Cubature Kalman Filter Under Minimum Error Entropy With Fiducial Points for INS/GPS Integration
Traditional cubature Kalman filter (CKF) is a preferable tool for the inertial navigation system (INS)/global positioning system (GPS) integration under Gaussian noises. The CKF, however, may provide a significantly biased estimate when the INS/GPS system suffers from complex non-Gaussian disturbanc...
Saved in:
Published in | IEEE/CAA journal of automatica sinica Vol. 9; no. 3; pp. 450 - 465 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
Chinese Association of Automation (CAA)
01.03.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Artificial Intelligence and Robotics,Xi'an Jiaotong University,Xi'an 710049,China%Department of Automation,Harbin Engineering University,Harbin 150001,China%School of Electrical Engineering,Southwest Jiao-tong University,Chengdu 610000,China |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Traditional cubature Kalman filter (CKF) is a preferable tool for the inertial navigation system (INS)/global positioning system (GPS) integration under Gaussian noises. The CKF, however, may provide a significantly biased estimate when the INS/GPS system suffers from complex non-Gaussian disturbances. To address this issue, a robust nonlinear Kalman filter referred to as cubature Kalman filter under minimum error entropy with fiducial points (MEEF-CKF) is proposed. The MEEF-CKF behaves a strong robustness against complex non-Gaussian noises by operating several major steps, i.e., regression model construction, robust state estimation and free parameters optimization. More concretely, a regression model is constructed with the consideration of residual error caused by linearizing a nonlinear function at the first step. The MEEF-CKF is then developed by solving an optimization problem based on minimum error entropy with fiducial points (MEEF) under the framework of the regression model. In the MEEF-CKF, a novel optimization approach is provided for the purpose of determining free parameters adaptively. In addition, the computational complexity and convergence analyses of the MEEF-CKF are conducted for demonstrating the calculational burden and convergence characteristic. The enhanced robustness of the MEEF-CKF is demonstrated by Monte Carlo simulations on the application of a target tracking with INS/GPS integration under complex non-Gaussian noises. |
---|---|
AbstractList | Traditional cubature Kalman filter (CKF) is a preferable tool for the inertial navigation system (INS)/global positioning system (GPS) integration under Gaussian noises. The CKF, however, may provide a significantly biased estimate when the INS/GPS system suffers from complex non-Gaussian disturbances. To address this issue, a robust nonlinear Kalman filter referred to as cubature Kalman filter under minimum error entropy with fiducial points (MEEF-CKF) is proposed. The MEEF-CKF behaves a strong robustness against complex non-Gaussian noises by operating several major steps, i.e., regression model construction, robust state estimation and free parameters optimization. More concretely, a regression model is constructed with the consideration of residual error caused by linearizing a nonlinear function at the first step. The MEEF-CKF is then developed by solving an optimization problem based on minimum error entropy with fiducial points (MEEF) under the framework of the regression model. In the MEEF-CKF, a novel optimization approach is provided for the purpose of determining free parameters adaptively. In addition, the computational complexity and convergence analyses of the MEEF-CKF are conducted for demonstrating the calculational burden and convergence characteristic. The enhanced robustness of the MEEF-CKF is demonstrated by Monte Carlo simulations on the application of a target tracking with INS/GPS integration under complex non-Gaussian noises. |
