Model-Based Inference of Electrode Distance and Neuronal Density from Measured Detection Thresholds in Cochlear Implant Listeners Model-Based Inference of Electrode Distance and Neuronal Density from Measured Detection Thresholds in Cochlear Implant Listeners
Purpose Cochlear implants (CI) are a highly successful neural prosthesis that can restore hearing in individuals with sensorineural hearing loss. However, the extent of hearing restoration varies widely. Two major factors likely contribute to poor performance: (1) the distances between electrodes an...
Saved in:
Published in | Journal of the Association for Research in Otolaryngology Vol. 26; no. 2; pp. 185 - 201 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.04.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1438-7573 1525-3961 1438-7573 |
DOI | 10.1007/s10162-025-00978-1 |
Cover
Abstract | Purpose
Cochlear implants (CI) are a highly successful neural prosthesis that can restore hearing in individuals with sensorineural hearing loss. However, the extent of hearing restoration varies widely. Two major factors likely contribute to poor performance: (1) the distances between electrodes and surviving spiral ganglion neurons and (2) the density of those neurons. Reprogramming the CI at a poor electrode-neuron interface, using focused tripolar stimulation or remapping the electrodes, would benefit from understanding the cause of the poor interface.
Methods
We used a cochlear model with simplified geometry and neuronal composition to investigate how the interface affects stimulation thresholds. We then inverted the model to infer electrode distance and neuronal density from monopolar and tripolar threshold values obtained behaviorally. We validated this inverted model for known scenarios of electrode distance and neuronal density. Finally, we assessed the model using data from 18 CI users whose electrode distances were measured from CT imaging.
Results
The inverted model accurately inferred electrode distance and neuronal density for known scenarios. It also reliably reproduced behavioral monopolar and tripolar threshold profiles for CI users, with mean prediction errors within 1 dB for 17/18 subjects. Fits of electrode distance were more variable; accuracy depended on the assumed value of temporal bone resistivity. Twelve subjects had minimum distance error (0.31 mm) using low resistivity (70 Ω-cm) while the others had better fits (0.30 mm) with higher resistivity (250 Ω-cm).
Conclusion
This inverted model shows promise as a simple, practical tool to better assess and understand the electrode-neuron interface. |
---|---|
AbstractList | Cochlear implants (CI) are a highly successful neural prosthesis that can restore hearing in individuals with sensorineural hearing loss. However, the extent of hearing restoration varies widely. Two major factors likely contribute to poor performance: (1) the distances between electrodes and surviving spiral ganglion neurons and (2) the density of those neurons. Reprogramming the CI at a poor electrode-neuron interface, using focused tripolar stimulation or remapping the electrodes, would benefit from understanding the cause of the poor interface.
We used a cochlear model with simplified geometry and neuronal composition to investigate how the interface affects stimulation thresholds. We then inverted the model to infer electrode distance and neuronal density from monopolar and tripolar threshold values obtained behaviorally. We validated this inverted model for known scenarios of electrode distance and neuronal density. Finally, we assessed the model using data from 18 CI users whose electrode distances were measured from CT imaging.
The inverted model accurately inferred electrode distance and neuronal density for known scenarios. It also reliably reproduced behavioral monopolar and tripolar threshold profiles for CI users, with mean prediction errors within 1 dB for 17/18 subjects. Fits of electrode distance were more variable; accuracy depended on the assumed value of temporal bone resistivity. Twelve subjects had minimum distance error (0.31 mm) using low resistivity (70 Ω-cm) while the others had better fits (0.30 mm) with higher resistivity (250 Ω-cm).
This inverted model shows promise as a simple, practical tool to better assess and understand the electrode-neuron interface. PurposeCochlear implants (CI) are a highly successful neural prosthesis that can restore hearing in individuals with sensorineural hearing loss. However, the extent of hearing restoration varies widely. Two major factors likely contribute to poor performance: (1) the distances between electrodes and surviving spiral ganglion neurons and (2) the density of those neurons. Reprogramming the CI at a poor electrode-neuron interface, using focused tripolar stimulation or remapping the electrodes, would benefit from understanding the cause of the poor interface.MethodsWe used a cochlear model with simplified geometry and neuronal composition to investigate how the interface affects stimulation thresholds. We then inverted the model to infer electrode distance and neuronal density from monopolar and tripolar threshold values obtained behaviorally. We validated this inverted model for known scenarios of electrode distance and neuronal density. Finally, we assessed the model using data from 18 CI users whose electrode distances were measured from CT imaging.ResultsThe inverted model accurately inferred electrode distance and neuronal density for known scenarios. It also reliably reproduced behavioral monopolar and tripolar threshold profiles for CI users, with mean prediction errors within 1 dB for 17/18 subjects. Fits of electrode distance were more variable; accuracy depended on the assumed value of temporal bone resistivity. Twelve subjects had minimum distance error (0.31 mm) using low resistivity (70 Ω-cm) while the others had better fits (0.30 mm) with higher resistivity (250 Ω-cm).ConclusionThis inverted model shows promise as a simple, practical tool to better assess and understand the electrode-neuron interface. Purpose Cochlear implants (CI) are a highly successful neural prosthesis that can restore hearing in individuals with sensorineural hearing loss. However, the extent of hearing restoration varies widely. Two major factors likely contribute to poor performance: (1) the distances between electrodes and surviving spiral ganglion neurons and (2) the density of those neurons. Reprogramming the CI at a poor electrode-neuron interface, using focused tripolar stimulation or remapping the electrodes, would benefit from understanding the cause of the poor interface. Methods We used a cochlear model with simplified geometry and neuronal composition to investigate how the interface affects stimulation thresholds. We then inverted the model to infer electrode distance and neuronal density from monopolar and tripolar threshold values obtained behaviorally. We validated this inverted model for known scenarios of electrode distance and neuronal density. Finally, we assessed the model using data from 18 CI users whose electrode distances were measured from CT imaging. Results The inverted model accurately inferred electrode distance and neuronal density for known scenarios. It also reliably reproduced behavioral monopolar and tripolar threshold profiles for CI users, with mean prediction errors within 1 dB for 17/18 subjects. Fits of electrode distance were more variable; accuracy depended on the assumed value of temporal bone resistivity. Twelve subjects had minimum distance error (0.31 mm) using low resistivity (70 Ω-cm) while the others had better fits (0.30 mm) with higher resistivity (250 Ω-cm). Conclusion This inverted model shows promise as a simple, practical tool to better assess and understand the electrode-neuron interface. Cochlear implants (CI) are a highly successful neural prosthesis that can restore hearing in individuals with sensorineural hearing loss. However, the extent of hearing restoration varies widely. Two major factors likely contribute to poor performance: (1) the distances between electrodes and surviving spiral ganglion neurons and (2) the density of those neurons. Reprogramming the CI at a poor electrode-neuron interface, using focused tripolar stimulation or remapping the electrodes, would benefit from understanding the cause of the poor interface.PURPOSECochlear implants (CI) are a highly successful neural prosthesis that can restore hearing in individuals with sensorineural hearing loss. However, the extent of hearing restoration varies widely. Two major factors likely contribute to poor performance: (1) the distances between electrodes and surviving spiral ganglion neurons and (2) the density of those neurons. Reprogramming the CI at a poor electrode-neuron interface, using focused tripolar stimulation or remapping the electrodes, would benefit from understanding the cause of the poor interface.We used a cochlear model with simplified geometry and neuronal composition to investigate how the interface affects stimulation thresholds. We then inverted the model to infer electrode distance and neuronal density from monopolar and tripolar threshold values obtained behaviorally. We validated this inverted model for known scenarios of electrode distance and neuronal density. Finally, we assessed the model using data from 18 CI users whose electrode distances were measured from CT imaging.METHODSWe used a cochlear model with simplified geometry and neuronal composition to investigate how the interface affects stimulation thresholds. We then inverted the model to infer electrode distance and neuronal density from monopolar and tripolar threshold values obtained behaviorally. We validated this inverted model for known scenarios of electrode distance and neuronal density. Finally, we assessed the model using data from 18 CI users whose electrode distances were measured from CT imaging.The inverted model accurately inferred electrode distance and neuronal density for known scenarios. It also reliably reproduced behavioral monopolar and tripolar threshold profiles for CI users, with mean prediction errors within 1 dB for 17/18 subjects. Fits of electrode distance were more variable; accuracy depended on the assumed value of temporal bone resistivity. Twelve subjects had minimum distance error (0.31 mm) using low resistivity (70 Ω-cm) while the others had better fits (0.30 mm) with higher resistivity (250 Ω-cm).RESULTSThe inverted model accurately inferred electrode distance and neuronal density for known scenarios. It also reliably reproduced behavioral monopolar and tripolar threshold profiles for CI users, with mean prediction errors within 1 dB for 17/18 subjects. Fits of electrode distance were more variable; accuracy depended on the assumed value of temporal bone resistivity. Twelve subjects had minimum distance error (0.31 mm) using low resistivity (70 Ω-cm) while the others had better fits (0.30 mm) with higher resistivity (250 Ω-cm).This inverted model shows promise as a simple, practical tool to better assess and understand the electrode-neuron interface.CONCLUSIONThis inverted model shows promise as a simple, practical tool to better assess and understand the electrode-neuron interface. |
Author | Goldwyn, Joshua H. Arenberg, Julie G. Perkel, David J. Giardina, Christopher K. |
Author_xml | – sequence: 1 givenname: David J. orcidid: 0000-0002-3142-9614 surname: Perkel fullname: Perkel, David J. email: perkel@uw.edu organization: Departments of Biology and Otolaryngology, University of Washington – sequence: 2 givenname: Christopher K. surname: Giardina fullname: Giardina, Christopher K. organization: Department of Otolaryngology, Head and Neck Surgery and Eaton Peabody Laboratories, Massachusetts Eye and Ear, Harvard Medical School – sequence: 3 givenname: Joshua H. surname: Goldwyn fullname: Goldwyn, Joshua H. organization: Department of Mathematics and Statistics, Swarthmore College – sequence: 4 givenname: Julie G. surname: Arenberg fullname: Arenberg, Julie G. organization: Department of Otolaryngology, Head and Neck Surgery and Eaton Peabody Laboratories, Massachusetts Eye and Ear, Harvard Medical School |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40048122$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kbuOFDEQRS20iH3ADxAgSyQkDeVX2xPCzAIjzUKyxJa7XWZ61W0PdnewIX-Oh1keIiByyT73VrnuJTmLKSIhzxm8ZgD6TWHAWt4AVw3ASpuGPSIXTArTaKXF2V_1Obks5Q6AadWunpBzCSAN4_yCfL9JHsfmnSvo6TYGzBh7pCnQ6xH7OddXuhnK7I63Lnr6CZecohvpBmMZ5nsacproDbqy5GqxwbnKhhTp7T5j2afRFzpEuk79fkSX6XY6jC7OdFdNMWIuT8nj4MaCzx7OK_Ll_fXt-mOz-_xhu367a3rB27lxoBXKwLwCRAGdQakc8CC4lkai88IoLnxnpG4lMxo7w8Ap9G3XByGCuCKvTr6HnL4tWGY7DaXHsU6DaSlWMC1lKxTwir78B71LS66fPlIrEIwrISr14oFaugm9PeRhcvne_lpuBfgJ6HMqJWP4jTCwxwTtKUFbE7Q_E7SsisRJVCocv2L-0_s_qh8U3J1_ |
Cites_doi | 10.1063/1.1666591 10.1016/j.heares.2020.108001 10.1109/TBME.2009.2016667 10.3389/fnins.2021.751599 10.1016/j.heares.2021.108413 10.1038/s41598-024-59347-2 10.1097/AUD.0000000000001279 10.1016/j.heares.2021.108235 10.3109/00016488009127108 10.1016/s0378-5955(00)00236-7 10.1121/1.1913642 10.1007/s10162-013-0440-x 10.1080/14670100.2020.1824431 10.1007/s10162-021-00785-4 10.1007/s10162-019-00718-2 10.1121/10.0012825 10.1044/2020_AJA-20-00116 10.1007/s10162-016-0557-9 10.1177/2331216518813811 10.1177/2331216516653389 10.1016/0378-5955(84)90026-1 10.1007/s10162-016-0608-2 10.1016/0378-5955(95)00090-Q 10.1007/s10162-022-00882-y 10.1097/AUD.0000000000001389 10.1109/TBME.2004.836518 10.1121/10.0003387 10.1016/j.heares.2008.03.006 10.1177/23312165211060983 10.1002/9780470719756.ch15 10.1371/journal.pone.0079256 10.1097/MAO.0b013e3182255915 10.1097/AUD.0b013e3182741aa7 10.1016/S0378-5955(00)00104-0 10.1109/TBME.2017.2764881 10.1159/000365273 10.1007/s10162-018-0678-4 10.1016/j.heares.2010.05.005 10.1007/978-1-4612-3256-8_5 10.3390/audiolres11020020 10.1097/AUD.0000000000000844 10.1109/TBME.2011.2173198 10.5152/iao.2020.7510 10.1007/s10162-020-00749-0 10.1016/S0306-4522(98)00330-3 10.1121/1.2749414 10.1007/978-3-030-59520-3_19 10.1121/1.2436712 10.1097/AUD.0000000000000815 |
ContentType | Journal Article |
Copyright | The Author(s) under exclusive licence to Association for Research in Otolaryngology 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2025. The Author(s) under exclusive licence to Association for Research in Otolaryngology. Copyright Springer Nature B.V. 2025 |
Copyright_xml | – notice: The Author(s) under exclusive licence to Association for Research in Otolaryngology 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2025. The Author(s) under exclusive licence to Association for Research in Otolaryngology. – notice: Copyright Springer Nature B.V. 2025 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK K9. NAPCQ 7X8 |
DOI | 10.1007/s10162-025-00978-1 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1438-7573 |
EndPage | 201 |
ExternalDocumentID | 40048122 10_1007_s10162_025_00978_1 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Institute on Deafness and Other Communication Disorders grantid: R01DC12142; R01DC021606 funderid: http://dx.doi.org/10.13039/100000055 – fundername: NIDCD NIH HHS grantid: R01DC021606 – fundername: NIDCD NIH HHS grantid: R01DC12142 – fundername: NIDCD NIH HHS grantid: R01 DC012142 – fundername: NIDCD NIH HHS grantid: R01 DC021606 |
GroupedDBID | --- -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 1SB 203 29L 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2WC 2~H 30V 36B 4.4 406 408 409 40D 40E 53G 5GY 5VS 67Z 6NX 78A 7RV 7X7 88E 8AO 8FI 8FJ 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACZOJ ADBBV ADHHG ADHIR ADHKG ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDZB AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHPBZ AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG AOIJS ARMRJ ASPBG AVWKF AXYYD AYFIA AZFZN B-. BA0 BAWUL BDATZ BENPR BGNMA BKEYQ BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DIK DL5 DNIVK DPUIP E3Z EBLON EBS EIOEI EJD EMB EMOBN EN4 ESBYG EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GX1 GXS H13 HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HYE HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KPH LAS LLZTM M1P M4Y MA- N2Q NAPCQ NB0 NPVJJ NQJWS NU0 O9- O93 O9I O9J OAM OK1 P9S PF- PHGZT PQQKQ PROAC PSQYO PT4 Q2X QOR QOS R89 R9I ROL RPM RPX RRX RSV S16 S1Z S27 S37 S3B SAP SDH SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN T13 TR2 TSG TSK TSV TT1 TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 WOW YLTOR Z45 ZMTXR ZOVNA AAYXX ABFSG ABRTQ ACSTC AEZWR AFHIU AFOHR AHWEU AIXLP ATHPR CITATION CGR CUY CVF ECM EIF NPM PHGZM PJZUB PPXIY 7TK K9. 7X8 |
ID | FETCH-LOGICAL-c326t-a075e4f1d50ee30b8e45a02f327484ead38523db84764187eb810a5ed6bcf33f3 |
IEDL.DBID | U2A |
ISSN | 1438-7573 1525-3961 |
IngestDate | Thu Sep 04 22:49:05 EDT 2025 Sat Aug 16 18:51:20 EDT 2025 Mon Jul 21 05:32:19 EDT 2025 Tue Aug 05 12:02:48 EDT 2025 Tue Apr 15 01:11:30 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Electrode-neuron interface Electrode configuration CT imaging Computational model |
Language | English |
License | 2025. The Author(s) under exclusive licence to Association for Research in Otolaryngology. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c326t-a075e4f1d50ee30b8e45a02f327484ead38523db84764187eb810a5ed6bcf33f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3142-9614 |
PMID | 40048122 |
PQID | 3190312533 |
PQPubID | 51534 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_3174463502 proquest_journals_3190312533 pubmed_primary_40048122 crossref_primary_10_1007_s10162_025_00978_1 springer_journals_10_1007_s10162_025_00978_1 |
PublicationCentury | 2000 |
PublicationDate | 2025-04-01 |
PublicationDateYYYYMMDD | 2025-04-01 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationSubtitle | JARO |
PublicationTitle | Journal of the Association for Research in Otolaryngology |
PublicationTitleAbbrev | JARO |
PublicationTitleAlternate | J Assoc Res Otolaryngol |
PublicationYear | 2025 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | F Rattay (978_CR39) 2013; 8 KN Jahn (978_CR30) 2019; 20 W Badenhorst (978_CR31) 2021; 22 SL Fowler (978_CR4) 2021; 30 F-G Zeng (978_CR1) 2022; 2 FJ Vanpoucke (978_CR46) 2011; 59 RK Kalkman (978_CR37) 2022; 415 D Strelioff (978_CR43) 1973; 54 Y Dong (978_CR8) 2023; 44 978_CR7 S He (978_CR11) 2020; 41 NS Imennov (978_CR19) 2009; 56 A Dhanasingh (978_CR23) 2020; 16 KC Schvartz-Leyzac (978_CR50) 2020; 21 A Peskoff (978_CR24) 1974; 15 JJ Briaire (978_CR18) 2000; 148 BH Bonham (978_CR34) 2008; 242 MC Liberman (978_CR28) 1984; 16 A Heshmat (978_CR36) 2021; 15 978_CR21 KK Sriperumbudur (978_CR32) 2024; 14 L DeVries (978_CR9) 2018; 22 J Skidmore (978_CR12) 2023 S Söderqvist (978_CR33) 2021; 405 LM Litvak (978_CR5) 2007; 122 L DeVries (978_CR29) 2018; 19 VD Tejani (978_CR45) 2021; 22 978_CR27 J Frijns (978_CR42) 1995; 87 CK Giardina (978_CR44) 2017; 65 L DeVries (978_CR35) 2016; 17 F Rattay (978_CR25) 1999; 89 AL Miller (978_CR26) 2001; 152 KN Jahn (978_CR48) 2020; 41 FJ Vanpoucke (978_CR47) 2004; 51 D Ramekers (978_CR49) 2014; 15 Y-S Cheng (978_CR14) 2021; 11 LK Holden (978_CR2) 2013; 34 J Teymouri (978_CR15) 2011; 32 JH Noble (978_CR10) 2014; 19 JA Bierer (978_CR6) 2016; 20 JH Goldwyn (978_CR20) 2010; 268 JM Resnick (978_CR17) 2021; 149 T Potrusil (978_CR22) 2020; 393 KC Schvartz-Leyzac (978_CR13) 2023; 24 SN Joshi (978_CR16) 2017; 18 978_CR41 B Caswell-Midwinter (978_CR3) 2022; 26 JA Bierer (978_CR40) 2007; 121 CY Ota (978_CR38) 1980; 89 |
References_xml | – volume: 15 start-page: 2112 issue: 12 year: 1974 ident: 978_CR24 publication-title: J Math Phys doi: 10.1063/1.1666591 – volume: 393 start-page: 108001 year: 2020 ident: 978_CR22 publication-title: Hear Res doi: 10.1016/j.heares.2020.108001 – volume: 56 start-page: 2493 issue: 10 year: 2009 ident: 978_CR19 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2009.2016667 – volume: 15 start-page: 751599 year: 2021 ident: 978_CR36 publication-title: Front Neurosci doi: 10.3389/fnins.2021.751599 – volume: 415 start-page: 108413 year: 2022 ident: 978_CR37 publication-title: Hear Res doi: 10.1016/j.heares.2021.108413 – volume: 14 start-page: 9593 issue: 1 year: 2024 ident: 978_CR32 publication-title: Sci Rep doi: 10.1038/s41598-024-59347-2 – volume: 44 start-page: 276 issue: 2 year: 2023 ident: 978_CR8 publication-title: Ear Hear doi: 10.1097/AUD.0000000000001279 – volume: 405 start-page: 108235 year: 2021 ident: 978_CR33 publication-title: Hear Res doi: 10.1016/j.heares.2021.108235 – volume: 89 start-page: 53 issue: 1–2 year: 1980 ident: 978_CR38 publication-title: Acta Otolaryngol (Stockh) doi: 10.3109/00016488009127108 – volume: 152 start-page: 55 issue: 1–2 year: 2001 ident: 978_CR26 publication-title: Hear Res doi: 10.1016/s0378-5955(00)00236-7 – ident: 978_CR21 – volume: 54 start-page: 620 issue: 3 year: 1973 ident: 978_CR43 publication-title: J Acoust Soc Am doi: 10.1121/1.1913642 – volume: 15 start-page: 187 year: 2014 ident: 978_CR49 publication-title: J Assoc Res Otolaryngol doi: 10.1007/s10162-013-0440-x – volume: 22 start-page: 68 issue: 2 year: 2021 ident: 978_CR31 publication-title: Cochlear Implants Int doi: 10.1080/14670100.2020.1824431 – volume: 22 start-page: 161 year: 2021 ident: 978_CR45 publication-title: J Assoc Res Otolaryngol doi: 10.1007/s10162-021-00785-4 – volume: 20 start-page: 415 issue: 4 year: 2019 ident: 978_CR30 publication-title: J Assoc Res Otolaryngol JARO doi: 10.1007/s10162-019-00718-2 – volume: 2 start-page: 077201 issue: 7 year: 2022 ident: 978_CR1 publication-title: JASA Express Lett doi: 10.1121/10.0012825 – volume: 30 start-page: 170 issue: 1 year: 2021 ident: 978_CR4 publication-title: Am J Audiol doi: 10.1044/2020_AJA-20-00116 – volume: 17 start-page: 237 issue: 3 year: 2016 ident: 978_CR35 publication-title: J Assoc Res Otolaryngol JARO doi: 10.1007/s10162-016-0557-9 – volume: 22 start-page: 233121651881381 year: 2018 ident: 978_CR9 publication-title: Trends Hear doi: 10.1177/2331216518813811 – volume: 20 start-page: 233121651665338 year: 2016 ident: 978_CR6 publication-title: Trends Hear doi: 10.1177/2331216516653389 – volume: 16 start-page: 75 issue: 1 year: 1984 ident: 978_CR28 publication-title: Hear Res doi: 10.1016/0378-5955(84)90026-1 – volume: 18 start-page: 323 year: 2017 ident: 978_CR16 publication-title: J Assoc Res Otolaryngol doi: 10.1007/s10162-016-0608-2 – volume: 87 start-page: 170 issue: 1–2 year: 1995 ident: 978_CR42 publication-title: Hear Res doi: 10.1016/0378-5955(95)00090-Q – volume: 24 start-page: 5 issue: 1 year: 2023 ident: 978_CR13 publication-title: J Assoc Res Otolaryngol JARO doi: 10.1007/s10162-022-00882-y – year: 2023 ident: 978_CR12 publication-title: Ear Hear doi: 10.1097/AUD.0000000000001389 – volume: 51 start-page: 2174 issue: 12 year: 2004 ident: 978_CR47 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2004.836518 – volume: 149 start-page: 934 issue: 2 year: 2021 ident: 978_CR17 publication-title: J Acoust Soc Am doi: 10.1121/10.0003387 – volume: 242 start-page: 141 issue: 1–2 year: 2008 ident: 978_CR34 publication-title: Hear Res doi: 10.1016/j.heares.2008.03.006 – volume: 26 start-page: 233121652110609 year: 2022 ident: 978_CR3 publication-title: Trends Hear doi: 10.1177/23312165211060983 – ident: 978_CR27 doi: 10.1002/9780470719756.ch15 – volume: 8 start-page: e79256 issue: 11 year: 2013 ident: 978_CR39 publication-title: PLoS ONE doi: 10.1371/journal.pone.0079256 – volume: 32 start-page: 980 issue: 6 year: 2011 ident: 978_CR15 publication-title: Otol Neurotol Off Publ Am Otol Soc Am Neurotol Soc Eur Acad Otol Neurotol doi: 10.1097/MAO.0b013e3182255915 – volume: 34 start-page: 342 issue: 3 year: 2013 ident: 978_CR2 publication-title: Ear Hear doi: 10.1097/AUD.0b013e3182741aa7 – volume: 148 start-page: 18 issue: 1–2 year: 2000 ident: 978_CR18 publication-title: Hear Res doi: 10.1016/S0378-5955(00)00104-0 – volume: 65 start-page: 327 issue: 2 year: 2017 ident: 978_CR44 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2017.2764881 – volume: 19 start-page: 400 issue: 6 year: 2014 ident: 978_CR10 publication-title: Audiol Neurootol doi: 10.1159/000365273 – volume: 19 start-page: 571 issue: 5 year: 2018 ident: 978_CR29 publication-title: J Assoc Res Otolaryngol JARO doi: 10.1007/s10162-018-0678-4 – volume: 268 start-page: 93 issue: 1–2 year: 2010 ident: 978_CR20 publication-title: Hear Res doi: 10.1016/j.heares.2010.05.005 – ident: 978_CR41 doi: 10.1007/978-1-4612-3256-8_5 – volume: 11 start-page: 220 issue: 2 year: 2021 ident: 978_CR14 publication-title: Audiol Res doi: 10.3390/audiolres11020020 – volume: 41 start-page: 961 issue: 4 year: 2020 ident: 978_CR48 publication-title: Ear Hear doi: 10.1097/AUD.0000000000000844 – volume: 59 start-page: 307 issue: 2 year: 2011 ident: 978_CR46 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2011.2173198 – volume: 16 start-page: 104 issue: 1 year: 2020 ident: 978_CR23 publication-title: J Int Adv Otol doi: 10.5152/iao.2020.7510 – volume: 21 start-page: 259 year: 2020 ident: 978_CR50 publication-title: J Assoc Res Otolaryngol doi: 10.1007/s10162-020-00749-0 – volume: 89 start-page: 335 issue: 2 year: 1999 ident: 978_CR25 publication-title: Neuroscience doi: 10.1016/S0306-4522(98)00330-3 – volume: 122 start-page: 967 issue: 2 year: 2007 ident: 978_CR5 publication-title: J Acoust Soc Am doi: 10.1121/1.2749414 – ident: 978_CR7 doi: 10.1007/978-3-030-59520-3_19 – volume: 121 start-page: 1642 issue: 3 year: 2007 ident: 978_CR40 publication-title: J Acoust Soc Am doi: 10.1121/1.2436712 – volume: 41 start-page: 918 issue: 4 year: 2020 ident: 978_CR11 publication-title: Ear Hear doi: 10.1097/AUD.0000000000000815 |
SSID | ssj0017569 |
Score | 2.3981566 |
Snippet | Purpose
Cochlear implants (CI) are a highly successful neural prosthesis that can restore hearing in individuals with sensorineural hearing loss. However, the... Cochlear implants (CI) are a highly successful neural prosthesis that can restore hearing in individuals with sensorineural hearing loss. However, the extent... PurposeCochlear implants (CI) are a highly successful neural prosthesis that can restore hearing in individuals with sensorineural hearing loss. However, the... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 185 |
SubjectTerms | Adult Aged Auditory Threshold Cochlea Cochlear Implants Electrodes Female Hearing loss Humans Male Medicine Medicine & Public Health Middle Aged Neurobiology Neurons - physiology Neurosciences Original Article Otorhinolaryngology Spiral Ganglion Temporal bone Transplants & implants |
Subtitle | Model-Based Inference of Electrode Distance and Neuronal Density from Measured Detection Thresholds in Cochlear Implant Listeners |
Title | Model-Based Inference of Electrode Distance and Neuronal Density from Measured Detection Thresholds in Cochlear Implant Listeners |
URI | https://link.springer.com/article/10.1007/s10162-025-00978-1 https://www.ncbi.nlm.nih.gov/pubmed/40048122 https://www.proquest.com/docview/3190312533 https://www.proquest.com/docview/3174463502 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB61IFW9oJY-2JauXIkbWIpfeRy3sDxatidW2p4iO3bUSiiL2HDg2H_eGSdZQJQDVztxonzjmc-ZF8CeESqz2uW8rkTgOkjF82A1FyRNhUOCG4skzX6mp3P9fWEWfVLYaoh2H1ySUVPfS3YTqeTUfjUmH3A882waPLvTdpzLydp3kJm06NNj_n_fQxP0iFc-8olGU3P8BrZ6jsgmHahv4UVotuHVrPeCv4O_1MDskn9DA-TZ2ZCxx5Y1m3ZNbXxgR8QLadQ2nsUKHLTkEYWrt7eMkkrYrPs96HG0jQFZDbtAZFfkkFqxPw07XFa_qasEoxLCiAA7J5lokDC-h_nx9OLwlPetFHiF_KzlFplB0LXwJglBJS4P2thE1kpSLVGUJpXjidQ7tFWpFnkWXC4Sa4JPXVUrVasPsNEsm7ADLNO1E1XipXVBu6IuHHI-Z71N08Joq0awP3zd8qqrmFHe1UYmLErEooxYlGIEuwMAZb97ViWqBdQ1EpnoCL6up1HuyZlhm7C8oWsyPMkqk8gRfOyAWz8u6iUhceZgQPJu8aff5dPzLv8Mr2WUKgrj2YWN9vomfEGG0roxbE5Ofv2YjuHlyUKMo3j-A1sL4HU |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYQSMCCeFMoYCQ2sBQ_8hp5VQVaplZii-zYEUgoRTQMjPxz7pykgICB1XacKN_l7nPuRchxyGWslUlYkXPHlBOSJU4rxlGaUgME1xdJGt5F_bG6uQ_vm6SwaRvt3rokvab-kuzGI8Gw_apPPmBw5lkAMpBg34KxOJv5DuIwSpv0mN-v-26CfvDKHz5Rb2p6q2Sl4Yj0rAZ1jcy5cp0sDhsv-AZ5xwZmT-wcDJCl123GHp0U9KpuamMdvUReiKO6tNRX4MAtLzFcvXqjmFRCh_XvQQujlQ_IKukIkJ2iQ2pKH0t6MckfsKsExRLCgAAdoEyUQBg3ybh3Nbros6aVAsuBn1VMAzNwquA2DJyTgUmcCnUgCimwlihIk0zgRGoN2KpI8SR2JuGBDp2NTF5IWcgtMl9OSrdDaKwKw_PACm2cMmmRGuB8RlsdRWmotOyQk_btZs91xYzsszYyYpEBFpnHIuMd0m0ByJqvZ5qBWgBdI4CJdsjRbBrkHp0ZunSTV1wTw0lWhoHokO0auNntvF7iAmZOWyQ_N__7WXb_t_yQLPVHw0E2uL673SPLwksYhvR0yXz18ur2ga1U5sAL5wfFEODj |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYQSKiXqhRotyytkbi1FvEjr-PCsuK1iAMrcYvs2BZIyIvYcOix_5wZJ1mooIde7cSJ8o1nPmdehOynXOZamYL5mjumnJCscFoxjtJUGiC4sUjS9DI7mamzm_TmVRZ_jHbvXZJtTgNWaQrNwYP1B68S33gmGLZijYkIDM4_a6COOUr6TIyWfoQ8zcouVeb9-_42R2845hv_aDQ7k0_kY8cX6agFeIOsuPCZrE87j_gm-YPNzO7ZIRgjS0_77D069_S4bXBjHR0jR8RRHSyN1ThwyTGGrje_KSaY0Gn7q9DCaBODswK9BpQX6Jxa0LtAj-b1LXaYoFhOGNCgFygfAcjjFplNjq-PTljXVoHVwNUapoElOOW5TRPnZGIKp1KdCC8F1hUFyZIFnE6tAbuVKV7kzhQ80amzmam9lF5uk9UwD-4robnyhteJFdo4ZUpfGuB_RludZWWqtByQn_3XrR7a6hnVS51kxKICLKqIRcUHZNgDUHU7aVGBigC9I4CVDsjechr2ADo2dHDzJ7wmh1OtTBMxIF9a4JaPizqKC5j51SP5svi_3-Xb_13-g6xfjSfVxenl-Q75IKKAYXTPkKw2j09uF4hLY75H2XwGu63lHw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model-Based+Inference+of+Electrode+Distance+and+Neuronal+Density+from+Measured+Detection+Thresholds+in+Cochlear+Implant+Listeners&rft.jtitle=Journal+of+the+Association+for+Research+in+Otolaryngology&rft.au=Perkel%2C+David+J&rft.au=Giardina%2C+Christopher+K&rft.au=Goldwyn%2C+Joshua+H&rft.au=Arenberg%2C+Julie+G&rft.date=2025-04-01&rft.eissn=1438-7573&rft.volume=26&rft.issue=2&rft.spage=185&rft_id=info:doi/10.1007%2Fs10162-025-00978-1&rft_id=info%3Apmid%2F40048122&rft.externalDocID=40048122 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1438-7573&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1438-7573&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1438-7573&client=summon |