Techniques for Selective Labeling of Molecules and Subcellular Structures for Cryo-Electron Tomography
Electron microscopy (EM) is one of the most efficient methods for studying the fine structure of cells with a resolution thousands of times higher than that of visible light microscopy. The most advanced implementation of electron microscopy in biology is EM tomography of samples stabilized by freez...
Saved in:
Published in | Biochemistry (Moscow) Vol. 90; no. 2; pp. 173 - 187 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Moscow
Pleiades Publishing
01.02.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electron microscopy (EM) is one of the most efficient methods for studying the fine structure of cells with a resolution thousands of times higher than that of visible light microscopy. The most advanced implementation of electron microscopy in biology is EM tomography of samples stabilized by freezing without water crystallization (cryoET). By circumventing the drawbacks of chemical fixation and dehydration, this technique allows investigating cellular structures in three dimensions at the molecular level, down to resolving individual proteins and their subdomains. However, the problem of efficient identification and localization of objects of interest has not yet been solved, thus limiting the range of targets to easily recognizable or abundant subcellular components. Labeling techniques provide the only way for locating the subject of investigation in microscopic images. CryoET imposes conflicting demands on the labeling system, including the need to introduce into a living cell the particles composed of substances foreign to the cellular chemistry that have to bind to the molecule of interest without disrupting its vital functions and physiology of the cell. This review examines both established and prospective methods for selective labeling of proteins and subcellular structures aimed to enable their localization in cryoET images. |
---|---|
AbstractList | Electron microscopy (EM) is one of the most efficient methods for studying the fine structure of cells with a resolution thousands of times higher than that of visible light microscopy. The most advanced implementation of electron microscopy in biology is EM tomography of samples stabilized by freezing without water crystallization (cryoET). By circumventing the drawbacks of chemical fixation and dehydration, this technique allows investigating cellular structures in three dimensions at the molecular level, down to resolving individual proteins and their subdomains. However, the problem of efficient identification and localization of objects of interest has not yet been solved, thus limiting the range of targets to easily recognizable or abundant subcellular components. Labeling techniques provide the only way for locating the subject of investigation in microscopic images. CryoET imposes conflicting demands on the labeling system, including the need to introduce into a living cell the particles composed of substances foreign to the cellular chemistry that have to bind to the molecule of interest without disrupting its vital functions and physiology of the cell. This review examines both established and prospective methods for selective labeling of proteins and subcellular structures aimed to enable their localization in cryoET images. Electron microscopy (EM) is one of the most efficient methods for studying the fine structure of cells with a resolution thousands of times higher than that of visible light microscopy. The most advanced implementation of electron microscopy in biology is EM tomography of samples stabilized by freezing without water crystallization (cryoET). By circumventing the drawbacks of chemical fixation and dehydration, this technique allows investigating cellular structures in three dimensions at the molecular level, down to resolving individual proteins and their subdomains. However, the problem of efficient identification and localization of objects of interest has not yet been solved, thus limiting the range of targets to easily recognizable or abundant subcellular components. Labeling techniques provide the only way for locating the subject of investigation in microscopic images. CryoET imposes conflicting demands on the labeling system, including the need to introduce into a living cell the particles composed of substances foreign to the cellular chemistry that have to bind to the molecule of interest without disrupting its vital functions and physiology of the cell. This review examines both established and prospective methods for selective labeling of proteins and subcellular structures aimed to enable their localization in cryoET images. Electron microscopy (EM) is one of the most efficient methods for studying the fine structure of cells with a resolution thousands of times higher than that of visible light microscopy. The most advanced implementation of electron microscopy in biology is EM tomography of samples stabilized by freezing without water crystallization (cryoET). By circumventing the drawbacks of chemical fixation and dehydration, this technique allows investigating cellular structures in three dimensions at the molecular level, down to resolving individual proteins and their subdomains. However, the problem of efficient identification and localization of objects of interest has not yet been solved, thus limiting the range of targets to easily recognizable or abundant subcellular components. Labeling techniques provide the only way for locating the subject of investigation in microscopic images. CryoET imposes conflicting demands on the labeling system, including the need to introduce into a living cell the particles composed of substances foreign to the cellular chemistry that have to bind to the molecule of interest without disrupting its vital functions and physiology of the cell. This review examines both established and prospective methods for selective labeling of proteins and subcellular structures aimed to enable their localization in cryoET images.Electron microscopy (EM) is one of the most efficient methods for studying the fine structure of cells with a resolution thousands of times higher than that of visible light microscopy. The most advanced implementation of electron microscopy in biology is EM tomography of samples stabilized by freezing without water crystallization (cryoET). By circumventing the drawbacks of chemical fixation and dehydration, this technique allows investigating cellular structures in three dimensions at the molecular level, down to resolving individual proteins and their subdomains. However, the problem of efficient identification and localization of objects of interest has not yet been solved, thus limiting the range of targets to easily recognizable or abundant subcellular components. Labeling techniques provide the only way for locating the subject of investigation in microscopic images. CryoET imposes conflicting demands on the labeling system, including the need to introduce into a living cell the particles composed of substances foreign to the cellular chemistry that have to bind to the molecule of interest without disrupting its vital functions and physiology of the cell. This review examines both established and prospective methods for selective labeling of proteins and subcellular structures aimed to enable their localization in cryoET images. |
Author | Kireev, Igor I. Kazakov, Evgeny P. Golyshev, Sergei A. |
Author_xml | – sequence: 1 givenname: Evgeny P. surname: Kazakov fullname: Kazakov, Evgeny P. email: kazakov.evgeny.2016@post.bio.msu.ru organization: Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Department of Cell Biology and Histology, Faculty of Biology, Lomonosov Moscow State University – sequence: 2 givenname: Igor I. surname: Kireev fullname: Kireev, Igor I. organization: Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Department of Cell Biology and Histology, Faculty of Biology, Lomonosov Moscow State University – sequence: 3 givenname: Sergei A. surname: Golyshev fullname: Golyshev, Sergei A. organization: Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40254397$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kUtPGzEQx62KCgLlA_RSrdQLl6UeP9bxEUUUkII4JD2v_NqwaGMHe10p3x6vElqpqKfRzPz-8zxHJz54h9BXwNcAlP1YYYwbIoUkrMEMA_-EZtDgeU2Ld4JmU7qe8mfoPKWX4hIs6Sk6Y5hwRqWYoW7tzLPvX7NLVRditXKDM2P_21VLpd3Q-00VuuoxlGgeCqO8rVZZGzcMeVCFH2M2Y45H-SLuQ307lYjBV-uwDZuods_7L-hzp4bkLo_2Av36ebte3NfLp7uHxc2yNpQ0Yy20musOqFUKpFVgNXEN545LA1KbDjvRGI2tnUvCOQXBbaelAKHBMjfH9AJdHeruYph2Gtttn6ZhlXchp5aCJJQTEKyg3_9BX0KOvkw3UcAEJgwK9e1IZb11tt3Ffqvivn2_YAHgAJgYUoqu-4MAbqcvtR--VDTkoEmF9RsX_7b-v-gNY36TLg |
Cites_doi | 10.1039/c8mt00165k 10.1016/j.addr.2018.08.004 10.1007/978-3-031-51171-4_6 10.1016/j.jsb.2004.03.010 10.1038/nbt765 10.1038/ncomms15318 10.1074/jbc.M114.570119 10.1111/j.1462-5822.2006.00837.x 10.1016/j.str.2012.04.001 10.1016/j.cell.2021.01.033 10.1073/pnas.0810057105 10.1016/j.crmeth.2022.100220 10.1093/mam/ozae044.387 10.1016/j.cell.2013.12.001 10.1021/acsami.9b12679 10.1016/j.jsb.2023.108025 10.1242/jcs.124123 10.1242/jcs.222315 10.1177/40.2.1552162 10.1371/journal.ppat.1004087 10.1038/s41592-023-02053-0 10.1039/c3nr01550e 10.15252/embj.201488566 10.1038/emboj.2012.35 10.1107/S2059798324004303 10.1002/jcp.29105 10.1016/j.jsb.2022.107880 10.1021/cb800025k 10.1007/978-1-62703-056-4_28 10.1083/jcb.57.2.551 10.1093/jmicro/dfu006 10.1038/srep08324 10.1038/s41586-022-05255-2 10.1038/s41598-018-19905-x 10.1007/978-3-642-72815-0_8 10.1002/smtd.202300098 10.1074/jbc.M114.626556 10.1021/bm501066m 10.1007/978-3-031-51171-4_1 10.2174/092986711797189691 10.1038/s41592-024-02427-y 10.1369/0022155415593323 10.1101/2024.09.10.612178 10.1016/j.str.2018.06.009 10.1039/c5nr04097c 10.1021/acs.jpclett.0c01354 10.1007/978-3-031-51171-4_2 10.1038/nmeth.1196 10.1177/25.4.323352 10.1111/j.1365-2818.1981.tb02483.x 10.1002/jlcr.3087 10.1016/j.jsb.2007.06.010 10.1016/j.jsb.2011.10.007 10.1002/smll.200400093 10.1038/nmeth.3400 10.1007/s00441-014-2087-2 10.1017/S003358352100007X 10.1021/acsnano.5b01841 10.1038/nsmb.2680 10.1021/jacs.3c07328 10.1101/2024.06.27.600657 10.1371/journal.pone.0008301 10.3390/ijms14036044 10.1016/j.jmb.2005.10.026 10.1016/S0021-9258(18)89027-5 10.1073/pnas.1201333109 10.1002/wnan.133 10.1007/s00418-008-0500-1 10.1038/s41587-023-01713-y 10.1039/c9cp01543d 10.1038/nmeth1014 10.1016/j.jsb.2008.11.009 10.1083/jcb.109.5.2067 10.1111/j.1365-2818.2006.01567.x 10.1016/j.jsb.2021.107746 10.1093/jmicro/dfm008 10.1016/s0079-6336(11)80027-6 10.1038/s41467-018-04227-3 10.1038/nsmb.1473 10.1038/s41467-018-04993-0 10.7554/eLife.20378 10.1021/acs.langmuir.6b04234 10.1021/acsnano.0c06388 10.1038/s41592-020-0911-z 10.1111/j.1365-2818.1983.tb04225.x 10.1038/nmeth791 10.1016/j.str.2010.12.002 10.1016/j.yjsbx.2024.100104 10.1016/j.str.2024.04.017 10.1002/jat.4083 10.1093/jmicro/dfs082 10.1016/j.bpj.2021.11.1285 10.1021/cr400011b 10.1038/nature04586 10.1002/adma.202301035 10.7554/eLife.46070 10.1128/aem.60.10.3809-3814.1994 10.1038/s41592-024-02482-5 |
ContentType | Journal Article |
Copyright | Pleiades Publishing, Ltd. 2025 Copyright Springer Nature B.V. Feb 2025 |
Copyright_xml | – notice: Pleiades Publishing, Ltd. 2025 – notice: Copyright Springer Nature B.V. Feb 2025 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7TM 7U9 C1K H94 K9. M7N 7X8 |
DOI | 10.1134/S0006297924604015 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Nucleic Acids Abstracts Virology and AIDS Abstracts Environmental Sciences and Pollution Management AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Nucleic Acids Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry Biology |
EISSN | 1608-3040 |
EndPage | 187 |
ExternalDocumentID | 40254397 10_1134_S0006297924604015 |
Genre | Journal Article Review |
GroupedDBID | -Y2 -~X .86 .VR 06C 06D 0R~ 0VY 1N0 23N 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 4.4 408 409 40D 40E 5GY 5VS 67N 67Z 6J9 6NX 78A 7X7 88E 88I 8AO 8C1 8CJ 8FE 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBE ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACUHS ACZOJ ADBBV ADHHG ADHIR ADHKG ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AETLH AEUYN AEVLU AEXYK AFDZB AFFNX AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHPBZ AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN AZQEC B-. B0M BA0 BBNVY BDATZ BENPR BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP D1J DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBD EBLON EBS EIOEI EJD EMB EMK EMOBN EN4 EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GX1 GXS H13 HCIFZ HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ H~9 IAO IEA IHE IHR IJ- IKXTQ INH INR ITC ITM IWAJR IXC IZIGR I~X I~Z J-C JBSCW JCJTX JZLTJ KDC KOV KPH LAK LK8 LLZTM M1P M2P M4Y M7P MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9I O9J OAM OVD P2P PF0 PHGZT PQQKQ PROAC PSQYO PT4 Q2X QOR QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE S16 S1Z S27 S3A S3B SAP SBL SDH SHX SISQX SJN SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SV3 SZN T13 TEORI TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK8 YLTOR ZGI ZMTXR ZOVNA ~8M ~A9 ~KM AAYXX ABFSG ACMFV ACSTC AEZWR AFHIU AFOHR AHWEU AIXLP ATHPR CITATION PHGZM CGR CUY CVF ECM EIF NPM 7QL 7TM 7U9 ABRTQ C1K H94 K9. M7N 7X8 |
ID | FETCH-LOGICAL-c326t-7ba8bf13daa19da1db2e655e59c19bcf0e76cb0dd892553175dfb9717b1d4e803 |
IEDL.DBID | U2A |
ISSN | 0006-2979 1608-3040 |
IngestDate | Fri Jul 11 18:36:54 EDT 2025 Fri Jul 25 19:01:25 EDT 2025 Tue Apr 22 01:20:52 EDT 2025 Tue Jul 01 04:59:48 EDT 2025 Sat Apr 19 01:11:18 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | quantum dots encapsulins ferritin gold nanoparticles correlation microscopy electron microscopy cryo-electron tomography metallothionein genetically encoded tags |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c326t-7ba8bf13daa19da1db2e655e59c19bcf0e76cb0dd892553175dfb9717b1d4e803 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
PMID | 40254397 |
PQID | 3191470241 |
PQPubID | 54009 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_3192352174 proquest_journals_3191470241 pubmed_primary_40254397 crossref_primary_10_1134_S0006297924604015 springer_journals_10_1134_S0006297924604015 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20250200 2025-02-00 2025-Feb 20250201 |
PublicationDateYYYYMMDD | 2025-02-01 |
PublicationDate_xml | – month: 2 year: 2025 text: 20250200 |
PublicationDecade | 2020 |
PublicationPlace | Moscow |
PublicationPlace_xml | – name: Moscow – name: United States – name: New York |
PublicationTitle | Biochemistry (Moscow) |
PublicationTitleAbbrev | Biochemistry Moscow |
PublicationTitleAlternate | Biochemistry (Mosc) |
PublicationYear | 2025 |
Publisher | Pleiades Publishing Springer Nature B.V |
Publisher_xml | – name: Pleiades Publishing – name: Springer Nature B.V |
References | C. P. Mercogliano (2824_CR55) 2006; 355 M. Osumi (2824_CR1) 2012; 61 D. Studer (2824_CR6) 2008; 130 2824_CR16 T. W. Ni (2824_CR71) 2015; 7 E. Diestra (2824_CR64) 2009; 165 J. F. Hainfeld (2824_CR29) 1992; 40 R. P. Ahwazi (2824_CR47) 2020; 235 H. K. H. Fung (2824_CR41) 2023; 20 E. E. Connor (2824_CR31) 2005; 1 Q. Wang (2824_CR26) 2011; 19 M. D. Phan (2824_CR44) 2017; 33 N. Jiménez-Mancilla (2824_CR48) 2013; 56 J. Dubochet (2824_CR7) 1981; 124 N. Koifman (2824_CR36) 2023; 215 E. Morgan (2824_CR46) 2019; 11 C. Bouchet-Marquis (2824_CR60) 2012; 177 J. Gao (2824_CR100) 2024; 32 J. D. Petersen (2824_CR35) 2022; 121 K. T. Tokuyasu (2824_CR10) 1973; 57 N. Aissaoui (2824_CR77) 2024; 146 M. Nordberg (2824_CR57) 2000; 46 B. Ruttkay-Nedecky (2824_CR58) 2013; 14 I. Dahan (2824_CR33) 2018; 26 2824_CR9 2824_CR8 A. Bouvier-Müller (2824_CR79) 2018; 134 T. Q. Vu (2824_CR51) 2015; 360 R. Sengupta (2824_CR3) 2019; 132 A. Al-Amoudi (2824_CR12) 2004; 148 A. W. McDowall (2824_CR11) 1983; 131 Y. Nishino (2824_CR24) 2012; 31 A. Yadav (2824_CR42) 2020; 11 2824_CR5 H. Hong (2824_CR80) 2011; 18 N. Valdés-Stauber (2824_CR82) 1994; 60 T. W. Giessen (2824_CR87) 2019; 8 Y. Miyanari (2824_CR93) 2013; 20 2824_CR25 M. Eltsov (2824_CR23) 2008; 105 C. Wang (2824_CR70) 2024 F. Sigmund (2824_CR89) 2023; 41 2824_CR20 H. Stahlberg (2824_CR98) 2024; 21 D. Barajas (2824_CR62) 2014; 10 G. Grandinetti (2824_CR67) 2024; 30 N. I. Clarke (2824_CR69) 2018; 9 F. Sigmund (2824_CR88) 2018; 9 C. P. Mercogliano (2824_CR59) 2007; 160 L. Mallik (2824_CR76) 2015; 9 L. Xue (2824_CR17) 2022; 610 M. Raab (2824_CR78) 2018; 8 P. W. Rothemund (2824_CR74) 2006; 440 X. Quan (2824_CR45) 2019; 21 J. Jiang (2824_CR34) 2021; 213 K. B. Nielson (2824_CR54) 1985; 260 K. Song (2824_CR96) 2015; 290 M. Marko (2824_CR13) 2006; 222 O. Pfeil-Gardiner (2824_CR99) 2024; 21 B. Chen (2824_CR95) 2013; 155 I. Kireev (2824_CR37) 2008; 5 A. Rigort (2824_CR15) 2012; 109 X. Huang (2824_CR53) 2021; 41 V. J. Maurer (2824_CR101) 2024; 80 H. Moon (2824_CR83) 2014; 15 N. Groysbeck (2824_CR22) 2023; 7 W. W. Sun (2824_CR97) 2024 G. Knott (2824_CR2) 2013; 126 D. López-Colón (2824_CR81) 2011; 3 P. Walther (2824_CR4) 2013; 931 G. V. Los (2824_CR50) 2008; 3 P. De Boer (2824_CR27) 2015; 12 C. A. McHugh (2824_CR86) 2014; 33 M. Horisberger (2824_CR28) 1977; 25 R. E. Pagano (2824_CR90) 1989; 109 E. Diestra (2824_CR65) 2009; 4 Q. Jiang (2824_CR75) 2024; 36 K. W. Teng (2824_CR40) 2016; 5 A. Ziller (2824_CR56) 2018; 10 H. Contreras (2824_CR85) 2014; 289 B. N. Giepmans (2824_CR52) 2005; 2 C. Risco (2824_CR61) 2012; 20 I. Orlov (2824_CR38) 2015; 5 Y. Zhang (2824_CR91) 2013; 5 W. Jin (2824_CR18) 2024; 10 Y. Ma (2824_CR94) 2017; 8 C. T. Beales (2824_CR21) 2022; 214 G. Jutz (2824_CR68) 2015; 115 A. Keppler (2824_CR49) 2003; 21 E. Silvester (2824_CR73) 2021; 184 M. Sutter (2824_CR84) 2008; 15 Y. Tan (2824_CR43) 2020; 14 M. Bendayan (2824_CR30) 1995; 29 A. Hirabayashi (2824_CR66) 2014; 63 M. Marko (2824_CR14) 2007; 4 J. Fontana (2824_CR39) 2007; 9 D. J. DeRosier (2824_CR19) 2021; 54 H. Yi (2824_CR32) 2015; 63 Z. Jiang (2824_CR72) 2020; 17 J. Fermie (2824_CR92) 2022; 2 Y. Nishino (2824_CR63) 2007; 56 |
References_xml | – volume: 10 start-page: 1549 year: 2018 ident: 2824_CR56 publication-title: Metallomics doi: 10.1039/c8mt00165k – volume: 134 start-page: 94 year: 2018 ident: 2824_CR79 publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2018.08.004 – ident: 2824_CR20 doi: 10.1007/978-3-031-51171-4_6 – volume: 148 start-page: 131 year: 2004 ident: 2824_CR12 publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2004.03.010 – volume: 21 start-page: 86 year: 2003 ident: 2824_CR49 publication-title: Nat. Biotechnol. doi: 10.1038/nbt765 – volume: 8 year: 2017 ident: 2824_CR94 publication-title: Nat. Commun. doi: 10.1038/ncomms15318 – volume: 289 start-page: 18279 year: 2014 ident: 2824_CR85 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M114.570119 – volume: 9 start-page: 875 year: 2007 ident: 2824_CR39 publication-title: Cell. Microbiol. doi: 10.1111/j.1462-5822.2006.00837.x – volume: 20 start-page: 759 year: 2012 ident: 2824_CR61 publication-title: Structure doi: 10.1016/j.str.2012.04.001 – volume: 184 start-page: 1110 year: 2021 ident: 2824_CR73 publication-title: Cell doi: 10.1016/j.cell.2021.01.033 – volume: 105 start-page: 19732 year: 2008 ident: 2824_CR23 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0810057105 – volume: 2 year: 2022 ident: 2824_CR92 publication-title: Cell Rep. Methods doi: 10.1016/j.crmeth.2022.100220 – volume: 30 year: 2024 ident: 2824_CR67 publication-title: Microsc. Microanal. doi: 10.1093/mam/ozae044.387 – volume: 155 start-page: 1479 year: 2013 ident: 2824_CR95 publication-title: Cell doi: 10.1016/j.cell.2013.12.001 – volume: 11 start-page: 36383 year: 2019 ident: 2824_CR46 publication-title: ACS Appl. Mater. Interf. doi: 10.1021/acsami.9b12679 – volume: 215 year: 2023 ident: 2824_CR36 publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2023.108025 – volume: 126 start-page: 4545 year: 2013 ident: 2824_CR2 publication-title: J. Cell Sci. doi: 10.1242/jcs.124123 – volume: 132 year: 2019 ident: 2824_CR3 publication-title: J. Cell Sci. doi: 10.1242/jcs.222315 – volume: 40 start-page: 177 year: 1992 ident: 2824_CR29 publication-title: J. Histochem. Cytochem. doi: 10.1177/40.2.1552162 – volume: 10 year: 2014 ident: 2824_CR62 publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1004087 – volume: 20 start-page: 1900 year: 2023 ident: 2824_CR41 publication-title: Nat. Methods doi: 10.1038/s41592-023-02053-0 – volume: 5 start-page: 9296 year: 2013 ident: 2824_CR91 publication-title: Nanoscale doi: 10.1039/c3nr01550e – volume: 33 start-page: 1896 year: 2014 ident: 2824_CR86 publication-title: EMBO J. doi: 10.15252/embj.201488566 – volume: 31 start-page: 1644 year: 2012 ident: 2824_CR24 publication-title: EMBO J. doi: 10.1038/emboj.2012.35 – volume: 80 start-page: 410 year: 2024 ident: 2824_CR101 publication-title: Acta Crystallogr. D. Struct. Biol. doi: 10.1107/S2059798324004303 – volume: 235 start-page: 2049 year: 2020 ident: 2824_CR47 publication-title: J. Cell. Physiol. doi: 10.1002/jcp.29105 – volume: 214 year: 2022 ident: 2824_CR21 publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2022.107880 – volume: 3 start-page: 373 year: 2008 ident: 2824_CR50 publication-title: ACS Chem. Biol. doi: 10.1021/cb800025k – volume: 931 start-page: 525 year: 2013 ident: 2824_CR4 publication-title: Methods Mol. Biol. doi: 10.1007/978-1-62703-056-4_28 – volume: 57 start-page: 551 year: 1973 ident: 2824_CR10 publication-title: J. Cell Biol. doi: 10.1083/jcb.57.2.551 – volume: 63 start-page: 227 year: 2014 ident: 2824_CR66 publication-title: Microscopy doi: 10.1093/jmicro/dfu006 – volume: 46 start-page: 451 year: 2000 ident: 2824_CR57 publication-title: Cell. Mol. Biol. – volume: 5 year: 2015 ident: 2824_CR38 publication-title: Sci. Rep. doi: 10.1038/srep08324 – volume: 610 start-page: 205 year: 2022 ident: 2824_CR17 publication-title: Nature doi: 10.1038/s41586-022-05255-2 – volume: 8 year: 2018 ident: 2824_CR78 publication-title: Sci. Rep. doi: 10.1038/s41598-018-19905-x – ident: 2824_CR5 doi: 10.1007/978-3-642-72815-0_8 – ident: 2824_CR9 – volume: 7 year: 2023 ident: 2824_CR22 publication-title: Small Methods doi: 10.1002/smtd.202300098 – volume: 290 start-page: 5341 year: 2015 ident: 2824_CR96 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M114.626556 – volume: 15 start-page: 3794 year: 2014 ident: 2824_CR83 publication-title: Biomacromolecules doi: 10.1021/bm501066m – ident: 2824_CR25 doi: 10.1007/978-3-031-51171-4_1 – volume: 18 start-page: 4195 year: 2011 ident: 2824_CR80 publication-title: Curr. Med. Chem. doi: 10.2174/092986711797189691 – volume: 21 start-page: 2233 year: 2024 ident: 2824_CR98 publication-title: Nat. Methods doi: 10.1038/s41592-024-02427-y – volume: 63 start-page: 780 year: 2015 ident: 2824_CR32 publication-title: J. Histochem. Cytochem. doi: 10.1369/0022155415593323 – year: 2024 ident: 2824_CR70 publication-title: bioRxiv doi: 10.1101/2024.09.10.612178 – volume: 26 start-page: 1408 year: 2018 ident: 2824_CR33 publication-title: Structure doi: 10.1016/j.str.2018.06.009 – volume: 7 start-page: 17320 year: 2015 ident: 2824_CR71 publication-title: Nanoscale doi: 10.1039/c5nr04097c – volume: 11 start-page: 5741 year: 2020 ident: 2824_CR42 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.0c01354 – ident: 2824_CR16 doi: 10.1007/978-3-031-51171-4_2 – volume: 5 start-page: 311 year: 2008 ident: 2824_CR37 publication-title: Nat. Methods doi: 10.1038/nmeth.1196 – volume: 25 start-page: 295 year: 1977 ident: 2824_CR28 publication-title: J. Histochem. Cytochem. doi: 10.1177/25.4.323352 – volume: 124 start-page: 3 year: 1981 ident: 2824_CR7 publication-title: J. Microsc. doi: 10.1111/j.1365-2818.1981.tb02483.x – volume: 56 start-page: 663 year: 2013 ident: 2824_CR48 publication-title: J. Labell. Compounds Radiopharmaceut. doi: 10.1002/jlcr.3087 – volume: 160 start-page: 70 year: 2007 ident: 2824_CR59 publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2007.06.010 – volume: 177 start-page: 119 year: 2012 ident: 2824_CR60 publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2011.10.007 – volume: 1 start-page: 325 year: 2005 ident: 2824_CR31 publication-title: Small doi: 10.1002/smll.200400093 – volume: 12 start-page: 503 year: 2015 ident: 2824_CR27 publication-title: Nat. Methods doi: 10.1038/nmeth.3400 – volume: 360 start-page: 71 year: 2015 ident: 2824_CR51 publication-title: Cell Tissue Res. doi: 10.1007/s00441-014-2087-2 – volume: 54 year: 2021 ident: 2824_CR19 publication-title: Q. Rev. Biophys. doi: 10.1017/S003358352100007X – volume: 9 start-page: 7133 year: 2015 ident: 2824_CR76 publication-title: ACS Nano doi: 10.1021/acsnano.5b01841 – volume: 20 start-page: 1321 year: 2013 ident: 2824_CR93 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2680 – volume: 146 start-page: 12925 year: 2024 ident: 2824_CR77 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c07328 – year: 2024 ident: 2824_CR97 publication-title: bioRxiv doi: 10.1101/2024.06.27.600657 – volume: 4 year: 2009 ident: 2824_CR65 publication-title: PLoS One doi: 10.1371/journal.pone.0008301 – volume: 14 start-page: 6044 year: 2013 ident: 2824_CR58 publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms14036044 – volume: 355 start-page: 211 year: 2006 ident: 2824_CR55 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2005.10.026 – volume: 260 start-page: 5342 year: 1985 ident: 2824_CR54 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)89027-5 – volume: 109 start-page: 4449 year: 2012 ident: 2824_CR15 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1201333109 – volume: 3 start-page: 328 year: 2011 ident: 2824_CR81 publication-title: Nanomed. Nanobiotechnol. doi: 10.1002/wnan.133 – volume: 130 start-page: 877 year: 2008 ident: 2824_CR6 publication-title: Histochem. Cell Biol. doi: 10.1007/s00418-008-0500-1 – volume: 41 start-page: 1734 year: 2023 ident: 2824_CR89 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-023-01713-y – volume: 21 start-page: 10300 year: 2019 ident: 2824_CR45 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c9cp01543d – volume: 4 start-page: 215 year: 2007 ident: 2824_CR14 publication-title: Nat. Methods doi: 10.1038/nmeth1014 – ident: 2824_CR8 doi: 10.1007/978-3-031-51171-4_6 – volume: 165 start-page: 157 year: 2009 ident: 2824_CR64 publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2008.11.009 – volume: 109 start-page: 2067 year: 1989 ident: 2824_CR90 publication-title: J. Cell Biol. doi: 10.1083/jcb.109.5.2067 – volume: 222 start-page: 42 year: 2006 ident: 2824_CR13 publication-title: J. Microsc. doi: 10.1111/j.1365-2818.2006.01567.x – volume: 213 year: 2021 ident: 2824_CR34 publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2021.107746 – volume: 56 start-page: 93 year: 2007 ident: 2824_CR63 publication-title: J. Electron Microsc. doi: 10.1093/jmicro/dfm008 – volume: 29 start-page: 1 year: 1995 ident: 2824_CR30 publication-title: Progr. Histochem. Cytochem. doi: 10.1016/s0079-6336(11)80027-6 – volume: 9 year: 2018 ident: 2824_CR88 publication-title: Nat. Commun. doi: 10.1038/s41467-018-04227-3 – volume: 15 start-page: 939 year: 2008 ident: 2824_CR84 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.1473 – volume: 9 year: 2018 ident: 2824_CR69 publication-title: Nat. Commun. doi: 10.1038/s41467-018-04993-0 – volume: 5 year: 2016 ident: 2824_CR40 publication-title: eLife doi: 10.7554/eLife.20378 – volume: 33 start-page: 2590 year: 2017 ident: 2824_CR44 publication-title: Langmuir doi: 10.1021/acs.langmuir.6b04234 – volume: 14 start-page: 13975 year: 2020 ident: 2824_CR43 publication-title: ACS Nano doi: 10.1021/acsnano.0c06388 – volume: 17 start-page: 937 year: 2020 ident: 2824_CR72 publication-title: Nat. Methods doi: 10.1038/s41592-020-0911-z – volume: 131 start-page: 1 year: 1983 ident: 2824_CR11 publication-title: J. Microsc. doi: 10.1111/j.1365-2818.1983.tb04225.x – volume: 2 start-page: 743 year: 2005 ident: 2824_CR52 publication-title: Nat. Methods doi: 10.1038/nmeth791 – volume: 19 start-page: 147 year: 2011 ident: 2824_CR26 publication-title: Structure doi: 10.1016/j.str.2010.12.002 – volume: 10 year: 2024 ident: 2824_CR18 publication-title: J. Struct. Biol. doi: 10.1016/j.yjsbx.2024.100104 – volume: 32 start-page: 1248 year: 2024 ident: 2824_CR100 publication-title: Structure doi: 10.1016/j.str.2024.04.017 – volume: 41 start-page: 342 year: 2021 ident: 2824_CR53 publication-title: J. Appl. Toxicol. doi: 10.1002/jat.4083 – volume: 61 start-page: 343 year: 2012 ident: 2824_CR1 publication-title: J. Electron. Microsc. doi: 10.1093/jmicro/dfs082 – volume: 121 year: 2022 ident: 2824_CR35 publication-title: Biophys. J. doi: 10.1016/j.bpj.2021.11.1285 – volume: 115 start-page: 1653 year: 2015 ident: 2824_CR68 publication-title: Chem. Rev. doi: 10.1021/cr400011b – volume: 440 start-page: 297 year: 2006 ident: 2824_CR74 publication-title: Nature doi: 10.1038/nature04586 – volume: 36 year: 2024 ident: 2824_CR75 publication-title: Adv. Mater. doi: 10.1002/adma.202301035 – volume: 8 year: 2019 ident: 2824_CR87 publication-title: eLife doi: 10.7554/eLife.46070 – volume: 60 start-page: 3809 year: 1994 ident: 2824_CR82 publication-title: Appl. Environ. Microbiol. doi: 10.1128/aem.60.10.3809-3814.1994 – volume: 21 start-page: 2299 year: 2024 ident: 2824_CR99 publication-title: Nat. Methods doi: 10.1038/s41592-024-02482-5 |
SSID | ssj0002093 |
Score | 2.407488 |
SecondaryResourceType | review_article |
Snippet | Electron microscopy (EM) is one of the most efficient methods for studying the fine structure of cells with a resolution thousands of times higher than that of... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 173 |
SubjectTerms | Animals Biochemistry Biomedical and Life Sciences Biomedicine Bioorganic Chemistry Cellular structure Cryoelectron Microscopy - methods Crystallization Dehydration Electron Microscope Tomography - methods Electron microscopy Fine structure Freezing Humans Labeling Life Sciences Light microscopy Localization Microbiology Microscopy Optical microscopy Proteins Proteins - chemistry Review Staining and Labeling - methods Tomography Ultrastructure |
Title | Techniques for Selective Labeling of Molecules and Subcellular Structures for Cryo-Electron Tomography |
URI | https://link.springer.com/article/10.1134/S0006297924604015 https://www.ncbi.nlm.nih.gov/pubmed/40254397 https://www.proquest.com/docview/3191470241 https://www.proquest.com/docview/3192352174 |
Volume | 90 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RUFUuiEdLw2PlSlUPRZFsx3n4uF0tIB69sCttT5Ed2zeSioUD_56x42yFlh64RcrEiWac8ffZ8wD4LhWnTel0WjkuUiEdS5WTVWqdElIzqsvc5zvf_i4u5-JqkS9iHvdyiHYfjiSDp-77jgif00sLLkskDAXOPJ9YvpV76o6TeM7HK_fLaay0i1TZi8ejzDeHeL0YrSHMtdPRsOic78JORItk3Jt3DzZsuw8H4xaZ8v0z-UFC_GbYGN-Hj7-Gq0-ToYvbAbjZUKR1SRCfkrvQ9wZdHLlROuSik86R275JLsqo1hB0Jn4_3weokrtQX_bpIT4-eXju0mlsnUNm3X2seP0Z5ufT2eQyjb0V0gYB22NaalVpxzKjFJNGMaO5LfLc5rJhUjeO2rJoNDWmkkg6PMgwTkvkfpoZYSuafYHNtmvtVyDK6kYqmzeZ5sLZQos8o5WRTquiKgxN4Oeg5PpvX0KjDtQjE_WaRRI4GcxQx79pWWe-CF2JaIIl8G11GxXplaFa2z0FGY5gEglWAoe9-VZvEyHlX5YJnA32_Df4fz_l6F3Sx7DNfWvgENB9AptoHXuKeOVRj2BrfPHnejqCDxcLNgqz9QXD-eNY |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07b9swED4UKYJkCRq7TZQnCxQdGgigKOrB0TViOK3tJTaQTSBFcrMUxMmQf58jRbkonA7dBOhECXfU8fvIewB8E5LRurAqLi3jMRc2iaUVZWys5EIlVBWZy3eeL_Lpiv96yB5CHvemj3bvjyS9p-76jnCX00tzJgokDDnOPJdY_hGxQOniuFZstHW_jIZKu0iVnXg4ynx3iL8Xox2EuXM66hedySc4CmiRjDrzHsMH0wxgOGqQKa9fyXfi4zf9xvgA9n_2VwfjvovbEOyyL9K6IYhPyb3ve4Mujsyk8rnopLVk3jXJRRnZaILOxO3nuwBVcu_ry748hcfHT69tfBta55Bluw4Vrz_DanK7HE_j0FshrhGwPceFkqWySaqlTISWiVbM5FlmMlEnQtWWmiKvFdW6FEg6HMjQVgnkfirR3JQ0_QJ7TduYUyDSqFpIk9WpYtyaXPEspaUWVsm8zDWN4Eev5OqxK6FReeqR8mrHIhFc9Gaowt-0qVJXhK5ANJFE8HV7GxXplCEb0754GYZgEglWBCed-bZv4z7lXxQR3PT2_DP4Pz_l7L-kr-FgupzPqtnd4vc5HDLXJtgHd1_AHlrKXCJ2eVZXfq6-ASjm48Y |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VRQUuqC9KYGmNhDiAotqO8_BxWbpqoa2Quiv1FtmxfWtSdbeH_feMHWdRteXALVImTjTjjL-xZ-YD-CwVp03pdFo5LlIhHUuVk1VqnRJSM6rL3Nc7X10X53Px8za_jTyniyHbfTiS7GsafJemdnl6b1zkIBG-vpcWXJYYPBQ4C32R-Qv0xsxP6zkfr10xp7HrLobNXjweaz47xNOFaQNtbpyUhgVougtvInIk497Ue7Bl2304GLcYNd-tyBcScjnDJvk-7Hwfrl5NBka3A3CzoWHrgiBWJTeBAwfdHblUOtSlk86Rq54wF2VUawg6Fr-375NVyU3oNfv4EB-fPKy69CzS6JBZdxe7Xx_CfHo2m5ynkWchbRC8LdNSq0o7lhmlmDSKGc1tkec2lw2TunHUlkWjqTGVxADEAw7jtMQ4UDMjbEWzt7Dddq19B0RZ3Uhl8ybTXDhbaJFntDLSaVVUhaEJfB2UXN_37TTqEIZkot6wSAKjwQx1_LMWdeYb0pWILFgCn9a3UZFeGaq13WOQ4QgsMdhK4Kg33_ptIpT_yzKBb4M9_w7-z095_1_SJ_Dy949pfXlx_esDvOaeMTjkeY9gGw1lPyKMWerjMFX_AGhL6AI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Techniques+for+Selective+Labeling+of+Molecules+and+Subcellular+Structures+for+Cryo-Electron+Tomography&rft.jtitle=Biochemistry+%28Moscow%29&rft.au=Kazakov%2C+Evgeny+P&rft.au=Kireev%2C+Igor+I&rft.au=Golyshev%2C+Sergei+A&rft.date=2025-02-01&rft.eissn=1608-3040&rft.volume=90&rft.issue=2&rft.spage=173&rft_id=info:doi/10.1134%2FS0006297924604015&rft_id=info%3Apmid%2F40254397&rft.externalDocID=40254397 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-2979&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-2979&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-2979&client=summon |