Cubature Kalman Filter Under Minimum Error Entropy With Fiducial Points for INS/GPS Integration

Traditional cubature Kalman filter (CKF) is a preferable tool for the inertial navigation system (INS)/global positioning system (GPS) integration under Gaussian noises. The CKF, however, may provide a significantly biased estimate when the INS/GPS system suffers from complex non-Gaussian disturbanc...

Full description

Saved in:
Bibliographic Details
Published inIEEE/CAA journal of automatica sinica Vol. 9; no. 3; pp. 450 - 465
Main Authors Dang, Lujuan, Chen, Badong, Huang, Yulong, Zhang, Yonggang, Zhao, Haiquan
Format Journal Article
LanguageEnglish
Published Piscataway Chinese Association of Automation (CAA) 01.03.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Artificial Intelligence and Robotics,Xi'an Jiaotong University,Xi'an 710049,China%Department of Automation,Harbin Engineering University,Harbin 150001,China%School of Electrical Engineering,Southwest Jiao-tong University,Chengdu 610000,China
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Traditional cubature Kalman filter (CKF) is a preferable tool for the inertial navigation system (INS)/global positioning system (GPS) integration under Gaussian noises. The CKF, however, may provide a significantly biased estimate when the INS/GPS system suffers from complex non-Gaussian disturbances. To address this issue, a robust nonlinear Kalman filter referred to as cubature Kalman filter under minimum error entropy with fiducial points (MEEF-CKF) is proposed. The MEEF-CKF behaves a strong robustness against complex non-Gaussian noises by operating several major steps, i.e., regression model construction, robust state estimation and free parameters optimization. More concretely, a regression model is constructed with the consideration of residual error caused by linearizing a nonlinear function at the first step. The MEEF-CKF is then developed by solving an optimization problem based on minimum error entropy with fiducial points (MEEF) under the framework of the regression model. In the MEEF-CKF, a novel optimization approach is provided for the purpose of determining free parameters adaptively. In addition, the computational complexity and convergence analyses of the MEEF-CKF are conducted for demonstrating the calculational burden and convergence characteristic. The enhanced robustness of the MEEF-CKF is demonstrated by Monte Carlo simulations on the application of a target tracking with INS/GPS integration under complex non-Gaussian noises.
AbstractList Traditional cubature Kalman filter (CKF) is a preferable tool for the inertial navigation system (INS)/global positioning system (GPS) integration under Gaussian noises. The CKF, however, may provide a significantly biased estimate when the INS/GPS system suffers from complex non-Gaussian disturbances. To address this issue, a robust nonlinear Kalman filter referred to as cubature Kalman filter under minimum error entropy with fiducial points (MEEF-CKF) is proposed. The MEEF-CKF behaves a strong robustness against complex non-Gaussian noises by operating several major steps, i.e., regression model construction, robust state estimation and free parameters optimization. More concretely, a regression model is constructed with the consideration of residual error caused by linearizing a nonlinear function at the first step. The MEEF-CKF is then developed by solving an optimization problem based on minimum error entropy with fiducial points (MEEF) under the framework of the regression model. In the MEEF-CKF, a novel optimization approach is provided for the purpose of determining free parameters adaptively. In addition, the computational complexity and convergence analyses of the MEEF-CKF are conducted for demonstrating the calculational burden and convergence characteristic. The enhanced robustness of the MEEF-CKF is demonstrated by Monte Carlo simulations on the application of a target tracking with INS/GPS integration under complex non-Gaussian noises.
Author Zhang, Yonggang
Chen, Badong
Dang, Lujuan
Zhao, Haiquan
Huang, Yulong
AuthorAffiliation Institute of Artificial Intelligence and Robotics,Xi'an Jiaotong University,Xi'an 710049,China%Department of Automation,Harbin Engineering University,Harbin 150001,China%School of Electrical Engineering,Southwest Jiao-tong University,Chengdu 610000,China
AuthorAffiliation_xml – name: Institute of Artificial Intelligence and Robotics,Xi'an Jiaotong University,Xi'an 710049,China%Department of Automation,Harbin Engineering University,Harbin 150001,China%School of Electrical Engineering,Southwest Jiao-tong University,Chengdu 610000,China
Author_xml – sequence: 1
  givenname: Lujuan
  surname: Dang
  fullname: Dang, Lujuan
  email: danglj@stu.xjtu.edu.cn
  organization: Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University,Xi'an,China,710049
– sequence: 2
  givenname: Badong
  surname: Chen
  fullname: Chen, Badong
  email: chenbd@mail.xjtu.edu.cn
  organization: Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University,Xi'an,China,710049
– sequence: 3
  givenname: Yulong
  surname: Huang
  fullname: Huang, Yulong
  email: heuedu@163.com
  organization: Harbin Engineering University,Department of Automation,Harbin,China,150001
– sequence: 4
  givenname: Yonggang
  surname: Zhang
  fullname: Zhang, Yonggang
  email: zhangyg@hrbeu.edu.cn
  organization: Harbin Engineering University,Department of Automation,Harbin,China,150001
– sequence: 5
  givenname: Haiquan
  surname: Zhao
  fullname: Zhao, Haiquan
  email: hqzhao_swjtu@126.com
  organization: School of Electrical Engineering, Southwest Jiaotong University,Chengdu,China,610000
BookMark eNpFkMtLAzEQh4Mo-LwLXgLehNa8szlKaWt9QxWPIZvNakqbrdkstf71plTqZWYYvt8MfMdgPzTBAXCOUR9jpK7vbqZ9ggjuY4QY5WgPHBFKVE8RyfZ3sxCH4KxtZwghTLgUih0BPehKk7ro4L2ZL0yAIz9PLsK3UOX66INfdAs4jLGJcBhSbJZr-O7TZ-aqznozhy-ND6mFdQYmT9Pr8csUTkJyH9Ek34RTcFCbeevO_voJeBsNXwe3vYfn8WRw89CzlIjUKxghorCYiNJwRbkgdLMyBZfWUsktMqKUlUKcccMra2pXsNJWUinFpCroCbja3l2ZUJvwoWdNF0P-qH-qz-9Sr1dlFkQQRYhn-HILL2Pz1bk2_dNEYI4FZ0xmCm0pG5u2ja7Wy-gXJq41RnqjXWfteqNd_2nPkYttxDvndrgSTGAp6C_-pH1b
CODEN IJASJC
CitedBy_id crossref_primary_10_1109_JSEN_2023_3317915
crossref_primary_10_1109_TVT_2022_3182017
crossref_primary_10_1109_TIV_2024_3375273
crossref_primary_10_3390_electronics13010114
crossref_primary_10_1016_j_measurement_2023_113339
crossref_primary_10_1109_TAES_2023_3312057
crossref_primary_10_1016_j_neucom_2024_127634
crossref_primary_10_3390_app14093952
crossref_primary_10_1186_s43020_022_00091_1
crossref_primary_10_1007_s00371_022_02756_z
crossref_primary_10_1016_j_sigpro_2023_109271
crossref_primary_10_1109_TIM_2022_3157005
crossref_primary_10_3390_s22041605
crossref_primary_10_1109_TIM_2023_3346502
crossref_primary_10_1109_TSMC_2022_3161412
crossref_primary_10_1088_1742_6596_2258_1_012077
crossref_primary_10_3390_e24040516
crossref_primary_10_1016_j_isatra_2024_04_008
crossref_primary_10_1109_TIM_2023_3293566
Cites_doi 10.1016/j.automatica.2016.10.004
10.1109/TAES.2013.6558019
10.1109/IJCNN.2009.5178823
10.1109/TAES.2009.4805268
10.1109/JSTARS.2013.2260135
10.1109/ACCESS.2017.2726519
10.1177/0954410014548698
10.1109/TAES.2018.2849179
10.1016/j.sigpro.2015.07.014
10.1109/ACCESS.2018.2880618
10.1109/JAS.2017.7510445
10.1109/TAC.2009.2019800
10.3390/s18061919
10.1109/TSP.2011.2129516
10.23919/ICIF.2017.8009741
10.1109/JSTSP.2018.2827261
10.1109/LSP.2015.2428713
10.1109/TCYB.2021.3110732
10.1109/TSMC.2019.2957269
10.1109/TAC.1972.1100034
10.1109/TMECH.2018.2835486
10.2514/6.2011-6488
10.1109/TSP.2017.2679685
10.1002/0470099720
10.1109/JAS.2020.1003303
10.1016/j.isatra.2018.05.001
10.1007/978-1-4419-1570-2
10.1002/j.2161-4296.2006.tb00368.x
10.1109/TNNLS.2016.2636160
10.1109/MLSP.2006.275544
10.1016/j.isatra.2016.09.010
10.1016/j.measurement.2013.07.016
10.1049/PBRA017E
10.1109/59.801932
10.1109/78.978374
10.1109/JSEN.2013.2291683
10.1109/TSP.2002.1011217
10.1117/12.280797
10.1214/aos/1032181171
10.1016/j.isatra.2017.09.019
10.1109/JSEN.2014.2384492
10.3390/e17085549
10.1109/TAES.2016.130824
10.1109/ACCESS.2017.2700428
10.1109/TAES.2014.130204
10.1109/LSP.2019.2925692
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1109/JAS.2021.1004350
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database


Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2329-9274
EndPage 465
ExternalDocumentID zdhxb_ywb202203005
10_1109_JAS_2021_1004350
9646176
Genre orig-research
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  grantid: xzy022020045
  funderid: 10.13039/501100012226
– fundername: National Natural Science Foundation of China
  grantid: 61976175
  funderid: 10.13039/501100001809
GroupedDBID -0I
-0Y
-SI
-S~
0R~
4.4
5VR
6IK
92M
97E
9D9
9DI
AAJGR
AASAJ
AAXDM
ABQJQ
ABVLG
ACIWK
AFUIB
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CAJEI
CAJUS
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
Q--
R-I
RIA
RIE
RIG
RT9
T8Y
TCJ
TGT
U1F
U1G
U5I
U5S
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
2B.
