Adaptive-Constrained Impedance Control for Human-Robot Co-Transportation

Human-robot co-transportation allows for a human and a robot to perform an object transportation task cooperatively on a shared environment. This range of applications raises a great number of theoretical and practical challenges arising mainly from the unknown human-robot interaction model as well...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 52; no. 12; pp. 13237 - 13249
Main Authors Yu, Xinbo, Li, Bin, He, Wei, Feng, Yanghe, Cheng, Long, Silvestre, Carlos
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.12.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Human-robot co-transportation allows for a human and a robot to perform an object transportation task cooperatively on a shared environment. This range of applications raises a great number of theoretical and practical challenges arising mainly from the unknown human-robot interaction model as well as from the difficulty of accurately model the robot dynamics. In this article, an adaptive impedance controller for human-robot co-transportation is put forward in task space. Vision and force sensing are employed to obtain the human hand position, and to measure the interaction force between the human and the robot. Using the latest developments in nonlinear control theory, we propose a robot end-effector controller to track the motion of the human partner under actuators' input constraints, unknown initial conditions, and unknown robot dynamics. The proposed adaptive impedance control algorithm offers a safe interaction between the human and the robot and achieves a smooth control behavior along the different phases of the co-transportation task. Simulations and experiments are conducted to illustrate the performance of the proposed techniques in a co-transportation task.
AbstractList Human–robot co-transportation allows for a human and a robot to perform an object transportation task cooperatively on a shared environment. This range of applications raises a great number of theoretical and practical challenges arising mainly from the unknown human–robot interaction model as well as from the difficulty of accurately model the robot dynamics. In this article, an adaptive impedance controller for human–robot co-transportation is put forward in task space. Vision and force sensing are employed to obtain the human hand position, and to measure the interaction force between the human and the robot. Using the latest developments in nonlinear control theory, we propose a robot end-effector controller to track the motion of the human partner under actuators’ input constraints, unknown initial conditions, and unknown robot dynamics. The proposed adaptive impedance control algorithm offers a safe interaction between the human and the robot and achieves a smooth control behavior along the different phases of the co-transportation task. Simulations and experiments are conducted to illustrate the performance of the proposed techniques in a co-transportation task.
Human-robot co-transportation allows for a human and a robot to perform an object transportation task cooperatively on a shared environment. This range of applications raises a great number of theoretical and practical challenges arising mainly from the unknown human-robot interaction model as well as from the difficulty of accurately model the robot dynamics. In this article, an adaptive impedance controller for human-robot co-transportation is put forward in task space. Vision and force sensing are employed to obtain the human hand position, and to measure the interaction force between the human and the robot. Using the latest developments in nonlinear control theory, we propose a robot end-effector controller to track the motion of the human partner under actuators' input constraints, unknown initial conditions, and unknown robot dynamics. The proposed adaptive impedance control algorithm offers a safe interaction between the human and the robot and achieves a smooth control behavior along the different phases of the co-transportation task. Simulations and experiments are conducted to illustrate the performance of the proposed techniques in a co-transportation task.Human-robot co-transportation allows for a human and a robot to perform an object transportation task cooperatively on a shared environment. This range of applications raises a great number of theoretical and practical challenges arising mainly from the unknown human-robot interaction model as well as from the difficulty of accurately model the robot dynamics. In this article, an adaptive impedance controller for human-robot co-transportation is put forward in task space. Vision and force sensing are employed to obtain the human hand position, and to measure the interaction force between the human and the robot. Using the latest developments in nonlinear control theory, we propose a robot end-effector controller to track the motion of the human partner under actuators' input constraints, unknown initial conditions, and unknown robot dynamics. The proposed adaptive impedance control algorithm offers a safe interaction between the human and the robot and achieves a smooth control behavior along the different phases of the co-transportation task. Simulations and experiments are conducted to illustrate the performance of the proposed techniques in a co-transportation task.
Author Yu, Xinbo
Cheng, Long
Feng, Yanghe
Silvestre, Carlos
Li, Bin
He, Wei
Author_xml – sequence: 1
  givenname: Xinbo
  orcidid: 0000-0003-0958-6020
  surname: Yu
  fullname: Yu, Xinbo
  organization: Institute of Artificial Intelligence, University of Science and Technology Beijing, Beijing, China
– sequence: 2
  givenname: Bin
  surname: Li
  fullname: Li, Bin
  organization: Institute of Artificial Intelligence and the School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing, China
– sequence: 3
  givenname: Wei
  orcidid: 0000-0002-8944-9861
  surname: He
  fullname: He, Wei
  email: weihe@ieee.org
  organization: Institute of Artificial Intelligence and the School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing, China
– sequence: 4
  givenname: Yanghe
  orcidid: 0000-0003-1608-8695
  surname: Feng
  fullname: Feng, Yanghe
  organization: College of Systems Engineering, National University of Defense Technology, Changsha, China
– sequence: 5
  givenname: Long
  orcidid: 0000-0001-7565-8788
  surname: Cheng
  fullname: Cheng, Long
  organization: State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
– sequence: 6
  givenname: Carlos
  orcidid: 0000-0002-5096-5527
  surname: Silvestre
  fullname: Silvestre, Carlos
  organization: Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau, China
BookMark eNp9kM1LwzAchoNM3Jz7A8TLwIuXznw0Hz3Oom4wEGQePIWsTaCjTWrSCv73pnR42MFcfuHleX8kzzWYWGc1ALcIrhCC2eM-_3xaYYjRiiDICeUXYIYREwnGnE7-7oxPwSKEI4xHxCgTV2BKUsohR2QGNutStV31rZPc2dB5VVldLrdNq0tlC72MaeddvTTOLzd9o2zy7g6ui3my98qG1vlOdZWzN-DSqDroxWnOwcfL8z7fJLu3122-3iUFwaxLBCqVMFikhpECIZUxDk2qU0UNzTKICaTclDjLFBTMpISWVBWiOJQKM8IZJHPwMO5tvfvqdehkU4VC17Wy2vVBYsp5SlPEUETvz9Cj672Nr5OYE06ZwJhGio9U4V0IXhtZVOOXBhu1RFAOvuXgWw6-5cl3bKKzZuurRvmffzt3Y6fSWv_xGU0FF4j8Aia4iZ8
CODEN ITCEB8
CitedBy_id crossref_primary_10_1109_TRO_2025_3532510
crossref_primary_10_1109_TMECH_2023_3336281
crossref_primary_10_1007_s11465_022_0684_4
crossref_primary_10_1109_TSMC_2024_3489587
crossref_primary_10_1007_s10846_022_01795_x
crossref_primary_10_1016_j_oceaneng_2023_113882
crossref_primary_10_1049_cth2_12371
crossref_primary_10_3390_biomimetics8040358
crossref_primary_10_1109_JSEN_2025_3529208
crossref_primary_10_1016_j_techsoc_2023_102427
crossref_primary_10_1016_j_rcim_2023_102526
crossref_primary_10_1017_S0263574723001054
crossref_primary_10_1016_j_jfranklin_2024_107362
crossref_primary_10_1007_s11804_024_00389_3
crossref_primary_10_1109_TCSII_2023_3285658
crossref_primary_10_1093_jcde_qwad007
crossref_primary_10_1109_TASE_2023_3235895
crossref_primary_10_1007_s10846_024_02185_1
crossref_primary_10_1049_ell2_12785
crossref_primary_10_1002_rnc_6996
crossref_primary_10_3390_app13042568
crossref_primary_10_1049_cth2_12455
crossref_primary_10_1016_j_neucom_2024_128265
crossref_primary_10_1109_TMECH_2023_3259985
crossref_primary_10_1109_TMRB_2023_3291026
crossref_primary_10_1145_3659059
crossref_primary_10_1109_TCYB_2023_3310505
crossref_primary_10_1109_TAI_2023_3249683
crossref_primary_10_1007_s13369_024_08718_y
crossref_primary_10_1109_TMECH_2022_3209488
crossref_primary_10_1007_s12369_024_01103_7
crossref_primary_10_1109_ACCESS_2024_3503674
crossref_primary_10_1049_cth2_12528
crossref_primary_10_1177_09544062221141593
crossref_primary_10_1109_TCYB_2023_3340659
crossref_primary_10_1371_journal_pone_0283751
crossref_primary_10_1016_j_neucom_2024_128110
crossref_primary_10_1002_rob_22283
crossref_primary_10_1093_jcde_qwad034
crossref_primary_10_1109_TCSII_2023_3241622
crossref_primary_10_1177_16878132231181247
crossref_primary_10_1016_j_automatica_2024_111721
crossref_primary_10_1109_TMRB_2022_3162148
crossref_primary_10_1016_j_isatra_2024_12_041
crossref_primary_10_1002_acs_3549
crossref_primary_10_1007_s10846_022_01757_3
crossref_primary_10_1109_TASE_2023_3313564
crossref_primary_10_1017_S0263574722000285
crossref_primary_10_1109_TFUZZ_2024_3411018
crossref_primary_10_1016_j_ast_2024_109658
crossref_primary_10_1016_j_ejcon_2023_100903
crossref_primary_10_1109_TASE_2024_3395921
crossref_primary_10_7746_jkros_2024_19_4_381
crossref_primary_10_1109_TSMC_2023_3301662
crossref_primary_10_12677_mos_2024_133334
crossref_primary_10_1016_j_isatra_2023_03_042
crossref_primary_10_1016_j_apm_2023_04_001
crossref_primary_10_3233_ICA_230724
crossref_primary_10_1109_TIE_2023_3257378
crossref_primary_10_1109_TAES_2023_3276726
crossref_primary_10_1007_s10846_023_01853_y
crossref_primary_10_1080_10255842_2023_2222863
crossref_primary_10_1007_s10846_023_01805_6
crossref_primary_10_1016_j_asr_2022_07_081
crossref_primary_10_1016_j_ast_2023_108253
crossref_primary_10_1109_TCSII_2023_3297600
crossref_primary_10_1007_s10846_022_01765_3
crossref_primary_10_1002_rnc_7921
crossref_primary_10_1017_S0263574723000267
crossref_primary_10_1109_TETCI_2023_3297838
crossref_primary_10_1007_s41315_023_00276_0
crossref_primary_10_1016_j_robot_2024_104829
crossref_primary_10_1109_TCYB_2024_3436021
crossref_primary_10_1002_acs_3554
crossref_primary_10_1002_acs_3752
crossref_primary_10_1007_s10846_023_01957_5
crossref_primary_10_1002_acs_3599
crossref_primary_10_1109_TMECH_2023_3286843
crossref_primary_10_1109_TASE_2022_3178266
crossref_primary_10_1109_TII_2023_3240749
crossref_primary_10_1002_aisy_202200339
crossref_primary_10_1002_aisy_202300036
crossref_primary_10_1109_TSMC_2023_3305498
crossref_primary_10_3390_app15020819
crossref_primary_10_1109_TFUZZ_2022_3229073
crossref_primary_10_1108_RIA_10_2022_0254
crossref_primary_10_3390_pr12030499
crossref_primary_10_1142_S0219519423500525
crossref_primary_10_1109_TII_2024_3431088
crossref_primary_10_1016_j_neucom_2025_129362
crossref_primary_10_1109_LRA_2023_3254450
crossref_primary_10_1016_j_neucom_2023_126293
Cites_doi 10.1109/TSMC.2019.2901277
10.1109/TASE.2018.2883343
10.1007/s11432-019-2893-y
10.1109/TCYB.2015.2411285
10.1109/TRO.2019.2914350
10.1109/TRO.2015.2430053
10.1109/TIE.2020.3016271
10.1109/TRO.2017.2765335
10.1109/9.486648
10.1109/TRO.2010.2040202
10.1109/TCYB.2018.2838573
10.1109/TCYB.2020.2977175
10.1109/ICRA.2014.6906917
10.1109/TSMCB.2012.2226577
10.1109/TNSRE.2007.903919
10.1109/TCYB.2018.2869084
10.1007/s11432-020-3109-x
10.1109/TMECH.2013.2264533
10.1016/j.neucom.2019.07.104
10.1109/TRO.2016.2572698
10.1016/j.ins.2016.10.016
10.1007/s12206-007-1109-3
10.1109/TCBB.2018.2825445
10.1109/TSMC.2016.2557222
10.1016/j.automatica.2015.10.036
10.1109/TCYB.2018.2846186
10.1007/s00500-018-03732-3
10.1109/TCBB.2016.2606430
10.1109/JAS.2020.1003225
10.1007/s11424-020-8186-0
10.1007/s00500-018-03689-3
10.1109/TBME.2012.2198821
10.1109/TCYB.2020.2970454
10.1177/0278364912455366
10.1007/s11432-019-2748-x
10.1109/TFUZZ.2020.2979389
10.1109/TRO.2016.2597322
10.1109/TAC.2014.2330432
10.1016/j.automatica.2011.01.025
10.1109/TNNLS.2019.2915376
10.1007/s00500-017-2659-7
10.1109/TRO.2016.2540623
10.1007/s11432-018-9631-7
10.1109/TOH.2008.13
10.1109/TASE.2020.2983225
10.1109/ROBOT.2000.844116
10.1007/978-3-319-32552-1
10.1109/TOH.2012.36
10.1109/IROS.2016.7759414
10.1109/TRO.2015.2419873
10.1007/s10846-014-0150-6
10.1007/s11424-020-9210-0
10.1177/027836498700600303
10.1109/TAC.2018.2872204
10.1016/j.automatica.2016.10.011
10.1109/LRA.2018.2864351
10.1109/TCYB.2015.2512286
10.1109/TNNLS.2020.3009391
10.1016/j.automatica.2011.08.044
10.1109/TSMC.2018.2819191
10.1109/JAS.2017.7510604
10.1016/j.automatica.2018.09.032
10.1109/TMECH.2006.886254
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TCYB.2021.3107357
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Aerospace Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 13249
ExternalDocumentID 10_1109_TCYB_2021_3107357
9548781
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62061160371; U1913209; 62025307; 62073031; 62003032
  funderid: 10.13039/501100001809
– fundername: Macao Science and Technology, Development Fund
  grantid: FDCT/0031/2020/AFJ
  funderid: 10.13039/501100006469
– fundername: China Postdoctoral Science Foundation
  grantid: 2020TQ0031; 2021M690358
  funderid: 10.13039/501100002858
– fundername: University of Macau, Macau, China
  grantid: MYRG2018-00198-FST
– fundername: Guangdong Basic and Applied Basic Research Foundation
  grantid: 2020B1515120071
– fundername: Fundação para a Ciência e a Tecnologia (FCT) through ISR LARSyS-FCT Project
  grantid: UIDB/50009/2020
  funderid: 10.13039/501100001871
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c326t-81da8f284f63c11a9670f4e4a5f599023057fd299a086f435d5ac8cbda2637603
IEDL.DBID RIE
ISSN 2168-2267
2168-2275
IngestDate Thu Jul 10 23:45:45 EDT 2025
Sun Jun 29 14:02:09 EDT 2025
Thu Apr 24 22:59:51 EDT 2025
Tue Jul 01 00:54:00 EDT 2025
Wed Aug 27 02:14:18 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c326t-81da8f284f63c11a9670f4e4a5f599023057fd299a086f435d5ac8cbda2637603
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1608-8695
0000-0002-8944-9861
0000-0001-7565-8788
0000-0003-0958-6020
0000-0002-5096-5527
PMID 34570713
PQID 2737568225
PQPubID 85422
PageCount 13
ParticipantIDs ieee_primary_9548781
proquest_miscellaneous_2577454161
crossref_citationtrail_10_1109_TCYB_2021_3107357
proquest_journals_2737568225
crossref_primary_10_1109_TCYB_2021_3107357
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref15
ref58
ref14
ref53
ref52
ref55
ref11
ref10
ref17
ref16
ott (ref20) 2008
ref19
ref18
ref51
ref50
ehaji? (ref54) 2015
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref8
ref7
ref4
zhang (ref66) 2019
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
zhou (ref59) 2008
ref70
lee (ref61) 1998; 19
yu (ref49) 2020
ref68
ref24
ref67
ref23
ref26
ref69
ref25
ref64
ref63
ref22
ref65
ref21
ref28
ref27
siciliano (ref9) 2016
ref29
ref60
ref62
References_xml – ident: ref41
  doi: 10.1109/TSMC.2019.2901277
– ident: ref32
  doi: 10.1109/TASE.2018.2883343
– ident: ref35
  doi: 10.1007/s11432-019-2893-y
– ident: ref62
  doi: 10.1109/TCYB.2015.2411285
– ident: ref6
  doi: 10.1109/TRO.2019.2914350
– ident: ref21
  doi: 10.1109/TRO.2015.2430053
– ident: ref52
  doi: 10.1109/TIE.2020.3016271
– ident: ref19
  doi: 10.1109/TRO.2017.2765335
– ident: ref57
  doi: 10.1109/9.486648
– ident: ref14
  doi: 10.1109/TRO.2010.2040202
– ident: ref40
  doi: 10.1109/TCYB.2018.2838573
– ident: ref48
  doi: 10.1109/TCYB.2020.2977175
– ident: ref56
  doi: 10.1109/ICRA.2014.6906917
– ident: ref33
  doi: 10.1109/TSMCB.2012.2226577
– ident: ref1
  doi: 10.1109/TNSRE.2007.903919
– ident: ref28
  doi: 10.1109/TCYB.2018.2869084
– ident: ref22
  doi: 10.1007/s11432-020-3109-x
– ident: ref13
  doi: 10.1109/TMECH.2013.2264533
– volume: 19
  year: 1998
  ident: ref61
  publication-title: Adaptive Neural Network Control of Robotic Manipulators
– ident: ref55
  doi: 10.1016/j.neucom.2019.07.104
– ident: ref11
  doi: 10.1109/TRO.2016.2572698
– ident: ref31
  doi: 10.1016/j.ins.2016.10.016
– start-page: 1031
  year: 2015
  ident: ref54
  article-title: Grasp pose estimation in human-robot manipulation tasks using wearable motion sensors
  publication-title: Proc IEEE/RSJ Int Conf Intell Robots Syst (IROS)
– ident: ref8
  doi: 10.1007/s12206-007-1109-3
– ident: ref45
  doi: 10.1109/TCBB.2018.2825445
– ident: ref39
  doi: 10.1109/TSMC.2016.2557222
– year: 2020
  ident: ref49
  article-title: Adaptive fuzzy full-state and output-feedback control for uncertain robots with output constraint
  publication-title: IEEE Trans Syst Man Cybern Syst
– ident: ref26
  doi: 10.1016/j.automatica.2015.10.036
– ident: ref65
  doi: 10.1109/TCYB.2018.2846186
– ident: ref68
  doi: 10.1007/s00500-018-03732-3
– ident: ref44
  doi: 10.1109/TCBB.2016.2606430
– ident: ref36
  doi: 10.1109/JAS.2020.1003225
– ident: ref25
  doi: 10.1007/s11424-020-8186-0
– ident: ref69
  doi: 10.1007/s00500-018-03689-3
– ident: ref16
  doi: 10.1109/TBME.2012.2198821
– ident: ref46
  doi: 10.1109/TCYB.2020.2970454
– ident: ref64
  doi: 10.1177/0278364912455366
– ident: ref23
  doi: 10.1007/s11432-019-2748-x
– ident: ref47
  doi: 10.1109/TFUZZ.2020.2979389
– ident: ref51
  doi: 10.1109/TRO.2016.2597322
– ident: ref30
  doi: 10.1109/TAC.2014.2330432
– ident: ref34
  doi: 10.1016/j.automatica.2011.01.025
– year: 2019
  ident: ref66
  article-title: GCB-Net: Graph convolutional broad network and its application in emotion recognition
  publication-title: IEEE Trans Affective Comput
– ident: ref43
  doi: 10.1109/TNNLS.2019.2915376
– ident: ref70
  doi: 10.1007/s00500-017-2659-7
– ident: ref53
  doi: 10.1109/TRO.2016.2540623
– ident: ref37
  doi: 10.1007/s11432-018-9631-7
– ident: ref10
  doi: 10.1109/TOH.2008.13
– ident: ref5
  doi: 10.1109/TASE.2020.2983225
– ident: ref4
  doi: 10.1109/ROBOT.2000.844116
– year: 2008
  ident: ref59
  publication-title: Adaptive Backstepping Control of Uncertain Systems
– year: 2016
  ident: ref9
  publication-title: Springer Handbook of Robotics
  doi: 10.1007/978-3-319-32552-1
– ident: ref7
  doi: 10.1109/TOH.2012.36
– ident: ref15
  doi: 10.1109/IROS.2016.7759414
– ident: ref17
  doi: 10.1109/TRO.2015.2419873
– year: 2008
  ident: ref20
  publication-title: Cartesian Impedance Control of Redundant and Flexible-Joint Robots
– ident: ref63
  doi: 10.1007/s10846-014-0150-6
– ident: ref24
  doi: 10.1007/s11424-020-9210-0
– ident: ref60
  doi: 10.1177/027836498700600303
– ident: ref27
  doi: 10.1109/TAC.2018.2872204
– ident: ref29
  doi: 10.1016/j.automatica.2016.10.011
– ident: ref18
  doi: 10.1177/0278364912455366
– ident: ref12
  doi: 10.1109/LRA.2018.2864351
– ident: ref67
  doi: 10.1109/TCYB.2015.2512286
– ident: ref42
  doi: 10.1109/TNNLS.2020.3009391
– ident: ref38
  doi: 10.1016/j.automatica.2011.08.044
– ident: ref58
  doi: 10.1109/TSMC.2018.2819191
– ident: ref2
  doi: 10.1109/JAS.2017.7510604
– ident: ref50
  doi: 10.1016/j.automatica.2018.09.032
– ident: ref3
  doi: 10.1109/TMECH.2006.886254
SSID ssj0000816898
Score 2.6192267
Snippet Human-robot co-transportation allows for a human and a robot to perform an object transportation task cooperatively on a shared environment. This range of...
Human–robot co-transportation allows for a human and a robot to perform an object transportation task cooperatively on a shared environment. This range of...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 13237
SubjectTerms Actuators
Adaptive algorithms
Adaptive control
Collaboration
Constraints
Control algorithms
Control theory
Controllers
End effectors
Error constraint
Force
Human motion
human–robot co-transportation
Impedance
Initial conditions
input constraint
Interaction models
neural networks (NNs)
Nonlinear control
Position measurement
Robot control
Robot dynamics
Robot sensing systems
Robots
Sensors
Task analysis
Task space
Transportation
vision and force sensing
Title Adaptive-Constrained Impedance Control for Human-Robot Co-Transportation
URI https://ieeexplore.ieee.org/document/9548781
https://www.proquest.com/docview/2737568225
https://www.proquest.com/docview/2577454161
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9zJy_qnOJ0SgUPKma2XdKP4xyOKcyDbDBPJWmSi7IO1138630vzQp-IN5Cm5YkL8n7_ZL3QchFGgnBDGNUcplQFgSSCs37VPuRktoEOhHoOzx5isYz9jjn8wa5qX1htNbW-Ez3sGjv8lWRr_Go7BaDk8XoZ70FxK3y1arPU2wCCZv6NoQCBVQRu0vMwE9vp8OXOyCDYQAcFSY1x9x7fcZj5GhfNJJNsfJjX7bKZrRLJptmVjYmr711KXv5x7cIjv_txx7ZcajTG1TTpEUaerFPWm5dr7xLF3z6qk3GAyWWuAVSTOVpE0ho5T0AuFY4P7xhZdruAdb17AUAfS5kUcJzWsdJt8I-ILPR_XQ4pi7bAs0BwpUUgKtIDGgrE_XzIBBpFPuGaSa44aCygKrw2CjQXgJYkAGUpbjIk1wqEUZoWdM_JM1FsdBHxNOwE4jclylPFANIIzSwREBeoVHMN4p3iL8Z8Sx3ocixQ2-ZpSR-mqG8MpRX5uTVIdf1J8sqDsdflds46HVFN94d0t2INXMrdZUBfIt5BDAJWnVev4Y1hhcnYqGLNdThAJI5UsHj3_98QrZDdIuwZi5d0izf1_oUwEopz-ws_QQWxeI-
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9swFH-q2GFc2KBMdAOWSRwAzSVJ7XwcSwVqoeWAWglOkR3bl01NtaaX_fV7z3EjAdO0m5U4ke337Pd7fl8AZ3kiJbecMyVUxngUKSaNGDATJloZG5lMUuzw7CEZL_jdk3jqwPc2FsYY45zPTJ-azpavq3JDV2VXlJwspTjrdyj3RdREa7U3Kq6EhCt-G2ODIa5IvRkzCvOr-ej5GtXBOEItFdlaUPW9ARcpaWkvZJIrsvLmZHbi5vYDzLYDbbxMfvQ3teqXv1_lcPzfmXyEPY87g2HDKPvQMcsD2Pc7ex2c-_TTF10YD7Vc0SHIqJinKyFhdDBBeK2JQ4JR49weINoNnAmAPVaqqvE5azOlO3IfwuL2Zj4aM19vgZUI4mqG0FVmFuWVTQZlFMk8SUPLDZfCChRaqKyI1GqUXxL1IIs4SwtZZqXSMk7It2bwCXaW1dIcQWDwLJBlqHKRaY6gRhrUExF7xVbz0GrRg3C74kXpk5HThH4WTikJ84LoVRC9Ck-vHly2n6yaTBz_6tylRW87-vXuwfGWrIXfq-sCAVwqEgRKOKpv7WvcZWQ6kUtTbbCPQJgsSBn8_Pc_f4X34_lsWkwnD_dfYDemIAnn9HIMO_WvjTlB6FKrU8exfwARA-WH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive-Constrained+Impedance+Control+for+Human%E2%80%93Robot+Co-Transportation&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Yu%2C+Xinbo&rft.au=Li%2C+Bin&rft.au=He%2C+Wei&rft.au=Feng%2C+Yanghe&rft.date=2022-12-01&rft.issn=2168-2267&rft.eissn=2168-2275&rft.volume=52&rft.issue=12&rft.spage=13237&rft.epage=13249&rft_id=info:doi/10.1109%2FTCYB.2021.3107357&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCYB_2021_3107357
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon