr interacts with m6A-binding proteins, the YTHDF1/3 complex, through its m6A motifs to protect YTHDF1/3 from degradation via the proteasome pathway. Furthermore, Tau and Calmodulin are regulated by YTHDF1/3 and m6A-modified Dubr. Overexpression of YTHDF1/3 not only rescues the reduced Tau and Calmodulin but also restores axon elongation of DRG neurons by Dubr knockdown. This study uncovers a critical role of m6A-modified lincRNA in neuronal development by regulating the degradation of RNA-binding protein.Long intergenic noncoding RNAs (lincRNAs) are crucial regulators in numerous biological processes. However, the functions and mechanisms of m6A-modified lincRNAs in neuronal development remain unclear. Here, we report an m6A-modified lincRNA, Dppa2 upstream binding RNA (Dubr), abundantly expressed at the early developmental stage of dorsal root ganglion (DRG) and cerebral cortex. Silencing Dubr impairs axon elongation of DRG neurons and axon projection and migration of cortical neurons, whereas lacking m6A modification of Dubr fully loses its functions. Mechanically, Dubr interacts with m6A-binding proteins, the YTHDF1/3 complex, through its m6A motifs to protect YTHDF1/3 from degradation via the proteasome pathway. Furthermore, Tau and Calmodulin are regulated by YTHDF1/3 and m6A-modified Dubr. Overexpression of YTHDF1/3 not only rescues the reduced Tau and Calmodulin but also restores axon elongation of DRG neurons by Dubr knockdown. This study uncovers a critical role of m6A-modified lincRNA in neuronal development by regulating the degradation of RNA-binding protein.
AbstractList Long intergenic noncoding RNAs (lincRNAs) are crucial regulators in numerous biological processes. However, the functions and mechanisms of m6A-modified lincRNAs in neuronal development remain unclear. Here, we report an m6A-modified lincRNA, Dppa2 upstream binding RNA (Dubr), abundantly expressed at the early developmental stage of dorsal root ganglion (DRG) and cerebral cortex. Silencing Dubr impairs axon elongation of DRG neurons and axon projection and migration of cortical neurons, whereas lacking m6A modification of Dubr fully loses its functions. Mechanically, Dubr interacts with m6A-binding proteins, the YTHDF1/3 complex, through its m6A motifs to protect YTHDF1/3 from degradation via the proteasome pathway. Furthermore, Tau and Calmodulin are regulated by YTHDF1/3 and m6A-modified Dubr. Overexpression of YTHDF1/3 not only rescues the reduced Tau and Calmodulin but also restores axon elongation of DRG neurons by Dubr knockdown. This study uncovers a critical role of m6A-modified lincRNA in neuronal development by regulating the degradation of RNA-binding protein.Long intergenic noncoding RNAs (lincRNAs) are crucial regulators in numerous biological processes. However, the functions and mechanisms of m6A-modified lincRNAs in neuronal development remain unclear. Here, we report an m6A-modified lincRNA, Dppa2 upstream binding RNA (Dubr), abundantly expressed at the early developmental stage of dorsal root ganglion (DRG) and cerebral cortex. Silencing Dubr impairs axon elongation of DRG neurons and axon projection and migration of cortical neurons, whereas lacking m6A modification of Dubr fully loses its functions. Mechanically, Dubr interacts with m6A-binding proteins, the YTHDF1/3 complex, through its m6A motifs to protect YTHDF1/3 from degradation via the proteasome pathway. Furthermore, Tau and Calmodulin are regulated by YTHDF1/3 and m6A-modified Dubr. Overexpression of YTHDF1/3 not only rescues the reduced Tau and Calmodulin but also restores axon elongation of DRG neurons by Dubr knockdown. This study uncovers a critical role of m6A-modified lincRNA in neuronal development by regulating the degradation of RNA-binding protein.
ArticleNumber 111693
Author Zhang, Xu
Yang, Li
Jiang, Xingyu
Xie, Xuan
Huang, Jiansong
Li, Mingyi
Wang, Bin
Wei, Manyi
Zheng, Dandan
Bao, Lan
Jiang, Bowen
Liu, Xiaoyan
Pan, Yuxiang
Li, Guo-Wei
Author_xml – sequence: 1
  givenname: Jiansong
  surname: Huang
  fullname: Huang, Jiansong
– sequence: 2
  givenname: Bowen
  surname: Jiang
  fullname: Jiang, Bowen
– sequence: 3
  givenname: Guo-Wei
  surname: Li
  fullname: Li, Guo-Wei
– sequence: 4
  givenname: Dandan
  surname: Zheng
  fullname: Zheng, Dandan
– sequence: 5
  givenname: Mingyi
  surname: Li
  fullname: Li, Mingyi
– sequence: 6
  givenname: Xuan
  surname: Xie
  fullname: Xie, Xuan
– sequence: 7
  givenname: Yuxiang
  surname: Pan
  fullname: Pan, Yuxiang
– sequence: 8
  givenname: Manyi
  surname: Wei
  fullname: Wei, Manyi
– sequence: 9
  givenname: Xiaoyan
  surname: Liu
  fullname: Liu, Xiaoyan
– sequence: 10
  givenname: Xingyu
  surname: Jiang
  fullname: Jiang, Xingyu
– sequence: 11
  givenname: Xu
  surname: Zhang
  fullname: Zhang, Xu
– sequence: 12
  givenname: Li
  surname: Yang
  fullname: Yang, Li
– sequence: 13
  givenname: Lan
  surname: Bao
  fullname: Bao, Lan
– sequence: 14
  givenname: Bin
  surname: Wang
  fullname: Wang, Bin
BookMark eNp9kD1LBDEQhoMo-PkPLFLa7JnJfsbuUE8FURAtrEI2Oys5ssmZ7Ir66815FmLhNDPMvO_L8OyTbecdEnIMbAYMqtPlTKMNuJpxxvkMACqRb5E9zgEy4EW9_WveJUcxLlmqigGIYo-8D9U8G3xneoMdtcbph7s5vZjaQE2kAV8nE9Kh94E6nIJ3ytIO39D61YBupO0HjaNqjTWfxr3Q58friwWc5lS5ZFI67Uc1ri_DOncMykWbFt4dkp1e2YhHP_2APC0uH8-vs9v7q5vz-W2mc16NmepR5E2poeE9z_NG1K2qmMCiBMQSlFK6AaaBMQFlW3dcMFGovq94WTa6w_yAnGxyV8G_ThhHOZiYiFnl0E9R8joXdQFlUSbp2Uaqg48xYC_19_fepb-NlcDkmrhcyg1xuSYuN8STufhjXgUzqPDxv-0LWVeJgQ
CitedBy_id crossref_primary_10_1016_j_celrep_2024_113821
crossref_primary_10_1016_j_prp_2023_155047
crossref_primary_10_1038_s41421_024_00667_y
crossref_primary_10_1111_bph_16254
crossref_primary_10_1002_ctm2_1784
crossref_primary_10_1002_alz_14498
crossref_primary_10_1002_wrna_1784
crossref_primary_10_1093_nar_gkaf093
crossref_primary_10_1016_j_tips_2023_03_004
crossref_primary_10_1590_1678_4685_gmb_2023_0024
crossref_primary_10_1007_s12035_023_03735_8
crossref_primary_10_1016_j_vetmic_2024_110335
crossref_primary_10_3389_fonc_2023_1229168
crossref_primary_10_1016_j_gendis_2023_05_023
crossref_primary_10_1016_j_ymthe_2023_02_008
Cites_doi 10.3389/fncel.2017.00175
10.1038/cr.2017.15
10.1523/JNEUROSCI.0016-12.2012
10.1038/s41586-019-1374-1
10.1038/cr.2015.21
10.7554/eLife.63021
10.1073/pnas.71.10.3971
10.1080/15592294.2020.1861170
10.1186/s12943-020-01293-4
10.1016/j.molcel.2018.09.021
10.1083/jcb.150.5.989
10.1038/nn.3438
10.1016/j.tins.2004.05.001
10.1038/s41586-018-0666-1
10.1111/jnc.14481
10.1093/nar/gkx1182
10.1073/pnas.0904715106
10.1016/j.celrep.2015.11.057
10.1016/j.celrep.2021.109053
10.1038/nrg3724
10.1083/jcb.141.7.1601
10.1016/j.neuron.2014.04.019
10.1016/j.neuron.2015.09.045
10.1186/s12935-021-01807-0
10.1038/s41422-021-00479-9
10.1038/nature13311
10.1523/JNEUROSCI.18-04-01478.1998
10.1038/s41422-019-0210-3
10.1038/s41556-020-00580-y
10.1038/s41586-018-0847-y
10.1016/j.brainresbull.2013.06.001
10.1073/pnas.0701532104
10.1016/j.devcel.2021.01.015
10.1038/s41556-019-0311-8
10.1016/j.brainres.2010.03.110
10.3389/fnins.2018.00571
10.1016/j.stem.2015.02.007
10.1093/nar/gkz157
10.1038/s41467-021-24376-2
10.1002/bies.200900112
10.1146/annurev-cellbio-101011-155801
10.1038/s41586-021-03670-5
10.1016/j.molcel.2013.07.017
10.1523/JNEUROSCI.0539-13.2013
10.1038/nature06992
10.1016/j.cell.2017.09.003
10.1093/hmg/ddx417
10.1371/journal.pone.0117309
10.1073/pnas.1722587115
10.1093/jb/mvz012
10.1016/j.neuron.2017.12.036
10.1186/s10020-021-00299-y
10.1038/emboj.2013.245
10.1080/15476286.2019.1621120
10.1016/j.cell.2015.05.014
10.1261/rna.2386111
10.1111/j.1440-169X.2009.01101.x
ContentType Journal Article
Copyright Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
7X8
DOI 10.1016/j.celrep.2022.111693
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2211-1247
ExternalDocumentID 10_1016_j_celrep_2022_111693
GroupedDBID 0R~
4.4
457
53G
5VS
AAEDT
AAEDW
AAIKJ
AAKRW
AALRI
AAMRU
AAXUO
AAYWO
AAYXX
ABMAC
ACGFO
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AENEX
AEUPX
AEXQZ
AFPUW
AFTJW
AGHFR
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
BAWUL
BCNDV
CITATION
DIK
EBS
EJD
FCP
FDB
FRP
GROUPED_DOAJ
GX1
HZ~
IPNFZ
IXB
KQ8
M41
M48
O-L
O9-
OK1
RIG
ROL
SSZ
7X8
ID FETCH-LOGICAL-c326t-afe9385c182f233897ba609e451ee51aaac810c100915b7d29094aff62558cde3
IEDL.DBID M48
ISSN 2211-1247
IngestDate Fri Jul 11 10:23:25 EDT 2025
Thu Apr 24 22:56:10 EDT 2025
Tue Jul 01 02:59:31 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c326t-afe9385c182f233897ba609e451ee51aaac810c100915b7d29094aff62558cde3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doi.org/10.1016/j.celrep.2022.111693
PQID 2739741545
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2739741545
crossref_citationtrail_10_1016_j_celrep_2022_111693
crossref_primary_10_1016_j_celrep_2022_111693
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-22
PublicationDateYYYYMMDD 2022-11-22
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-22
  day: 22
PublicationDecade 2020
PublicationTitle Cell reports (Cambridge)
PublicationYear 2022
References Guo (10.1016/j.celrep.2022.111693_bib10) 2018; 27
Fu (10.1016/j.celrep.2022.111693_bib7) 2014; 15
Wang (10.1016/j.celrep.2022.111693_bib38) 2015; 13
Kriegstein (10.1016/j.celrep.2022.111693_bib17) 2004; 27
Khalil (10.1016/j.celrep.2022.111693_bib14) 2009; 106
Yao (10.1016/j.celrep.2022.111693_bib53) 2019; 21
Muslimov (10.1016/j.celrep.2022.111693_bib21) 1998; 141
Nie (10.1016/j.celrep.2022.111693_bib23) 2021; 16
Su (10.1016/j.celrep.2022.111693_bib34) 2013; 33
Yau (10.1016/j.celrep.2022.111693_bib54) 2014; 82
Taverna (10.1016/j.celrep.2022.111693_bib36) 2014; 30
Wu (10.1016/j.celrep.2022.111693_bib50) 2013; 97
Shi (10.1016/j.celrep.2022.111693_bib32) 2017; 27
Xiao (10.1016/j.celrep.2022.111693_bib51) 2018; 57
Wang (10.1016/j.celrep.2022.111693_bib39) 2021; 21
Takei (10.1016/j.celrep.2022.111693_bib35) 2000; 150
Ries (10.1016/j.celrep.2022.111693_bib31) 2019; 571
Di Bella (10.1016/j.celrep.2022.111693_bib5) 2021; 595
Wang (10.1016/j.celrep.2022.111693_bib40) 2021; 31
Qureshi (10.1016/j.celrep.2022.111693_bib28) 2010; 1338
Wang (10.1016/j.celrep.2022.111693_bib45) 2015; 161
Gao (10.1016/j.celrep.2022.111693_bib8) 2019; 29
Ramos (10.1016/j.celrep.2022.111693_bib29) 2015; 16
Zhuang (10.1016/j.celrep.2022.111693_bib58) 2019; 47
Yoon (10.1016/j.celrep.2022.111693_bib55) 2017; 171
Zhao (10.1016/j.celrep.2022.111693_bib57) 2013; 16
Elsen (10.1016/j.celrep.2022.111693_bib6) 2018; 12
Komuro (10.1016/j.celrep.2022.111693_bib15) 1998; 18
Widagdo (10.1016/j.celrep.2022.111693_bib49) 2018; 147
Li (10.1016/j.celrep.2022.111693_bib18) 2012; 32
Wang (10.1016/j.celrep.2022.111693_bib42) 2021; 27
Costa (10.1016/j.celrep.2022.111693_bib3) 2010; 32
Kakehi (10.1016/j.celrep.2022.111693_bib13) 2015; 10
Gumy (10.1016/j.celrep.2022.111693_bib9) 2011; 17
Shi (10.1016/j.celrep.2022.111693_bib33) 2018; 563
Aprea (10.1016/j.celrep.2022.111693_bib1) 2013; 32
Perry (10.1016/j.celrep.2022.111693_bib25) 2018; 72
Wang (10.1016/j.celrep.2022.111693_bib41) 2015; 25
Mus (10.1016/j.celrep.2022.111693_bib20) 2007; 104
Poulopoulos (10.1016/j.celrep.2022.111693_bib26) 2019; 565
Tseng (10.1016/j.celrep.2022.111693_bib37) 2014; 512
Horigane (10.1016/j.celrep.2022.111693_bib11) 2019; 165
Raveendra (10.1016/j.celrep.2022.111693_bib30) 2018; 115
Wei (10.1016/j.celrep.2022.111693_bib46) 2021; 35
Weng (10.1016/j.celrep.2022.111693_bib48) 2018; 97
Briggs (10.1016/j.celrep.2022.111693_bib2) 2015; 88
Wang (10.1016/j.celrep.2022.111693_bib43) 2008; 454
Wang (10.1016/j.celrep.2022.111693_bib44) 2021; 56
Huang (10.1016/j.celrep.2022.111693_bib12) 2020; 22
Ng (10.1016/j.celrep.2022.111693_bib22) 2013; 51
Pan (10.1016/j.celrep.2022.111693_bib24) 2021; 10
Yu (10.1016/j.celrep.2022.111693_bib56) 2018; 46
Quan (10.1016/j.celrep.2022.111693_bib27) 2017; 11
Wen (10.1016/j.celrep.2022.111693_bib47) 2020; 19
Desrosiers (10.1016/j.celrep.2022.111693_bib4) 1974; 71
Li (10.1016/j.celrep.2022.111693_bib19) 2019; 16
Kosodo (10.1016/j.celrep.2022.111693_bib16) 2009; 51
Xie (10.1016/j.celrep.2022.111693_bib52) 2021; 12
References_xml – volume: 11
  start-page: 175
  year: 2017
  ident: 10.1016/j.celrep.2022.111693_bib27
  article-title: Regulatory roles of long non-coding RNAs in the central nervous system and associated neurodegenerative diseases. Front
  publication-title: Front. Cell. Neurosci.
  doi: 10.3389/fncel.2017.00175
– volume: 27
  start-page: 315
  year: 2017
  ident: 10.1016/j.celrep.2022.111693_bib32
  article-title: YTHDF3 facilitates translation and decay of N(6)-methyladenosine-modified RNA
  publication-title: Cell Res.
  doi: 10.1038/cr.2017.15
– volume: 32
  start-page: 12673
  year: 2012
  ident: 10.1016/j.celrep.2022.111693_bib18
  article-title: MEC-17 deficiency leads to reduced alpha-tubulin acetylation and impaired migration of cortical neurons
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0016-12.2012
– volume: 571
  start-page: 424
  year: 2019
  ident: 10.1016/j.celrep.2022.111693_bib31
  article-title: m(6)A enhances the phase separation potential of mRNA
  publication-title: Nature
  doi: 10.1038/s41586-019-1374-1
– volume: 25
  start-page: 335
  year: 2015
  ident: 10.1016/j.celrep.2022.111693_bib41
  article-title: LncRNA Dum interacts with Dnmts to regulate Dppa2 expression during myogenic differentiation and muscle regeneration
  publication-title: Cell Res.
  doi: 10.1038/cr.2015.21
– volume: 10
  start-page: e63021
  year: 2021
  ident: 10.1016/j.celrep.2022.111693_bib24
  article-title: 5’-UTR SNP of FGF13 causes translational defect and intellectual disability
  publication-title: Elife
  doi: 10.7554/eLife.63021
– volume: 71
  start-page: 3971
  year: 1974
  ident: 10.1016/j.celrep.2022.111693_bib4
  article-title: Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.71.10.3971
– volume: 16
  start-page: 1260
  year: 2021
  ident: 10.1016/j.celrep.2022.111693_bib23
  article-title: Identifying cortical specific long noncoding RNAs modified by m(6)A RNA methylation in mouse brains
  publication-title: Epigenetics
  doi: 10.1080/15592294.2020.1861170
– volume: 19
  start-page: 171
  year: 2020
  ident: 10.1016/j.celrep.2022.111693_bib47
  article-title: Long non-coding RNA NEAT1 promotes bone metastasis of prostate cancer through N6-methyladenosine
  publication-title: Mol. Cancer
  doi: 10.1186/s12943-020-01293-4
– volume: 72
  start-page: 553
  year: 2018
  ident: 10.1016/j.celrep.2022.111693_bib25
  article-title: Regulation of neuroregeneration by long noncoding RNAs
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2018.09.021
– volume: 150
  start-page: 989
  year: 2000
  ident: 10.1016/j.celrep.2022.111693_bib35
  article-title: Defects in axonal elongation and neuronal migration in mice with disrupted tau and map1b genes
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.150.5.989
– volume: 16
  start-page: 1024
  year: 2013
  ident: 10.1016/j.celrep.2022.111693_bib57
  article-title: A long noncoding RNA contributes to neuropathic pain by silencing Kcna2 in primary afferent neurons. Nat
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3438
– volume: 27
  start-page: 392
  year: 2004
  ident: 10.1016/j.celrep.2022.111693_bib17
  article-title: Patterns of neuronal migration in the embryonic cortex
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2004.05.001
– volume: 563
  start-page: 249
  year: 2018
  ident: 10.1016/j.celrep.2022.111693_bib33
  article-title: m(6)A facilitates hippocampus-dependent learning and memory through YTHDF1
  publication-title: Nature
  doi: 10.1038/s41586-018-0666-1
– volume: 147
  start-page: 137
  year: 2018
  ident: 10.1016/j.celrep.2022.111693_bib49
  article-title: The m6A-epitranscriptomic signature in neurobiology: from neurodevelopment to brain plasticity
  publication-title: J. Neurochem.
  doi: 10.1111/jnc.14481
– volume: 46
  start-page: 1412
  year: 2018
  ident: 10.1016/j.celrep.2022.111693_bib56
  article-title: Dynamic m6A modification regulates local translation of mRNA in axons
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx1182
– volume: 106
  start-page: 11667
  year: 2009
  ident: 10.1016/j.celrep.2022.111693_bib14
  article-title: Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0904715106
– volume: 13
  start-page: 2794
  year: 2015
  ident: 10.1016/j.celrep.2022.111693_bib38
  article-title: FMRP-mediated axonal delivery of miR-181d regulates axon elongation by locally targeting Map1b and Calm1
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2015.11.057
– volume: 35
  start-page: 109053
  year: 2021
  ident: 10.1016/j.celrep.2022.111693_bib46
  article-title: Axon-enriched lincRNA ALAE is required for axon elongation via regulation of local mRNA translation
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2021.109053
– volume: 15
  start-page: 293
  year: 2014
  ident: 10.1016/j.celrep.2022.111693_bib7
  article-title: Gene expression regulation mediated through reversible m(6)A RNA methylation
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3724
– volume: 141
  start-page: 1601
  year: 1998
  ident: 10.1016/j.celrep.2022.111693_bib21
  article-title: Activity-dependent regulation of dendritic BC1 RNA in hippocampal neurons in culture
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.141.7.1601
– volume: 82
  start-page: 1058
  year: 2014
  ident: 10.1016/j.celrep.2022.111693_bib54
  article-title: Microtubule minus-end binding protein CAMSAP2 controls axon specification and dendrite development
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.04.019
– volume: 88
  start-page: 861
  year: 2015
  ident: 10.1016/j.celrep.2022.111693_bib2
  article-title: Mechanisms of long non-coding RNAs in mammalian nervous system development, plasticity, disease, and evolution
  publication-title: Neuron
  doi: 10.1016/j.neuron.2015.09.045
– volume: 21
  start-page: 109
  year: 2021
  ident: 10.1016/j.celrep.2022.111693_bib39
  article-title: The biological function of m6A reader YTHDF2 and its role in human disease
  publication-title: Cancer Cell Int.
  doi: 10.1186/s12935-021-01807-0
– volume: 31
  start-page: 904
  year: 2021
  ident: 10.1016/j.celrep.2022.111693_bib40
  article-title: Single-cell transcriptomic analysis of somatosensory neurons uncovers temporal development of neuropathic pain
  publication-title: Cell Res.
  doi: 10.1038/s41422-021-00479-9
– volume: 512
  start-page: 82
  year: 2014
  ident: 10.1016/j.celrep.2022.111693_bib37
  article-title: PVT1 dependence in cancer with MYC copy-number increase
  publication-title: Nature
  doi: 10.1038/nature13311
– volume: 18
  start-page: 1478
  year: 1998
  ident: 10.1016/j.celrep.2022.111693_bib15
  article-title: Distinct modes of neuronal migration in different domains of developing cerebellar cortex
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.18-04-01478.1998
– volume: 29
  start-page: 767
  year: 2019
  ident: 10.1016/j.celrep.2022.111693_bib8
  article-title: Multivalent m(6)A motifs promote phase separation of YTHDF proteins
  publication-title: Cell Res.
  doi: 10.1038/s41422-019-0210-3
– volume: 22
  start-page: 1288
  year: 2020
  ident: 10.1016/j.celrep.2022.111693_bib12
  article-title: Publisher Correction: recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-020-00580-y
– volume: 565
  start-page: 356
  year: 2019
  ident: 10.1016/j.celrep.2022.111693_bib26
  article-title: Subcellular transcriptomes and proteomes of developing axon projections in the cerebral cortex
  publication-title: Nature
  doi: 10.1038/s41586-018-0847-y
– volume: 97
  start-page: 69
  year: 2013
  ident: 10.1016/j.celrep.2022.111693_bib50
  article-title: Roles of long noncoding RNAs in brain development, functional diversification and neurodegenerative diseases
  publication-title: Brain Res. Bull.
  doi: 10.1016/j.brainresbull.2013.06.001
– volume: 104
  start-page: 10679
  year: 2007
  ident: 10.1016/j.celrep.2022.111693_bib20
  article-title: Dendritic BC200 RNA in aging and in Alzheimer's disease
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0701532104
– volume: 56
  start-page: 702
  year: 2021
  ident: 10.1016/j.celrep.2022.111693_bib44
  article-title: N(6)-methyladenosine modification of MALAT1 promotes metastasis via reshaping nuclear speckles
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2021.01.015
– volume: 21
  start-page: 542
  year: 2019
  ident: 10.1016/j.celrep.2022.111693_bib53
  article-title: Cellular functions of long noncoding RNAs
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-019-0311-8
– volume: 1338
  start-page: 20
  year: 2010
  ident: 10.1016/j.celrep.2022.111693_bib28
  article-title: Long non-coding RNAs in nervous system function and disease
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2010.03.110
– volume: 12
  start-page: 571
  year: 2018
  ident: 10.1016/j.celrep.2022.111693_bib6
  article-title: The epigenetic factor landscape of developing neocortex is regulated by transcription factors Pax6--> Tbr2--> Tbr1. Front
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2018.00571
– volume: 16
  start-page: 439
  year: 2015
  ident: 10.1016/j.celrep.2022.111693_bib29
  article-title: The long noncoding RNA Pnky regulates neuronal differentiation of embryonic and postnatal neural stem cells
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2015.02.007
– volume: 47
  start-page: 4765
  year: 2019
  ident: 10.1016/j.celrep.2022.111693_bib58
  article-title: The m6A reader YTHDF1 regulates axon guidance through translational control of Robo3.1 expression. Nucleic
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkz157
– volume: 12
  start-page: 4113
  year: 2021
  ident: 10.1016/j.celrep.2022.111693_bib52
  article-title: alpha-TubK40me3 is required for neuronal polarization and migration by promoting microtubule formation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-24376-2
– volume: 32
  start-page: 599
  year: 2010
  ident: 10.1016/j.celrep.2022.111693_bib3
  article-title: Non-coding RNAs: meet thy masters. BioEssays
  publication-title: Bioessays
  doi: 10.1002/bies.200900112
– volume: 30
  start-page: 465
  year: 2014
  ident: 10.1016/j.celrep.2022.111693_bib36
  article-title: The cell biology of neurogenesis: toward an understanding of the development and evolution of the neocortex
  publication-title: Annu. Rev. Cell Dev. Biol.
  doi: 10.1146/annurev-cellbio-101011-155801
– volume: 595
  start-page: 554
  year: 2021
  ident: 10.1016/j.celrep.2022.111693_bib5
  article-title: Molecular logic of cellular diversification in the mouse cerebral cortex
  publication-title: Nature
  doi: 10.1038/s41586-021-03670-5
– volume: 51
  start-page: 349
  year: 2013
  ident: 10.1016/j.celrep.2022.111693_bib22
  article-title: The long noncoding RNA RMST interacts with SOX2 to regulate neurogenesis
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2013.07.017
– volume: 33
  start-page: 17884
  year: 2013
  ident: 10.1016/j.celrep.2022.111693_bib34
  article-title: KIF5B promotes the forward transport and axonal function of the voltage-gated sodium channel Nav1.8
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0539-13.2013
– volume: 454
  start-page: 126
  year: 2008
  ident: 10.1016/j.celrep.2022.111693_bib43
  article-title: Induced ncRNAs allosterically modify RNA-binding proteins in cis to inhibit transcription
  publication-title: Nature
  doi: 10.1038/nature06992
– volume: 171
  start-page: 877
  year: 2017
  ident: 10.1016/j.celrep.2022.111693_bib55
  article-title: Temporal control of mammalian cortical neurogenesis by m(6)A methylation
  publication-title: Cell
  doi: 10.1016/j.cell.2017.09.003
– volume: 27
  start-page: 475
  year: 2018
  ident: 10.1016/j.celrep.2022.111693_bib10
  article-title: Interplay between FMRP and lncRNA TUG1 regulates axonal development through mediating SnoN-Ccd1 pathway
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddx417
– volume: 10
  start-page: e0117309
  year: 2015
  ident: 10.1016/j.celrep.2022.111693_bib13
  article-title: Mutations in ribosomal proteins, RPL4 and RACK1, suppress the phenotype of a thermospermine-deficient mutant of Arabidopsis thaliana
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0117309
– volume: 115
  start-page: E10197
  year: 2018
  ident: 10.1016/j.celrep.2022.111693_bib30
  article-title: Long noncoding RNA GM12371 acts as a transcriptional regulator of synapse function
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1722587115
– volume: 165
  start-page: 401
  year: 2019
  ident: 10.1016/j.celrep.2022.111693_bib11
  article-title: Calcium signalling: a key regulator of neuronal migration
  publication-title: J. Biochem.
  doi: 10.1093/jb/mvz012
– volume: 97
  start-page: 313
  year: 2018
  ident: 10.1016/j.celrep.2022.111693_bib48
  article-title: Epitranscriptomic m(6)A regulation of axon regeneration in the adult mammalian nervous system
  publication-title: Neuron
  doi: 10.1016/j.neuron.2017.12.036
– volume: 27
  start-page: 39
  year: 2021
  ident: 10.1016/j.celrep.2022.111693_bib42
  article-title: LncRNA-Fendrr protects against the ubiquitination and degradation of NLRC4 protein through HERC2 to regulate the pyroptosis of microglia
  publication-title: Mol. Med.