4A8
92I
93N
PSX
ID FETCH-LOGICAL-c326t-842268c126ba59356238422a857cc375c0a6b7d90545a5dcafe84bcd799947983
IEDL.DBID RIE
ISSN 2329-9266
IngestDate Tue Feb 13 23:45:50 EST 2024
Thu Oct 10 18:46:37 EDT 2024
Fri Aug 23 02:12:30 EDT 2024
Wed Jun 26 19:25:44 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords minimum error entropy with fiducial points (MEEF)
Cubature Kalman filter (CKF)
non-Gaussian noise
inertial navigation system (INS)/global positioning system (GPS) integration
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c326t-842268c126ba59356238422a857cc375c0a6b7d90545a5dcafe84bcd799947983
PQID 2615165447
PQPubID 2040495
PageCount 16
ParticipantIDs wanfang_journals_zdhxb_ywb202203005
ieee_primary_9646176
proquest_journals_2615165447
crossref_primary_10_1109_JAS_2021_1004350
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE/CAA journal of automatica sinica
PublicationTitleAbbrev JAS
PublicationTitle_FL IEEE/CAA Journal of Automatica Sinica
PublicationYear 2022
Publisher Chinese Association of Automation (CAA)
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Artificial Intelligence and Robotics,Xi'an Jiaotong University,Xi'an 710049,China%Department of Automation,Harbin Engineering University,Harbin 150001,China%School of Electrical Engineering,Southwest Jiao-tong University,Chengdu 610000,China
Publisher_xml – name: Chinese Association of Automation (CAA)
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
– name: Institute of Artificial Intelligence and Robotics,Xi'an Jiaotong University,Xi'an 710049,China%Department of Automation,Harbin Engineering University,Harbin 150001,China%School of Electrical Engineering,Southwest Jiao-tong University,Chengdu 610000,China
References ref13
ref12
ref15
ref14
ref10
ref17
ref16
ref19
ref18
ref51
ref50
wang (ref42) 2017
ref46
ref45
ref48
ref47
ref41
ref44
ref43
ref49
ref8
parkinson (ref1) 2008
ref7
ref9
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref30
ref33
ref32
sun (ref31) 2011; 33
ref2
ref39
ref38
kim (ref11) 2009; 45
ref24
ref23
ref26
chien-hao (ref36) 2016; 229
ref25
groves (ref4) 1996
ref20
ref22
ref21
ref28
ref27
ref29
ristic (ref52) 2003
References_xml – ident: ref40
  doi: 10.1016/j.automatica.2016.10.004
– ident: ref12
  doi: 10.1109/TAES.2013.6558019
– ident: ref38
  doi: 10.1109/IJCNN.2009.5178823
– volume: 45
  start-page: 125
  year: 2009
  ident: ref11
  article-title: Adaptive two-stage extended Kalman filter for a fault-tolerant INS/GPS loosely coupled system
  publication-title: IEEE Trans Aerosp Electron Syst
  doi: 10.1109/TAES.2009.4805268
  contributor:
    fullname: kim
– ident: ref49
  doi: 10.1109/JSTARS.2013.2260135
– ident: ref28
  doi: 10.1109/ACCESS.2017.2726519
– ident: ref37
  doi: 10.1177/0954410014548698
– ident: ref21
  doi: 10.1109/TAES.2018.2849179
– year: 2008
  ident: ref1
  publication-title: Global Positioning System Theory and Applications
  contributor:
    fullname: parkinson
– ident: ref18
  doi: 10.1016/j.sigpro.2015.07.014
– ident: ref41
  doi: 10.1109/ACCESS.2018.2880618
– volume: 33
  start-page: 2554
  year: 2011
  ident: ref31
  article-title: Cubature particle filter
  publication-title: Syst Eng Electron
  contributor:
    fullname: sun
– ident: ref6
  doi: 10.1109/JAS.2017.7510445
– ident: ref16
  doi: 10.1109/TAC.2009.2019800
– ident: ref22
  doi: 10.3390/s18061919
– ident: ref35
  doi: 10.1109/TSP.2011.2129516
– ident: ref29
  doi: 10.23919/ICIF.2017.8009741
– ident: ref48
  doi: 10.1109/JSTSP.2018.2827261
– ident: ref39
  doi: 10.1109/LSP.2015.2428713
– ident: ref51
  doi: 10.1109/TCYB.2021.3110732
– ident: ref46
  doi: 10.1109/TSMC.2019.2957269
– ident: ref27
  doi: 10.1109/TAC.1972.1100034
– volume: 229
  start-page: 527
  year: 2016
  ident: ref36
  article-title: Robust Huber-based cubature Kalman filter for GPS navigation processing
  publication-title: J Navigat
  contributor:
    fullname: chien-hao
– ident: ref7
  doi: 10.1109/TMECH.2018.2835486
– ident: ref14
  doi: 10.2514/6.2011-6488
– ident: ref17
  doi: 10.1109/TSP.2017.2679685
– ident: ref5
  doi: 10.1002/0470099720
– ident: ref9
  doi: 10.1109/JAS.2020.1003303
– ident: ref25
  doi: 10.1016/j.isatra.2018.05.001
– ident: ref26
  doi: 10.1007/978-1-4419-1570-2
– ident: ref13
  doi: 10.1002/j.2161-4296.2006.tb00368.x
– ident: ref43
  doi: 10.1109/TNNLS.2016.2636160
– ident: ref47
  doi: 10.1109/MLSP.2006.275544
– ident: ref19
  doi: 10.1016/j.isatra.2016.09.010
– ident: ref23
  doi: 10.1016/j.measurement.2013.07.016
– ident: ref3
  doi: 10.1049/PBRA017E
– year: 2003
  ident: ref52
  publication-title: Beyond the Kalman Filter Particle Filters for Tracking Applications
  contributor:
    fullname: ristic
– ident: ref33
  doi: 10.1109/59.801932
– ident: ref24
  doi: 10.1109/78.978374
– ident: ref8
  doi: 10.1109/JSEN.2013.2291683
– year: 2017
  ident: ref42
  publication-title: Maximum correntropy cubature Kalman filter based on statistical linear regression
  contributor:
    fullname: wang
– year: 1996
  ident: ref4
  publication-title: Principles of GNSS Inertial and Multisensor Integrated Navigation Systems
  contributor:
    fullname: groves
– ident: ref44
  doi: 10.1109/TSP.2002.1011217
– ident: ref10
  doi: 10.1117/12.280797
– ident: ref34
  doi: 10.1214/aos/1032181171
– ident: ref32
  doi: 10.1016/j.isatra.2017.09.019
– ident: ref15
  doi: 10.1109/JSEN.2014.2384492
– ident: ref45
  doi: 10.3390/e17085549
– ident: ref2
  doi: 10.1109/TAES.2016.130824
– ident: ref30
  doi: 10.1109/ACCESS.2017.2700428
– ident: ref20
  doi: 10.1109/TAES.2014.130204
– ident: ref50
  doi: 10.1109/LSP.2019.2925692
SSID ssj0001257694
Score 2.370528
Snippet Traditional cubature Kalman filter (CKF) is a preferable tool for the inertial navigation system (INS)/global positioning system (GPS) integration under...
SourceID wanfang
proquest
crossref
ieee
SourceType Aggregation Database
Publisher
StartPage 450
SubjectTerms Complexity
Computational complexity
Convergence
Cubature Kalman filter (CKF)
Entropy
Errors
Global positioning systems
GPS
Inertial navigation
inertial navigation system (INS)/global positioning system (GPS) integration
Kalman filters
minimum error entropy with fiducial points (MEEF)
Navigation systems
non-Gaussian noise
Optimization
Parameters
Regression models
Robustness
Robustness (mathematics)
Satellite navigation systems
State estimation
Target tracking
Tracking
Title Cubature Kalman Filter Under Minimum Error Entropy With Fiducial Points for INS/GPS Integration
URI https://ieeexplore.ieee.org/document/9646176
https://www.proquest.com/docview/2615165447
https://d.wanfangdata.com.cn/periodical/zdhxb-ywb202203005
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9RAFD60BUEfvFVxtcqAvghmN9nMJDOPpezaVrYU1mLfhjOX2KCbLduE2v565yTZuhUffAvJEJL5ZjjfnMt3AD6gFSidxSjnzkfcYhr2XBxHCSa8cIbUdMjfMTvJDs_48bk434JPd7Uw3vs2-cwP6bKN5bulbchVNlIZDwY324btXKmuVmvDnxKYc9v3MHAEFalgeNZRyViNjvfn4Sw4TigpIBCE-J4Vatuq3GOYD66xKrD6vmFqpk9gtv7ILsPkx7CpzdDe_qXf-L9_8RQe95yT7XeL5Bls-eo5PNpQItwFfdCYVuKTfcGfC6zYtKQwOmvbIrFZWZWLZsEmq9VyxSaU3H55w76V9UUY5xryurPTZVnVVyxwYHZ0Mh99Pp2zo16KIkD_As6mk68Hh1HfeyGygdDVkaQKW2mTcWZQqJRYEt1CKXJr01zYGDOTOxUYn0ARwC685Ma6AIziuZLpS9iplpV_BcwKV-TGSF8kyL1wKLHgBk3qjYytyQbwcY2FvuwkNnR7NImVDrhpwk33uA1glyb0blw_lwPYW4On-z14pcdE1jLBeT6A9z2gf57euotfRt9cmzHVGpNo_-t_v_sNPKQhXd7ZHuzUq8a_DUSkNu_aFfgbncnZ8w
link.rule.ids 315,783,787,799,27938,27939,55088
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dT9swFL1iILTtAcbYtA7YLMHLpKVNGjtxHhFqaYFWSAWNN8tfGdHWFJVEDH49vkkKZdrD3qLEihIfW_f4fpwLcCA1k9xo6cXUWI9qGbo95_teIAOaGoVqOujvGI2jwSU9uWJXK_D9qRbGWlsln9k2XlaxfDPTJbrKOklEncGNXsEaQ15RV2steVQcd646HzqWkHiJMz2LuKSfdE4OJ-402A0wLcBRBP-FHaoaq7zgmOt3Mk9l_nPJ2PQ3YbT4zDrH5Fe7LFRbP_yl4Pi___EONhrWSQ7rZbIFKzZ_D2-XtAi3QRyVqhL5JKfy91TmpJ9hIJ1UjZHIKMuzaTklvfl8Nic9TG-_uSc_suLajTMl-t3J-SzLi1viWDAZjied4_MJGTZiFA78D3DZ710cDbym-4KnHaUrPI41tlwH3UhJloTIk_CW5CzWOoyZ9mWkYpM4zsckc3CnllOlTewoJ40THn6E1XyW209ANDNprBS3aSCpZUZymVIlVWgV97WKWvBtgYW4qUU2RHU48RPhcBOIm2hwa8E2TujTuGYuW7C7AE80u_BWdJGuRYzSuAX7DaDPTx_M9R8l7u9UF6uNUbb_87_f_RVeDy5GZ-JsOD7dgTc4vM5C24XVYl7aPUdLCvWlWo2PMKTdQA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cubature+Kalman+Filter+Under+Minimum+Error+Entropy+With+Fiducial+Points+for+INS%2FGPS+Integration&rft.jtitle=%E8%87%AA%E5%8A%A8%E5%8C%96%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=Lujuan+Dang&rft.au=Badong+Chen&rft.au=Yulong+Huang&rft.au=Yonggang+Zhang&rft.date=2022-03-01&rft.pub=Institute+of+Artificial+Intelligence+and+Robotics%2CXi%27an+Jiaotong+University%2CXi%27an+710049%2CChina%25Department+of+Automation%2CHarbin+Engineering+University%2CHarbin+150001%2CChina%25School+of+Electrical+Engineering%2CSouthwest+Jiao-tong+University%2CChengdu+610000%2CChina&rft.issn=2329-9266&rft.eissn=2329-9274&rft.volume=9&rft.issue=3&rft.spage=450&rft.epage=465&rft_id=info:doi/10.1109%2FJAS.2021.1004350&rft.externalDocID=zdhxb_ywb202203005
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzdhxb-ywb%2Fzdhxb-ywb.jpg