Utilizing combined quantitative multiparametric MRI as potential biomarkers for improved early-stage parkinson’s disease diagnosis
Background Identifying Parkinson’s disease (PD) during its initial phases presents considerable hurdles for clinicians. Purpose To examine the feasibility and efficacy of a machine learning model based on quantitative multiparametric magnetic resonance imaging (MRI) features in identifying early-sta...
Saved in:
Published in | Neurological sciences Vol. 46; no. 5; pp. 2103 - 2113 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.05.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background
Identifying Parkinson’s disease (PD) during its initial phases presents considerable hurdles for clinicians.
Purpose
To examine the feasibility and efficacy of a machine learning model based on quantitative multiparametric magnetic resonance imaging (MRI) features in identifying early-stage PD.
Methods
We recruited 33 participants, including 19 with early-stage PD, 14 with advanced-stage PD and 20 healthy control subjects. Each participant underwent both quantitative susceptibility mapping (QSM) and diffusion kurtosis imaging (DKI). We utilized combined QSM and DKI features to establish a support vector machine (SVM) model to identify early-stage PD.
Results
When comparing early-stage PD with healthy controls, the SVM model exhibited moderate performance, achieving a training set accuracy of 0.78 and an area under the receiver operating characteristic curve (AUC) of 0.90, and the accuracy of 0.77 (AUC = 0.87) in the test set. When comparing advanced-stage PD with healthy controls, the SVM model exhibited equally high accuracy in both training (0.97, AUC = 0.97) and test (0.94, AUC = 0.94) sets. In discriminating between early-stage PD and advanced-stage PD, the SVM model achieved an accuracy of 0.80 (AUC = 0.81) in the training set and an accuracy of 0.71 (AUC = 0.72) in the test set. The mean kurtosis feature of DKI in the substantia nigra, played a significant role in classification.
Conclusion
These findings suggest that early PD is associated with specific MRI features reflecting magnetic susceptibility and microstructural changes. The SVM model combining quantitative QSM and DKI features holds promise for improving early PD diagnosis. |
---|---|
AbstractList | Identifying Parkinson's disease (PD) during its initial phases presents considerable hurdles for clinicians.BACKGROUNDIdentifying Parkinson's disease (PD) during its initial phases presents considerable hurdles for clinicians.To examine the feasibility and efficacy of a machine learning model based on quantitative multiparametric magnetic resonance imaging (MRI) features in identifying early-stage PD.PURPOSETo examine the feasibility and efficacy of a machine learning model based on quantitative multiparametric magnetic resonance imaging (MRI) features in identifying early-stage PD.We recruited 33 participants, including 19 with early-stage PD, 14 with advanced-stage PD and 20 healthy control subjects. Each participant underwent both quantitative susceptibility mapping (QSM) and diffusion kurtosis imaging (DKI). We utilized combined QSM and DKI features to establish a support vector machine (SVM) model to identify early-stage PD.METHODSWe recruited 33 participants, including 19 with early-stage PD, 14 with advanced-stage PD and 20 healthy control subjects. Each participant underwent both quantitative susceptibility mapping (QSM) and diffusion kurtosis imaging (DKI). We utilized combined QSM and DKI features to establish a support vector machine (SVM) model to identify early-stage PD.When comparing early-stage PD with healthy controls, the SVM model exhibited moderate performance, achieving a training set accuracy of 0.78 and an area under the receiver operating characteristic curve (AUC) of 0.90, and the accuracy of 0.77 (AUC = 0.87) in the test set. When comparing advanced-stage PD with healthy controls, the SVM model exhibited equally high accuracy in both training (0.97, AUC = 0.97) and test (0.94, AUC = 0.94) sets. In discriminating between early-stage PD and advanced-stage PD, the SVM model achieved an accuracy of 0.80 (AUC = 0.81) in the training set and an accuracy of 0.71 (AUC = 0.72) in the test set. The mean kurtosis feature of DKI in the substantia nigra, played a significant role in classification.RESULTSWhen comparing early-stage PD with healthy controls, the SVM model exhibited moderate performance, achieving a training set accuracy of 0.78 and an area under the receiver operating characteristic curve (AUC) of 0.90, and the accuracy of 0.77 (AUC = 0.87) in the test set. When comparing advanced-stage PD with healthy controls, the SVM model exhibited equally high accuracy in both training (0.97, AUC = 0.97) and test (0.94, AUC = 0.94) sets. In discriminating between early-stage PD and advanced-stage PD, the SVM model achieved an accuracy of 0.80 (AUC = 0.81) in the training set and an accuracy of 0.71 (AUC = 0.72) in the test set. The mean kurtosis feature of DKI in the substantia nigra, played a significant role in classification.These findings suggest that early PD is associated with specific MRI features reflecting magnetic susceptibility and microstructural changes. The SVM model combining quantitative QSM and DKI features holds promise for improving early PD diagnosis.CONCLUSIONThese findings suggest that early PD is associated with specific MRI features reflecting magnetic susceptibility and microstructural changes. The SVM model combining quantitative QSM and DKI features holds promise for improving early PD diagnosis. Background Identifying Parkinson’s disease (PD) during its initial phases presents considerable hurdles for clinicians. Purpose To examine the feasibility and efficacy of a machine learning model based on quantitative multiparametric magnetic resonance imaging (MRI) features in identifying early-stage PD. Methods We recruited 33 participants, including 19 with early-stage PD, 14 with advanced-stage PD and 20 healthy control subjects. Each participant underwent both quantitative susceptibility mapping (QSM) and diffusion kurtosis imaging (DKI). We utilized combined QSM and DKI features to establish a support vector machine (SVM) model to identify early-stage PD. Results When comparing early-stage PD with healthy controls, the SVM model exhibited moderate performance, achieving a training set accuracy of 0.78 and an area under the receiver operating characteristic curve (AUC) of 0.90, and the accuracy of 0.77 (AUC = 0.87) in the test set. When comparing advanced-stage PD with healthy controls, the SVM model exhibited equally high accuracy in both training (0.97, AUC = 0.97) and test (0.94, AUC = 0.94) sets. In discriminating between early-stage PD and advanced-stage PD, the SVM model achieved an accuracy of 0.80 (AUC = 0.81) in the training set and an accuracy of 0.71 (AUC = 0.72) in the test set. The mean kurtosis feature of DKI in the substantia nigra, played a significant role in classification. Conclusion These findings suggest that early PD is associated with specific MRI features reflecting magnetic susceptibility and microstructural changes. The SVM model combining quantitative QSM and DKI features holds promise for improving early PD diagnosis. Identifying Parkinson's disease (PD) during its initial phases presents considerable hurdles for clinicians. To examine the feasibility and efficacy of a machine learning model based on quantitative multiparametric magnetic resonance imaging (MRI) features in identifying early-stage PD. We recruited 33 participants, including 19 with early-stage PD, 14 with advanced-stage PD and 20 healthy control subjects. Each participant underwent both quantitative susceptibility mapping (QSM) and diffusion kurtosis imaging (DKI). We utilized combined QSM and DKI features to establish a support vector machine (SVM) model to identify early-stage PD. When comparing early-stage PD with healthy controls, the SVM model exhibited moderate performance, achieving a training set accuracy of 0.78 and an area under the receiver operating characteristic curve (AUC) of 0.90, and the accuracy of 0.77 (AUC = 0.87) in the test set. When comparing advanced-stage PD with healthy controls, the SVM model exhibited equally high accuracy in both training (0.97, AUC = 0.97) and test (0.94, AUC = 0.94) sets. In discriminating between early-stage PD and advanced-stage PD, the SVM model achieved an accuracy of 0.80 (AUC = 0.81) in the training set and an accuracy of 0.71 (AUC = 0.72) in the test set. The mean kurtosis feature of DKI in the substantia nigra, played a significant role in classification. These findings suggest that early PD is associated with specific MRI features reflecting magnetic susceptibility and microstructural changes. The SVM model combining quantitative QSM and DKI features holds promise for improving early PD diagnosis. BackgroundIdentifying Parkinson’s disease (PD) during its initial phases presents considerable hurdles for clinicians.PurposeTo examine the feasibility and efficacy of a machine learning model based on quantitative multiparametric magnetic resonance imaging (MRI) features in identifying early-stage PD.MethodsWe recruited 33 participants, including 19 with early-stage PD, 14 with advanced-stage PD and 20 healthy control subjects. Each participant underwent both quantitative susceptibility mapping (QSM) and diffusion kurtosis imaging (DKI). We utilized combined QSM and DKI features to establish a support vector machine (SVM) model to identify early-stage PD.ResultsWhen comparing early-stage PD with healthy controls, the SVM model exhibited moderate performance, achieving a training set accuracy of 0.78 and an area under the receiver operating characteristic curve (AUC) of 0.90, and the accuracy of 0.77 (AUC = 0.87) in the test set. When comparing advanced-stage PD with healthy controls, the SVM model exhibited equally high accuracy in both training (0.97, AUC = 0.97) and test (0.94, AUC = 0.94) sets. In discriminating between early-stage PD and advanced-stage PD, the SVM model achieved an accuracy of 0.80 (AUC = 0.81) in the training set and an accuracy of 0.71 (AUC = 0.72) in the test set. The mean kurtosis feature of DKI in the substantia nigra, played a significant role in classification.ConclusionThese findings suggest that early PD is associated with specific MRI features reflecting magnetic susceptibility and microstructural changes. The SVM model combining quantitative QSM and DKI features holds promise for improving early PD diagnosis. |
Author | Li, Cheng Xu, Zhenyu Zhao, Hai Xu, Zhifeng Wang, Chengming Yang, Yunjun |
Author_xml | – sequence: 1 givenname: Yunjun surname: Yang fullname: Yang, Yunjun organization: Department of Radiology, The First People’s Hospital of Foshan – sequence: 2 givenname: Zhenyu surname: Xu fullname: Xu, Zhenyu organization: Department of Radiology, The First People’s Hospital of Foshan – sequence: 3 givenname: Cheng surname: Li fullname: Li, Cheng organization: Department of Radiology, The First People’s Hospital of Foshan – sequence: 4 givenname: Chengming surname: Wang fullname: Wang, Chengming organization: Department of Radiology, The First People’s Hospital of Foshan – sequence: 5 givenname: Hai surname: Zhao fullname: Zhao, Hai organization: Department of Radiology, The First People’s Hospital of Foshan – sequence: 6 givenname: Zhifeng orcidid: 0000-0002-9198-9031 surname: Xu fullname: Xu, Zhifeng email: xuzf83@126.com organization: Department of Radiology, The First People’s Hospital of Foshan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39724321$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kb9uFDEQxi0URP7AC1AgSzQ0C2N793wuUQQhUhASIrU1u549Odm1L7Y3UqgoeIm8Hk-Cwx0gUdDMTPH7Zj7Nd8wOQgzE2HMBrwWAfpMfqmxAtg1o060aeMSORGegUa1eH-xnsdbtITvO-QoARCvUE3aojJatkuKIfb8sfvJffdjwIc69D-T4zYKh-ILF3xKfl6n4LSacqSQ_8I-fzzlmvo2FKoQT732cMV1TynyMift5m-Jt3UKYprsmF9wQr_prH3IMP77dZ-58JsxUO25CzD4_ZY9HnDI92_cTdvn-3ZfTD83Fp7Pz07cXzaDkqjQaO9O1UpFABxrdikYh-44coHTj0BpSvXNrrcYBwGmBRo8CcAAatJBmpU7Yq93eavFmoVzs7PNA04SB4pKtEm09AGYtKvryH_QqLilUd5UyYDqhWlOpF3tq6Wdydpt8_cWd_f3fCsgdMKSYc6LxDyLAPsRndyHaGqL9FaKFKlI7Ua5w2FD6e_s_qp-7XaJ- |
Cites_doi | 10.1016/j.nicl.2018.07.028 10.1002/nbm.3489 10.1002/mds.27318 10.3389/fneur.2019.01285 10.1002/mrm.20508 10.3174/ajnr.A4645 10.1186/s40035-016-0059-z 10.3389/fnagi.2022.792778 10.1155/2015/207624 10.1148/radiol.12121036 10.21037/atm-20-3388 10.1016/j.neuroimage.2021.117810 10.1016/S1474-4422(17)30122-9 10.1016/j.pneurobio.2011.09.005 10.1016/j.mehy.2020.109603 10.1016/S1474-4422(16)30328-3 10.1007/s00702-010-0434-3 10.2214/AJR.13.11365 10.1016/j.nicl.2021.102831 10.1001/jama.2019.22360 10.1002/jmri.28650 10.3389/fneur.2019.00884 10.1021/acschemneuro.2c00321 10.1016/j.parkreldis.2021.06.003 10.1148/radiol.11102277 10.1002/mds.29702 10.1016/S1474-4422(21)00030-2 10.1212/WNL.0000000000002001 10.1038/nrn3453 10.1007/s00330-020-07575-1 10.21037/qims-23-1478 10.1016/S0140-6736(21)00218-X 10.1159/000107298 10.1016/S0140-6736(14)61393-3 10.1016/j.neuroimage.2018.04.047 10.1037/1040-3590.6.4.284 10.1007/s12035-013-8586-4 10.1186/1471-2105-8-25 10.1002/mds.27730 10.1002/hbm.23628 10.1002/nbm.1518 10.1136/jnnp.55.3.181 10.5498/wjp.v10.i10.234 10.3389/fnagi.2022.806828 |
ContentType | Journal Article |
Copyright | Fondazione Società Italiana di Neurologia 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2024. Fondazione Società Italiana di Neurologia. Copyright Springer Nature B.V. May 2025 |
Copyright_xml | – notice: Fondazione Società Italiana di Neurologia 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2024. Fondazione Società Italiana di Neurologia. – notice: Copyright Springer Nature B.V. May 2025 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK K9. 7X8 |
DOI | 10.1007/s10072-024-07956-0 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1590-3478 |
EndPage | 2113 |
ExternalDocumentID | 39724321 10_1007_s10072_024_07956_0 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Foshan Health Bureau project grantid: FSYYY-EC-SOP-008-02.0-A09 – fundername: Foshan 14th Five-Year Plan Key Discipline Foundation grantid: FSGSP145036 |
GroupedDBID | --- -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 123 199 1N0 2.D 203 29N 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 4.4 406 408 409 40D 40E 53G 5VS 67Z 6NX 78A 7X7 88E 8AO 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABIVO ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACUDM ACUHS ACZOJ ADBBV ADHIR ADHKG ADIMF ADJJI ADKNI ADKPE ADPHR ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDZB AFEXP AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHMBA AHPBZ AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ AXYYD AYFIA AZFZN AZQEC B-. B0M BA0 BDATZ BENPR BGNMA BKNYI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EAS EBC EBD EBLON EBS EBX ECV EHN EIOEI EJD EMB EMK EMOBN EN4 ENC ENX EPAXT EPL EPS EPT ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GRRUI GXS H13 HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IMOTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K9- KDC KOV KPH LAS LLZTM M0R M1P M2M M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM OVD P19 P2P P9S PF0 PHGZT PQQKQ PROAC PSQYO PSYQQ PT4 PT5 Q2X QOR QOS Q~Q R89 R9I RIG ROL RPX RRX RSV S16 S1Z S26 S27 S28 S37 S3B SAP SCLPG SDE SDH SDM SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN T13 T16 TEORI TSG TSK TSV TT1 TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 YLTOR Z45 ZMTXR ZOVNA ~8M ~A9 AAYXX ABFSG ACSTC AEZWR AFHIU AFOHR AHWEU AIXLP ATHPR CITATION PHGZM CGR CUY CVF ECM EIF NPM 7TK ABRTQ K9. 7X8 |
ID | FETCH-LOGICAL-c326t-7a595423e1ad07ad6ef12b5ed0a2dfc49e3bdd873fc00d71a97f10ac0ec712963 |
IEDL.DBID | U2A |
ISSN | 1590-1874 1590-3478 |
IngestDate | Fri Jul 11 02:54:38 EDT 2025 Sat Aug 16 21:23:29 EDT 2025 Fri Apr 18 01:24:30 EDT 2025 Sun Jul 06 05:07:37 EDT 2025 Thu Apr 17 08:21:00 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Quantitative susceptibility mapping Magnetic resonance imaging Parkinson’s disease Diffusion kurtosis imaging Machine learning |
Language | English |
License | 2024. Fondazione Società Italiana di Neurologia. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c326t-7a595423e1ad07ad6ef12b5ed0a2dfc49e3bdd873fc00d71a97f10ac0ec712963 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9198-9031 |
PMID | 39724321 |
PQID | 3190951349 |
PQPubID | 27321 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_3149540981 proquest_journals_3190951349 pubmed_primary_39724321 crossref_primary_10_1007_s10072_024_07956_0 springer_journals_10_1007_s10072_024_07956_0 |
PublicationCentury | 2000 |
PublicationDate | 2025-05-01 |
PublicationDateYYYYMMDD | 2025-05-01 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Italy – name: Milano |
PublicationTitle | Neurological sciences |
PublicationTitleAbbrev | Neurol Sci |
PublicationTitleAlternate | Neurol Sci |
PublicationYear | 2025 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | GEC Thomas (7956_CR43) 2024; 39 K Kamagata (7956_CR10) 2017; 38 PD Griffiths (7956_CR11) 1993; 4 AJ Hughes (7956_CR22) 1992; 55 G Du (7956_CR29) 2018; 33 H Byeon (7956_CR41) 2020; 10 Z Karapinar Senturk (7956_CR20) 2020; 138 DV Cicchetti (7956_CR26) 1994; 6 Parkinson Progression Marker Initiative (7956_CR42) 2011; 95 K Ghassaban (7956_CR12) 2019; 187 N Bergsland (7956_CR30) 2019; 34 7956_CR13 7956_CR34 X Bai (7956_CR9) 2021; 88 C Lacey (7956_CR39) 2019; 10 JH Jensen (7956_CR7) 2010; 23 7956_CR17 S Chen (7956_CR23) 2016; 5 7956_CR6 G Liu (7956_CR38) 2017; 16 BR Bloem (7956_CR2) 2021; 397 W Zhang (7956_CR36) 2014; 49 TA Rouault (7956_CR32) 2013; 14 N He (7956_CR5) 2021; 230 M Azuma (7956_CR15) 2016; 37 Y Rong (7956_CR21) 2022; 13 E Tolosa (7956_CR4) 2021; 20 Q Li (7956_CR18) 2023; 58 K Pigott (7956_CR44) 2015; 85 D Shi (7956_CR40) 2022; 14 MJ Armstrong (7956_CR1) 2020; 323 Q Zhang (7956_CR19) 2024; 14 JH Jensen (7956_CR25) 2005; 53 C Strobl (7956_CR28) 2007; 8 LV Kalia (7956_CR3) 2015; 386 DTH Li (7956_CR31) 2018; 20 M Giannelli (7956_CR35) 2012; 265 L Yang (7956_CR24) 2022; 14 J Guan (7956_CR14) 2019; 10 A Schrag (7956_CR37) 2017; 16 Z Lv (7956_CR33) 2011; 118 JJ Wang (7956_CR8) 2011; 261 C Wang (7956_CR27) 2021; 9 S Tan (7956_CR16) 2021; 32 |
References_xml | – volume: 20 start-page: 365 year: 2018 ident: 7956_CR31 publication-title: Neuroimage Clin doi: 10.1016/j.nicl.2018.07.028 – ident: 7956_CR13 doi: 10.1002/nbm.3489 – volume: 33 start-page: 1423 issue: 9 year: 2018 ident: 7956_CR29 publication-title: Mov Disord doi: 10.1002/mds.27318 – volume: 10 start-page: 1285 year: 2019 ident: 7956_CR14 publication-title: Front Neurol doi: 10.3389/fneur.2019.01285 – volume: 53 start-page: 1432 issue: 6 year: 2005 ident: 7956_CR25 publication-title: Magn Reson Med doi: 10.1002/mrm.20508 – volume: 37 start-page: 782 year: 2016 ident: 7956_CR15 publication-title: AJNR Am J Neuroradiol doi: 10.3174/ajnr.A4645 – volume: 5 start-page: 12 year: 2016 ident: 7956_CR23 publication-title: Transl Neurodegener doi: 10.1186/s40035-016-0059-z – volume: 14 start-page: 792778 year: 2022 ident: 7956_CR24 publication-title: Front Aging Neurosci doi: 10.3389/fnagi.2022.792778 – ident: 7956_CR34 doi: 10.1155/2015/207624 – volume: 265 start-page: 645 issue: 2 year: 2012 ident: 7956_CR35 publication-title: Radiology doi: 10.1148/radiol.12121036 – volume: 9 start-page: 316 issue: 4 year: 2021 ident: 7956_CR27 publication-title: Ann Transl Med doi: 10.21037/atm-20-3388 – volume: 230 start-page: 117810 year: 2021 ident: 7956_CR5 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2021.117810 – volume: 16 start-page: 620 issue: 8 year: 2017 ident: 7956_CR38 publication-title: Lancet Neurol doi: 10.1016/S1474-4422(17)30122-9 – volume: 95 start-page: 629 issue: 4 year: 2011 ident: 7956_CR42 publication-title: Prog Neurobiol doi: 10.1016/j.pneurobio.2011.09.005 – volume: 138 start-page: 109603 year: 2020 ident: 7956_CR20 publication-title: Med Hypotheses doi: 10.1016/j.mehy.2020.109603 – volume: 16 start-page: 66 issue: 1 year: 2017 ident: 7956_CR37 publication-title: Lancet Neurol doi: 10.1016/S1474-4422(16)30328-3 – volume: 118 start-page: 361 issue: 3 year: 2011 ident: 7956_CR33 publication-title: J Neural Transm (Vienna) doi: 10.1007/s00702-010-0434-3 – ident: 7956_CR6 doi: 10.2214/AJR.13.11365 – volume: 32 start-page: 102831 year: 2021 ident: 7956_CR16 publication-title: Neuroimage Clin doi: 10.1016/j.nicl.2021.102831 – volume: 323 start-page: 548 issue: 6 year: 2020 ident: 7956_CR1 publication-title: JAMA doi: 10.1001/jama.2019.22360 – volume: 58 start-page: 1420 issue: 5 year: 2023 ident: 7956_CR18 publication-title: J Magn Reson Imaging doi: 10.1002/jmri.28650 – volume: 10 start-page: 884 year: 2019 ident: 7956_CR39 publication-title: Front Neurol doi: 10.3389/fneur.2019.00884 – volume: 13 start-page: 2699 issue: 18 year: 2022 ident: 7956_CR21 publication-title: ACS Chem Neurosci doi: 10.1021/acschemneuro.2c00321 – volume: 88 start-page: 82 year: 2021 ident: 7956_CR9 publication-title: Parkinsonism Relat Disord doi: 10.1016/j.parkreldis.2021.06.003 – volume: 261 start-page: 210 year: 2011 ident: 7956_CR8 publication-title: Radiology doi: 10.1148/radiol.11102277 – volume: 39 start-page: 546 issue: 3 year: 2024 ident: 7956_CR43 publication-title: Mov Disord doi: 10.1002/mds.29702 – volume: 20 start-page: 385 issue: 5 year: 2021 ident: 7956_CR4 publication-title: Lancet Neurol doi: 10.1016/S1474-4422(21)00030-2 – volume: 85 start-page: 1276 issue: 15 year: 2015 ident: 7956_CR44 publication-title: Neurology doi: 10.1212/WNL.0000000000002001 – volume: 14 start-page: 551 issue: 8 year: 2013 ident: 7956_CR32 publication-title: Nat Rev Neurosci doi: 10.1038/nrn3453 – ident: 7956_CR17 doi: 10.1007/s00330-020-07575-1 – volume: 14 start-page: 3086 issue: 4 year: 2024 ident: 7956_CR19 publication-title: Quant Imaging Med Surg doi: 10.21037/qims-23-1478 – volume: 397 start-page: 2284 issue: 10291 year: 2021 ident: 7956_CR2 publication-title: Lancet doi: 10.1016/S0140-6736(21)00218-X – volume: 4 start-page: 61 year: 1993 ident: 7956_CR11 publication-title: Dementia doi: 10.1159/000107298 – volume: 386 start-page: 896 issue: 9996 year: 2015 ident: 7956_CR3 publication-title: Lancet doi: 10.1016/S0140-6736(14)61393-3 – volume: 187 start-page: 77 year: 2019 ident: 7956_CR12 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2018.04.047 – volume: 6 start-page: 284 issue: 4 year: 1994 ident: 7956_CR26 publication-title: Psychol Assess doi: 10.1037/1040-3590.6.4.284 – volume: 49 start-page: 1153 issue: 3 year: 2014 ident: 7956_CR36 publication-title: Mol Neurobiol doi: 10.1007/s12035-013-8586-4 – volume: 8 start-page: 25 year: 2007 ident: 7956_CR28 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-8-25 – volume: 34 start-page: 1006 issue: 7 year: 2019 ident: 7956_CR30 publication-title: Mov Disord doi: 10.1002/mds.27730 – volume: 38 start-page: 3704 year: 2017 ident: 7956_CR10 publication-title: Hum Brain Mapp doi: 10.1002/hbm.23628 – volume: 23 start-page: 698 year: 2010 ident: 7956_CR7 publication-title: NMR Biomed doi: 10.1002/nbm.1518 – volume: 55 start-page: 181 issue: 3 year: 1992 ident: 7956_CR22 publication-title: J Neurol Neurosurg Psychiatry doi: 10.1136/jnnp.55.3.181 – volume: 10 start-page: 234 issue: 10 year: 2020 ident: 7956_CR41 publication-title: World J Psychiatry doi: 10.5498/wjp.v10.i10.234 – volume: 14 start-page: 806828 year: 2022 ident: 7956_CR40 publication-title: Front Aging Neurosci doi: 10.3389/fnagi.2022.806828 |
SSID | ssj0001413 |
Score | 2.4060628 |
Snippet | Background
Identifying Parkinson’s disease (PD) during its initial phases presents considerable hurdles for clinicians.
Purpose
To examine the feasibility and... Identifying Parkinson's disease (PD) during its initial phases presents considerable hurdles for clinicians. To examine the feasibility and efficacy of a... BackgroundIdentifying Parkinson’s disease (PD) during its initial phases presents considerable hurdles for clinicians.PurposeTo examine the feasibility and... Identifying Parkinson's disease (PD) during its initial phases presents considerable hurdles for clinicians.BACKGROUNDIdentifying Parkinson's disease (PD)... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 2103 |
SubjectTerms | Accuracy Aged Biomarkers Diagnosis Early Diagnosis Female Humans Kurtosis Magnetic resonance imaging Magnetic Resonance Imaging - methods Magnetic susceptibility Male Medicine Medicine & Public Health Middle Aged Movement disorders Multiparametric Magnetic Resonance Imaging - methods Neurodegenerative diseases Neurology Neuroradiology Neurosurgery Original Article Parkinson Disease - diagnosis Parkinson Disease - diagnostic imaging Parkinson's disease Psychiatry Substantia nigra Support Vector Machine Support vector machines |
Title | Utilizing combined quantitative multiparametric MRI as potential biomarkers for improved early-stage parkinson’s disease diagnosis |
URI | https://link.springer.com/article/10.1007/s10072-024-07956-0 https://www.ncbi.nlm.nih.gov/pubmed/39724321 https://www.proquest.com/docview/3190951349 https://www.proquest.com/docview/3149540981 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQK6FeELSUppTKlbhRS7bzcHLcoi4FtD0gIm1PkdcPtAJlt032wokDf4K_11_SGSfZpSo9cPLBjzwmnvkm882YkLdOYF2iNGXaS8PAQuegB51ghhvh4qzwNsds5MlldlEmn6bptE8Kawa2-xCSDJr6r2Q3riQDm8K4wup54Khvp-C7I5GrlKO1_hVJOBQZ7DRGLVXSp8r8e4375ugBxnwQHw1mZ_ycPOvxIh11An5Bnrh6lzyd9BHxPfK7bOc_5j9hLoXHADfXWXq90nXIHQNNRjvGoEYOFhbjp5MvH6lu6HLRIk8IlsYEfOTo3DQUACydh78MsIrD0scMwOM3R2H-95AmdvvrT0P7oA60gaY3b16Scnz-9f0F609WYAbgWsuUTosUgJQT2nKlbea8kLPUWa6l9SYpXDyzNlexN5xbJXShvODacGcUAIQs3idb9aJ2B4TmLs-FN9JnmU_AncxT0Bk28YBUMEirI_JueMHVsiugUW1KJaM4KhBHFcRR8YgcDTKo-s3UVKAlEAjGSRGRk3U3bAOMbejaLVY4Bjw98FVzEZFXnezWlwPIJZNYQs_pIMzN4o_fy-H_DX9NdiSeDRzIkEdkq71ZuTcAWNrZMdkejc_OLrH9cPX5_Dh8r3ce7-cS |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYqkGgviEKhC7QYiVtryXYedo4IgZbCcqhYiVvk9QOtqLJAshdOHPgT_D1-CTPeZKGiHHrKwfYk8dgz33geJmTPC6xLlGXMBGkZaGgNctALZrkVPsmL4DRmIw_O8v4w_XWRXbRJYXUX7d65JKOkfpXsxpVkoFMYV1g9Dwz1RQADGtfyUO7P5a9I46XIoKfRa6nSNlXm3zT-VkdvMOYb_2hUO0crZLnFi3R_xuDP5IOvVsnSoPWIr5GHYTP-M76DsRR-A8xc7-jN1FQxdwwkGZ1FDBqMwcJi_HTw-5iaml5PGowTAtKYgI8xOrc1BQBLx_GUAah4LH3MADxeegrjr2Ka2NP9Y01bpw48Y5jeuP5ChkeH5wd91t6swCzAtYYpkxUZzJ0XxnFlXO6DkKPMO26kCzYtfDJyTqskWM6dEqZQQXBjubcKAEKerJOFalL5r4Rqr7UIVoY8DymYkzoDmeHSAEgFnbSmR350E1xezwpolC-lkpEdJbCjjOwoeY9sdzwo281UlyAlEAgmadEju_Nm2Abo2zCVn0yxD1h6YKtq0SMbM97NXweQS6aJhJafHTNfiL__LZv_132HfOyfD07L0-Ozky3ySeI9wTEwcpssNLdT_w3ASzP6HtfqM67E5vU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYqkFAvFdDX8nSl3loL23Hi5IiAFbRdVFVdiVvk9aNaFWUXkr1w4sCf4O_xS5hxsgsIeugpB8dOnLFnvsnMNybksxdYlyhNmQnSMrDQOehBL5jlVvgkK4LLkY08OM2Oh-rbWXr2iMUfs93nIcmW04BVmqpmb-rC3iPiG9eSgX1hXGMlPXDalxWygWFFD-X-QhcLFQ9IBpuNEUytOtrMy2M8NU3P8OazWGk0Qf1V8qbDjnS_FfYaeeWrdbIy6KLjb8nNsBmfj6-gL4UpgcvrHb2YmSryyECr0TZ70GA-Fhbmp4NfJ9TUdDrBqcNCpEjGx3ydy5oCmKXj-McBRvFYBpkBkPzjKfT_Gyljd9e3Ne0CPHCNKXvj-h0Z9o9-Hxyz7pQFZgG6NUybtEgBVHlhHNfGZT4IOUq940a6YFXhk5FzuU6C5dxpYQodBDeWe6sBLGTJe7JUTSr_kdDc57kIVoYsCwpcyzwF_eFUANSCAVvTI1_mH7ictsU0yoeyySiOEsRRRnGUvEe25jIou41Vl6AxEBQmquiRT4tm2BIY5zCVn8zwHvD6wG_NRY98aGW3eBzAL6kSCS1f58J8GPzf77Lxf7fvkpWfh_3yx8np903yWuKRwTFHcossNZczvw04phntxKV6D9CP6yg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Utilizing+combined+quantitative+multiparametric+MRI+as+potential+biomarkers+for+improved+early-stage+parkinson%E2%80%99s+disease+diagnosis&rft.jtitle=Neurological+sciences&rft.au=Yang%2C+Yunjun&rft.au=Xu%2C+Zhenyu&rft.au=Li%2C+Cheng&rft.au=Wang%2C+Chengming&rft.date=2025-05-01&rft.pub=Springer+International+Publishing&rft.issn=1590-1874&rft.eissn=1590-3478&rft.volume=46&rft.issue=5&rft.spage=2103&rft.epage=2113&rft_id=info:doi/10.1007%2Fs10072-024-07956-0&rft.externalDocID=10_1007_s10072_024_07956_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1590-1874&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1590-1874&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1590-1874&client=summon |