  doi: 10.1186/s10020-021-00299-y
– volume: 32
  start-page: 3145
  year: 2013
  ident: 10.1016/j.celrep.2022.111693_bib1
  article-title: Transcriptome sequencing during mouse brain development identifies long non-coding RNAs functionally involved in neurogenic commitment
  publication-title: EMBO J.
  doi: 10.1038/emboj.2013.245
– volume: 16
  start-page: 1179
  year: 2019
  ident: 10.1016/j.celrep.2022.111693_bib19
  article-title: The dynamics of FTO binding and demethylation from the m(6)A motifs
  publication-title: RNA Biol.
  doi: 10.1080/15476286.2019.1621120
– volume: 161
  start-page: 1388
  year: 2015
  ident: 10.1016/j.celrep.2022.111693_bib45
  article-title: N(6)-methyladenosine modulates messenger RNA translation efficiency
  publication-title: Cell
  doi: 10.1016/j.cell.2015.05.014
– volume: 17
  start-page: 85
  year: 2011
  ident: 10.1016/j.celrep.2022.111693_bib9
  article-title: Transcriptome analysis of embryonic and adult sensory axons reveals changes in mRNA repertoire localization
  publication-title: RNA
  doi: 10.1261/rna.2386111
– volume: 57
  start-page: 15995
  year: 2018
  ident: 10.1016/j.celrep.2022.111693_bib51
  article-title: An elongation- and ligation-based qPCR amplification method for the radiolabeling-free detection of locus-specific N(6) -methyladenosine modification
  publication-title: A. Chem. Int. Ed. Engl
– volume: 51
  start-page: 251
  year: 2009
  ident: 10.1016/j.celrep.2022.111693_bib16
  article-title: Basal process and cell divisions of neural progenitors in the developing brain
  publication-title: Dev. Growth Differ.
  doi: 10.1111/j.1440-169X.2009.01101.x
SSID ssj0000601194
Score 2.453691
Snippet Long intergenic noncoding RNAs (lincRNAs) are crucial regulators in numerous biological processes. However, the functions and mechanisms of m6A-modified...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 111693
Title m6A-modified lincRNA Dubr is required for neuronal development by stabilizing YTHDF1/3 and facilitating mRNA translation
URI https://www.proquest.com/docview/2739741545
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA61IngRn_gsEbxGm-xmszmIFGspgj2IBT0t2WwWKu1Wty1Yf70z-1AERS97STKHyU7mG_LlG0LOeAxpCpA0U9Jp5nsmYKE0iqkAvrZtpUsKtsUg6A_920f52CB1z9bKgbMfSzvsJzXMx-dvr8srCPjLL66WdePcofqkEHgGBNpbIauQmxSG6l0F-MuzGTXO8KpZCORyCV_V7-l-MfQ9X30_rosc1NskGxV4pJ1yt7dIw2XbZK1sJ7ncIW-ToMMm02SUAq6kgB_t_aBDu4s4p6MZzR2SfmEAYCotZCzRVvJFGqLxkgJWRLbsOyQ0-vTQ7_b4hUdNBouMrfS8YWSCdueY5Uom3S4Z9m4ervus6qzALMC1OTOp014oLRQXqYAiVavYBG3tfMmdk9wYY0PethwAGJexSoSGKtCkKRRLMrSJ8_ZIM5tmbp9Q4SUaNfJTnUrfVy5UYJuHieJOJtbGB8Sr_RfZSnYcu1-Mo5pf9hyVXo_Q61Hp9QPCPle9lLIbf8w_rbcmgvjASw-TueliFgE804iafHn4jzlHZB2t4mNDIY5Jc54v3AmgjnncKqr1VvE7fQCwgdVB
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=m6A-modified+lincRNA+Dubr+is+required+for+neuronal+development+by+stabilizing+YTHDF1%2F3+and+facilitating+mRNA+translation&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Huang%2C+Jiansong&rft.au=Jiang%2C+Bowen&rft.au=Li%2C+Guo-Wei&rft.au=Zheng%2C+Dandan&rft.date=2022-11-22&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=41&rft.issue=8&rft.spage=111693&rft_id=info:doi/10.1016%2Fj.celrep.2022.111693&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon