Model-Based Inference of Electrode Distance and Neuronal Density from Measured Detection Thresholds in Cochlear Implant Listeners Model-Based Inference of Electrode Distance and Neuronal Density from Measured Detection Thresholds in Cochlear Implant Listeners

Purpose Cochlear implants (CI) are a highly successful neural prosthesis that can restore hearing in individuals with sensorineural hearing loss. However, the extent of hearing restoration varies widely. Two major factors likely contribute to poor performance: (1) the distances between electrodes an...

Full description

Saved in:
Bibliographic Details
Published inJournal of the Association for Research in Otolaryngology Vol. 26; no. 2; pp. 185 - 201
Main Authors Perkel, David J., Giardina, Christopher K., Goldwyn, Joshua H., Arenberg, Julie G.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.04.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1438-7573
1525-3961
1438-7573
DOI10.1007/s10162-025-00978-1

Cover

Abstract Purpose Cochlear implants (CI) are a highly successful neural prosthesis that can restore hearing in individuals with sensorineural hearing loss. However, the extent of hearing restoration varies widely. Two major factors likely contribute to poor performance: (1) the distances between electrodes and surviving spiral ganglion neurons and (2) the density of those neurons. Reprogramming the CI at a poor electrode-neuron interface, using focused tripolar stimulation or remapping the electrodes, would benefit from understanding the cause of the poor interface. Methods We used a cochlear model with simplified geometry and neuronal composition to investigate how the interface affects stimulation thresholds. We then inverted the model to infer electrode distance and neuronal density from monopolar and tripolar threshold values obtained behaviorally. We validated this inverted model for known scenarios of electrode distance and neuronal density. Finally, we assessed the model using data from 18 CI users whose electrode distances were measured from CT imaging. Results The inverted model accurately inferred electrode distance and neuronal density for known scenarios. It also reliably reproduced behavioral monopolar and tripolar threshold profiles for CI users, with mean prediction errors within 1 dB for 17/18 subjects. Fits of electrode distance were more variable; accuracy depended on the assumed value of temporal bone resistivity. Twelve subjects had minimum distance error (0.31 mm) using low resistivity (70 Ω-cm) while the others had better fits (0.30 mm) with higher resistivity (250 Ω-cm). Conclusion This inverted model shows promise as a simple, practical tool to better assess and understand the electrode-neuron interface.
AbstractList Cochlear implants (CI) are a highly successful neural prosthesis that can restore hearing in individuals with sensorineural hearing loss. However, the extent of hearing restoration varies widely. Two major factors likely contribute to poor performance: (1) the distances between electrodes and surviving spiral ganglion neurons and (2) the density of those neurons. Reprogramming the CI at a poor electrode-neuron interface, using focused tripolar stimulation or remapping the electrodes, would benefit from understanding the cause of the poor interface. We used a cochlear model with simplified geometry and neuronal composition to investigate how the interface affects stimulation thresholds. We then inverted the model to infer electrode distance and neuronal density from monopolar and tripolar threshold values obtained behaviorally. We validated this inverted model for known scenarios of electrode distance and neuronal density. Finally, we assessed the model using data from 18 CI users whose electrode distances were measured from CT imaging. The inverted model accurately inferred electrode distance and neuronal density for known scenarios. It also reliably reproduced behavioral monopolar and tripolar threshold profiles for CI users, with mean prediction errors within 1 dB for 17/18 subjects. Fits of electrode distance were more variable; accuracy depended on the assumed value of temporal bone resistivity. Twelve subjects had minimum distance error (0.31 mm) using low resistivity (70 Ω-cm) while the others had better fits (0.30 mm) with higher resistivity (250 Ω-cm). This inverted model shows promise as a simple, practical tool to better assess and understand the electrode-neuron interface.
PurposeCochlear implants (CI) are a highly successful neural prosthesis that can restore hearing in individuals with sensorineural hearing loss. However, the extent of hearing restoration varies widely. Two major factors likely contribute to poor performance: (1) the distances between electrodes and surviving spiral ganglion neurons and (2) the density of those neurons. Reprogramming the CI at a poor electrode-neuron interface, using focused tripolar stimulation or remapping the electrodes, would benefit from understanding the cause of the poor interface.MethodsWe used a cochlear model with simplified geometry and neuronal composition to investigate how the interface affects stimulation thresholds. We then inverted the model to infer electrode distance and neuronal density from monopolar and tripolar threshold values obtained behaviorally. We validated this inverted model for known scenarios of electrode distance and neuronal density. Finally, we assessed the model using data from 18 CI users whose electrode distances were measured from CT imaging.ResultsThe inverted model accurately inferred electrode distance and neuronal density for known scenarios. It also reliably reproduced behavioral monopolar and tripolar threshold profiles for CI users, with mean prediction errors within 1 dB for 17/18 subjects. Fits of electrode distance were more variable; accuracy depended on the assumed value of temporal bone resistivity. Twelve subjects had minimum distance error (0.31 mm) using low resistivity (70 Ω-cm) while the others had better fits (0.30 mm) with higher resistivity (250 Ω-cm).ConclusionThis inverted model shows promise as a simple, practical tool to better assess and understand the electrode-neuron interface.
Purpose Cochlear implants (CI) are a highly successful neural prosthesis that can restore hearing in individuals with sensorineural hearing loss. However, the extent of hearing restoration varies widely. Two major factors likely contribute to poor performance: (1) the distances between electrodes and surviving spiral ganglion neurons and (2) the density of those neurons. Reprogramming the CI at a poor electrode-neuron interface, using focused tripolar stimulation or remapping the electrodes, would benefit from understanding the cause of the poor interface. Methods We used a cochlear model with simplified geometry and neuronal composition to investigate how the interface affects stimulation thresholds. We then inverted the model to infer electrode distance and neuronal density from monopolar and tripolar threshold values obtained behaviorally. We validated this inverted model for known scenarios of electrode distance and neuronal density. Finally, we assessed the model using data from 18 CI users whose electrode distances were measured from CT imaging. Results The inverted model accurately inferred electrode distance and neuronal density for known scenarios. It also reliably reproduced behavioral monopolar and tripolar threshold profiles for CI users, with mean prediction errors within 1 dB for 17/18 subjects. Fits of electrode distance were more variable; accuracy depended on the assumed value of temporal bone resistivity. Twelve subjects had minimum distance error (0.31 mm) using low resistivity (70 Ω-cm) while the others had better fits (0.30 mm) with higher resistivity (250 Ω-cm). Conclusion This inverted model shows promise as a simple, practical tool to better assess and understand the electrode-neuron interface.
Cochlear implants (CI) are a highly successful neural prosthesis that can restore hearing in individuals with sensorineural hearing loss. However, the extent of hearing restoration varies widely. Two major factors likely contribute to poor performance: (1) the distances between electrodes and surviving spiral ganglion neurons and (2) the density of those neurons. Reprogramming the CI at a poor electrode-neuron interface, using focused tripolar stimulation or remapping the electrodes, would benefit from understanding the cause of the poor interface.PURPOSECochlear implants (CI) are a highly successful neural prosthesis that can restore hearing in individuals with sensorineural hearing loss. However, the extent of hearing restoration varies widely. Two major factors likely contribute to poor performance: (1) the distances between electrodes and surviving spiral ganglion neurons and (2) the density of those neurons. Reprogramming the CI at a poor electrode-neuron interface, using focused tripolar stimulation or remapping the electrodes, would benefit from understanding the cause of the poor interface.We used a cochlear model with simplified geometry and neuronal composition to investigate how the interface affects stimulation thresholds. We then inverted the model to infer electrode distance and neuronal density from monopolar and tripolar threshold values obtained behaviorally. We validated this inverted model for known scenarios of electrode distance and neuronal density. Finally, we assessed the model using data from 18 CI users whose electrode distances were measured from CT imaging.METHODSWe used a cochlear model with simplified geometry and neuronal composition to investigate how the interface affects stimulation thresholds. We then inverted the model to infer electrode distance and neuronal density from monopolar and tripolar threshold values obtained behaviorally. We validated this inverted model for known scenarios of electrode distance and neuronal density. Finally, we assessed the model using data from 18 CI users whose electrode distances were measured from CT imaging.The inverted model accurately inferred electrode distance and neuronal density for known scenarios. It also reliably reproduced behavioral monopolar and tripolar threshold profiles for CI users, with mean prediction errors within 1 dB for 17/18 subjects. Fits of electrode distance were more variable; accuracy depended on the assumed value of temporal bone resistivity. Twelve subjects had minimum distance error (0.31 mm) using low resistivity (70 Ω-cm) while the others had better fits (0.30 mm) with higher resistivity (250 Ω-cm).RESULTSThe inverted model accurately inferred electrode distance and neuronal density for known scenarios. It also reliably reproduced behavioral monopolar and tripolar threshold profiles for CI users, with mean prediction errors within 1 dB for 17/18 subjects. Fits of electrode distance were more variable; accuracy depended on the assumed value of temporal bone resistivity. Twelve subjects had minimum distance error (0.31 mm) using low resistivity (70 Ω-cm) while the others had better fits (0.30 mm) with higher resistivity (250 Ω-cm).This inverted model shows promise as a simple, practical tool to better assess and understand the electrode-neuron interface.CONCLUSIONThis inverted model shows promise as a simple, practical tool to better assess and understand the electrode-neuron interface.
Author Goldwyn, Joshua H.
Arenberg, Julie G.
Perkel, David J.
Giardina, Christopher K.
Author_xml – sequence: 1
  givenname: David J.
  orcidid: 0000-0002-3142-9614
  surname: Perkel
  fullname: Perkel, David J.
  email: perkel@uw.edu
  organization: Departments of Biology and Otolaryngology, University of Washington
– sequence: 2
  givenname: Christopher K.
  surname: Giardina
  fullname: Giardina, Christopher K.
  organization: Department of Otolaryngology, Head and Neck Surgery and Eaton Peabody Laboratories, Massachusetts Eye and Ear, Harvard Medical School
– sequence: 3
  givenname: Joshua H.
  surname: Goldwyn
  fullname: Goldwyn, Joshua H.
  organization: Department of Mathematics and Statistics, Swarthmore College
– sequence: 4
  givenname: Julie G.
  surname: Arenberg
  fullname: Arenberg, Julie G.
  organization: Department of Otolaryngology, Head and Neck Surgery and Eaton Peabody Laboratories, Massachusetts Eye and Ear, Harvard Medical School
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40048122$$D View this record in MEDLINE/PubMed
BookMark eNp9kbuOFDEQRS20iH3ADxAgSyQkDeVX2xPCzAIjzUKyxJa7XWZ61W0PdnewIX-Oh1keIiByyT73VrnuJTmLKSIhzxm8ZgD6TWHAWt4AVw3ASpuGPSIXTArTaKXF2V_1Obks5Q6AadWunpBzCSAN4_yCfL9JHsfmnSvo6TYGzBh7pCnQ6xH7OddXuhnK7I63Lnr6CZecohvpBmMZ5nsacproDbqy5GqxwbnKhhTp7T5j2afRFzpEuk79fkSX6XY6jC7OdFdNMWIuT8nj4MaCzx7OK_Ll_fXt-mOz-_xhu367a3rB27lxoBXKwLwCRAGdQakc8CC4lkai88IoLnxnpG4lMxo7w8Ap9G3XByGCuCKvTr6HnL4tWGY7DaXHsU6DaSlWMC1lKxTwir78B71LS66fPlIrEIwrISr14oFaugm9PeRhcvne_lpuBfgJ6HMqJWP4jTCwxwTtKUFbE7Q_E7SsisRJVCocv2L-0_s_qh8U3J1_
Cites_doi 10.1063/1.1666591
10.1016/j.heares.2020.108001
10.1109/TBME.2009.2016667
10.3389/fnins.2021.751599
10.1016/j.heares.2021.108413
10.1038/s41598-024-59347-2
10.1097/AUD.0000000000001279
10.1016/j.heares.2021.108235
10.3109/00016488009127108
10.1016/s0378-5955(00)00236-7
10.1121/1.1913642
10.1007/s10162-013-0440-x
10.1080/14670100.2020.1824431
10.1007/s10162-021-00785-4
10.1007/s10162-019-00718-2
10.1121/10.0012825
10.1044/2020_AJA-20-00116
10.1007/s10162-016-0557-9
10.1177/2331216518813811
10.1177/2331216516653389
10.1016/0378-5955(84)90026-1
10.1007/s10162-016-0608-2
10.1016/0378-5955(95)00090-Q
10.1007/s10162-022-00882-y
10.1097/AUD.0000000000001389
10.1109/TBME.2004.836518
10.1121/10.0003387
10.1016/j.heares.2008.03.006
10.1177/23312165211060983
10.1002/9780470719756.ch15
10.1371/journal.pone.0079256
10.1097/MAO.0b013e3182255915
10.1097/AUD.0b013e3182741aa7
10.1016/S0378-5955(00)00104-0
10.1109/TBME.2017.2764881
10.1159/000365273
10.1007/s10162-018-0678-4
10.1016/j.heares.2010.05.005
10.1007/978-1-4612-3256-8_5
10.3390/audiolres11020020
10.1097/AUD.0000000000000844
10.1109/TBME.2011.2173198
10.5152/iao.2020.7510
10.1007/s10162-020-00749-0
10.1016/S0306-4522(98)00330-3
10.1121/1.2749414
10.1007/978-3-030-59520-3_19
10.1121/1.2436712
10.1097/AUD.0000000000000815
ContentType Journal Article
Copyright The Author(s) under exclusive licence to Association for Research in Otolaryngology 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2025. The Author(s) under exclusive licence to Association for Research in Otolaryngology.
Copyright Springer Nature B.V. 2025
Copyright_xml – notice: The Author(s) under exclusive licence to Association for Research in Otolaryngology 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2025. The Author(s) under exclusive licence to Association for Research in Otolaryngology.
– notice: Copyright Springer Nature B.V. 2025
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
K9.
NAPCQ
7X8
DOI 10.1007/s10162-025-00978-1
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
ProQuest Health & Medical Complete (Alumni)

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1438-7573
EndPage 201
ExternalDocumentID 40048122
10_1007_s10162_025_00978_1
Genre Journal Article
GrantInformation_xml – fundername: National Institute on Deafness and Other Communication Disorders
  grantid: R01DC12142; R01DC021606
  funderid: http://dx.doi.org/10.13039/100000055
– fundername: NIDCD NIH HHS
  grantid: R01DC021606
– fundername: NIDCD NIH HHS
  grantid: R01DC12142
– fundername: NIDCD NIH HHS
  grantid: R01 DC012142
– fundername: NIDCD NIH HHS
  grantid: R01 DC021606
GroupedDBID ---
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
1SB
203
29L
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2WC
2~H
30V
36B
4.4
406
408
409
40D
40E
53G
5GY
5VS
67Z
6NX
78A
7RV
7X7
88E
8AO
8FI
8FJ
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDZB
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
AOIJS
ARMRJ
ASPBG
AVWKF
AXYYD
AYFIA
AZFZN
B-.
BA0
BAWUL
BDATZ
BENPR
BGNMA
BKEYQ
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DIK
DL5
DNIVK
DPUIP
E3Z
EBLON
EBS
EIOEI
EJD
EMB
EMOBN
EN4
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GX1
GXS
H13
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HYE
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KPH
LAS
LLZTM
M1P
M4Y
MA-
N2Q
NAPCQ
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9I
O9J
OAM
OK1
P9S
PF-
PHGZT
PQQKQ
PROAC
PSQYO
PT4
Q2X
QOR
QOS
R89
R9I
ROL
RPM
RPX
RRX
RSV
S16
S1Z
S27
S37
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
TR2
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
WOW
YLTOR
Z45
ZMTXR
ZOVNA
AAYXX
ABFSG
ABRTQ
ACSTC
AEZWR
AFHIU
AFOHR
AHWEU
AIXLP
ATHPR
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PHGZM
PJZUB
PPXIY
7TK
K9.
7X8
ID FETCH-LOGICAL-c326t-a075e4f1d50ee30b8e45a02f327484ead38523db84764187eb810a5ed6bcf33f3
IEDL.DBID U2A
ISSN 1438-7573
1525-3961
IngestDate Thu Sep 04 22:49:05 EDT 2025
Sat Aug 16 18:51:20 EDT 2025
Mon Jul 21 05:32:19 EDT 2025
Tue Aug 05 12:02:48 EDT 2025
Tue Apr 15 01:11:30 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Electrode-neuron interface
Electrode configuration
CT imaging
Computational model
Language English
License 2025. The Author(s) under exclusive licence to Association for Research in Otolaryngology.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c326t-a075e4f1d50ee30b8e45a02f327484ead38523db84764187eb810a5ed6bcf33f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3142-9614
PMID 40048122
PQID 3190312533
PQPubID 51534
PageCount 17
ParticipantIDs proquest_miscellaneous_3174463502
proquest_journals_3190312533
pubmed_primary_40048122
crossref_primary_10_1007_s10162_025_00978_1
springer_journals_10_1007_s10162_025_00978_1
PublicationCentury 2000
PublicationDate 2025-04-01
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationSubtitle JARO
PublicationTitle Journal of the Association for Research in Otolaryngology
PublicationTitleAbbrev JARO
PublicationTitleAlternate J Assoc Res Otolaryngol
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References F Rattay (978_CR39) 2013; 8
KN Jahn (978_CR30) 2019; 20
W Badenhorst (978_CR31) 2021; 22
SL Fowler (978_CR4) 2021; 30
F-G Zeng (978_CR1) 2022; 2
FJ Vanpoucke (978_CR46) 2011; 59
RK Kalkman (978_CR37) 2022; 415
D Strelioff (978_CR43) 1973; 54
Y Dong (978_CR8) 2023; 44
978_CR7
S He (978_CR11) 2020; 41
NS Imennov (978_CR19) 2009; 56
A Dhanasingh (978_CR23) 2020; 16
KC Schvartz-Leyzac (978_CR50) 2020; 21
A Peskoff (978_CR24) 1974; 15
JJ Briaire (978_CR18) 2000; 148
BH Bonham (978_CR34) 2008; 242
MC Liberman (978_CR28) 1984; 16
A Heshmat (978_CR36) 2021; 15
978_CR21
KK Sriperumbudur (978_CR32) 2024; 14
L DeVries (978_CR9) 2018; 22
J Skidmore (978_CR12) 2023
S Söderqvist (978_CR33) 2021; 405
LM Litvak (978_CR5) 2007; 122
L DeVries (978_CR29) 2018; 19
VD Tejani (978_CR45) 2021; 22
978_CR27
J Frijns (978_CR42) 1995; 87
CK Giardina (978_CR44) 2017; 65
L DeVries (978_CR35) 2016; 17
F Rattay (978_CR25) 1999; 89
AL Miller (978_CR26) 2001; 152
KN Jahn (978_CR48) 2020; 41
FJ Vanpoucke (978_CR47) 2004; 51
D Ramekers (978_CR49) 2014; 15
Y-S Cheng (978_CR14) 2021; 11
LK Holden (978_CR2) 2013; 34
J Teymouri (978_CR15) 2011; 32
JH Noble (978_CR10) 2014; 19
JA Bierer (978_CR6) 2016; 20
JH Goldwyn (978_CR20) 2010; 268
JM Resnick (978_CR17) 2021; 149
T Potrusil (978_CR22) 2020; 393
KC Schvartz-Leyzac (978_CR13) 2023; 24
SN Joshi (978_CR16) 2017; 18
978_CR41
B Caswell-Midwinter (978_CR3) 2022; 26
JA Bierer (978_CR40) 2007; 121
CY Ota (978_CR38) 1980; 89
References_xml – volume: 15
  start-page: 2112
  issue: 12
  year: 1974
  ident: 978_CR24
  publication-title: J Math Phys
  doi: 10.1063/1.1666591
– volume: 393
  start-page: 108001
  year: 2020
  ident: 978_CR22
  publication-title: Hear Res
  doi: 10.1016/j.heares.2020.108001
– volume: 56
  start-page: 2493
  issue: 10
  year: 2009
  ident: 978_CR19
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2009.2016667
– volume: 15
  start-page: 751599
  year: 2021
  ident: 978_CR36
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2021.751599
– volume: 415
  start-page: 108413
  year: 2022
  ident: 978_CR37
  publication-title: Hear Res
  doi: 10.1016/j.heares.2021.108413
– volume: 14
  start-page: 9593
  issue: 1
  year: 2024
  ident: 978_CR32
  publication-title: Sci Rep
  doi: 10.1038/s41598-024-59347-2
– volume: 44
  start-page: 276
  issue: 2
  year: 2023
  ident: 978_CR8
  publication-title: Ear Hear
  doi: 10.1097/AUD.0000000000001279
– volume: 405
  start-page: 108235
  year: 2021
  ident: 978_CR33
  publication-title: Hear Res
  doi: 10.1016/j.heares.2021.108235
– volume: 89
  start-page: 53
  issue: 1–2
  year: 1980
  ident: 978_CR38
  publication-title: Acta Otolaryngol (Stockh)
  doi: 10.3109/00016488009127108
– volume: 152
  start-page: 55
  issue: 1–2
  year: 2001
  ident: 978_CR26
  publication-title: Hear Res
  doi: 10.1016/s0378-5955(00)00236-7
– ident: 978_CR21
– volume: 54
  start-page: 620
  issue: 3
  year: 1973
  ident: 978_CR43
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.1913642
– volume: 15
  start-page: 187
  year: 2014
  ident: 978_CR49
  publication-title: J Assoc Res Otolaryngol
  doi: 10.1007/s10162-013-0440-x
– volume: 22
  start-page: 68
  issue: 2
  year: 2021
  ident: 978_CR31
  publication-title: Cochlear Implants Int
  doi: 10.1080/14670100.2020.1824431
– volume: 22
  start-page: 161
  year: 2021
  ident: 978_CR45
  publication-title: J Assoc Res Otolaryngol
  doi: 10.1007/s10162-021-00785-4
– volume: 20
  start-page: 415
  issue: 4
  year: 2019
  ident: 978_CR30
  publication-title: J Assoc Res Otolaryngol JARO
  doi: 10.1007/s10162-019-00718-2
– volume: 2
  start-page: 077201
  issue: 7
  year: 2022
  ident: 978_CR1
  publication-title: JASA Express Lett
  doi: 10.1121/10.0012825
– volume: 30
  start-page: 170
  issue: 1
  year: 2021
  ident: 978_CR4
  publication-title: Am J Audiol
  doi: 10.1044/2020_AJA-20-00116
– volume: 17
  start-page: 237
  issue: 3
  year: 2016
  ident: 978_CR35
  publication-title: J Assoc Res Otolaryngol JARO
  doi: 10.1007/s10162-016-0557-9
– volume: 22
  start-page: 233121651881381
  year: 2018
  ident: 978_CR9
  publication-title: Trends Hear
  doi: 10.1177/2331216518813811
– volume: 20
  start-page: 233121651665338
  year: 2016
  ident: 978_CR6
  publication-title: Trends Hear
  doi: 10.1177/2331216516653389
– volume: 16
  start-page: 75
  issue: 1
  year: 1984
  ident: 978_CR28
  publication-title: Hear Res
  doi: 10.1016/0378-5955(84)90026-1
– volume: 18
  start-page: 323
  year: 2017
  ident: 978_CR16
  publication-title: J Assoc Res Otolaryngol
  doi: 10.1007/s10162-016-0608-2
– volume: 87
  start-page: 170
  issue: 1–2
  year: 1995
  ident: 978_CR42
  publication-title: Hear Res
  doi: 10.1016/0378-5955(95)00090-Q
– volume: 24
  start-page: 5
  issue: 1
  year: 2023
  ident: 978_CR13
  publication-title: J Assoc Res Otolaryngol JARO
  doi: 10.1007/s10162-022-00882-y
– year: 2023
  ident: 978_CR12
  publication-title: Ear Hear
  doi: 10.1097/AUD.0000000000001389
– volume: 51
  start-page: 2174
  issue: 12
  year: 2004
  ident: 978_CR47
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2004.836518
– volume: 149
  start-page: 934
  issue: 2
  year: 2021
  ident: 978_CR17
  publication-title: J Acoust Soc Am
  doi: 10.1121/10.0003387
– volume: 242
  start-page: 141
  issue: 1–2
  year: 2008
  ident: 978_CR34
  publication-title: Hear Res
  doi: 10.1016/j.heares.2008.03.006
– volume: 26
  start-page: 233121652110609
  year: 2022
  ident: 978_CR3
  publication-title: Trends Hear
  doi: 10.1177/23312165211060983
– ident: 978_CR27
  doi: 10.1002/9780470719756.ch15
– volume: 8
  start-page: e79256
  issue: 11
  year: 2013
  ident: 978_CR39
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0079256
– volume: 32
  start-page: 980
  issue: 6
  year: 2011
  ident: 978_CR15
  publication-title: Otol Neurotol Off Publ Am Otol Soc Am Neurotol Soc Eur Acad Otol Neurotol
  doi: 10.1097/MAO.0b013e3182255915
– volume: 34
  start-page: 342
  issue: 3
  year: 2013
  ident: 978_CR2
  publication-title: Ear Hear
  doi: 10.1097/AUD.0b013e3182741aa7
– volume: 148
  start-page: 18
  issue: 1–2
  year: 2000
  ident: 978_CR18
  publication-title: Hear Res
  doi: 10.1016/S0378-5955(00)00104-0
– volume: 65
  start-page: 327
  issue: 2
  year: 2017
  ident: 978_CR44
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2017.2764881
– volume: 19
  start-page: 400
  issue: 6
  year: 2014
  ident: 978_CR10
  publication-title: Audiol Neurootol
  doi: 10.1159/000365273
– volume: 19
  start-page: 571
  issue: 5
  year: 2018
  ident: 978_CR29
  publication-title: J Assoc Res Otolaryngol JARO
  doi: 10.1007/s10162-018-0678-4
– volume: 268
  start-page: 93
  issue: 1–2
  year: 2010
  ident: 978_CR20
  publication-title: Hear Res
  doi: 10.1016/j.heares.2010.05.005
– ident: 978_CR41
  doi: 10.1007/978-1-4612-3256-8_5
– volume: 11
  start-page: 220
  issue: 2
  year: 2021
  ident: 978_CR14
  publication-title: Audiol Res
  doi: 10.3390/audiolres11020020
– volume: 41
  start-page: 961
  issue: 4
  year: 2020
  ident: 978_CR48
  publication-title: Ear Hear
  doi: 10.1097/AUD.0000000000000844
– volume: 59
  start-page: 307
  issue: 2
  year: 2011
  ident: 978_CR46
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2011.2173198
– volume: 16
  start-page: 104
  issue: 1
  year: 2020
  ident: 978_CR23
  publication-title: J Int Adv Otol
  doi: 10.5152/iao.2020.7510
– volume: 21
  start-page: 259
  year: 2020
  ident: 978_CR50
  publication-title: J Assoc Res Otolaryngol
  doi: 10.1007/s10162-020-00749-0
– volume: 89
  start-page: 335
  issue: 2
  year: 1999
  ident: 978_CR25
  publication-title: Neuroscience
  doi: 10.1016/S0306-4522(98)00330-3
– volume: 122
  start-page: 967
  issue: 2
  year: 2007
  ident: 978_CR5
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.2749414
– ident: 978_CR7
  doi: 10.1007/978-3-030-59520-3_19
– volume: 121
  start-page: 1642
  issue: 3
  year: 2007
  ident: 978_CR40
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.2436712
– volume: 41
  start-page: 918
  issue: 4
  year: 2020
  ident: 978_CR11
  publication-title: Ear Hear
  doi: 10.1097/AUD.0000000000000815
SSID ssj0017569
Score 2.3981566
Snippet Purpose Cochlear implants (CI) are a highly successful neural prosthesis that can restore hearing in individuals with sensorineural hearing loss. However, the...
Cochlear implants (CI) are a highly successful neural prosthesis that can restore hearing in individuals with sensorineural hearing loss. However, the extent...
PurposeCochlear implants (CI) are a highly successful neural prosthesis that can restore hearing in individuals with sensorineural hearing loss. However, the...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 185
SubjectTerms Adult
Aged
Auditory Threshold
Cochlea
Cochlear Implants
Electrodes
Female
Hearing loss
Humans
Male
Medicine
Medicine & Public Health
Middle Aged
Neurobiology
Neurons - physiology
Neurosciences
Original Article
Otorhinolaryngology
Spiral Ganglion
Temporal bone
Transplants & implants
Subtitle Model-Based Inference of Electrode Distance and Neuronal Density from Measured Detection Thresholds in Cochlear Implant Listeners
Title Model-Based Inference of Electrode Distance and Neuronal Density from Measured Detection Thresholds in Cochlear Implant Listeners
URI https://link.springer.com/article/10.1007/s10162-025-00978-1
https://www.ncbi.nlm.nih.gov/pubmed/40048122
https://www.proquest.com/docview/3190312533
https://www.proquest.com/docview/3174463502
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB61IFW9oJY-2JauXIkbWIpfeRy3sDxatidW2p4iO3bUSiiL2HDg2H_eGSdZQJQDVztxonzjmc-ZF8CeESqz2uW8rkTgOkjF82A1FyRNhUOCG4skzX6mp3P9fWEWfVLYaoh2H1ySUVPfS3YTqeTUfjUmH3A882waPLvTdpzLydp3kJm06NNj_n_fQxP0iFc-8olGU3P8BrZ6jsgmHahv4UVotuHVrPeCv4O_1MDskn9DA-TZ2ZCxx5Y1m3ZNbXxgR8QLadQ2nsUKHLTkEYWrt7eMkkrYrPs96HG0jQFZDbtAZFfkkFqxPw07XFa_qasEoxLCiAA7J5lokDC-h_nx9OLwlPetFHiF_KzlFplB0LXwJglBJS4P2thE1kpSLVGUJpXjidQ7tFWpFnkWXC4Sa4JPXVUrVasPsNEsm7ADLNO1E1XipXVBu6IuHHI-Z71N08Joq0awP3zd8qqrmFHe1UYmLErEooxYlGIEuwMAZb97ViWqBdQ1EpnoCL6up1HuyZlhm7C8oWsyPMkqk8gRfOyAWz8u6iUhceZgQPJu8aff5dPzLv8Mr2WUKgrj2YWN9vomfEGG0roxbE5Ofv2YjuHlyUKMo3j-A1sL4HU
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYQSMCCeFMoYCQ2sBQ_8hp5VQVaplZii-zYEUgoRTQMjPxz7pykgICB1XacKN_l7nPuRchxyGWslUlYkXPHlBOSJU4rxlGaUgME1xdJGt5F_bG6uQ_vm6SwaRvt3rokvab-kuzGI8Gw_apPPmBw5lkAMpBg34KxOJv5DuIwSpv0mN-v-26CfvDKHz5Rb2p6q2Sl4Yj0rAZ1jcy5cp0sDhsv-AZ5xwZmT-wcDJCl123GHp0U9KpuamMdvUReiKO6tNRX4MAtLzFcvXqjmFRCh_XvQQujlQ_IKukIkJ2iQ2pKH0t6MckfsKsExRLCgAAdoEyUQBg3ybh3Nbros6aVAsuBn1VMAzNwquA2DJyTgUmcCnUgCimwlihIk0zgRGoN2KpI8SR2JuGBDp2NTF5IWcgtMl9OSrdDaKwKw_PACm2cMmmRGuB8RlsdRWmotOyQk_btZs91xYzsszYyYpEBFpnHIuMd0m0ByJqvZ5qBWgBdI4CJdsjRbBrkHp0ZunSTV1wTw0lWhoHokO0auNntvF7iAmZOWyQ_N__7WXb_t_yQLPVHw0E2uL673SPLwksYhvR0yXz18ur2ga1U5sAL5wfFEODj
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYQSKiXqhRotyytkbi1FvEjr-PCsuK1iAMrcYvs2BZIyIvYcOix_5wZJ1mooIde7cSJ8o1nPmdehOynXOZamYL5mjumnJCscFoxjtJUGiC4sUjS9DI7mamzm_TmVRZ_jHbvXZJtTgNWaQrNwYP1B68S33gmGLZijYkIDM4_a6COOUr6TIyWfoQ8zcouVeb9-_42R2845hv_aDQ7k0_kY8cX6agFeIOsuPCZrE87j_gm-YPNzO7ZIRgjS0_77D069_S4bXBjHR0jR8RRHSyN1ThwyTGGrje_KSaY0Gn7q9DCaBODswK9BpQX6Jxa0LtAj-b1LXaYoFhOGNCgFygfAcjjFplNjq-PTljXVoHVwNUapoElOOW5TRPnZGIKp1KdCC8F1hUFyZIFnE6tAbuVKV7kzhQ80amzmam9lF5uk9UwD-4robnyhteJFdo4ZUpfGuB_RludZWWqtByQn_3XrR7a6hnVS51kxKICLKqIRcUHZNgDUHU7aVGBigC9I4CVDsjechr2ADo2dHDzJ7wmh1OtTBMxIF9a4JaPizqKC5j51SP5svi_3-Xb_13-g6xfjSfVxenl-Q75IKKAYXTPkKw2j09uF4hLY75H2XwGu63lHw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model-Based+Inference+of+Electrode+Distance+and+Neuronal+Density+from+Measured+Detection+Thresholds+in+Cochlear+Implant+Listeners&rft.jtitle=Journal+of+the+Association+for+Research+in+Otolaryngology&rft.au=Perkel%2C+David+J&rft.au=Giardina%2C+Christopher+K&rft.au=Goldwyn%2C+Joshua+H&rft.au=Arenberg%2C+Julie+G&rft.date=2025-04-01&rft.eissn=1438-7573&rft.volume=26&rft.issue=2&rft.spage=185&rft_id=info:doi/10.1007%2Fs10162-025-00978-1&rft_id=info%3Apmid%2F40048122&rft.externalDocID=40048122
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1438-7573&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1438-7573&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1438-7573&client=summon