Author | Zhang, Yonggang Chen, Badong Dang, Lujuan Zhao, Haiquan Huang, Yulong |
AuthorAffiliation | Institute of Artificial Intelligence and Robotics,Xi'an Jiaotong University,Xi'an 710049,China%Department of Automation,Harbin Engineering University,Harbin 150001,China%School of Electrical Engineering,Southwest Jiao-tong University,Chengdu 610000,China |
AuthorAffiliation_xml | – name: Institute of Artificial Intelligence and Robotics,Xi'an Jiaotong University,Xi'an 710049,China%Department of Automation,Harbin Engineering University,Harbin 150001,China%School of Electrical Engineering,Southwest Jiao-tong University,Chengdu 610000,China |
Author_xml | – sequence: 1 givenname: Lujuan surname: Dang fullname: Dang, Lujuan email: danglj@stu.xjtu.edu.cn organization: Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University,Xi'an,China,710049 – sequence: 2 givenname: Badong surname: Chen fullname: Chen, Badong email: chenbd@mail.xjtu.edu.cn organization: Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University,Xi'an,China,710049 – sequence: 3 givenname: Yulong surname: Huang fullname: Huang, Yulong email: heuedu@163.com organization: Harbin Engineering University,Department of Automation,Harbin,China,150001 – sequence: 4 givenname: Yonggang surname: Zhang fullname: Zhang, Yonggang email: zhangyg@hrbeu.edu.cn organization: Harbin Engineering University,Department of Automation,Harbin,China,150001 – sequence: 5 givenname: Haiquan surname: Zhao fullname: Zhao, Haiquan email: hqzhao_swjtu@126.com organization: School of Electrical Engineering, Southwest Jiaotong University,Chengdu,China,610000 |
BookMark | eNpFkMtLAzEQh4Mo-LwLXgLehNa8szlKaWt9QxWPIZvNakqbrdkstf71plTqZWYYvt8MfMdgPzTBAXCOUR9jpK7vbqZ9ggjuY4QY5WgPHBFKVE8RyfZ3sxCH4KxtZwghTLgUih0BPehKk7ro4L2ZL0yAIz9PLsK3UOX66INfdAs4jLGJcBhSbJZr-O7TZ-aqznozhy-ND6mFdQYmT9Pr8csUTkJyH9Ek34RTcFCbeevO_voJeBsNXwe3vYfn8WRw89CzlIjUKxghorCYiNJwRbkgdLMyBZfWUsktMqKUlUKcccMra2pXsNJWUinFpCroCbja3l2ZUJvwoWdNF0P-qH-qz-9Sr1dlFkQQRYhn-HILL2Pz1bk2_dNEYI4FZ0xmCm0pG5u2ja7Wy-gXJq41RnqjXWfteqNd_2nPkYttxDvndrgSTGAp6C_-pH1b |
CODEN | IJASJC |
CitedBy_id | crossref_primary_10_1109_JSEN_2023_3317915 crossref_primary_10_1109_TVT_2022_3182017 crossref_primary_10_1109_TIV_2024_3375273 crossref_primary_10_3390_electronics13010114 crossref_primary_10_1016_j_measurement_2023_113339 crossref_primary_10_1109_TAES_2023_3312057 crossref_primary_10_1016_j_neucom_2024_127634 crossref_primary_10_3390_app14093952 crossref_primary_10_1186_s43020_022_00091_1 crossref_primary_10_1007_s00371_022_02756_z crossref_primary_10_1016_j_sigpro_2023_109271 crossref_primary_10_1109_TIM_2022_3157005 crossref_primary_10_3390_s22041605 crossref_primary_10_1109_TIM_2023_3346502 crossref_primary_10_1109_TSMC_2022_3161412 crossref_primary_10_1088_1742_6596_2258_1_012077 crossref_primary_10_3390_e24040516 crossref_primary_10_1016_j_isatra_2024_04_008 crossref_primary_10_1109_TIM_2023_3293566 |
Cites_doi | 10.1016/j.automatica.2016.10.004 10.1109/TAES.2013.6558019 10.1109/IJCNN.2009.5178823 10.1109/TAES.2009.4805268 10.1109/JSTARS.2013.2260135 10.1109/ACCESS.2017.2726519 10.1177/0954410014548698 10.1109/TAES.2018.2849179 10.1016/j.sigpro.2015.07.014 10.1109/ACCESS.2018.2880618 10.1109/JAS.2017.7510445 10.1109/TAC.2009.2019800 10.3390/s18061919 10.1109/TSP.2011.2129516 10.23919/ICIF.2017.8009741 10.1109/JSTSP.2018.2827261 10.1109/LSP.2015.2428713 10.1109/TCYB.2021.3110732 10.1109/TSMC.2019.2957269 10.1109/TAC.1972.1100034 10.1109/TMECH.2018.2835486 10.2514/6.2011-6488 10.1109/TSP.2017.2679685 10.1002/0470099720 10.1109/JAS.2020.1003303 10.1016/j.isatra.2018.05.001 10.1007/978-1-4419-1570-2 10.1002/j.2161-4296.2006.tb00368.x 10.1109/TNNLS.2016.2636160 10.1109/MLSP.2006.275544 10.1016/j.isatra.2016.09.010 10.1016/j.measurement.2013.07.016 10.1049/PBRA017E 10.1109/59.801932 10.1109/78.978374 10.1109/JSEN.2013.2291683 10.1109/TSP.2002.1011217 10.1117/12.280797 10.1214/aos/1032181171 10.1016/j.isatra.2017.09.019 10.1109/JSEN.2014.2384492 10.3390/e17085549 10.1109/TAES.2016.130824 10.1109/ACCESS.2017.2700428 10.1109/TAES.2014.130204 10.1109/LSP.2019.2925692 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1109/JAS.2021.1004350 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2329-9274 |
EndPage | 465 |
ExternalDocumentID | zdhxb_ywb202203005 10_1109_JAS_2021_1004350 9646176 |
Genre | orig-research |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities grantid: xzy022020045 funderid: 10.13039/501100012226 – fundername: National Natural Science Foundation of China grantid: 61976175 funderid: 10.13039/501100001809 |
GroupedDBID | -0I -0Y -SI -S~ 0R~ 4.4 5VR 6IK 92M 97E 9D9 9DI AAJGR AASAJ AAXDM ABQJQ ABVLG ACIWK AFUIB AKJIK ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CAJEI CAJUS EBS EJD IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ Q-- R-I RIA RIE RIG RT9 T8Y TCJ TGT U1F U1G U5I U5S AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D 2B. 4A8 92I 93N PSX |
ID | FETCH-LOGICAL-c326t-842268c126ba59356238422a857cc375c0a6b7d90545a5dcafe84bcd799947983 |
IEDL.DBID | RIE |
ISSN | 2329-9266 |
IngestDate | Tue Feb 13 23:45:50 EST 2024 Thu Oct 10 18:46:37 EDT 2024 Fri Aug 23 02:12:30 EDT 2024 Wed Jun 26 19:25:44 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | minimum error entropy with fiducial points (MEEF) Cubature Kalman filter (CKF) non-Gaussian noise inertial navigation system (INS)/global positioning system (GPS) integration |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c326t-842268c126ba59356238422a857cc375c0a6b7d90545a5dcafe84bcd799947983 |
PQID | 2615165447 |
PQPubID | 2040495 |
PageCount | 16 |
ParticipantIDs | wanfang_journals_zdhxb_ywb202203005 ieee_primary_9646176 proquest_journals_2615165447 crossref_primary_10_1109_JAS_2021_1004350 |
PublicationCentury | 2000 |
PublicationDate | 2022-03-01 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE/CAA journal of automatica sinica |
PublicationTitleAbbrev | JAS |
PublicationTitle_FL | IEEE/CAA Journal of Automatica Sinica |
PublicationYear | 2022 |
Publisher | Chinese Association of Automation (CAA) The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Artificial Intelligence and Robotics,Xi'an Jiaotong University,Xi'an 710049,China%Department of Automation,Harbin Engineering University,Harbin 150001,China%School of Electrical Engineering,Southwest Jiao-tong University,Chengdu 610000,China |
Publisher_xml | – name: Chinese Association of Automation (CAA) – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) – name: Institute of Artificial Intelligence and Robotics,Xi'an Jiaotong University,Xi'an 710049,China%Department of Automation,Harbin Engineering University,Harbin 150001,China%School of Electrical Engineering,Southwest Jiao-tong University,Chengdu 610000,China |
References | ref13 ref12 ref15 ref14 ref10 ref17 ref16 ref19 ref18 ref51 ref50 wang (ref42) 2017 ref46 ref45 ref48 ref47 ref41 ref44 ref43 ref49 ref8 parkinson (ref1) 2008 ref7 ref9 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref30 ref33 ref32 sun (ref31) 2011; 33 ref2 ref39 ref38 kim (ref11) 2009; 45 ref24 ref23 ref26 chien-hao (ref36) 2016; 229 ref25 groves (ref4) 1996 ref20 ref22 ref21 ref28 ref27 ref29 ristic (ref52) 2003 |
References_xml | – ident: ref40 doi: 10.1016/j.automatica.2016.10.004 – ident: ref12 doi: 10.1109/TAES.2013.6558019 – ident: ref38 doi: 10.1109/IJCNN.2009.5178823 – volume: 45 start-page: 125 year: 2009 ident: ref11 article-title: Adaptive two-stage extended Kalman filter for a fault-tolerant INS/GPS loosely coupled system publication-title: IEEE Trans Aerosp Electron Syst doi: 10.1109/TAES.2009.4805268 contributor: fullname: kim – ident: ref49 doi: 10.1109/JSTARS.2013.2260135 – ident: ref28 doi: 10.1109/ACCESS.2017.2726519 – ident: ref37 doi: 10.1177/0954410014548698 – ident: ref21 doi: 10.1109/TAES.2018.2849179 – year: 2008 ident: ref1 publication-title: Global Positioning System Theory and Applications contributor: fullname: parkinson – ident: ref18 doi: 10.1016/j.sigpro.2015.07.014 – ident: ref41 doi: 10.1109/ACCESS.2018.2880618 – volume: 33 start-page: 2554 year: 2011 ident: ref31 article-title: Cubature particle filter publication-title: Syst Eng Electron contributor: fullname: sun – ident: ref6 doi: 10.1109/JAS.2017.7510445 – ident: ref16 doi: 10.1109/TAC.2009.2019800 – ident: ref22 doi: 10.3390/s18061919 – ident: ref35 doi: 10.1109/TSP.2011.2129516 – ident: ref29 doi: 10.23919/ICIF.2017.8009741 – ident: ref48 doi: 10.1109/JSTSP.2018.2827261 – ident: ref39 doi: 10.1109/LSP.2015.2428713 – ident: ref51 doi: 10.1109/TCYB.2021.3110732 – ident: ref46 doi: 10.1109/TSMC.2019.2957269 – ident: ref27 doi: 10.1109/TAC.1972.1100034 – volume: 229 start-page: 527 year: 2016 ident: ref36 article-title: Robust Huber-based cubature Kalman filter for GPS navigation processing publication-title: J Navigat contributor: fullname: chien-hao – ident: ref7 doi: 10.1109/TMECH.2018.2835486 – ident: ref14 doi: 10.2514/6.2011-6488 – ident: ref17 doi: 10.1109/TSP.2017.2679685 – ident: ref5 doi: 10.1002/0470099720 – ident: ref9 doi: 10.1109/JAS.2020.1003303 – ident: ref25 doi: 10.1016/j.isatra.2018.05.001 – ident: ref26 doi: 10.1007/978-1-4419-1570-2 – ident: ref13 doi: 10.1002/j.2161-4296.2006.tb00368.x – ident: ref43 doi: 10.1109/TNNLS.2016.2636160 – ident: ref47 doi: 10.1109/MLSP.2006.275544 – ident: ref19 doi: 10.1016/j.isatra.2016.09.010 – ident: ref23 doi: 10.1016/j.measurement.2013.07.016 – ident: ref3 doi: 10.1049/PBRA017E – year: 2003 ident: ref52 publication-title: Beyond the Kalman Filter Particle Filters for Tracking Applications contributor: fullname: ristic – ident: ref33 doi: 10.1109/59.801932 – ident: ref24 doi: 10.1109/78.978374 – ident: ref8 doi: 10.1109/JSEN.2013.2291683 – year: 2017 ident: ref42 publication-title: Maximum correntropy cubature Kalman filter based on statistical linear regression contributor: fullname: wang – year: 1996 ident: ref4 publication-title: Principles of GNSS Inertial and Multisensor Integrated Navigation Systems contributor: fullname: groves – ident: ref44 doi: 10.1109/TSP.2002.1011217 – ident: ref10 doi: 10.1117/12.280797 – ident: ref34 doi: 10.1214/aos/1032181171 – ident: ref32 doi: 10.1016/j.isatra.2017.09.019 – ident: ref15 doi: 10.1109/JSEN.2014.2384492 – ident: ref45 doi: 10.3390/e17085549 – ident: ref2 doi: 10.1109/TAES.2016.130824 – ident: ref30 doi: 10.1109/ACCESS.2017.2700428 – ident: ref20 doi: 10.1109/TAES.2014.130204 – ident: ref50 doi: 10.1109/LSP.2019.2925692 |
SSID | ssj0001257694 |
Score | 2.370528 |
Snippet | Traditional cubature Kalman filter (CKF) is a preferable tool for the inertial navigation system (INS)/global positioning system (GPS) integration under... |
SourceID | wanfang proquest crossref ieee |
SourceType | Aggregation Database Publisher |
StartPage | 450 |
SubjectTerms | Complexity Computational complexity Convergence Cubature Kalman filter (CKF) Entropy Errors Global positioning systems GPS Inertial navigation inertial navigation system (INS)/global positioning system (GPS) integration Kalman filters minimum error entropy with fiducial points (MEEF) Navigation systems non-Gaussian noise Optimization Parameters Regression models Robustness Robustness (mathematics) Satellite navigation systems State estimation Target tracking Tracking |
Title | Cubature Kalman Filter Under Minimum Error Entropy With Fiducial Points for INS/GPS Integration |
URI | https://ieeexplore.ieee.org/document/9646176 https://www.proquest.com/docview/2615165447 https://d.wanfangdata.com.cn/periodical/zdhxb-ywb202203005 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9RAFD60BUEfvFVxtcqAvghmN9nMJDOPpezaVrYU1mLfhjOX2KCbLduE2v565yTZuhUffAvJEJL5ZjjfnMt3AD6gFSidxSjnzkfcYhr2XBxHCSa8cIbUdMjfMTvJDs_48bk434JPd7Uw3vs2-cwP6bKN5bulbchVNlIZDwY324btXKmuVmvDnxKYc9v3MHAEFalgeNZRyViNjvfn4Sw4TigpIBCE-J4Vatuq3GOYD66xKrD6vmFqpk9gtv7ILsPkx7CpzdDe_qXf-L9_8RQe95yT7XeL5Bls-eo5PNpQItwFfdCYVuKTfcGfC6zYtKQwOmvbIrFZWZWLZsEmq9VyxSaU3H55w76V9UUY5xryurPTZVnVVyxwYHZ0Mh99Pp2zo16KIkD_As6mk68Hh1HfeyGygdDVkaQKW2mTcWZQqJRYEt1CKXJr01zYGDOTOxUYn0ARwC685Ma6AIziuZLpS9iplpV_BcwKV-TGSF8kyL1wKLHgBk3qjYytyQbwcY2FvuwkNnR7NImVDrhpwk33uA1glyb0blw_lwPYW4On-z14pcdE1jLBeT6A9z2gf57euotfRt9cmzHVGpNo_-t_v_sNPKQhXd7ZHuzUq8a_DUSkNu_aFfgbncnZ8w |
link.rule.ids | 315,783,787,799,27938,27939,55088 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dT9swFL1iILTtAcbYtA7YLMHLpKVNGjtxHhFqaYFWSAWNN8tfGdHWFJVEDH49vkkKZdrD3qLEihIfW_f4fpwLcCA1k9xo6cXUWI9qGbo95_teIAOaGoVqOujvGI2jwSU9uWJXK_D9qRbGWlsln9k2XlaxfDPTJbrKOklEncGNXsEaQ15RV2steVQcd646HzqWkHiJMz2LuKSfdE4OJ-402A0wLcBRBP-FHaoaq7zgmOt3Mk9l_nPJ2PQ3YbT4zDrH5Fe7LFRbP_yl4Pi___EONhrWSQ7rZbIFKzZ_D2-XtAi3QRyVqhL5JKfy91TmpJ9hIJ1UjZHIKMuzaTklvfl8Nic9TG-_uSc_suLajTMl-t3J-SzLi1viWDAZjied4_MJGTZiFA78D3DZ710cDbym-4KnHaUrPI41tlwH3UhJloTIk_CW5CzWOoyZ9mWkYpM4zsckc3CnllOlTewoJ40THn6E1XyW209ANDNprBS3aSCpZUZymVIlVWgV97WKWvBtgYW4qUU2RHU48RPhcBOIm2hwa8E2TujTuGYuW7C7AE80u_BWdJGuRYzSuAX7DaDPTx_M9R8l7u9UF6uNUbb_87_f_RVeDy5GZ-JsOD7dgTc4vM5C24XVYl7aPUdLCvWlWo2PMKTdQA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cubature+Kalman+Filter+Under+Minimum+Error+Entropy+With+Fiducial+Points+for+INS%2FGPS+Integration&rft.jtitle=%E8%87%AA%E5%8A%A8%E5%8C%96%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=Lujuan+Dang&rft.au=Badong+Chen&rft.au=Yulong+Huang&rft.au=Yonggang+Zhang&rft.date=2022-03-01&rft.pub=Institute+of+Artificial+Intelligence+and+Robotics%2CXi%27an+Jiaotong+University%2CXi%27an+710049%2CChina%25Department+of+Automation%2CHarbin+Engineering+University%2CHarbin+150001%2CChina%25School+of+Electrical+Engineering%2CSouthwest+Jiao-tong+University%2CChengdu+610000%2CChina&rft.issn=2329-9266&rft.eissn=2329-9274&rft.volume=9&rft.issue=3&rft.spage=450&rft.epage=465&rft_id=info:doi/10.1109%2FJAS.2021.1004350&rft.externalDocID=zdhxb_ywb202203005 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzdhxb-ywb%2Fzdhxb-ywb.jpg |