Effective Connectivity in Cortical Networks During Deception: A Lie Detection Study Based on EEG

Thus far, when deception behaviors occur, the connectivity patterns and the communication between different brain areas remain largely unclear. In this study, the most important information flows (MIIFs) between different brain cortices during deception were explored. First, the guilty knowledge tes...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of biomedical and health informatics Vol. 26; no. 8; pp. 3755 - 3766
Main Authors Gao, Junfeng, Min, Xiangde, Kang, Qianruo, Si, Huifang, Zhan, Huimiao, Manyande, Anne, Tian, Xuebi, Dong, Yinhong, Zheng, Hua, Song, Jian
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.08.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-2194
2168-2208
2168-2208
DOI10.1109/JBHI.2022.3172994

Cover

Abstract Thus far, when deception behaviors occur, the connectivity patterns and the communication between different brain areas remain largely unclear. In this study, the most important information flows (MIIFs) between different brain cortices during deception were explored. First, the guilty knowledge test protocol was employed, and 64 electrodes' electroencephalogram (EEG) signals were recorded from 30 subjects (15 guilty and 15 innocent). Cortical current density waveforms were then estimated on the 24 regions of interest (ROIs). Next, partial directed coherence (PDC), an effective connectivity (EC) analysis was applied in the cortical waveforms to obtain the brain EC networks for four bands: delta (1-4 Hz), theta (4-8 Hz), alpha (8-13 Hz) and beta (13-30 Hz). Furthermore, using the graph theoretical analysis, the network parameters with significant differences in the EC network were extracted as features to identify the two groups. The high classification accuracy of the four bands demonstrated that the proposed method was suitable for lie detection. In addition, based on the optimal features in the classification mode, the brain "hub" regions were identified, and the MIIFs were significantly different between the guilty and innocent groups. Moreover, the fronto-parietal network was found to be most prominent among all MIIFs at the four bands. Furthermore, combining the neurophysiology significance of the four frequency bands, the roles of all MIIFs were analyzed, which could help us to uncover the underlying cognitive processes and mechanisms of deception.
AbstractList Thus far, when deception behaviors occur, the connectivity patterns and the communication between different brain areas remain largely unclear. In this study, the most important information flows (MIIFs) between different brain cortices during deception were explored. First, the guilty knowledge test protocol was employed, and 64 electrodes' electroencephalogram (EEG) signals were recorded from 30 subjects (15 guilty and 15 innocent). Cortical current density waveforms were then estimated on the 24 regions of interest (ROIs). Next, partial directed coherence (PDC), an effective connectivity (EC) analysis was applied in the cortical waveforms to obtain the brain EC networks for four bands: delta (1-4 Hz), theta (4-8 Hz), alpha (8-13 Hz) and beta (13-30 Hz). Furthermore, using the graph theoretical analysis, the network parameters with significant differences in the EC network were extracted as features to identify the two groups. The high classification accuracy of the four bands demonstrated that the proposed method was suitable for lie detection. In addition, based on the optimal features in the classification mode, the brain "hub" regions were identified, and the MIIFs were significantly different between the guilty and innocent groups. Moreover, the fronto-parietal network was found to be most prominent among all MIIFs at the four bands. Furthermore, combining the neurophysiology significance of the four frequency bands, the roles of all MIIFs were analyzed, which could help us to uncover the underlying cognitive processes and mechanisms of deception.Thus far, when deception behaviors occur, the connectivity patterns and the communication between different brain areas remain largely unclear. In this study, the most important information flows (MIIFs) between different brain cortices during deception were explored. First, the guilty knowledge test protocol was employed, and 64 electrodes' electroencephalogram (EEG) signals were recorded from 30 subjects (15 guilty and 15 innocent). Cortical current density waveforms were then estimated on the 24 regions of interest (ROIs). Next, partial directed coherence (PDC), an effective connectivity (EC) analysis was applied in the cortical waveforms to obtain the brain EC networks for four bands: delta (1-4 Hz), theta (4-8 Hz), alpha (8-13 Hz) and beta (13-30 Hz). Furthermore, using the graph theoretical analysis, the network parameters with significant differences in the EC network were extracted as features to identify the two groups. The high classification accuracy of the four bands demonstrated that the proposed method was suitable for lie detection. In addition, based on the optimal features in the classification mode, the brain "hub" regions were identified, and the MIIFs were significantly different between the guilty and innocent groups. Moreover, the fronto-parietal network was found to be most prominent among all MIIFs at the four bands. Furthermore, combining the neurophysiology significance of the four frequency bands, the roles of all MIIFs were analyzed, which could help us to uncover the underlying cognitive processes and mechanisms of deception.
Thus far, when deception behaviors occur, the connectivity patterns and the communication between different brain areas remain largely unclear. In this study, the most important information flows (MIIFs) between different brain cortices during deception were explored. First, the guilty knowledge test protocol was employed, and 64 electrodes' electroencephalogram (EEG) signals were recorded from 30 subjects (15 guilty and 15 innocent). Cortical current density waveforms were then estimated on the 24 regions of interest (ROIs). Next, partial directed coherence (PDC), an effective connectivity (EC) analysis was applied in the cortical waveforms to obtain the brain EC networks for four bands: delta (1-4 Hz), theta (4-8 Hz), alpha (8-13 Hz) and beta (13-30 Hz). Furthermore, using the graph theoretical analysis, the network parameters with significant differences in the EC network were extracted as features to identify the two groups. The high classification accuracy of the four bands demonstrated that the proposed method was suitable for lie detection. In addition, based on the optimal features in the classification mode, the brain "hub" regions were identified, and the MIIFs were significantly different between the guilty and innocent groups. Moreover, the fronto-parietal network was found to be most prominent among all MIIFs at the four bands. Furthermore, combining the neurophysiology significance of the four frequency bands, the roles of all MIIFs were analyzed, which could help us to uncover the underlying cognitive processes and mechanisms of deception.
Author Zheng, Hua
Dong, Yinhong
Manyande, Anne
Kang, Qianruo
Min, Xiangde
Si, Huifang
Zhan, Huimiao
Tian, Xuebi
Gao, Junfeng
Song, Jian
Author_xml – sequence: 1
  givenname: Junfeng
  orcidid: 0000-0001-7650-4967
  surname: Gao
  fullname: Gao, Junfeng
  email: junfengmst@163.com
  organization: Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, College of Biomedical Engineering, South-Central Minzu University, Wuhan, China
– sequence: 2
  givenname: Xiangde
  surname: Min
  fullname: Min, Xiangde
  email: minxiangde0129@126.com
  organization: Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
– sequence: 3
  givenname: Qianruo
  orcidid: 0000-0003-2516-1268
  surname: Kang
  fullname: Kang, Qianruo
  email: kang_980214@163.com
  organization: Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, College of Biomedical Engineering, South-Central Minzu University, Wuhan, China
– sequence: 4
  givenname: Huifang
  orcidid: 0000-0002-7318-3851
  surname: Si
  fullname: Si, Huifang
  email: lemon7_up@163.com
  organization: Zhuhai Maternity and Child health hospital (Zhuhai Women's and Children's Hospital), Zhuhai, China
– sequence: 5
  givenname: Huimiao
  surname: Zhan
  fullname: Zhan, Huimiao
  email: zhanhm6@163.com
  organization: Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, College of Biomedical Engineering, South-Central Minzu University, Wuhan, China
– sequence: 6
  givenname: Anne
  orcidid: 0000-0002-8257-0722
  surname: Manyande
  fullname: Manyande, Anne
  email: anne.manyande2@uwl.ac.uk
  organization: School of Human and Social Sciences, University of West London, London, U.K
– sequence: 7
  givenname: Xuebi
  surname: Tian
  fullname: Tian, Xuebi
  email: tianxb@hust.edu.cn
  organization: Department of anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
– sequence: 8
  givenname: Yinhong
  surname: Dong
  fullname: Dong, Yinhong
  email: dyh4@163.com
  organization: School of Management, South-Central Minzu University, Wuhan, China
– sequence: 9
  givenname: Hua
  orcidid: 0000-0003-0134-0990
  surname: Zheng
  fullname: Zheng, Hua
  email: hzheng@hust.edu.cn
  organization: Department of anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
– sequence: 10
  givenname: Jian
  orcidid: 0000-0002-2125-1488
  surname: Song
  fullname: Song, Jian
  email: docsongjian@yahoo.com
  organization: Department of Neurosurgery, General Hospital of the Central Command Theater of PLA, Wuhan, China
BookMark eNp9kT1vHCEQhlHkKHYc_4AoDVIaN3eBWRaWdPb5_KVTUsQ9wdxshLOGC7CJ7t-H9dkuXHia-dD7DCPe92QvxICEfORszjnTX65PL6_mwADmDVegtXhDDoDLbgbAur2nmmuxT45yvmM1ujrS8h3Zb9oWQDbdAfm57Ht0xf9FuoghPJS-bKkPtU_FOzvQb1j-xfQ707Mx-fCLnqHDTfExfKUndOWxDsoExkB_lHG9pac245rWdrm8-EDe9nbIePSYD8nN-fJmcTlbfb-4WpysZq4BWWZtv0Zn0QGTjjGp1a3SnRbKKg6Cc8Wkup0uZq5Hjp1uBWs6x0CgcqpdN4fkeLd2k-KfEXMx9z47HAYbMI7ZgJScKdlJqNLPL6R3cUyhHmdAsUYAKNFWFd-pXIo5J-zNJvl7m7aGMzMZYCYDzGSAeTSgMuoF43yx08eUZP3wKvlpR3pEfH5JK8UEY81_9RCQPw
CODEN IJBHA9
CitedBy_id crossref_primary_10_1016_j_brainresbull_2023_110758
crossref_primary_10_1109_JBHI_2023_3295892
crossref_primary_10_1007_s11571_024_10163_4
crossref_primary_10_3390_electronics12071633
crossref_primary_10_1007_s11571_025_10222_4
crossref_primary_10_1109_JBHI_2023_3344176
crossref_primary_10_1111_cns_14641
Cites_doi 10.1093/cercor/bhn037
10.1093/cercor/bhn189
10.1186/s12993-014-0046-4
10.1155/ASP.2005.3128
10.1016/j.neuroimage.2010.11.025
10.1016/j.neuroimage.2009.10.003
10.1016/S0165-0173(98)00056-3
10.1016/j.neubiorev.2008.03.014
10.1093/cercor/13.8.830
10.1109/TBME.2006.873692
10.1007/s10548-019-00739-3
10.1103/PhysRevE.70.050902
10.1371/journal.pone.0109700
10.1016/j.neuroimage.2004.09.036
10.1162/08989290260045882
10.1016/j.neuroimage.2018.10.068
10.1016/j.jneumeth.2010.11.015
10.1016/S1053-8119(09)71822-1
10.1089/brain.2016.0421
10.1016/j.neuroimage.2018.12.016
10.1126/science.1194144
10.1016/j.neuroimage.2013.04.027
10.1109/JBHI.2021.3095415
10.1016/j.compbiomed.2011.06.020
10.1126/science.1089910
10.1016/j.eswa.2016.01.024
10.1109/TNB.2013.2279131
10.1093/cercor/bht284
10.1038/nrn2575
10.1126/science.280.5364.747
10.1126/science.288.5472.1835
10.1006/nimg.2002.1175
10.1016/j.neuroimage.2004.10.041
10.1007/s11571-012-9230-0
10.1093/cercor/bhm088
10.1016/S0304-3940(01)01656-1
10.1016/j.biopsych.2005.07.040
10.1002/hbm.20353
10.1002/hbm.20191
10.1016/j.ijpsycho.2011.11.017
10.1016/j.tics.2013.08.006
10.1016/j.ijpsycho.2007.08.001
10.1016/j.cmpb.2008.10.001
10.1093/cercor/bhj127
10.1523/JNEUROSCI.0737-12.2012
10.1016/j.eswa.2009.12.025
10.1006/nimg.2001.1003
10.1371/journal.pone.0064704
10.1016/S0013-4694(97)00147-8
10.1016/j.tics.2008.01.001
10.1093/brain/awl004
10.1134/S0362119715010065
10.1038/srep37065
10.1016/j.eswa.2009.01.041
10.1109/TBME.2019.2897651
10.1016/j.neuroimage.2005.08.009
10.1109/TBME.2008.2005969
10.1016/j.neuroimage.2008.01.035
10.1093/cercor/bhp090
10.1093/cercor/bhi097
10.1016/j.ijpsycho.2014.08.596
10.1016/j.jneumeth.2003.10.009
10.1371/journal.pone.0116522
10.1016/j.clinph.2008.11.023
10.1016/j.cmpb.2010.10.002
10.1016/S1388-2457(99)00141-8
10.1038/nn846
10.1177/1550059411428715
10.1038/35067550
10.1093/scan/nst134
10.1109/TBME.2007.905419
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/JBHI.2022.3172994
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEL
CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Materials Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEL
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2168-2208
EndPage 3766
ExternalDocumentID 10_1109_JBHI_2022_3172994
9770400
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61773408; 82102028
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
6IF
6IH
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c326t-5fdecaec206c00697b798947a7124117067b26380cfe1e8954038c024e7c75d3
IEDL.DBID RIE
ISSN 2168-2194
2168-2208
IngestDate Thu Jul 10 21:10:56 EDT 2025
Mon Jun 30 03:24:36 EDT 2025
Tue Jul 01 03:00:02 EDT 2025
Thu Apr 24 23:09:34 EDT 2025
Wed Aug 27 02:22:59 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c326t-5fdecaec206c00697b798947a7124117067b26380cfe1e8954038c024e7c75d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0134-0990
0000-0002-7318-3851
0000-0002-8257-0722
0000-0003-2516-1268
0000-0001-7650-4967
0000-0002-2125-1488
PMID 35522638
PQID 2703422745
PQPubID 85417
PageCount 12
ParticipantIDs proquest_journals_2703422745
crossref_citationtrail_10_1109_JBHI_2022_3172994
proquest_miscellaneous_2661076862
crossref_primary_10_1109_JBHI_2022_3172994
ieee_primary_9770400
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE journal of biomedical and health informatics
PublicationTitleAbbrev JBHI
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref34
ref37
ref36
ref31
Pascual-Marqui (ref35) 2002; 24
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref71
ref70
ref72
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref32
  doi: 10.1093/cercor/bhn037
– ident: ref26
  doi: 10.1093/cercor/bhn189
– ident: ref61
  doi: 10.1186/s12993-014-0046-4
– ident: ref42
  doi: 10.1155/ASP.2005.3128
– ident: ref28
  doi: 10.1016/j.neuroimage.2010.11.025
– ident: ref38
  doi: 10.1016/j.neuroimage.2009.10.003
– ident: ref53
  doi: 10.1016/S0165-0173(98)00056-3
– ident: ref56
  doi: 10.1016/j.neubiorev.2008.03.014
– ident: ref12
  doi: 10.1093/cercor/13.8.830
– ident: ref21
  doi: 10.1109/TBME.2006.873692
– ident: ref55
  doi: 10.1007/s10548-019-00739-3
– ident: ref36
  doi: 10.1103/PhysRevE.70.050902
– ident: ref8
  doi: 10.1371/journal.pone.0109700
– ident: ref18
  doi: 10.1016/j.neuroimage.2004.09.036
– ident: ref49
  doi: 10.1162/08989290260045882
– ident: ref64
  doi: 10.1016/j.neuroimage.2018.10.068
– ident: ref48
  doi: 10.1016/j.jneumeth.2010.11.015
– ident: ref40
  doi: 10.1016/S1053-8119(09)71822-1
– ident: ref58
  doi: 10.1089/brain.2016.0421
– ident: ref67
  doi: 10.1016/j.neuroimage.2018.12.016
– ident: ref60
  doi: 10.1126/science.1194144
– ident: ref63
  doi: 10.1016/j.neuroimage.2013.04.027
– volume: 24
  start-page: 5
  year: 2002
  ident: ref35
  article-title: Standardized low-resolution brain electromagnetic tomography (sLORETA): Technical details
  publication-title: Methods Find. Exp. Clin. Pharmacol.
– ident: ref43
  doi: 10.1109/JBHI.2021.3095415
– ident: ref19
  doi: 10.1016/j.compbiomed.2011.06.020
– ident: ref69
  doi: 10.1126/science.1089910
– ident: ref15
  doi: 10.1016/j.eswa.2016.01.024
– ident: ref41
  doi: 10.1109/TNB.2013.2279131
– ident: ref31
  doi: 10.1093/cercor/bht284
– ident: ref37
  doi: 10.1038/nrn2575
– ident: ref68
  doi: 10.1126/science.280.5364.747
– ident: ref70
  doi: 10.1126/science.288.5472.1835
– ident: ref24
  doi: 10.1006/nimg.2002.1175
– ident: ref29
  doi: 10.1016/j.neuroimage.2004.10.041
– ident: ref6
  doi: 10.1007/s11571-012-9230-0
– ident: ref50
  doi: 10.1093/cercor/bhm088
– ident: ref54
  doi: 10.1016/S0304-3940(01)01656-1
– ident: ref33
  doi: 10.1016/j.biopsych.2005.07.040
– ident: ref17
  doi: 10.1002/hbm.20353
– ident: ref1
  doi: 10.1002/hbm.20191
– ident: ref57
  doi: 10.1016/j.ijpsycho.2011.11.017
– ident: ref65
  doi: 10.1016/j.tics.2013.08.006
– ident: ref5
  doi: 10.1016/j.ijpsycho.2007.08.001
– ident: ref4
  doi: 10.1016/j.cmpb.2008.10.001
– ident: ref39
  doi: 10.1093/cercor/bhj127
– ident: ref66
  doi: 10.1523/JNEUROSCI.0737-12.2012
– ident: ref47
  doi: 10.1016/j.eswa.2009.12.025
– ident: ref27
  doi: 10.1006/nimg.2001.1003
– ident: ref9
  doi: 10.1371/journal.pone.0064704
– ident: ref23
  doi: 10.1016/S0013-4694(97)00147-8
– ident: ref59
  doi: 10.1016/j.tics.2008.01.001
– ident: ref62
  doi: 10.1093/brain/awl004
– ident: ref71
  doi: 10.1134/S0362119715010065
– ident: ref14
  doi: 10.1038/srep37065
– ident: ref45
  doi: 10.1016/j.eswa.2009.01.041
– ident: ref46
  doi: 10.1109/TBME.2019.2897651
– ident: ref3
  doi: 10.1016/j.neuroimage.2005.08.009
– ident: ref44
  doi: 10.1109/TBME.2008.2005969
– ident: ref34
  doi: 10.1016/j.neuroimage.2008.01.035
– ident: ref13
  doi: 10.1093/cercor/bhp090
– ident: ref30
  doi: 10.1093/cercor/bhi097
– ident: ref72
  doi: 10.1016/j.ijpsycho.2014.08.596
– ident: ref25
  doi: 10.1016/j.jneumeth.2003.10.009
– ident: ref16
  doi: 10.1371/journal.pone.0116522
– ident: ref52
  doi: 10.1016/j.clinph.2008.11.023
– ident: ref10
  doi: 10.1016/j.cmpb.2010.10.002
– ident: ref22
  doi: 10.1016/S1388-2457(99)00141-8
– ident: ref51
  doi: 10.1038/nn846
– ident: ref7
  doi: 10.1177/1550059411428715
– ident: ref11
  doi: 10.1038/35067550
– ident: ref2
  doi: 10.1093/scan/nst134
– ident: ref20
  doi: 10.1109/TBME.2007.905419
SSID ssj0000816896
Score 2.3999813
Snippet Thus far, when deception behaviors occur, the connectivity patterns and the communication between different brain areas remain largely unclear. In this study,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3755
SubjectTerms Bioinformatics
Brain
Classification
Cognitive ability
cortical network
Deception
EEG
Effective connectivity
Electroencephalography
Feature extraction
Frequencies
Frontal lobe
Information flow
lie detection
Neural networks
Neurophysiology
partial directed coherence
Scalp
Task analysis
Theoretical analysis
Waveforms
Title Effective Connectivity in Cortical Networks During Deception: A Lie Detection Study Based on EEG
URI https://ieeexplore.ieee.org/document/9770400
https://www.proquest.com/docview/2703422745
https://www.proquest.com/docview/2661076862
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT4QwEJ7oHowX38b1lZp4MrJ2u0DB26qrq3E9aeINoQyJ0bBG2YP-emdKlxg1xlsLBUqn7XzTeQHs6yzMM98EXk9F0vP9IvSiICo8o7txToA9NzE7Co9uwuGdf3Uf3M_AYeMLg4jW-Aw7XLS6_HxsJnxUdkRYhefcLMzSNKt9tZrzFJtAwqbjUlTwaCH6TonZlfHR1cnwkoRBpUhGJTgZczoe4rSEPdgx5QtHsilWfuzLltmcL8Jo2s3axuSpM6myjvn4FsHxv_-xBAsOdYp-PU2WYQbLFZgbOb36KjzUQYxp5xPW8sXUOSXEY0n1V3vcLW5qg_E3cWY9G8UZOouYY9EX149IFypr11UKNk58FyfEIHNB1cHgYg1uzwe3p0PP5V7wDAG6yguKHE2KRsnQcDRjnWkO1a5TTYCAs9WEOuPBk6bALkYxAb9eZIjhozY6yHvr0CrHJW6AUEoaX2GhYhKAZS7TXuhjSKw5Yo1smrZBToc_MS4uOafHeE6sfCLjhImXMPESR7w2HDSPvNRBOf5qvMoUaBq6wW_D9pTGiVu2b4nSHBGR-hm0Ya-5TQuOtShpieMJtSFEw-rLUG3-_uYtmOfv11aC29CqXie4Q8ilynbtlP0E1NDkog
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9swFH-CIgEXPodWxjYjcZpI67pJnHCDUVag7alI3ELivEiIKUU0PcBfv_ccN5o2NO0WJ07k-Nl-P_t9_ABOdBbmmW8Cr68i6fl-EXpREBWe0b04J8Cem5gDhceTcHjn39wH9ytw2sTCIKJ1PsMOX1pbfj4zCz4q6xJW4TG3Cmuk9_2gjtZqTlQshYQl5FJ04dFU9J0Zsyfj7s3F8Jq2g0rRLpUAZcyEPKRrCX1waMpvOsmSrPy1Mlt1c7UN42VDay-Tp86iyjrm7Y8cjv_7Jzuw5XCnOK8Hyi6sYLkH62NnWd-HhzqNMa19wvq-mJpVQjyWVH6xB95iUruMz8WljW0Ul-h8Ys7EuRg9It2orGdXKdg98VVckIrMBRUHgx8fYHo1mH4feo59wTME6SovKHI0KRolQ8P5jHWmOVm7TjVBAuarCXXGnSdNgT2MYoJ-_ciQykdtdJD3D6BVzkr8CEIpaXyFhYppCyxzmfZDH0NSzhHbZNO0DXLZ_YlxmcmZIONnYncoMk5YeAkLL3HCa8O35pXnOi3HvyrvswSaiq7z23C0lHHiJu48UZpzIlI7gzYcN49pyrEdJS1xtqA6hGnYgBmqw_e__BU2htPxKBldT24_wSa3pfYZPIJW9bLAz4RjquyLHb6_APm25-8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effective+Connectivity+in+Cortical+Networks+During+Deception%3A+A+Lie+Detection+Study+Based+on+EEG&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Gao%2C+Junfeng&rft.au=Min%2C+Xiangde&rft.au=Kang%2C+Qianruo&rft.au=Si%2C+Huifang&rft.date=2022-08-01&rft.issn=2168-2194&rft.eissn=2168-2208&rft.volume=26&rft.issue=8&rft.spage=3755&rft.epage=3766&rft_id=info:doi/10.1109%2FJBHI.2022.3172994&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JBHI_2022_3172994
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon