A Novel Method Based on Empirical Mode Decomposition for P300-Based Detection of Deception

Conventional polygraphy has several alternatives and one of them is P300-based guilty knowledge test. The purpose of this paper is to apply a new method called empirical mode decomposition (EMD) to extract features from electroencephalogram (EEG) signal. EMD is an appropriate tool to deal with the n...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on information forensics and security Vol. 11; no. 11; pp. 2584 - 2593
Main Authors Arasteh, Abdollah, Moradi, Mohammad Hassan, Janghorbani, Amin
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1556-6013
1556-6021
DOI10.1109/TIFS.2016.2590938

Cover

Abstract Conventional polygraphy has several alternatives and one of them is P300-based guilty knowledge test. The purpose of this paper is to apply a new method called empirical mode decomposition (EMD) to extract features from electroencephalogram (EEG) signal. EMD is an appropriate tool to deal with the nonlinear and nonstationary nature of EEG. In the previous studies on the same data set, some morphological, frequency, and wavelet features were extracted only from Pz channel, and used for the detection of guilty and innocent subjects. In this paper, an EMD-based feature extraction was done on EEG recorded signal. Features were extracted from all three recorded channels (Pz, Cz, and Fz) for synergistic incorporation of channel information. Finally, a genetic algorithm was utilized as a tool for efficient feature selection and overcoming the challenge of input space dimension increase. The classification accuracy of guilty and innocent subjects was 92.73%, which was better than other previously used methods.
AbstractList Conventional polygraphy has several alternatives and one of them is P300-based guilty knowledge test. The purpose of this paper is to apply a new method called empirical mode decomposition (EMD) to extract features from electroencephalogram (EEG) signal. EMD is an appropriate tool to deal with the nonlinear and nonstationary nature of EEG. In the previous studies on the same data set, some morphological, frequency, and wavelet features were extracted only from Pz channel, and used for the detection of guilty and innocent subjects. In this paper, an EMD-based feature extraction was done on EEG recorded signal. Features were extracted from all three recorded channels (Pz, Cz, and Fz) for synergistic incorporation of channel information. Finally, a genetic algorithm was utilized as a tool for efficient feature selection and overcoming the challenge of input space dimension increase. The classification accuracy of guilty and innocent subjects was 92.73%, which was better than other previously used methods.
Author Janghorbani, Amin
Moradi, Mohammad Hassan
Arasteh, Abdollah
Author_xml – sequence: 1
  givenname: Abdollah
  surname: Arasteh
  fullname: Arasteh, Abdollah
  email: arasteh@ee.sharif.edu
  organization: Dept. of Biomed. Eng., Amirkabir Univ. of Technol., Tehran, Iran
– sequence: 2
  givenname: Mohammad Hassan
  surname: Moradi
  fullname: Moradi, Mohammad Hassan
  email: mhmoradi@aut.ac.ir
  organization: Dept. of Biomed. Eng., Amirkabir Univ. of Technol., Tehran, Iran
– sequence: 3
  givenname: Amin
  surname: Janghorbani
  fullname: Janghorbani, Amin
  email: a.janghorbani@aut.ac.ir
  organization: Dept. of Biomed. Eng., Amirkabir Univ. of Technol., Tehran, Iran
BookMark eNp9kE1LxDAQhoMoqKs_QLwUvHjpOtM0aXpcvxf8AvXipcRkilm6TU26gv_e1hUPHjxlwvu8k_Dsss3Wt8TYAcIUEcqTp_nl4zQDlNNMlFBytcF2UAiZSshw83dGvs12Y1wA5DlKtcNeZsmd_6AmuaX-zdvkVEeyiW-Ti2XngjN6SLyl5JyMX3Y-ut4NYe1D8sAB0jV-Tj2Z78DXI0ndeNljW7VuIu3_nBP2fHnxdHad3txfzc9mN6nhmexTwXMwAqQxEhWRsdoUEsvMKPmac0BrlMgF1tmrlULmtsACwKK0VuYyV5pP2PF6bxf8-4piXy1dNNQ0uiW_ihUqIfhAAgzo0R904VehHX43UBxKEBLUQOGaMsHHGKiuuuCWOnxWCNVouxptV6Pt6sf20Cn-dIzr9aihD9o1_zYP101HRL8vFQKxyBT_AiGVi-c
CODEN ITIFA6
CitedBy_id crossref_primary_10_1016_j_procs_2018_05_056
crossref_primary_10_1007_s00521_019_04078_z
crossref_primary_10_1016_j_cegh_2020_01_008
crossref_primary_10_1109_TAFFC_2019_2934412
crossref_primary_10_1109_TNSRE_2021_3092140
crossref_primary_10_1007_s12647_021_00493_7
crossref_primary_10_1109_JBHI_2023_3295892
crossref_primary_10_1109_TIFS_2018_2825940
crossref_primary_10_1109_TIM_2024_3353837
crossref_primary_10_1016_j_ijpsycho_2017_05_006
crossref_primary_10_1007_s00500_023_08476_3
crossref_primary_10_1111_coin_12256
crossref_primary_10_1007_s11277_024_11112_4
crossref_primary_10_1016_j_anucene_2017_11_030
crossref_primary_10_1016_j_procs_2018_10_392
crossref_primary_10_1016_j_bspc_2020_101886
crossref_primary_10_1109_TCDS_2021_3053455
crossref_primary_10_1109_TIFS_2019_2918083
crossref_primary_10_1007_s00500_023_08425_0
crossref_primary_10_1007_s11042_023_16042_0
crossref_primary_10_1016_j_ijpsycho_2017_02_005
crossref_primary_10_1016_j_cmpb_2024_108019
crossref_primary_10_1016_j_jbef_2020_100335
crossref_primary_10_1007_s00138_018_0950_y
crossref_primary_10_1007_s00500_023_08404_5
crossref_primary_10_1007_s11042_024_18698_8
crossref_primary_10_1109_TNSRE_2022_3221962
crossref_primary_10_1016_j_jneumeth_2019_01_007
crossref_primary_10_1109_TIM_2021_3082985
crossref_primary_10_1109_TIFS_2019_2913798
Cites_doi 10.1016/j.ijpsycho.2005.12.012
10.1016/j.cmpb.2010.10.002
10.1016/0169-2607(86)90081-7
10.2307/2531595
10.1007/s11062-013-9360-y
10.1109/ISPACS.2009.4806683
10.1016/j.amc.2006.04.025
10.1109/ICNC.2008.337
10.1177/1550059411428715
10.1016/j.amc.2007.10.064
10.1098/rspa.1998.0193
10.1109/ICALIP.2014.7009748
10.1109/CIBEC.2010.5716061
10.1111/j.1469-8986.1991.tb01990.x
10.1109/LSP.2003.821662
10.1016/j.clinph.2007.04.019
10.1109/IEMBS.2006.260247
10.1109/IEMBS.2006.260589
10.1142/3904
10.1017/CBO9780511975196
10.1109/IWSSIP.2008.4604377
10.1016/j.clinph.2005.06.011
10.1109/ICBME.2011.6168556
10.1016/S1350-4533(01)00075-3
10.1111/j.1469-8986.2004.00158.x
10.1007/978-1-84628-172-3
10.1016/j.ijpsycho.2006.05.009
10.1109/TIFS.2013.2244884
10.1109/TBME.2007.891936
10.1016/j.compbiomed.2007.06.003
10.1007/978-1-4613-0137-0
10.1016/j.proenv.2011.10.053
10.1016/j.cmpb.2008.10.001
10.1109/ICBBE.2008.169
10.1016/j.ijpsycho.2013.08.012
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
F28
DOI 10.1109/TIFS.2016.2590938
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Civil Engineering Abstracts
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1556-6021
EndPage 2593
ExternalDocumentID 4223413471
10_1109_TIFS_2016_2590938
7511728
Genre orig-research
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
F28
ID FETCH-LOGICAL-c326t-5340c506cc618eecdac76192c86b4301dc85451f2bd6564d71700d16dd64648a3
IEDL.DBID RIE
ISSN 1556-6013
IngestDate Thu Sep 04 17:59:09 EDT 2025
Sun Jun 29 16:04:00 EDT 2025
Tue Jul 01 02:34:11 EDT 2025
Thu Apr 24 23:09:03 EDT 2025
Tue Aug 26 16:40:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c326t-5340c506cc618eecdac76192c86b4301dc85451f2bd6564d71700d16dd64648a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5046-5373
PQID 1830905608
PQPubID 85506
PageCount 10
ParticipantIDs proquest_journals_1830905608
proquest_miscellaneous_1855364800
ieee_primary_7511728
crossref_primary_10_1109_TIFS_2016_2590938
crossref_citationtrail_10_1109_TIFS_2016_2590938
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-11-01
PublicationDateYYYYMMDD 2016-11-01
PublicationDate_xml – month: 11
  year: 2016
  text: 2016-11-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on information forensics and security
PublicationTitleAbbrev TIFS
PublicationYear 2016
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref31
polich (ref32) 2012
ref30
ref33
ref11
ref10
ref1
ref39
ref17
ref16
council (ref2) 2002
ref19
ref18
ref24
(ref5) 2003
ref23
ref26
ref25
ref20
ref41
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
kohavi (ref35) 0; 2
gen (ref38) 2000
ref40
matté (ref6) 1996
References_xml – ident: ref33
  doi: 10.1016/j.ijpsycho.2005.12.012
– ident: ref13
  doi: 10.1016/j.cmpb.2010.10.002
– ident: ref41
  doi: 10.1016/0169-2607(86)90081-7
– year: 2003
  ident: ref5
  publication-title: The Polygraph and Lie Detection
– year: 2002
  ident: ref2
  publication-title: The Polygraph and Lie Detection
– ident: ref40
  doi: 10.2307/2531595
– ident: ref4
  doi: 10.1007/s11062-013-9360-y
– ident: ref22
  doi: 10.1109/ISPACS.2009.4806683
– ident: ref19
  doi: 10.1016/j.amc.2006.04.025
– ident: ref25
  doi: 10.1109/ICNC.2008.337
– ident: ref9
  doi: 10.1177/1550059411428715
– ident: ref20
  doi: 10.1016/j.amc.2007.10.064
– ident: ref16
  doi: 10.1098/rspa.1998.0193
– ident: ref30
  doi: 10.1109/ICALIP.2014.7009748
– ident: ref34
  doi: 10.1109/CIBEC.2010.5716061
– volume: 2
  year: 0
  ident: ref35
  article-title: A study of cross-validation and bootstrap for accuracy estimation and model selection
– year: 1996
  ident: ref6
  publication-title: Forensic Psychophysiology Using the Polygraph - Scientific Truth Verification - Lie Detection
– ident: ref7
  doi: 10.1111/j.1469-8986.1991.tb01990.x
– ident: ref27
  doi: 10.1109/LSP.2003.821662
– ident: ref29
  doi: 10.1016/j.clinph.2007.04.019
– ident: ref11
  doi: 10.1109/IEMBS.2006.260247
– ident: ref24
  doi: 10.1109/IEMBS.2006.260589
– ident: ref37
  doi: 10.1142/3904
– ident: ref39
  doi: 10.1017/CBO9780511975196
– ident: ref21
  doi: 10.1109/IWSSIP.2008.4604377
– ident: ref17
  doi: 10.1016/j.clinph.2005.06.011
– ident: ref10
  doi: 10.1109/ICBME.2011.6168556
– ident: ref18
  doi: 10.1016/S1350-4533(01)00075-3
– ident: ref8
  doi: 10.1111/j.1469-8986.2004.00158.x
– ident: ref36
  doi: 10.1007/978-1-84628-172-3
– ident: ref14
  doi: 10.1016/j.ijpsycho.2006.05.009
– ident: ref3
  doi: 10.1109/TIFS.2013.2244884
– ident: ref28
  doi: 10.1109/TBME.2007.891936
– year: 2012
  ident: ref32
  publication-title: Detection of Change Event-Related Potential and fMRI Findings
– ident: ref23
  doi: 10.1016/j.compbiomed.2007.06.003
– ident: ref31
  doi: 10.1007/978-1-4613-0137-0
– ident: ref12
  doi: 10.1016/j.proenv.2011.10.053
– ident: ref15
  doi: 10.1016/j.cmpb.2008.10.001
– ident: ref26
  doi: 10.1109/ICBBE.2008.169
– year: 2000
  ident: ref38
  publication-title: Genetic Algorithms and Engineering Optimization
– ident: ref1
  doi: 10.1016/j.ijpsycho.2013.08.012
SSID ssj0044168
Score 2.3396018
Snippet Conventional polygraphy has several alternatives and one of them is P300-based guilty knowledge test. The purpose of this paper is to apply a new method called...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2584
SubjectTerms Channels
Classification
Computer information security
Correlation
Deception
Decomposition
Electroencephalography
Empirical mode decomposition
event-related potentials (ERP)
Feature extraction
feature selection
genetic algorithm
Genetic algorithms
guilty knowledge test (GKT)
Nonlinearity
P300
Probes
Protocols
Title A Novel Method Based on Empirical Mode Decomposition for P300-Based Detection of Deception
URI https://ieeexplore.ieee.org/document/7511728
https://www.proquest.com/docview/1830905608
https://www.proquest.com/docview/1855364800
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB4lPcGBQAoibVotEieEk7XXXjvH0iQKSKmQSKSIi-V9WEIUu6JOD_x6ZtbrCAqqerO045dmZ-bb3ZlvAN5GJdFmlWhpkZJBrHkZqIKnAbFVmTQrRWRpv2N9JVfb-NMu2fXg_aEWxlrrks_shC7dWb6p9Z62yqYpooM0yvrQx2nW1mp1Xhejelv2liQywEWG8CeYIZ9NNx-XXyiJS04Q6-MKPvsrBrmmKv94YhdelgNYdx_WZpV8n-wbNdG_7nE2PvbLn8MzjzPZRTsxXkDPVkMYdD0cmDfpITz9g5DwGL5esKv6zl6ztWsszT5gjDOsrtjix803RybCqHkam1tKRff5XgxxL_ssOA9a8bltXH5XxeqSJNu8mZewXS42l6vAd18INEK6JkhEzHXCpdYyzKzVptC05RHpTKoY3YLRGaKvsIyUQUwYm5SY_kwojZGxjLNCvIKjqq7sa2C4SCpQnBobqzgxhRI8KiKllShmQoThCHinj1x7anLqkHGduyUKn-WkwpxUmHsVjuDd4ZablpfjIeFjUslB0GtjBONO6bm33NscXRyfISrkOPzmMIw2RwcpRWXrPckkicB_5Pzk_08-hSf0_rZmcQxHzc-9PUPw0qhzN2t_AwAf58M
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoAeKLRULBQwEqeq2TrxI9ljoV1tobtCYitVXKL4EamiTSrIcuDXM-M4K15C3CJ5Ejkaz8xne-YbgNdZTbRZNVpaZnQiLa8TU_E8IbYqlxe1yDydd8wXenYh312qyw04XNfCeO9D8pkf02O4y3etXdFR2VGO6CDPijtwF-O-VH211uB3Ma73hW9K6QS3GSLeYaZ8crQ8m36kNC49RrSPe_jilygU2qr84YtDgJluw3yYWp9X8nm86szYfv-NtfF_5_4QHkSkyY77pfEINnyzA9tDFwcWjXoHtn6iJNyFT8ds0X7z12weWkuzNxjlHGsbdnpzexXoRBi1T2MnnpLRY8YXQ-TLPgjOk178xHchw6thbU2SfebMY7iYni7fzpLYfyGxCOq6RAnJreLaWp0W3ltXWTr0yGyhjUTH4GyBWkjrzDhEhdLlxPXnUu2clloWldiDzaZt_BNguE2qUJxaGxupXGUEz6rMWCOqiRBpOgI-6KO0kZycemRcl2GTwiclqbAkFZZRhSM4WL9y2zNz_Et4l1SyFozaGMH-oPQy2u7XEp0cnyAu5Dj8aj2MVkdXKVXj2xXJKCXwHzl_-vcvv4R7s-X8vDw_W7x_BvdpLn0F4z5sdl9W_jlCmc68CCv4B0tQ6xA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Method+Based+on+Empirical+Mode+Decomposition+for+P300-Based+Detection+of+Deception&rft.jtitle=IEEE+transactions+on+information+forensics+and+security&rft.au=Arasteh%2C+Abdollah&rft.au=Moradi%2C+Mohammad+Hassan&rft.au=Janghorbani%2C+Amin&rft.date=2016-11-01&rft.pub=IEEE&rft.issn=1556-6013&rft.volume=11&rft.issue=11&rft.spage=2584&rft.epage=2593&rft_id=info:doi/10.1109%2FTIFS.2016.2590938&rft.externalDocID=7511728
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-6013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-6013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-6013&client=summon