Adaptive-Constrained Impedance Control for Human-Robot Co-Transportation
Human-robot co-transportation allows for a human and a robot to perform an object transportation task cooperatively on a shared environment. This range of applications raises a great number of theoretical and practical challenges arising mainly from the unknown human-robot interaction model as well...
Saved in:
Published in | IEEE transactions on cybernetics Vol. 52; no. 12; pp. 13237 - 13249 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.12.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Human-robot co-transportation allows for a human and a robot to perform an object transportation task cooperatively on a shared environment. This range of applications raises a great number of theoretical and practical challenges arising mainly from the unknown human-robot interaction model as well as from the difficulty of accurately model the robot dynamics. In this article, an adaptive impedance controller for human-robot co-transportation is put forward in task space. Vision and force sensing are employed to obtain the human hand position, and to measure the interaction force between the human and the robot. Using the latest developments in nonlinear control theory, we propose a robot end-effector controller to track the motion of the human partner under actuators' input constraints, unknown initial conditions, and unknown robot dynamics. The proposed adaptive impedance control algorithm offers a safe interaction between the human and the robot and achieves a smooth control behavior along the different phases of the co-transportation task. Simulations and experiments are conducted to illustrate the performance of the proposed techniques in a co-transportation task. |
---|---|
AbstractList | Human–robot co-transportation allows for a human and a robot to perform an object transportation task cooperatively on a shared environment. This range of applications raises a great number of theoretical and practical challenges arising mainly from the unknown human–robot interaction model as well as from the difficulty of accurately model the robot dynamics. In this article, an adaptive impedance controller for human–robot co-transportation is put forward in task space. Vision and force sensing are employed to obtain the human hand position, and to measure the interaction force between the human and the robot. Using the latest developments in nonlinear control theory, we propose a robot end-effector controller to track the motion of the human partner under actuators’ input constraints, unknown initial conditions, and unknown robot dynamics. The proposed adaptive impedance control algorithm offers a safe interaction between the human and the robot and achieves a smooth control behavior along the different phases of the co-transportation task. Simulations and experiments are conducted to illustrate the performance of the proposed techniques in a co-transportation task. Human-robot co-transportation allows for a human and a robot to perform an object transportation task cooperatively on a shared environment. This range of applications raises a great number of theoretical and practical challenges arising mainly from the unknown human-robot interaction model as well as from the difficulty of accurately model the robot dynamics. In this article, an adaptive impedance controller for human-robot co-transportation is put forward in task space. Vision and force sensing are employed to obtain the human hand position, and to measure the interaction force between the human and the robot. Using the latest developments in nonlinear control theory, we propose a robot end-effector controller to track the motion of the human partner under actuators' input constraints, unknown initial conditions, and unknown robot dynamics. The proposed adaptive impedance control algorithm offers a safe interaction between the human and the robot and achieves a smooth control behavior along the different phases of the co-transportation task. Simulations and experiments are conducted to illustrate the performance of the proposed techniques in a co-transportation task.Human-robot co-transportation allows for a human and a robot to perform an object transportation task cooperatively on a shared environment. This range of applications raises a great number of theoretical and practical challenges arising mainly from the unknown human-robot interaction model as well as from the difficulty of accurately model the robot dynamics. In this article, an adaptive impedance controller for human-robot co-transportation is put forward in task space. Vision and force sensing are employed to obtain the human hand position, and to measure the interaction force between the human and the robot. Using the latest developments in nonlinear control theory, we propose a robot end-effector controller to track the motion of the human partner under actuators' input constraints, unknown initial conditions, and unknown robot dynamics. The proposed adaptive impedance control algorithm offers a safe interaction between the human and the robot and achieves a smooth control behavior along the different phases of the co-transportation task. Simulations and experiments are conducted to illustrate the performance of the proposed techniques in a co-transportation task. |
Author | Yu, Xinbo Cheng, Long Feng, Yanghe Silvestre, Carlos Li, Bin He, Wei |
Author_xml | – sequence: 1 givenname: Xinbo orcidid: 0000-0003-0958-6020 surname: Yu fullname: Yu, Xinbo organization: Institute of Artificial Intelligence, University of Science and Technology Beijing, Beijing, China – sequence: 2 givenname: Bin surname: Li fullname: Li, Bin organization: Institute of Artificial Intelligence and the School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing, China – sequence: 3 givenname: Wei orcidid: 0000-0002-8944-9861 surname: He fullname: He, Wei email: weihe@ieee.org organization: Institute of Artificial Intelligence and the School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing, China – sequence: 4 givenname: Yanghe orcidid: 0000-0003-1608-8695 surname: Feng fullname: Feng, Yanghe organization: College of Systems Engineering, National University of Defense Technology, Changsha, China – sequence: 5 givenname: Long orcidid: 0000-0001-7565-8788 surname: Cheng fullname: Cheng, Long organization: State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China – sequence: 6 givenname: Carlos orcidid: 0000-0002-5096-5527 surname: Silvestre fullname: Silvestre, Carlos organization: Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau, China |
BookMark | eNp9kM1LwzAchoNM3Jz7A8TLwIuXznw0Hz3Oom4wEGQePIWsTaCjTWrSCv73pnR42MFcfuHleX8kzzWYWGc1ALcIrhCC2eM-_3xaYYjRiiDICeUXYIYREwnGnE7-7oxPwSKEI4xHxCgTV2BKUsohR2QGNutStV31rZPc2dB5VVldLrdNq0tlC72MaeddvTTOLzd9o2zy7g6ui3my98qG1vlOdZWzN-DSqDroxWnOwcfL8z7fJLu3122-3iUFwaxLBCqVMFikhpECIZUxDk2qU0UNzTKICaTclDjLFBTMpISWVBWiOJQKM8IZJHPwMO5tvfvqdehkU4VC17Wy2vVBYsp5SlPEUETvz9Cj672Nr5OYE06ZwJhGio9U4V0IXhtZVOOXBhu1RFAOvuXgWw6-5cl3bKKzZuurRvmffzt3Y6fSWv_xGU0FF4j8Aia4iZ8 |
CODEN | ITCEB8 |
CitedBy_id | crossref_primary_10_1109_TRO_2025_3532510 crossref_primary_10_1109_TMECH_2023_3336281 crossref_primary_10_1007_s11465_022_0684_4 crossref_primary_10_1109_TSMC_2024_3489587 crossref_primary_10_1007_s10846_022_01795_x crossref_primary_10_1016_j_oceaneng_2023_113882 crossref_primary_10_1049_cth2_12371 crossref_primary_10_3390_biomimetics8040358 crossref_primary_10_1109_JSEN_2025_3529208 crossref_primary_10_1016_j_techsoc_2023_102427 crossref_primary_10_1016_j_rcim_2023_102526 crossref_primary_10_1017_S0263574723001054 crossref_primary_10_1016_j_jfranklin_2024_107362 crossref_primary_10_1007_s11804_024_00389_3 crossref_primary_10_1109_TCSII_2023_3285658 crossref_primary_10_1093_jcde_qwad007 crossref_primary_10_1109_TASE_2023_3235895 crossref_primary_10_1007_s10846_024_02185_1 crossref_primary_10_1049_ell2_12785 crossref_primary_10_1002_rnc_6996 crossref_primary_10_3390_app13042568 crossref_primary_10_1049_cth2_12455 crossref_primary_10_1016_j_neucom_2024_128265 crossref_primary_10_1109_TMECH_2023_3259985 crossref_primary_10_1109_TMRB_2023_3291026 crossref_primary_10_1145_3659059 crossref_primary_10_1109_TCYB_2023_3310505 crossref_primary_10_1109_TAI_2023_3249683 crossref_primary_10_1007_s13369_024_08718_y crossref_primary_10_1109_TMECH_2022_3209488 crossref_primary_10_1007_s12369_024_01103_7 crossref_primary_10_1109_ACCESS_2024_3503674 crossref_primary_10_1049_cth2_12528 crossref_primary_10_1177_09544062221141593 crossref_primary_10_1109_TCYB_2023_3340659 crossref_primary_10_1371_journal_pone_0283751 crossref_primary_10_1016_j_neucom_2024_128110 crossref_primary_10_1002_rob_22283 crossref_primary_10_1093_jcde_qwad034 crossref_primary_10_1109_TCSII_2023_3241622 crossref_primary_10_1177_16878132231181247 crossref_primary_10_1016_j_automatica_2024_111721 crossref_primary_10_1109_TMRB_2022_3162148 crossref_primary_10_1016_j_isatra_2024_12_041 crossref_primary_10_1002_acs_3549 crossref_primary_10_1007_s10846_022_01757_3 crossref_primary_10_1109_TASE_2023_3313564 crossref_primary_10_1017_S0263574722000285 crossref_primary_10_1109_TFUZZ_2024_3411018 crossref_primary_10_1016_j_ast_2024_109658 crossref_primary_10_1016_j_ejcon_2023_100903 crossref_primary_10_1109_TASE_2024_3395921 crossref_primary_10_7746_jkros_2024_19_4_381 crossref_primary_10_1109_TSMC_2023_3301662 crossref_primary_10_12677_mos_2024_133334 crossref_primary_10_1016_j_isatra_2023_03_042 crossref_primary_10_1016_j_apm_2023_04_001 crossref_primary_10_3233_ICA_230724 crossref_primary_10_1109_TIE_2023_3257378 crossref_primary_10_1109_TAES_2023_3276726 crossref_primary_10_1007_s10846_023_01853_y crossref_primary_10_1080_10255842_2023_2222863 crossref_primary_10_1007_s10846_023_01805_6 crossref_primary_10_1016_j_asr_2022_07_081 crossref_primary_10_1016_j_ast_2023_108253 crossref_primary_10_1109_TCSII_2023_3297600 crossref_primary_10_1007_s10846_022_01765_3 crossref_primary_10_1002_rnc_7921 crossref_primary_10_1017_S0263574723000267 crossref_primary_10_1109_TETCI_2023_3297838 crossref_primary_10_1007_s41315_023_00276_0 crossref_primary_10_1016_j_robot_2024_104829 crossref_primary_10_1109_TCYB_2024_3436021 crossref_primary_10_1002_acs_3554 crossref_primary_10_1002_acs_3752 crossref_primary_10_1007_s10846_023_01957_5 crossref_primary_10_1002_acs_3599 crossref_primary_10_1109_TMECH_2023_3286843 crossref_primary_10_1109_TASE_2022_3178266 crossref_primary_10_1109_TII_2023_3240749 crossref_primary_10_1002_aisy_202200339 crossref_primary_10_1002_aisy_202300036 crossref_primary_10_1109_TSMC_2023_3305498 crossref_primary_10_3390_app15020819 crossref_primary_10_1109_TFUZZ_2022_3229073 crossref_primary_10_1108_RIA_10_2022_0254 crossref_primary_10_3390_pr12030499 crossref_primary_10_1142_S0219519423500525 crossref_primary_10_1109_TII_2024_3431088 crossref_primary_10_1016_j_neucom_2025_129362 crossref_primary_10_1109_LRA_2023_3254450 crossref_primary_10_1016_j_neucom_2023_126293 |
Cites_doi | 10.1109/TSMC.2019.2901277 10.1109/TASE.2018.2883343 10.1007/s11432-019-2893-y 10.1109/TCYB.2015.2411285 10.1109/TRO.2019.2914350 10.1109/TRO.2015.2430053 10.1109/TIE.2020.3016271 10.1109/TRO.2017.2765335 10.1109/9.486648 10.1109/TRO.2010.2040202 10.1109/TCYB.2018.2838573 10.1109/TCYB.2020.2977175 10.1109/ICRA.2014.6906917 10.1109/TSMCB.2012.2226577 10.1109/TNSRE.2007.903919 10.1109/TCYB.2018.2869084 10.1007/s11432-020-3109-x 10.1109/TMECH.2013.2264533 10.1016/j.neucom.2019.07.104 10.1109/TRO.2016.2572698 10.1016/j.ins.2016.10.016 10.1007/s12206-007-1109-3 10.1109/TCBB.2018.2825445 10.1109/TSMC.2016.2557222 10.1016/j.automatica.2015.10.036 10.1109/TCYB.2018.2846186 10.1007/s00500-018-03732-3 10.1109/TCBB.2016.2606430 10.1109/JAS.2020.1003225 10.1007/s11424-020-8186-0 10.1007/s00500-018-03689-3 10.1109/TBME.2012.2198821 10.1109/TCYB.2020.2970454 10.1177/0278364912455366 10.1007/s11432-019-2748-x 10.1109/TFUZZ.2020.2979389 10.1109/TRO.2016.2597322 10.1109/TAC.2014.2330432 10.1016/j.automatica.2011.01.025 10.1109/TNNLS.2019.2915376 10.1007/s00500-017-2659-7 10.1109/TRO.2016.2540623 10.1007/s11432-018-9631-7 10.1109/TOH.2008.13 10.1109/TASE.2020.2983225 10.1109/ROBOT.2000.844116 10.1007/978-3-319-32552-1 10.1109/TOH.2012.36 10.1109/IROS.2016.7759414 10.1109/TRO.2015.2419873 10.1007/s10846-014-0150-6 10.1007/s11424-020-9210-0 10.1177/027836498700600303 10.1109/TAC.2018.2872204 10.1016/j.automatica.2016.10.011 10.1109/LRA.2018.2864351 10.1109/TCYB.2015.2512286 10.1109/TNNLS.2020.3009391 10.1016/j.automatica.2011.08.044 10.1109/TSMC.2018.2819191 10.1109/JAS.2017.7510604 10.1016/j.automatica.2018.09.032 10.1109/TMECH.2006.886254 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TCYB.2021.3107357 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | Aerospace Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2168-2275 |
EndPage | 13249 |
ExternalDocumentID | 10_1109_TCYB_2021_3107357 9548781 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62061160371; U1913209; 62025307; 62073031; 62003032 funderid: 10.13039/501100001809 – fundername: Macao Science and Technology, Development Fund grantid: FDCT/0031/2020/AFJ funderid: 10.13039/501100006469 – fundername: China Postdoctoral Science Foundation grantid: 2020TQ0031; 2021M690358 funderid: 10.13039/501100002858 – fundername: University of Macau, Macau, China grantid: MYRG2018-00198-FST – fundername: Guangdong Basic and Applied Basic Research Foundation grantid: 2020B1515120071 – fundername: Fundação para a Ciência e a Tecnologia (FCT) through ISR LARSyS-FCT Project grantid: UIDB/50009/2020 funderid: 10.13039/501100001871 |
GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c326t-81da8f284f63c11a9670f4e4a5f599023057fd299a086f435d5ac8cbda2637603 |
IEDL.DBID | RIE |
ISSN | 2168-2267 2168-2275 |
IngestDate | Thu Jul 10 23:45:45 EDT 2025 Sun Jun 29 14:02:09 EDT 2025 Thu Apr 24 22:59:51 EDT 2025 Tue Jul 01 00:54:00 EDT 2025 Wed Aug 27 02:14:18 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c326t-81da8f284f63c11a9670f4e4a5f599023057fd299a086f435d5ac8cbda2637603 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1608-8695 0000-0002-8944-9861 0000-0001-7565-8788 0000-0003-0958-6020 0000-0002-5096-5527 |
PMID | 34570713 |
PQID | 2737568225 |
PQPubID | 85422 |
PageCount | 13 |
ParticipantIDs | ieee_primary_9548781 proquest_miscellaneous_2577454161 crossref_citationtrail_10_1109_TCYB_2021_3107357 proquest_journals_2737568225 crossref_primary_10_1109_TCYB_2021_3107357 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-01 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on cybernetics |
PublicationTitleAbbrev | TCYB |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref13 ref56 ref12 ref15 ref58 ref14 ref53 ref52 ref55 ref11 ref10 ref17 ref16 ott (ref20) 2008 ref19 ref18 ref51 ref50 ehaji? (ref54) 2015 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref8 ref7 ref4 zhang (ref66) 2019 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 zhou (ref59) 2008 ref70 lee (ref61) 1998; 19 yu (ref49) 2020 ref68 ref24 ref67 ref23 ref26 ref69 ref25 ref64 ref63 ref22 ref65 ref21 ref28 ref27 siciliano (ref9) 2016 ref29 ref60 ref62 |
References_xml | – ident: ref41 doi: 10.1109/TSMC.2019.2901277 – ident: ref32 doi: 10.1109/TASE.2018.2883343 – ident: ref35 doi: 10.1007/s11432-019-2893-y – ident: ref62 doi: 10.1109/TCYB.2015.2411285 – ident: ref6 doi: 10.1109/TRO.2019.2914350 – ident: ref21 doi: 10.1109/TRO.2015.2430053 – ident: ref52 doi: 10.1109/TIE.2020.3016271 – ident: ref19 doi: 10.1109/TRO.2017.2765335 – ident: ref57 doi: 10.1109/9.486648 – ident: ref14 doi: 10.1109/TRO.2010.2040202 – ident: ref40 doi: 10.1109/TCYB.2018.2838573 – ident: ref48 doi: 10.1109/TCYB.2020.2977175 – ident: ref56 doi: 10.1109/ICRA.2014.6906917 – ident: ref33 doi: 10.1109/TSMCB.2012.2226577 – ident: ref1 doi: 10.1109/TNSRE.2007.903919 – ident: ref28 doi: 10.1109/TCYB.2018.2869084 – ident: ref22 doi: 10.1007/s11432-020-3109-x – ident: ref13 doi: 10.1109/TMECH.2013.2264533 – volume: 19 year: 1998 ident: ref61 publication-title: Adaptive Neural Network Control of Robotic Manipulators – ident: ref55 doi: 10.1016/j.neucom.2019.07.104 – ident: ref11 doi: 10.1109/TRO.2016.2572698 – ident: ref31 doi: 10.1016/j.ins.2016.10.016 – start-page: 1031 year: 2015 ident: ref54 article-title: Grasp pose estimation in human-robot manipulation tasks using wearable motion sensors publication-title: Proc IEEE/RSJ Int Conf Intell Robots Syst (IROS) – ident: ref8 doi: 10.1007/s12206-007-1109-3 – ident: ref45 doi: 10.1109/TCBB.2018.2825445 – ident: ref39 doi: 10.1109/TSMC.2016.2557222 – year: 2020 ident: ref49 article-title: Adaptive fuzzy full-state and output-feedback control for uncertain robots with output constraint publication-title: IEEE Trans Syst Man Cybern Syst – ident: ref26 doi: 10.1016/j.automatica.2015.10.036 – ident: ref65 doi: 10.1109/TCYB.2018.2846186 – ident: ref68 doi: 10.1007/s00500-018-03732-3 – ident: ref44 doi: 10.1109/TCBB.2016.2606430 – ident: ref36 doi: 10.1109/JAS.2020.1003225 – ident: ref25 doi: 10.1007/s11424-020-8186-0 – ident: ref69 doi: 10.1007/s00500-018-03689-3 – ident: ref16 doi: 10.1109/TBME.2012.2198821 – ident: ref46 doi: 10.1109/TCYB.2020.2970454 – ident: ref64 doi: 10.1177/0278364912455366 – ident: ref23 doi: 10.1007/s11432-019-2748-x – ident: ref47 doi: 10.1109/TFUZZ.2020.2979389 – ident: ref51 doi: 10.1109/TRO.2016.2597322 – ident: ref30 doi: 10.1109/TAC.2014.2330432 – ident: ref34 doi: 10.1016/j.automatica.2011.01.025 – year: 2019 ident: ref66 article-title: GCB-Net: Graph convolutional broad network and its application in emotion recognition publication-title: IEEE Trans Affective Comput – ident: ref43 doi: 10.1109/TNNLS.2019.2915376 – ident: ref70 doi: 10.1007/s00500-017-2659-7 – ident: ref53 doi: 10.1109/TRO.2016.2540623 – ident: ref37 doi: 10.1007/s11432-018-9631-7 – ident: ref10 doi: 10.1109/TOH.2008.13 – ident: ref5 doi: 10.1109/TASE.2020.2983225 – ident: ref4 doi: 10.1109/ROBOT.2000.844116 – year: 2008 ident: ref59 publication-title: Adaptive Backstepping Control of Uncertain Systems – year: 2016 ident: ref9 publication-title: Springer Handbook of Robotics doi: 10.1007/978-3-319-32552-1 – ident: ref7 doi: 10.1109/TOH.2012.36 – ident: ref15 doi: 10.1109/IROS.2016.7759414 – ident: ref17 doi: 10.1109/TRO.2015.2419873 – year: 2008 ident: ref20 publication-title: Cartesian Impedance Control of Redundant and Flexible-Joint Robots – ident: ref63 doi: 10.1007/s10846-014-0150-6 – ident: ref24 doi: 10.1007/s11424-020-9210-0 – ident: ref60 doi: 10.1177/027836498700600303 – ident: ref27 doi: 10.1109/TAC.2018.2872204 – ident: ref29 doi: 10.1016/j.automatica.2016.10.011 – ident: ref18 doi: 10.1177/0278364912455366 – ident: ref12 doi: 10.1109/LRA.2018.2864351 – ident: ref67 doi: 10.1109/TCYB.2015.2512286 – ident: ref42 doi: 10.1109/TNNLS.2020.3009391 – ident: ref38 doi: 10.1016/j.automatica.2011.08.044 – ident: ref58 doi: 10.1109/TSMC.2018.2819191 – ident: ref2 doi: 10.1109/JAS.2017.7510604 – ident: ref50 doi: 10.1016/j.automatica.2018.09.032 – ident: ref3 doi: 10.1109/TMECH.2006.886254 |
SSID | ssj0000816898 |
Score | 2.6192267 |
Snippet | Human-robot co-transportation allows for a human and a robot to perform an object transportation task cooperatively on a shared environment. This range of... Human–robot co-transportation allows for a human and a robot to perform an object transportation task cooperatively on a shared environment. This range of... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 13237 |
SubjectTerms | Actuators Adaptive algorithms Adaptive control Collaboration Constraints Control algorithms Control theory Controllers End effectors Error constraint Force Human motion human–robot co-transportation Impedance Initial conditions input constraint Interaction models neural networks (NNs) Nonlinear control Position measurement Robot control Robot dynamics Robot sensing systems Robots Sensors Task analysis Task space Transportation vision and force sensing |
Title | Adaptive-Constrained Impedance Control for Human-Robot Co-Transportation |
URI | https://ieeexplore.ieee.org/document/9548781 https://www.proquest.com/docview/2737568225 https://www.proquest.com/docview/2577454161 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9zJy_qnOJ0SgUPKma2XdKP4xyOKcyDbDBPJWmSi7IO1138630vzQp-IN5Cm5YkL8n7_ZL3QchFGgnBDGNUcplQFgSSCs37VPuRktoEOhHoOzx5isYz9jjn8wa5qX1htNbW-Ez3sGjv8lWRr_Go7BaDk8XoZ70FxK3y1arPU2wCCZv6NoQCBVQRu0vMwE9vp8OXOyCDYQAcFSY1x9x7fcZj5GhfNJJNsfJjX7bKZrRLJptmVjYmr711KXv5x7cIjv_txx7ZcajTG1TTpEUaerFPWm5dr7xLF3z6qk3GAyWWuAVSTOVpE0ho5T0AuFY4P7xhZdruAdb17AUAfS5kUcJzWsdJt8I-ILPR_XQ4pi7bAs0BwpUUgKtIDGgrE_XzIBBpFPuGaSa44aCygKrw2CjQXgJYkAGUpbjIk1wqEUZoWdM_JM1FsdBHxNOwE4jclylPFANIIzSwREBeoVHMN4p3iL8Z8Sx3ocixQ2-ZpSR-mqG8MpRX5uTVIdf1J8sqDsdflds46HVFN94d0t2INXMrdZUBfIt5BDAJWnVev4Y1hhcnYqGLNdThAJI5UsHj3_98QrZDdIuwZi5d0izf1_oUwEopz-ws_QQWxeI- |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9swFH-q2GFc2KBMdAOWSRwAzSVJ7XwcSwVqoeWAWglOkR3bl01NtaaX_fV7z3EjAdO0m5U4ke337Pd7fl8AZ3kiJbecMyVUxngUKSaNGDATJloZG5lMUuzw7CEZL_jdk3jqwPc2FsYY45zPTJ-azpavq3JDV2VXlJwspTjrdyj3RdREa7U3Kq6EhCt-G2ODIa5IvRkzCvOr-ej5GtXBOEItFdlaUPW9ARcpaWkvZJIrsvLmZHbi5vYDzLYDbbxMfvQ3teqXv1_lcPzfmXyEPY87g2HDKPvQMcsD2Pc7ex2c-_TTF10YD7Vc0SHIqJinKyFhdDBBeK2JQ4JR49weINoNnAmAPVaqqvE5azOlO3IfwuL2Zj4aM19vgZUI4mqG0FVmFuWVTQZlFMk8SUPLDZfCChRaqKyI1GqUXxL1IIs4SwtZZqXSMk7It2bwCXaW1dIcQWDwLJBlqHKRaY6gRhrUExF7xVbz0GrRg3C74kXpk5HThH4WTikJ84LoVRC9Ck-vHly2n6yaTBz_6tylRW87-vXuwfGWrIXfq-sCAVwqEgRKOKpv7WvcZWQ6kUtTbbCPQJgsSBn8_Pc_f4X34_lsWkwnD_dfYDemIAnn9HIMO_WvjTlB6FKrU8exfwARA-WH |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive-Constrained+Impedance+Control+for+Human%E2%80%93Robot+Co-Transportation&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Yu%2C+Xinbo&rft.au=Li%2C+Bin&rft.au=He%2C+Wei&rft.au=Feng%2C+Yanghe&rft.date=2022-12-01&rft.issn=2168-2267&rft.eissn=2168-2275&rft.volume=52&rft.issue=12&rft.spage=13237&rft.epage=13249&rft_id=info:doi/10.1109%2FTCYB.2021.3107357&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCYB_2021_3107357 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |