A Novel Method Based on Empirical Mode Decomposition for P300-Based Detection of Deception
Conventional polygraphy has several alternatives and one of them is P300-based guilty knowledge test. The purpose of this paper is to apply a new method called empirical mode decomposition (EMD) to extract features from electroencephalogram (EEG) signal. EMD is an appropriate tool to deal with the n...
Saved in:
Published in | IEEE transactions on information forensics and security Vol. 11; no. 11; pp. 2584 - 2593 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.11.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1556-6013 1556-6021 |
DOI | 10.1109/TIFS.2016.2590938 |
Cover
Abstract | Conventional polygraphy has several alternatives and one of them is P300-based guilty knowledge test. The purpose of this paper is to apply a new method called empirical mode decomposition (EMD) to extract features from electroencephalogram (EEG) signal. EMD is an appropriate tool to deal with the nonlinear and nonstationary nature of EEG. In the previous studies on the same data set, some morphological, frequency, and wavelet features were extracted only from Pz channel, and used for the detection of guilty and innocent subjects. In this paper, an EMD-based feature extraction was done on EEG recorded signal. Features were extracted from all three recorded channels (Pz, Cz, and Fz) for synergistic incorporation of channel information. Finally, a genetic algorithm was utilized as a tool for efficient feature selection and overcoming the challenge of input space dimension increase. The classification accuracy of guilty and innocent subjects was 92.73%, which was better than other previously used methods. |
---|---|
AbstractList | Conventional polygraphy has several alternatives and one of them is P300-based guilty knowledge test. The purpose of this paper is to apply a new method called empirical mode decomposition (EMD) to extract features from electroencephalogram (EEG) signal. EMD is an appropriate tool to deal with the nonlinear and nonstationary nature of EEG. In the previous studies on the same data set, some morphological, frequency, and wavelet features were extracted only from Pz channel, and used for the detection of guilty and innocent subjects. In this paper, an EMD-based feature extraction was done on EEG recorded signal. Features were extracted from all three recorded channels (Pz, Cz, and Fz) for synergistic incorporation of channel information. Finally, a genetic algorithm was utilized as a tool for efficient feature selection and overcoming the challenge of input space dimension increase. The classification accuracy of guilty and innocent subjects was 92.73%, which was better than other previously used methods. |
Author | Janghorbani, Amin Moradi, Mohammad Hassan Arasteh, Abdollah |
Author_xml | – sequence: 1 givenname: Abdollah surname: Arasteh fullname: Arasteh, Abdollah email: arasteh@ee.sharif.edu organization: Dept. of Biomed. Eng., Amirkabir Univ. of Technol., Tehran, Iran – sequence: 2 givenname: Mohammad Hassan surname: Moradi fullname: Moradi, Mohammad Hassan email: mhmoradi@aut.ac.ir organization: Dept. of Biomed. Eng., Amirkabir Univ. of Technol., Tehran, Iran – sequence: 3 givenname: Amin surname: Janghorbani fullname: Janghorbani, Amin email: a.janghorbani@aut.ac.ir organization: Dept. of Biomed. Eng., Amirkabir Univ. of Technol., Tehran, Iran |
BookMark | eNp9kE1LxDAQhoMoqKs_QLwUvHjpOtM0aXpcvxf8AvXipcRkilm6TU26gv_e1hUPHjxlwvu8k_Dsss3Wt8TYAcIUEcqTp_nl4zQDlNNMlFBytcF2UAiZSshw83dGvs12Y1wA5DlKtcNeZsmd_6AmuaX-zdvkVEeyiW-Ti2XngjN6SLyl5JyMX3Y-ut4NYe1D8sAB0jV-Tj2Z78DXI0ndeNljW7VuIu3_nBP2fHnxdHad3txfzc9mN6nhmexTwXMwAqQxEhWRsdoUEsvMKPmac0BrlMgF1tmrlULmtsACwKK0VuYyV5pP2PF6bxf8-4piXy1dNNQ0uiW_ihUqIfhAAgzo0R904VehHX43UBxKEBLUQOGaMsHHGKiuuuCWOnxWCNVouxptV6Pt6sf20Cn-dIzr9aihD9o1_zYP101HRL8vFQKxyBT_AiGVi-c |
CODEN | ITIFA6 |
CitedBy_id | crossref_primary_10_1016_j_procs_2018_05_056 crossref_primary_10_1007_s00521_019_04078_z crossref_primary_10_1016_j_cegh_2020_01_008 crossref_primary_10_1109_TAFFC_2019_2934412 crossref_primary_10_1109_TNSRE_2021_3092140 crossref_primary_10_1007_s12647_021_00493_7 crossref_primary_10_1109_JBHI_2023_3295892 crossref_primary_10_1109_TIFS_2018_2825940 crossref_primary_10_1109_TIM_2024_3353837 crossref_primary_10_1016_j_ijpsycho_2017_05_006 crossref_primary_10_1007_s00500_023_08476_3 crossref_primary_10_1111_coin_12256 crossref_primary_10_1007_s11277_024_11112_4 crossref_primary_10_1016_j_anucene_2017_11_030 crossref_primary_10_1016_j_procs_2018_10_392 crossref_primary_10_1016_j_bspc_2020_101886 crossref_primary_10_1109_TCDS_2021_3053455 crossref_primary_10_1109_TIFS_2019_2918083 crossref_primary_10_1007_s00500_023_08425_0 crossref_primary_10_1007_s11042_023_16042_0 crossref_primary_10_1016_j_ijpsycho_2017_02_005 crossref_primary_10_1016_j_cmpb_2024_108019 crossref_primary_10_1016_j_jbef_2020_100335 crossref_primary_10_1007_s00138_018_0950_y crossref_primary_10_1007_s00500_023_08404_5 crossref_primary_10_1007_s11042_024_18698_8 crossref_primary_10_1109_TNSRE_2022_3221962 crossref_primary_10_1016_j_jneumeth_2019_01_007 crossref_primary_10_1109_TIM_2021_3082985 crossref_primary_10_1109_TIFS_2019_2913798 |
Cites_doi | 10.1016/j.ijpsycho.2005.12.012 10.1016/j.cmpb.2010.10.002 10.1016/0169-2607(86)90081-7 10.2307/2531595 10.1007/s11062-013-9360-y 10.1109/ISPACS.2009.4806683 10.1016/j.amc.2006.04.025 10.1109/ICNC.2008.337 10.1177/1550059411428715 10.1016/j.amc.2007.10.064 10.1098/rspa.1998.0193 10.1109/ICALIP.2014.7009748 10.1109/CIBEC.2010.5716061 10.1111/j.1469-8986.1991.tb01990.x 10.1109/LSP.2003.821662 10.1016/j.clinph.2007.04.019 10.1109/IEMBS.2006.260247 10.1109/IEMBS.2006.260589 10.1142/3904 10.1017/CBO9780511975196 10.1109/IWSSIP.2008.4604377 10.1016/j.clinph.2005.06.011 10.1109/ICBME.2011.6168556 10.1016/S1350-4533(01)00075-3 10.1111/j.1469-8986.2004.00158.x 10.1007/978-1-84628-172-3 10.1016/j.ijpsycho.2006.05.009 10.1109/TIFS.2013.2244884 10.1109/TBME.2007.891936 10.1016/j.compbiomed.2007.06.003 10.1007/978-1-4613-0137-0 10.1016/j.proenv.2011.10.053 10.1016/j.cmpb.2008.10.001 10.1109/ICBBE.2008.169 10.1016/j.ijpsycho.2013.08.012 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D F28 |
DOI | 10.1109/TIFS.2016.2590938 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Civil Engineering Abstracts Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1556-6021 |
EndPage | 2593 |
ExternalDocumentID | 4223413471 10_1109_TIFS_2016_2590938 7511728 |
Genre | orig-research |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D F28 |
ID | FETCH-LOGICAL-c326t-5340c506cc618eecdac76192c86b4301dc85451f2bd6564d71700d16dd64648a3 |
IEDL.DBID | RIE |
ISSN | 1556-6013 |
IngestDate | Thu Sep 04 17:59:09 EDT 2025 Sun Jun 29 16:04:00 EDT 2025 Tue Jul 01 02:34:11 EDT 2025 Thu Apr 24 23:09:03 EDT 2025 Tue Aug 26 16:40:14 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c326t-5340c506cc618eecdac76192c86b4301dc85451f2bd6564d71700d16dd64648a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5046-5373 |
PQID | 1830905608 |
PQPubID | 85506 |
PageCount | 10 |
ParticipantIDs | proquest_journals_1830905608 proquest_miscellaneous_1855364800 ieee_primary_7511728 crossref_primary_10_1109_TIFS_2016_2590938 crossref_citationtrail_10_1109_TIFS_2016_2590938 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-11-01 |
PublicationDateYYYYMMDD | 2016-11-01 |
PublicationDate_xml | – month: 11 year: 2016 text: 2016-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on information forensics and security |
PublicationTitleAbbrev | TIFS |
PublicationYear | 2016 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref34 ref12 ref37 ref15 ref36 ref14 ref31 polich (ref32) 2012 ref30 ref33 ref11 ref10 ref1 ref39 ref17 ref16 council (ref2) 2002 ref19 ref18 ref24 (ref5) 2003 ref23 ref26 ref25 ref20 ref41 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 kohavi (ref35) 0; 2 gen (ref38) 2000 ref40 matté (ref6) 1996 |
References_xml | – ident: ref33 doi: 10.1016/j.ijpsycho.2005.12.012 – ident: ref13 doi: 10.1016/j.cmpb.2010.10.002 – ident: ref41 doi: 10.1016/0169-2607(86)90081-7 – year: 2003 ident: ref5 publication-title: The Polygraph and Lie Detection – year: 2002 ident: ref2 publication-title: The Polygraph and Lie Detection – ident: ref40 doi: 10.2307/2531595 – ident: ref4 doi: 10.1007/s11062-013-9360-y – ident: ref22 doi: 10.1109/ISPACS.2009.4806683 – ident: ref19 doi: 10.1016/j.amc.2006.04.025 – ident: ref25 doi: 10.1109/ICNC.2008.337 – ident: ref9 doi: 10.1177/1550059411428715 – ident: ref20 doi: 10.1016/j.amc.2007.10.064 – ident: ref16 doi: 10.1098/rspa.1998.0193 – ident: ref30 doi: 10.1109/ICALIP.2014.7009748 – ident: ref34 doi: 10.1109/CIBEC.2010.5716061 – volume: 2 year: 0 ident: ref35 article-title: A study of cross-validation and bootstrap for accuracy estimation and model selection – year: 1996 ident: ref6 publication-title: Forensic Psychophysiology Using the Polygraph - Scientific Truth Verification - Lie Detection – ident: ref7 doi: 10.1111/j.1469-8986.1991.tb01990.x – ident: ref27 doi: 10.1109/LSP.2003.821662 – ident: ref29 doi: 10.1016/j.clinph.2007.04.019 – ident: ref11 doi: 10.1109/IEMBS.2006.260247 – ident: ref24 doi: 10.1109/IEMBS.2006.260589 – ident: ref37 doi: 10.1142/3904 – ident: ref39 doi: 10.1017/CBO9780511975196 – ident: ref21 doi: 10.1109/IWSSIP.2008.4604377 – ident: ref17 doi: 10.1016/j.clinph.2005.06.011 – ident: ref10 doi: 10.1109/ICBME.2011.6168556 – ident: ref18 doi: 10.1016/S1350-4533(01)00075-3 – ident: ref8 doi: 10.1111/j.1469-8986.2004.00158.x – ident: ref36 doi: 10.1007/978-1-84628-172-3 – ident: ref14 doi: 10.1016/j.ijpsycho.2006.05.009 – ident: ref3 doi: 10.1109/TIFS.2013.2244884 – ident: ref28 doi: 10.1109/TBME.2007.891936 – year: 2012 ident: ref32 publication-title: Detection of Change Event-Related Potential and fMRI Findings – ident: ref23 doi: 10.1016/j.compbiomed.2007.06.003 – ident: ref31 doi: 10.1007/978-1-4613-0137-0 – ident: ref12 doi: 10.1016/j.proenv.2011.10.053 – ident: ref15 doi: 10.1016/j.cmpb.2008.10.001 – ident: ref26 doi: 10.1109/ICBBE.2008.169 – year: 2000 ident: ref38 publication-title: Genetic Algorithms and Engineering Optimization – ident: ref1 doi: 10.1016/j.ijpsycho.2013.08.012 |
SSID | ssj0044168 |
Score | 2.3396018 |
Snippet | Conventional polygraphy has several alternatives and one of them is P300-based guilty knowledge test. The purpose of this paper is to apply a new method called... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2584 |
SubjectTerms | Channels Classification Computer information security Correlation Deception Decomposition Electroencephalography Empirical mode decomposition event-related potentials (ERP) Feature extraction feature selection genetic algorithm Genetic algorithms guilty knowledge test (GKT) Nonlinearity P300 Probes Protocols |
Title | A Novel Method Based on Empirical Mode Decomposition for P300-Based Detection of Deception |
URI | https://ieeexplore.ieee.org/document/7511728 https://www.proquest.com/docview/1830905608 https://www.proquest.com/docview/1855364800 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB4lPcGBQAoibVotEieEk7XXXjvH0iQKSKmQSKSIi-V9WEIUu6JOD_x6ZtbrCAqqerO045dmZ-bb3ZlvAN5GJdFmlWhpkZJBrHkZqIKnAbFVmTQrRWRpv2N9JVfb-NMu2fXg_aEWxlrrks_shC7dWb6p9Z62yqYpooM0yvrQx2nW1mp1Xhejelv2liQywEWG8CeYIZ9NNx-XXyiJS04Q6-MKPvsrBrmmKv94YhdelgNYdx_WZpV8n-wbNdG_7nE2PvbLn8MzjzPZRTsxXkDPVkMYdD0cmDfpITz9g5DwGL5esKv6zl6ztWsszT5gjDOsrtjix803RybCqHkam1tKRff5XgxxL_ssOA9a8bltXH5XxeqSJNu8mZewXS42l6vAd18INEK6JkhEzHXCpdYyzKzVptC05RHpTKoY3YLRGaKvsIyUQUwYm5SY_kwojZGxjLNCvIKjqq7sa2C4SCpQnBobqzgxhRI8KiKllShmQoThCHinj1x7anLqkHGduyUKn-WkwpxUmHsVjuDd4ZablpfjIeFjUslB0GtjBONO6bm33NscXRyfISrkOPzmMIw2RwcpRWXrPckkicB_5Pzk_08-hSf0_rZmcQxHzc-9PUPw0qhzN2t_AwAf58M |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoAeKLRULBQwEqeq2TrxI9ljoV1tobtCYitVXKL4EamiTSrIcuDXM-M4K15C3CJ5Ejkaz8xne-YbgNdZTbRZNVpaZnQiLa8TU_E8IbYqlxe1yDydd8wXenYh312qyw04XNfCeO9D8pkf02O4y3etXdFR2VGO6CDPijtwF-O-VH211uB3Ma73hW9K6QS3GSLeYaZ8crQ8m36kNC49RrSPe_jilygU2qr84YtDgJluw3yYWp9X8nm86szYfv-NtfF_5_4QHkSkyY77pfEINnyzA9tDFwcWjXoHtn6iJNyFT8ds0X7z12weWkuzNxjlHGsbdnpzexXoRBi1T2MnnpLRY8YXQ-TLPgjOk178xHchw6thbU2SfebMY7iYni7fzpLYfyGxCOq6RAnJreLaWp0W3ltXWTr0yGyhjUTH4GyBWkjrzDhEhdLlxPXnUu2clloWldiDzaZt_BNguE2qUJxaGxupXGUEz6rMWCOqiRBpOgI-6KO0kZycemRcl2GTwiclqbAkFZZRhSM4WL9y2zNz_Et4l1SyFozaGMH-oPQy2u7XEp0cnyAu5Dj8aj2MVkdXKVXj2xXJKCXwHzl_-vcvv4R7s-X8vDw_W7x_BvdpLn0F4z5sdl9W_jlCmc68CCv4B0tQ6xA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Method+Based+on+Empirical+Mode+Decomposition+for+P300-Based+Detection+of+Deception&rft.jtitle=IEEE+transactions+on+information+forensics+and+security&rft.au=Arasteh%2C+Abdollah&rft.au=Moradi%2C+Mohammad+Hassan&rft.au=Janghorbani%2C+Amin&rft.date=2016-11-01&rft.pub=IEEE&rft.issn=1556-6013&rft.volume=11&rft.issue=11&rft.spage=2584&rft.epage=2593&rft_id=info:doi/10.1109%2FTIFS.2016.2590938&rft.externalDocID=7511728 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-6013&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-6013&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-6013&client=summon |