Predicting Hydration Status Using Machine Learning Models From Physiological and Sweat Biomarkers During Endurance Exercise: A Single Case Study

Improper hydration routines can reduce athletic performance. Recent studies show that data from noninvasive biomarker recordings can help to evaluate the hydration status of subjects during endurance exercise. These studies are usually carried out on multiple subjects. In this work, we present the f...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of biomedical and health informatics Vol. 26; no. 9; pp. 4725 - 4732
Main Authors Wang, Shu, Lafaye, Celine, Saubade, Mathieu, Besson, Cyril, Margarit-Taule, Josep Maria, Gremeaux, Vincent, Liu, Shih-Chii
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.09.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-2194
2168-2208
2168-2208
DOI10.1109/JBHI.2022.3186150

Cover

Loading…
Abstract Improper hydration routines can reduce athletic performance. Recent studies show that data from noninvasive biomarker recordings can help to evaluate the hydration status of subjects during endurance exercise. These studies are usually carried out on multiple subjects. In this work, we present the first study on predicting hydration status using machine learning models from single-subject experiments, which involve 32 exercise sessions of constant moderate intensity performed with and without fluid intake. During exercise, we measured four noninvasive physiological and sweat biomarkers including heart rate, core temperature, sweat sodium concentration, and whole-body sweat rate. Sweat sodium concentration was measured from six body regions using absorbent patches. We used three machine learning models to determine the percentage of body weight loss as an indicator of dehydration with these biomarkers and compared the prediction accuracy. The results on this single subject show that these models gave similar mean absolute errors, while in general the nonlinear models slightly outperformed the linear model in most of the experiments. The prediction accuracy of using the whole-body sweat rate or heart rate was higher than using core temperature or sweat sodium concentration. In addition, the model trained on the sweat sodium concentration collected from the arms gave slightly better accuracy than from the other five body regions. This exploratory work paves the way for the use of these machine learning models to develop personalized health monitoring together with emerging, noninvasive wearable sensor devices.
AbstractList Improper hydration routines can reduce athletic performance. Recent studies show that data from noninvasive biomarker recordings can help to evaluate the hydration status of subjects during endurance exercise. These studies are usually carried out on multiple subjects. In this work, we present the first study on predicting hydration status using machine learning models from single-subject experiments, which involve 32 exercise sessions of constant moderate intensity performed with and without fluid intake. During exercise, we measured four noninvasive physiological and sweat biomarkers including heart rate, core temperature, sweat sodium concentration, and whole-body sweat rate. Sweat sodium concentration was measured from six body regions using absorbent patches. We used three machine learning models to determine the percentage of body weight loss as an indicator of dehydration with these biomarkers and compared the prediction accuracy. The results on this single subject show that these models gave similar mean absolute errors, while in general the nonlinear models slightly outperformed the linear model in most of the experiments. The prediction accuracy of using the whole-body sweat rate or heart rate was higher than using core temperature or sweat sodium concentration. In addition, the model trained on the sweat sodium concentration collected from the arms gave slightly better accuracy than from the other five body regions. This exploratory work paves the way for the use of these machine learning models to develop personalized health monitoring together with emerging, noninvasive wearable sensor devices.
Improper hydration routines can reduce athletic performance. Recent studies show that data from noninvasive biomarker recordings can help to evaluate the hydration status of subjects during endurance exercise. These studies are usually carried out on multiple subjects. In this work, we present the first study on predicting hydration status using machine learning models from single-subject experiments, which involve 32 exercise sessions of constant moderate intensity performed with and without fluid intake. During exercise, we measured four noninvasive physiological and sweat biomarkers including heart rate, core temperature, sweat sodium concentration, and whole-body sweat rate. Sweat sodium concentration was measured from six body regions using absorbent patches. We used three machine learning models to determine the percentage of body weight loss as an indicator of dehydration with these biomarkers and compared the prediction accuracy. The results on this single subject show that these models gave similar mean absolute errors, while in general the nonlinear models slightly outperformed the linear model in most of the experiments. The prediction accuracy of using the whole-body sweat rate or heart rate was higher than using core temperature or sweat sodium concentration. In addition, the model trained on the sweat sodium concentration collected from the arms gave slightly better accuracy than from the other five body regions. This exploratory work paves the way for the use of these machine learning models to develop personalized health monitoring together with emerging, noninvasive wearable sensor devices.Improper hydration routines can reduce athletic performance. Recent studies show that data from noninvasive biomarker recordings can help to evaluate the hydration status of subjects during endurance exercise. These studies are usually carried out on multiple subjects. In this work, we present the first study on predicting hydration status using machine learning models from single-subject experiments, which involve 32 exercise sessions of constant moderate intensity performed with and without fluid intake. During exercise, we measured four noninvasive physiological and sweat biomarkers including heart rate, core temperature, sweat sodium concentration, and whole-body sweat rate. Sweat sodium concentration was measured from six body regions using absorbent patches. We used three machine learning models to determine the percentage of body weight loss as an indicator of dehydration with these biomarkers and compared the prediction accuracy. The results on this single subject show that these models gave similar mean absolute errors, while in general the nonlinear models slightly outperformed the linear model in most of the experiments. The prediction accuracy of using the whole-body sweat rate or heart rate was higher than using core temperature or sweat sodium concentration. In addition, the model trained on the sweat sodium concentration collected from the arms gave slightly better accuracy than from the other five body regions. This exploratory work paves the way for the use of these machine learning models to develop personalized health monitoring together with emerging, noninvasive wearable sensor devices.
Author Margarit-Taule, Josep Maria
Lafaye, Celine
Besson, Cyril
Gremeaux, Vincent
Saubade, Mathieu
Wang, Shu
Liu, Shih-Chii
Author_xml – sequence: 1
  givenname: Shu
  orcidid: 0000-0001-5054-5218
  surname: Wang
  fullname: Wang, Shu
  email: shu@ini.uzh.ch
  organization: Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
– sequence: 2
  givenname: Celine
  surname: Lafaye
  fullname: Lafaye, Celine
  email: Celine.Lafaye@chuv.ch
  organization: Sports Medicine Unit, Swiss Olympic Medical Center, Division of Physical Medicine and Rehabilitation, Lausanne University Hospital, Lausanne, Switzerland
– sequence: 3
  givenname: Mathieu
  surname: Saubade
  fullname: Saubade, Mathieu
  email: mathieu.saubade@chuv.ch
  organization: Sports Medicine Unit, Swiss Olympic Medical Center, Division of Physical Medicine and Rehabilitation, Lausanne University Hospital, Lausanne, Switzerland
– sequence: 4
  givenname: Cyril
  orcidid: 0000-0002-0238-3485
  surname: Besson
  fullname: Besson, Cyril
  email: cyril.besson@chuv.ch
  organization: Sports Medicine Unit, Swiss Olympic Medical Center, Division of Physical Medicine and Rehabilitation, Lausanne University Hospital, Lausanne, Switzerland
– sequence: 5
