Utilizing combined quantitative multiparametric MRI as potential biomarkers for improved early-stage parkinson’s disease diagnosis

Background Identifying Parkinson’s disease (PD) during its initial phases presents considerable hurdles for clinicians. Purpose To examine the feasibility and efficacy of a machine learning model based on quantitative multiparametric magnetic resonance imaging (MRI) features in identifying early-sta...

Full description

Saved in:
Bibliographic Details
Published inNeurological sciences Vol. 46; no. 5; pp. 2103 - 2113
Main Authors Yang, Yunjun, Xu, Zhenyu, Li, Cheng, Wang, Chengming, Zhao, Hai, Xu, Zhifeng
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.05.2025
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background Identifying Parkinson’s disease (PD) during its initial phases presents considerable hurdles for clinicians. Purpose To examine the feasibility and efficacy of a machine learning model based on quantitative multiparametric magnetic resonance imaging (MRI) features in identifying early-stage PD. Methods We recruited 33 participants, including 19 with early-stage PD, 14 with advanced-stage PD and 20 healthy control subjects. Each participant underwent both quantitative susceptibility mapping (QSM) and diffusion kurtosis imaging (DKI). We utilized combined QSM and DKI features to establish a support vector machine (SVM) model to identify early-stage PD. Results When comparing early-stage PD with healthy controls, the SVM model exhibited moderate performance, achieving a training set accuracy of 0.78 and an area under the receiver operating characteristic curve (AUC) of 0.90, and the accuracy of 0.77 (AUC = 0.87) in the test set. When comparing advanced-stage PD with healthy controls, the SVM model exhibited equally high accuracy in both training (0.97, AUC = 0.97) and test (0.94, AUC = 0.94) sets. In discriminating between early-stage PD and advanced-stage PD, the SVM model achieved an accuracy of 0.80 (AUC = 0.81) in the training set and an accuracy of 0.71 (AUC = 0.72) in the test set. The mean kurtosis feature of DKI in the substantia nigra, played a significant role in classification. Conclusion These findings suggest that early PD is associated with specific MRI features reflecting magnetic susceptibility and microstructural changes. The SVM model combining quantitative QSM and DKI features holds promise for improving early PD diagnosis.
AbstractList Identifying Parkinson's disease (PD) during its initial phases presents considerable hurdles for clinicians.BACKGROUNDIdentifying Parkinson's disease (PD) during its initial phases presents considerable hurdles for clinicians.To examine the feasibility and efficacy of a machine learning model based on quantitative multiparametric magnetic resonance imaging (MRI) features in identifying early-stage PD.PURPOSETo examine the feasibility and efficacy of a machine learning model based on quantitative multiparametric magnetic resonance imaging (MRI) features in identifying early-stage PD.We recruited 33 participants, including 19 with early-stage PD, 14 with advanced-stage PD and 20 healthy control subjects. Each participant underwent both quantitative susceptibility mapping (QSM) and diffusion kurtosis imaging (DKI). We utilized combined QSM and DKI features to establish a support vector machine (SVM) model to identify early-stage PD.METHODSWe recruited 33 participants, including 19 with early-stage PD, 14 with advanced-stage PD and 20 healthy control subjects. Each participant underwent both quantitative susceptibility mapping (QSM) and diffusion kurtosis imaging (DKI). We utilized combined QSM and DKI features to establish a support vector machine (SVM) model to identify early-stage PD.When comparing early-stage PD with healthy controls, the SVM model exhibited moderate performance, achieving a training set accuracy of 0.78 and an area under the receiver operating characteristic curve (AUC) of 0.90, and the accuracy of 0.77 (AUC = 0.87) in the test set. When comparing advanced-stage PD with healthy controls, the SVM model exhibited equally high accuracy in both training (0.97, AUC = 0.97) and test (0.94, AUC = 0.94) sets. In discriminating between early-stage PD and advanced-stage PD, the SVM model achieved an accuracy of 0.80 (AUC = 0.81) in the training set and an accuracy of 0.71 (AUC = 0.72) in the test set. The mean kurtosis feature of DKI in the substantia nigra, played a significant role in classification.RESULTSWhen comparing early-stage PD with healthy controls, the SVM model exhibited moderate performance, achieving a training set accuracy of 0.78 and an area under the receiver operating characteristic curve (AUC) of 0.90, and the accuracy of 0.77 (AUC = 0.87) in the test set. When comparing advanced-stage PD with healthy controls, the SVM model exhibited equally high accuracy in both training (0.97, AUC = 0.97) and test (0.94, AUC = 0.94) sets. In discriminating between early-stage PD and advanced-stage PD, the SVM model achieved an accuracy of 0.80 (AUC = 0.81) in the training set and an accuracy of 0.71 (AUC = 0.72) in the test set. The mean kurtosis feature of DKI in the substantia nigra, played a significant role in classification.These findings suggest that early PD is associated with specific MRI features reflecting magnetic susceptibility and microstructural changes. The SVM model combining quantitative QSM and DKI features holds promise for improving early PD diagnosis.CONCLUSIONThese findings suggest that early PD is associated with specific MRI features reflecting magnetic susceptibility and microstructural changes. The SVM model combining quantitative QSM and DKI features holds promise for improving early PD diagnosis.
Background Identifying Parkinson’s disease (PD) during its initial phases presents considerable hurdles for clinicians. Purpose To examine the feasibility and efficacy of a machine learning model based on quantitative multiparametric magnetic resonance imaging (MRI) features in identifying early-stage PD. Methods We recruited 33 participants, including 19 with early-stage PD, 14 with advanced-stage PD and 20 healthy control subjects. Each participant underwent both quantitative susceptibility mapping (QSM) and diffusion kurtosis imaging (DKI). We utilized combined QSM and DKI features to establish a support vector machine (SVM) model to identify early-stage PD. Results When comparing early-stage PD with healthy controls, the SVM model exhibited moderate performance, achieving a training set accuracy of 0.78 and an area under the receiver operating characteristic curve (AUC) of 0.90, and the accuracy of 0.77 (AUC = 0.87) in the test set. When comparing advanced-stage PD with healthy controls, the SVM model exhibited equally high accuracy in both training (0.97, AUC = 0.97) and test (0.94, AUC = 0.94) sets. In discriminating between early-stage PD and advanced-stage PD, the SVM model achieved an accuracy of 0.80 (AUC = 0.81) in the training set and an accuracy of 0.71 (AUC = 0.72) in the test set. The mean kurtosis feature of DKI in the substantia nigra, played a significant role in classification. Conclusion These findings suggest that early PD is associated with specific MRI features reflecting magnetic susceptibility and microstructural changes. The SVM model combining quantitative QSM and DKI features holds promise for improving early PD diagnosis.
Identifying Parkinson's disease (PD) during its initial phases presents considerable hurdles for clinicians. To examine the feasibility and efficacy of a machine learning model based on quantitative multiparametric magnetic resonance imaging (MRI) features in identifying early-stage PD. We recruited 33 participants, including 19 with early-stage PD, 14 with advanced-stage PD and 20 healthy control subjects. Each participant underwent both quantitative susceptibility mapping (QSM) and diffusion kurtosis imaging (DKI). We utilized combined QSM and DKI features to establish a support vector machine (SVM) model to identify early-stage PD. When comparing early-stage PD with healthy controls, the SVM model exhibited moderate performance, achieving a training set accuracy of 0.78 and an area under the receiver operating characteristic curve (AUC) of 0.90, and the accuracy of 0.77 (AUC = 0.87) in the test set. When comparing advanced-stage PD with healthy controls, the SVM model exhibited equally high accuracy in both training (0.97, AUC = 0.97) and test (0.94, AUC = 0.94) sets. In discriminating between early-stage PD and advanced-stage PD, the SVM model achieved an accuracy of 0.80 (AUC = 0.81) in the training set and an accuracy of 0.71 (AUC = 0.72) in the test set. The mean kurtosis feature of DKI in the substantia nigra, played a significant role in classification. These findings suggest that early PD is associated with specific MRI features reflecting magnetic susceptibility and microstructural changes. The SVM model combining quantitative QSM and DKI features holds promise for improving early PD diagnosis.
BackgroundIdentifying Parkinson’s disease (PD) during its initial phases presents considerable hurdles for clinicians.PurposeTo examine the feasibility and efficacy of a machine learning model based on quantitative multiparametric magnetic resonance imaging (MRI) features in identifying early-stage PD.MethodsWe recruited 33 participants, including 19 with early-stage PD, 14 with advanced-stage PD and 20 healthy control subjects. Each participant underwent both quantitative susceptibility mapping (QSM) and diffusion kurtosis imaging (DKI). We utilized combined QSM and DKI features to establish a support vector machine (SVM) model to identify early-stage PD.ResultsWhen comparing early-stage PD with healthy controls, the SVM model exhibited moderate performance, achieving a training set accuracy of 0.78 and an area under the receiver operating characteristic curve (AUC) of 0.90, and the accuracy of 0.77 (AUC = 0.87) in the test set. When comparing advanced-stage PD with healthy controls, the SVM model exhibited equally high accuracy in both training (0.97, AUC = 0.97) and test (0.94, AUC = 0.94) sets. In discriminating between early-stage PD and advanced-stage PD, the SVM model achieved an accuracy of 0.80 (AUC = 0.81) in the training set and an accuracy of 0.71 (AUC = 0.72) in the test set. The mean kurtosis feature of DKI in the substantia nigra, played a significant role in classification.ConclusionThese findings suggest that early PD is associated with specific MRI features reflecting magnetic susceptibility and microstructural changes. The SVM model combining quantitative QSM and DKI features holds promise for improving early PD diagnosis.
Author Li, Cheng
Xu, Zhenyu
Zhao, Hai
Xu, Zhifeng
Wang, Chengming
Yang, Yunjun
Author_xml – sequence: 1
  givenname: Yunjun
  surname: Yang
  fullname: Yang, Yunjun
  organization: Department of Radiology, The First People’s Hospital of Foshan
– sequence: 2
  givenname: Zhenyu
  surname: Xu
  fullname: Xu, Zhenyu
  organization: Department of Radiology, The First People’s Hospital of Foshan
– sequence: 3
  givenname: Cheng
  surname: Li
  fullname: Li, Cheng
  organization: Department of Radiology, The First People’s Hospital of Foshan
– sequence: 4
  givenname: Chengming
  surname: Wang
  fullname: Wang, Chengming
  organization: Department of Radiology, The First People’s Hospital of Foshan
– sequence: 5
  givenname: Hai
  surname: Zhao
  fullname: Zhao, Hai
  organization: Department of Radiology, The First People’s Hospital of Foshan
– sequence: 6
  givenname: Zhifeng
  orcidid: 0000-0002-9198-9031
  surname: Xu
  fullname: Xu, Zhifeng
  email: xuzf83@126.com
  organization: Department of Radiology, The First People’s Hospital of Foshan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39724321$$D View this record in MEDLINE/PubMed
BookMark eNp9kb9uFDEQxi0URP7AC1AgSzQ0C2N793wuUQQhUhASIrU1u549Odm1L7Y3UqgoeIm8Hk-Cwx0gUdDMTPH7Zj7Nd8wOQgzE2HMBrwWAfpMfqmxAtg1o060aeMSORGegUa1eH-xnsdbtITvO-QoARCvUE3aojJatkuKIfb8sfvJffdjwIc69D-T4zYKh-ILF3xKfl6n4LSacqSQ_8I-fzzlmvo2FKoQT732cMV1TynyMift5m-Jt3UKYprsmF9wQr_prH3IMP77dZ-58JsxUO25CzD4_ZY9HnDI92_cTdvn-3ZfTD83Fp7Pz07cXzaDkqjQaO9O1UpFABxrdikYh-44coHTj0BpSvXNrrcYBwGmBRo8CcAAatJBmpU7Yq93eavFmoVzs7PNA04SB4pKtEm09AGYtKvryH_QqLilUd5UyYDqhWlOpF3tq6Wdydpt8_cWd_f3fCsgdMKSYc6LxDyLAPsRndyHaGqL9FaKFKlI7Ua5w2FD6e_s_qp-7XaJ-
Cites_doi 10.1016/j.nicl.2018.07.028
10.1002/nbm.3489
10.1002/mds.27318
10.3389/fneur.2019.01285
10.1002/mrm.20508
10.3174/ajnr.A4645
10.1186/s40035-016-0059-z
10.3389/fnagi.2022.792778
10.1155/2015/207624
10.1148/radiol.12121036
10.21037/atm-20-3388
10.1016/j.neuroimage.2021.117810
10.1016/S1474-4422(17)30122-9
10.1016/j.pneurobio.2011.09.005
10.1016/j.mehy.2020.109603
10.1016/S1474-4422(16)30328-3
10.1007/s00702-010-0434-3
10.2214/AJR.13.11365
10.1016/j.nicl.2021.102831
10.1001/jama.2019.22360
10.1002/jmri.28650
10.3389/fneur.2019.00884
10.1021/acschemneuro.2c00321
10.1016/j.parkreldis.2021.06.003
10.1148/radiol.11102277
10.1002/mds.29702
10.1016/S1474-4422(21)00030-2
10.1212/WNL.0000000000002001
10.1038/nrn3453
10.1007/s00330-020-07575-1
10.21037/qims-23-1478
10.1016/S0140-6736(21)00218-X
10.1159/000107298
10.1016/S0140-6736(14)61393-3
10.1016/j.neuroimage.2018.04.047
10.1037/1040-3590.6.4.284
10.1007/s12035-013-8586-4
10.1186/1471-2105-8-25
10.1002/mds.27730
10.1002/hbm.23628
10.1002/nbm.1518
10.1136/jnnp.55.3.181
10.5498/wjp.v10.i10.234
10.3389/fnagi.2022.806828
ContentType Journal Article
Copyright Fondazione Società Italiana di Neurologia 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2024. Fondazione Società Italiana di Neurologia.
Copyright Springer Nature B.V. May 2025
Copyright_xml – notice: Fondazione Società Italiana di Neurologia 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2024. Fondazione Società Italiana di Neurologia.
– notice: Copyright Springer Nature B.V. May 2025
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
K9.
7X8
DOI 10.1007/s10072-024-07956-0
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1590-3478
EndPage 2113
ExternalDocumentID 39724321
10_1007_s10072_024_07956_0
Genre Journal Article
GrantInformation_xml – fundername: Foshan Health Bureau project
  grantid: FSYYY-EC-SOP-008-02.0-A09
– fundername: Foshan 14th Five-Year Plan Key Discipline Foundation
  grantid: FSGSP145036
GroupedDBID ---
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
123
199
1N0
2.D
203
29N
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
4.4
406
408
409
40D
40E
53G
5VS
67Z
6NX
78A
7X7
88E
8AO
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSNA
ACUDM
ACUHS
ACZOJ
ADBBV
ADHIR
ADHKG
ADIMF
ADJJI
ADKNI
ADKPE
ADPHR
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDZB
AFEXP
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHMBA
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
AXYYD
AYFIA
AZFZN
AZQEC
B-.
B0M
BA0
BDATZ
BENPR
BGNMA
BKNYI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EAS
EBC
EBD
EBLON
EBS
EBX
ECV
EHN
EIOEI
EJD
EMB
EMK
EMOBN
EN4
ENC
ENX
EPAXT
EPL
EPS
EPT
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GRRUI
GXS
H13
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IMOTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K9-
KDC
KOV
KPH
LAS
LLZTM
M0R
M1P
M2M
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9S
PF0
PHGZT
PQQKQ
PROAC
PSQYO
PSYQQ
PT4
PT5
Q2X
QOR
QOS
Q~Q
R89
R9I
RIG
ROL
RPX
RRX
RSV
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDE
SDH
SDM
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
T16
TEORI
TSG
TSK
TSV
TT1
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
YLTOR
Z45
ZMTXR
ZOVNA
~8M
~A9
AAYXX
ABFSG
ACSTC
AEZWR
AFHIU
AFOHR
AHWEU
AIXLP
ATHPR
CITATION
PHGZM
CGR
CUY
CVF
ECM
EIF
NPM
7TK
ABRTQ
K9.
7X8
ID FETCH-LOGICAL-c326t-7a595423e1ad07ad6ef12b5ed0a2dfc49e3bdd873fc00d71a97f10ac0ec712963
IEDL.DBID U2A
ISSN 1590-1874
1590-3478
IngestDate Fri Jul 11 02:54:38 EDT 2025
Sat Aug 16 21:23:29 EDT 2025
Fri Apr 18 01:24:30 EDT 2025
Sun Jul 06 05:07:37 EDT 2025
Thu Apr 17 08:21:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Quantitative susceptibility mapping
Magnetic resonance imaging
Parkinson’s disease
Diffusion kurtosis imaging
Machine learning
Language English
License 2024. Fondazione Società Italiana di Neurologia.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c326t-7a595423e1ad07ad6ef12b5ed0a2dfc49e3bdd873fc00d71a97f10ac0ec712963
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9198-9031
PMID 39724321
PQID 3190951349
PQPubID 27321
PageCount 11
ParticipantIDs proquest_miscellaneous_3149540981
proquest_journals_3190951349
pubmed_primary_39724321
crossref_primary_10_1007_s10072_024_07956_0
springer_journals_10_1007_s10072_024_07956_0
PublicationCentury 2000
PublicationDate 2025-05-01
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Italy
– name: Milano
PublicationTitle Neurological sciences
PublicationTitleAbbrev Neurol Sci
PublicationTitleAlternate Neurol Sci
PublicationYear 2025
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References GEC Thomas (7956_CR43) 2024; 39
K Kamagata (7956_CR10) 2017; 38
PD Griffiths (7956_CR11) 1993; 4
AJ Hughes (7956_CR22) 1992; 55
G Du (7956_CR29) 2018; 33
H Byeon (7956_CR41) 2020; 10
Z Karapinar Senturk (7956_CR20) 2020; 138
DV Cicchetti (7956_CR26) 1994; 6
Parkinson Progression Marker Initiative (7956_CR42) 2011; 95
K Ghassaban (7956_CR12) 2019; 187
N Bergsland (7956_CR30) 2019; 34
7956_CR13
7956_CR34
X Bai (7956_CR9) 2021; 88
C Lacey (7956_CR39) 2019; 10
JH Jensen (7956_CR7) 2010; 23
7956_CR17
S Chen (7956_CR23) 2016; 5
7956_CR6
G Liu (7956_CR38) 2017; 16
BR Bloem (7956_CR2) 2021; 397
W Zhang (7956_CR36) 2014; 49
TA Rouault (7956_CR32) 2013; 14
N He (7956_CR5) 2021; 230
M Azuma (7956_CR15) 2016; 37
Y Rong (7956_CR21) 2022; 13
E Tolosa (7956_CR4) 2021; 20
Q Li (7956_CR18) 2023; 58
K Pigott (7956_CR44) 2015; 85
D Shi (7956_CR40) 2022; 14
MJ Armstrong (7956_CR1) 2020; 323
Q Zhang (7956_CR19) 2024; 14
JH Jensen (7956_CR25) 2005; 53
C Strobl (7956_CR28) 2007; 8
LV Kalia (7956_CR3) 2015; 386
DTH Li (7956_CR31) 2018; 20
M Giannelli (7956_CR35) 2012; 265
L Yang (7956_CR24) 2022; 14
J Guan (7956_CR14) 2019; 10
A Schrag (7956_CR37) 2017; 16
Z Lv (7956_CR33) 2011; 118
JJ Wang (7956_CR8) 2011; 261
C Wang (7956_CR27) 2021; 9
S Tan (7956_CR16) 2021; 32
References_xml – volume: 20
  start-page: 365
  year: 2018
  ident: 7956_CR31
  publication-title: Neuroimage Clin
  doi: 10.1016/j.nicl.2018.07.028
– ident: 7956_CR13
  doi: 10.1002/nbm.3489
– volume: 33
  start-page: 1423
  issue: 9
  year: 2018
  ident: 7956_CR29
  publication-title: Mov Disord
  doi: 10.1002/mds.27318
– volume: 10
  start-page: 1285
  year: 2019
  ident: 7956_CR14
  publication-title: Front Neurol
  doi: 10.3389/fneur.2019.01285
– volume: 53
  start-page: 1432
  issue: 6
  year: 2005
  ident: 7956_CR25
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.20508
– volume: 37
  start-page: 782
  year: 2016
  ident: 7956_CR15
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.A4645
– volume: 5
  start-page: 12
  year: 2016
  ident: 7956_CR23
  publication-title: Transl Neurodegener
  doi: 10.1186/s40035-016-0059-z
– volume: 14
  start-page: 792778
  year: 2022
  ident: 7956_CR24
  publication-title: Front Aging Neurosci
  doi: 10.3389/fnagi.2022.792778
– ident: 7956_CR34
  doi: 10.1155/2015/207624
– volume: 265
  start-page: 645
  issue: 2
  year: 2012
  ident: 7956_CR35
  publication-title: Radiology
  doi: 10.1148/radiol.12121036
– volume: 9
  start-page: 316
  issue: 4
  year: 2021
  ident: 7956_CR27
  publication-title: Ann Transl Med
  doi: 10.21037/atm-20-3388
– volume: 230
  start-page: 117810
  year: 2021
  ident: 7956_CR5
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2021.117810
– volume: 16
  start-page: 620
  issue: 8
  year: 2017
  ident: 7956_CR38
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(17)30122-9
– volume: 95
  start-page: 629
  issue: 4
  year: 2011
  ident: 7956_CR42
  publication-title: Prog Neurobiol
  doi: 10.1016/j.pneurobio.2011.09.005
– volume: 138
  start-page: 109603
  year: 2020
  ident: 7956_CR20
  publication-title: Med Hypotheses
  doi: 10.1016/j.mehy.2020.109603
– volume: 16
  start-page: 66
  issue: 1
  year: 2017
  ident: 7956_CR37
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(16)30328-3
– volume: 118
  start-page: 361
  issue: 3
  year: 2011
  ident: 7956_CR33
  publication-title: J Neural Transm (Vienna)
  doi: 10.1007/s00702-010-0434-3
– ident: 7956_CR6
  doi: 10.2214/AJR.13.11365
– volume: 32
  start-page: 102831
  year: 2021
  ident: 7956_CR16
  publication-title: Neuroimage Clin
  doi: 10.1016/j.nicl.2021.102831
– volume: 323
  start-page: 548
  issue: 6
  year: 2020
  ident: 7956_CR1
  publication-title: JAMA
  doi: 10.1001/jama.2019.22360
– volume: 58
  start-page: 1420
  issue: 5
  year: 2023
  ident: 7956_CR18
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.28650
– volume: 10
  start-page: 884
  year: 2019
  ident: 7956_CR39
  publication-title: Front Neurol
  doi: 10.3389/fneur.2019.00884
– volume: 13
  start-page: 2699
  issue: 18
  year: 2022
  ident: 7956_CR21
  publication-title: ACS Chem Neurosci
  doi: 10.1021/acschemneuro.2c00321
– volume: 88
  start-page: 82
  year: 2021
  ident: 7956_CR9
  publication-title: Parkinsonism Relat Disord
  doi: 10.1016/j.parkreldis.2021.06.003
– volume: 261
  start-page: 210
  year: 2011
  ident: 7956_CR8
  publication-title: Radiology
  doi: 10.1148/radiol.11102277
– volume: 39
  start-page: 546
  issue: 3
  year: 2024
  ident: 7956_CR43
  publication-title: Mov Disord
  doi: 10.1002/mds.29702
– volume: 20
  start-page: 385
  issue: 5
  year: 2021
  ident: 7956_CR4
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(21)00030-2
– volume: 85
  start-page: 1276
  issue: 15
  year: 2015
  ident: 7956_CR44
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000002001
– volume: 14
  start-page: 551
  issue: 8
  year: 2013
  ident: 7956_CR32
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn3453
– ident: 7956_CR17
  doi: 10.1007/s00330-020-07575-1
– volume: 14
  start-page: 3086
  issue: 4
  year: 2024
  ident: 7956_CR19
  publication-title: Quant Imaging Med Surg
  doi: 10.21037/qims-23-1478
– volume: 397
  start-page: 2284
  issue: 10291
  year: 2021
  ident: 7956_CR2
  publication-title: Lancet
  doi: 10.1016/S0140-6736(21)00218-X
– volume: 4
  start-page: 61
  year: 1993
  ident: 7956_CR11
  publication-title: Dementia
  doi: 10.1159/000107298
– volume: 386
  start-page: 896
  issue: 9996
  year: 2015
  ident: 7956_CR3
  publication-title: Lancet
  doi: 10.1016/S0140-6736(14)61393-3
– volume: 187
  start-page: 77
  year: 2019
  ident: 7956_CR12
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2018.04.047
– volume: 6
  start-page: 284
  issue: 4
  year: 1994
  ident: 7956_CR26
  publication-title: Psychol Assess
  doi: 10.1037/1040-3590.6.4.284
– volume: 49
  start-page: 1153
  issue: 3
  year: 2014
  ident: 7956_CR36
  publication-title: Mol Neurobiol
  doi: 10.1007/s12035-013-8586-4
– volume: 8
  start-page: 25
  year: 2007
  ident: 7956_CR28
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-8-25
– volume: 34
  start-page: 1006
  issue: 7
  year: 2019
  ident: 7956_CR30
  publication-title: Mov Disord
  doi: 10.1002/mds.27730
– volume: 38
  start-page: 3704
  year: 2017
  ident: 7956_CR10
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.23628
– volume: 23
  start-page: 698
  year: 2010
  ident: 7956_CR7
  publication-title: NMR Biomed
  doi: 10.1002/nbm.1518
– volume: 55
  start-page: 181
  issue: 3
  year: 1992
  ident: 7956_CR22
  publication-title: J Neurol Neurosurg Psychiatry
  doi: 10.1136/jnnp.55.3.181
– volume: 10
  start-page: 234
  issue: 10
  year: 2020
  ident: 7956_CR41
  publication-title: World J Psychiatry
  doi: 10.5498/wjp.v10.i10.234
– volume: 14
  start-page: 806828
  year: 2022
  ident: 7956_CR40
  publication-title: Front Aging Neurosci
  doi: 10.3389/fnagi.2022.806828
SSID ssj0001413
Score 2.4060628
Snippet Background Identifying Parkinson’s disease (PD) during its initial phases presents considerable hurdles for clinicians. Purpose To examine the feasibility and...
Identifying Parkinson's disease (PD) during its initial phases presents considerable hurdles for clinicians. To examine the feasibility and efficacy of a...
BackgroundIdentifying Parkinson’s disease (PD) during its initial phases presents considerable hurdles for clinicians.PurposeTo examine the feasibility and...
Identifying Parkinson's disease (PD) during its initial phases presents considerable hurdles for clinicians.BACKGROUNDIdentifying Parkinson's disease (PD)...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 2103
SubjectTerms Accuracy
Aged
Biomarkers
Diagnosis
Early Diagnosis
Female
Humans
Kurtosis
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Magnetic susceptibility
Male
Medicine
Medicine & Public Health
Middle Aged
Movement disorders
Multiparametric Magnetic Resonance Imaging - methods
Neurodegenerative diseases
Neurology
Neuroradiology
Neurosurgery
Original Article
Parkinson Disease - diagnosis
Parkinson Disease - diagnostic imaging
Parkinson's disease
Psychiatry
Substantia nigra
Support Vector Machine
Support vector machines
Title Utilizing combined quantitative multiparametric MRI as potential biomarkers for improved early-stage parkinson’s disease diagnosis
URI https://link.springer.com/article/10.1007/s10072-024-07956-0
https://www.ncbi.nlm.nih.gov/pubmed/39724321
https://www.proquest.com/docview/3190951349
https://www.proquest.com/docview/3149540981
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQK6FeELSUppTKlbhRS7bzcHLcoi4FtD0gIm1PkdcPtAJlt032wokDf4K_11_SGSfZpSo9cPLBjzwmnvkm882YkLdOYF2iNGXaS8PAQuegB51ghhvh4qzwNsds5MlldlEmn6bptE8Kawa2-xCSDJr6r2Q3riQDm8K4wup54Khvp-C7I5GrlKO1_hVJOBQZ7DRGLVXSp8r8e4375ugBxnwQHw1mZ_ycPOvxIh11An5Bnrh6lzyd9BHxPfK7bOc_5j9hLoXHADfXWXq90nXIHQNNRjvGoEYOFhbjp5MvH6lu6HLRIk8IlsYEfOTo3DQUACydh78MsIrD0scMwOM3R2H-95AmdvvrT0P7oA60gaY3b16Scnz-9f0F609WYAbgWsuUTosUgJQT2nKlbea8kLPUWa6l9SYpXDyzNlexN5xbJXShvODacGcUAIQs3idb9aJ2B4TmLs-FN9JnmU_AncxT0Bk28YBUMEirI_JueMHVsiugUW1KJaM4KhBHFcRR8YgcDTKo-s3UVKAlEAjGSRGRk3U3bAOMbejaLVY4Bjw98FVzEZFXnezWlwPIJZNYQs_pIMzN4o_fy-H_DX9NdiSeDRzIkEdkq71ZuTcAWNrZMdkejc_OLrH9cPX5_Dh8r3ce7-cS
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYqkGgviEKhC7QYiVtryXYedo4IgZbCcqhYiVvk9QOtqLJAshdOHPgT_D1-CTPeZKGiHHrKwfYk8dgz33geJmTPC6xLlGXMBGkZaGgNctALZrkVPsmL4DRmIw_O8v4w_XWRXbRJYXUX7d65JKOkfpXsxpVkoFMYV1g9Dwz1RQADGtfyUO7P5a9I46XIoKfRa6nSNlXm3zT-VkdvMOYb_2hUO0crZLnFi3R_xuDP5IOvVsnSoPWIr5GHYTP-M76DsRR-A8xc7-jN1FQxdwwkGZ1FDBqMwcJi_HTw-5iaml5PGowTAtKYgI8xOrc1BQBLx_GUAah4LH3MADxeegrjr2Ka2NP9Y01bpw48Y5jeuP5ChkeH5wd91t6swCzAtYYpkxUZzJ0XxnFlXO6DkKPMO26kCzYtfDJyTqskWM6dEqZQQXBjubcKAEKerJOFalL5r4Rqr7UIVoY8DymYkzoDmeHSAEgFnbSmR350E1xezwpolC-lkpEdJbCjjOwoeY9sdzwo281UlyAlEAgmadEju_Nm2Abo2zCVn0yxD1h6YKtq0SMbM97NXweQS6aJhJafHTNfiL__LZv_132HfOyfD07L0-Ozky3ySeI9wTEwcpssNLdT_w3ASzP6HtfqM67E5vU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYqkFAvFdDX8nSl3loL23Hi5IiAFbRdVFVdiVvk9aNaFWUXkr1w4sCf4O_xS5hxsgsIeugpB8dOnLFnvsnMNybksxdYlyhNmQnSMrDQOehBL5jlVvgkK4LLkY08OM2Oh-rbWXr2iMUfs93nIcmW04BVmqpmb-rC3iPiG9eSgX1hXGMlPXDalxWygWFFD-X-QhcLFQ9IBpuNEUytOtrMy2M8NU3P8OazWGk0Qf1V8qbDjnS_FfYaeeWrdbIy6KLjb8nNsBmfj6-gL4UpgcvrHb2YmSryyECr0TZ70GA-Fhbmp4NfJ9TUdDrBqcNCpEjGx3ydy5oCmKXj-McBRvFYBpkBkPzjKfT_Gyljd9e3Ne0CPHCNKXvj-h0Z9o9-Hxyz7pQFZgG6NUybtEgBVHlhHNfGZT4IOUq940a6YFXhk5FzuU6C5dxpYQodBDeWe6sBLGTJe7JUTSr_kdDc57kIVoYsCwpcyzwF_eFUANSCAVvTI1_mH7ictsU0yoeyySiOEsRRRnGUvEe25jIou41Vl6AxEBQmquiRT4tm2BIY5zCVn8zwHvD6wG_NRY98aGW3eBzAL6kSCS1f58J8GPzf77Lxf7fvkpWfh_3yx8np903yWuKRwTFHcossNZczvw04phntxKV6D9CP6yg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Utilizing+combined+quantitative+multiparametric+MRI+as+potential+biomarkers+for+improved+early-stage+parkinson%E2%80%99s+disease+diagnosis&rft.jtitle=Neurological+sciences&rft.au=Yang%2C+Yunjun&rft.au=Xu%2C+Zhenyu&rft.au=Li%2C+Cheng&rft.au=Wang%2C+Chengming&rft.date=2025-05-01&rft.pub=Springer+International+Publishing&rft.issn=1590-1874&rft.eissn=1590-3478&rft.volume=46&rft.issue=5&rft.spage=2103&rft.epage=2113&rft_id=info:doi/10.1007%2Fs10072-024-07956-0&rft.externalDocID=10_1007_s10072_024_07956_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1590-1874&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1590-1874&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1590-1874&client=summon