  givenname: Josep Maria
  orcidid: 0000-0003-4477-035X
  surname: Margarit-Taule
  fullname: Margarit-Taule, Josep Maria
  email: josepmaria.margarit@imb-cnm.csic.es
  organization: Instituto de Microelectrónica de Barcelona (IMB-CNM), CSIC, Barcelona, Spain
– sequence: 6
  givenname: Vincent
  surname: Gremeaux
  fullname: Gremeaux, Vincent
  email: vincent.gremeaux@chuv.ch
  organization: Sports Medicine Unit, Swiss Olympic Medical Center, Division of Physical Medicine and Rehabilitation, Lausanne University Hospital, Lausanne, Switzerland
– sequence: 7
  givenname: Shih-Chii
  orcidid: 0000-0002-7557-045X
  surname: Liu
  fullname: Liu, Shih-Chii
  email: shih@ini.uzh.ch
  organization: Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
BookMark eNp9kc1uEzEUhS1URH_oAyA2ltiwSfDPjMdm14aUFAVRKXQ98tjXrcvELvaMaN6CR8bTFBZd4M21zv3OtXXPMToIMQBCbyiZU0rUhy_nq8s5I4zNOZWC1uQFOmJUyBljRB78vVNVHaLTnO9IObJISrxCh7xuKsV5c4R-XyWw3gw-3ODVziY9-BjwZtDDmPF1nuSv2tz6AHgNOoVHIVroM75IcYuvbnfZxz7eeKN7rIPFm1-gB3zu41anH5Ay_jSmybUMdkw6GMDLB0jGZ_iIz_CmtHrAC52hvDra3Wv00uk-w-lTPUHXF8vvi9Vs_e3z5eJsPTOciWFW047UhljHpasUq4QwsutsrRkBrrSjnIJ0TgktTFUrYlxVEapdVztOte34CXq_n3uf4s8R8tBufTbQ9zpAHHPLhKSkjCWkoO-eoXdxTKH8rmUNZaSuKtEUqtlTJsWcE7jW-OFxnUPSvm8paafc2im3dsqtfcqtOOkz533yZXu7_3re7j0eAP7xShJRAP4HrY2kKQ
CODEN IJBHA9
CitedBy_id crossref_primary_10_3390_electronics13244960
crossref_primary_10_3390_s23239498
crossref_primary_10_1016_j_bios_2024_116560
crossref_primary_10_3390_chemosensors11090470
crossref_primary_10_1109_TBCAS_2023_3286528
crossref_primary_10_14814_phy2_16174
crossref_primary_10_1016_j_snb_2023_134135
Cites_doi 10.1111/j.1365-201X.2004.01305.x
10.1109/JBHI.2016.2598854
10.1126/sciadv.abe3929
10.1123/ijsnem.2017-0136
10.1123/ijsnem.18.5.457
10.1186/2046-7648-2-4
10.1017/S0958067000020583
10.1023/A:1010933404324
10.1186/s12938-017-0405-0
10.1123/ijsnem.17.3.284
10.1152/jappl.1964.19.6.1114
10.14814/phy2.12007
10.1136/bjsm.2005.022426
10.1016/j.snb.2021.131123
10.1038/s41598-020-64406-5
10.1038/s41587-019-0040-3
10.3390/s17020385
10.1007/s00421-011-2194-7
10.1007/978-3-319-50478-0_8
10.3390/s21082789
10.1007/s00421-020-04562-8
10.1111/j.1600-0838.2010.01207.x
10.1038/sj.ejcn.1601895
10.1080/02640414.2019.1633159
10.1249/MSS.0b013e31818f2ab2
10.1088/1741-2552/14/1/011001
10.1146/annurev-anchem-061318-114910
10.1249/MSS.0b013e3181d6f9d0
10.1007/BF00994018
10.1080/23328940.2016.1171281
10.1007/s40279-017-0782-3
10.3390/sports8080113
10.1152/jappl.1985.59.5.1394
10.1055/s-0038-1667083
10.1007/s00421-018-4048-z
10.1109/EMBC.2015.7320006
10.1152/jappl.1992.73.4.1340
10.1038/ejcn.2017.136
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/JBHI.2022.3186150
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2168-2208
EndPage 4732
ExternalDocumentID 10_1109_JBHI_2022_3186150
9806186
Genre orig-research
GrantInformation_xml – fundername: SNSF-Sinergia WeCare
  grantid: CRSII5_177255
GroupedDBID 0R~
4.4
6IF
6IH
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c326t-51b05c0df38f492466c8bbd5a20e39af131e8ff96a6c4590cf4401afb5f31adb3
IEDL.DBID RIE
ISSN 2168-2194
2168-2208
IngestDate Fri Jul 11 08:53:49 EDT 2025
Sun Jun 29 13:35:34 EDT 2025
Tue Jul 01 03:00:03 EDT 2025
Thu Apr 24 23:08:48 EDT 2025
Wed Aug 27 02:14:24 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c326t-51b05c0df38f492466c8bbd5a20e39af131e8ff96a6c4590cf4401afb5f31adb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4477-035X
0000-0001-5054-5218
0000-0002-7557-045X
0000-0002-0238-3485
PMID 35749337
PQID 2712054467
PQPubID 85417
PageCount 8
ParticipantIDs proquest_miscellaneous_2681046600
proquest_journals_2712054467
crossref_citationtrail_10_1109_JBHI_2022_3186150
crossref_primary_10_1109_JBHI_2022_3186150
ieee_primary_9806186
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE journal of biomedical and health informatics
PublicationTitleAbbrev JBHI
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref15
ref37
ref14
ref36
ref31
ref11
ref33
ref10
ref32
ref2
ref1
Fernndez-Delgado (ref20) 2014; 15
ref17
ref39
ref16
ref38
ref19
ref18
Breiman (ref34) 2001; 45
ref24
ref23
ref26
ref25
Baker (ref29) 2016; 28
ref41
ref22
ref21
Pedregosa (ref30) 2011; 12
ref28
ref27
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref11
  doi: 10.1111/j.1365-201X.2004.01305.x
– ident: ref19
  doi: 10.1109/JBHI.2016.2598854
– ident: ref15
  doi: 10.1126/sciadv.abe3929
– ident: ref28
  doi: 10.1123/ijsnem.2017-0136
– volume: 15
  start-page: 3133
  issue: 1
  volume-title: J. Mach. Learn. Res.
  year: 2014
  ident: ref20
  article-title: Do we need hundreds of classifiers to solve real world classification problems?
– ident: ref2
  doi: 10.1123/ijsnem.18.5.457
– ident: ref26
  doi: 10.1186/2046-7648-2-4
– ident: ref25
  doi: 10.1017/S0958067000020583
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: ref34
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– ident: ref41
  doi: 10.1186/s12938-017-0405-0
– ident: ref3
  doi: 10.1123/ijsnem.17.3.284
– ident: ref8
  doi: 10.1152/jappl.1964.19.6.1114
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref30
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J. Mach. Learn. Res.
– ident: ref27
  doi: 10.14814/phy2.12007
– ident: ref40
  doi: 10.1136/bjsm.2005.022426
– ident: ref36
  doi: 10.1016/j.snb.2021.131123
– ident: ref16
  doi: 10.1038/s41598-020-64406-5
– ident: ref7
  doi: 10.1038/s41587-019-0040-3
– ident: ref32
  doi: 10.3390/s17020385
– ident: ref38
  doi: 10.1007/s00421-011-2194-7
– ident: ref18
  doi: 10.1007/978-3-319-50478-0_8
– ident: ref24
  doi: 10.3390/s21082789
– ident: ref12
  doi: 10.1007/s00421-020-04562-8
– ident: ref1
  doi: 10.1111/j.1600-0838.2010.01207.x
– ident: ref5
  doi: 10.1038/sj.ejcn.1601895
– ident: ref10
  doi: 10.1080/02640414.2019.1633159
– ident: ref22
  doi: 10.1249/MSS.0b013e31818f2ab2
– ident: ref31
  doi: 10.1088/1741-2552/14/1/011001
– ident: ref14
  doi: 10.1146/annurev-anchem-061318-114910
– ident: ref37
  doi: 10.1249/MSS.0b013e3181d6f9d0
– ident: ref33
  doi: 10.1007/BF00994018
– ident: ref23
  doi: 10.1080/23328940.2016.1171281
– ident: ref39
  doi: 10.1007/s40279-017-0782-3
– volume: 28
  start-page: 1
  year: 2016
  ident: ref29
  article-title: Sweat testing methodology in the field: Challenges and best practices
  publication-title: Sports Sci. Exchange
– ident: ref4
  doi: 10.3390/sports8080113
– ident: ref13
  doi: 10.1152/jappl.1985.59.5.1394
– ident: ref17
  doi: 10.1055/s-0038-1667083
– ident: ref21
  doi: 10.1007/s00421-018-4048-z
– ident: ref35
  doi: 10.1109/EMBC.2015.7320006
– ident: ref9
  doi: 10.1152/jappl.1992.73.4.1340
– ident: ref6
  doi: 10.1038/ejcn.2017.136
SSID ssj0000816896
Score 2.418421
Snippet Improper hydration routines can reduce athletic performance. Recent studies show that data from noninvasive biomarker recordings can help to evaluate the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4725
SubjectTerms Accuracy
Biological system modeling
Biomarkers
Biomedical monitoring
Body weight
Body weight loss
Dehydration
Endurance
exercise
Fluid intake
Heart rate
Hydration
Learning algorithms
Machine learning
Physical training
physiological biomarkers
Physiology
Predictive models
Sodium
Sweat
sweat biomarkers
Temperature measurement
Weight loss
Title Predicting Hydration Status Using Machine Learning Models From Physiological and Sweat Biomarkers During Endurance Exercise: A Single Case Study
URI https://ieeexplore.ieee.org/document/9806186
https://www.proquest.com/docview/2712054467
https://www.proquest.com/docview/2681046600
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB6SHEIufaWl26ZlCj2VeiO_5d6SdJdtYEshDeRmrBeEJnbZXVPSX9Gf3BlZa-iD0puwR_JjJM2M9Gk-gNfSxlJZ2URaKaYw0yJSptJRxqnaTVaquODDycuPxeIyO7_Kr3bg7XgWxlrrwWd2ykW_l2863fNS2XElBad334Vdamg4qzWup3gCCU_HlVAhooGYhU3MWFTH56eLDxQMJgnFqJJzoB_AfpqXGYXz5S8WyVOs_DEve2Mzvw_L7WsOGJMv036jpvr7bxkc__c7HsC94HXiydBNHsKObR_B_jLsqx_Cj08rLjMEGhd3ZugVyI5ov0aPKsClR11aDAlZ6QJz6Kxxvupu0eNIt9MoNq3Bi280yePpdXfL-J_VGt_785A4a03PXB4WZ4Hs6R2e4AXdurF4RiYVGdl49xgu57PPZ4socDVEmhzATZTHSuRaGJdKl1FMVxRaKmXyJhE2rRoXp7GVzlVFU-gsr4R2GUV2jVO5S-PGqPQJ7LVda58CklJIyCSFMhSrSaosK1k6Mpu5LMljm4DY6qvWIZE582nc1D6gEVXN2q5Z23XQ9gTejFW-Dlk8_iV8yCobBYO2JnC07RR1GOfrOinjhJxesjYTeDXephHK2y5Na7ueZDjlG_0QIZ79veXncMDPH5BrR7C3WfX2Bbk6G_XS9_GfzfH40w
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIpVeeJWKhQJG4oTI1nnb3Nqyq7Q0FVJbqbcofkRCtAna3QiVX8FPZsbxRuIhxM2K7cjJ2J4Zz-f5AN4IGwplRR1opYjCTPNAGamDhFK1myRXYUaXk8uzrLhMTq7Sqw14N96FsdY68JmdUtHF8k2nezoq25eCU3r3O3AX9X4ih9ta44mKo5BwhFwRFgJciokPY4Zc7p8cFsfoDkYReqmCsqBvw1ac5gk69PkvOsmRrPyxMzt1M38A5XqgA8rky7Rfqan-_lsOx__9kodw39ud7GCYKI9gw7aPYav0kfUd-PFpQWUCQbPi1gzzgpEp2i-ZwxWw0uEuLfMpWfEBsegs2XzR3TCHJF1vpKxuDTv_hts8O_zc3RACaLFkH9yNSDZrTU9sHpbNPN3Te3bAzrHq2rIjVKqMsI23T-ByPrs4KgLP1hBoNAFXQRoqnmpumlg0CXp1WaaFUiatI25jWTdhHFrRNDKrM52kkusmQd-ublTaxGFtVLwLm23X2qfAUCjYyESZMuitCewspMgbVJypyNFmmwBfy6vSPpU5MWpcV86l4bIiaVck7cpLewJvxy5fhzwe_2q8QyIbG3ppTWBvPSkqv9KXVZSHEZq9qG8m8HqsxjVKgZe6tV2PbSjpG_4Qzp_9_c2v4F5xUZ5Wp8dnH5_DNo1lwLHtweZq0dsXaPis1Es3338CAjP8Iw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+Hydration+Status+Using+Machine+Learning+Models+From+Physiological+and+Sweat+Biomarkers+During+Endurance+Exercise%3A+A+Single+Case+Study&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Wang%2C+Shu&rft.au=Lafaye%2C+Celine&rft.au=Saubade%2C+Mathieu&rft.au=Besson%2C+Cyril&rft.date=2022-09-01&rft.issn=2168-2194&rft.eissn=2168-2208&rft.volume=26&rft.issue=9&rft.spage=4725&rft.epage=4732&rft_id=info:doi/10.1109%2FJBHI.2022.3186150&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JBHI_2022_3186150
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon