Bayesian decision tables for estimation of risk of water management decisions based on uncertain surface water status: a case study of a Polish catchment

Background Uncertain results of the status assessment performed as required by the Water Framework Directive can be responsible for misclassification of a water body’s status and may lead either to risk due to undertaking unnecessary remediation actions or risk of penalties for refraining from any a...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental sciences Europe Vol. 34; no. 1; p. 42
Main Authors Loga, Małgorzata, Piniewski, Mikołaj, Marcinkowski, Paweł
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2190-4707
2190-4715
DOI10.1186/s12302-022-00625-z

Cover

Loading…
Abstract Background Uncertain results of the status assessment performed as required by the Water Framework Directive can be responsible for misclassification of a water body’s status and may lead either to risk due to undertaking unnecessary remediation actions or risk of penalties for refraining from any action and not reaching environmental goals. Based on Bayesian decision theory, optimal decision tables are shown for two examples of water quality indicators, for a river catchment in central Poland. To overcome the problem of scarcity of publicly available monitoring data, the existing SWAT model for the studied catchment was used to generate nutrient concentration time series for the baseline conditions and under different scenarios. The status classes assessed based on annual mean concentrations of daily values for total phosphorus and total nitrogen were adopted as the ‘true’ status classes of the water bodies based on each indicator. SWAT simulation results enabled calculation of probability distributions of concentrations for the stochastic states of the water body, both for the period before and after the performance of corrective actions. Results Bayesian decision tables consisted of alternative management decisions including modernization of the existing wastewater treatment plants in the case of phosphorous and also of fallowing agricultural areas in the case of nitrogen. An example of a penalty calculation procedure is presented in the event that the subject of the case before the EU Court of Justice would be failure to achieve the environmental objectives by all water bodies belonging to the selected catchment. Conclusions Detailed discussion of this analysis indicates the potential benefits in terms of minimization of costs/losses that the proposed methodology may bring to the protection of surface waters. The presented method of risk analysis for making decisions on remedial actions when uncertainty exists about the water status assessment, can be considered as a prototype of a general methodology prepared for implementation in water protection. Unfortunately paying fines instead of taking remediation measures might be optimal for uncertain status of water bodies.
AbstractList BACKGROUND: Uncertain results of the status assessment performed as required by the Water Framework Directive can be responsible for misclassification of a water body’s status and may lead either to risk due to undertaking unnecessary remediation actions or risk of penalties for refraining from any action and not reaching environmental goals. Based on Bayesian decision theory, optimal decision tables are shown for two examples of water quality indicators, for a river catchment in central Poland. To overcome the problem of scarcity of publicly available monitoring data, the existing SWAT model for the studied catchment was used to generate nutrient concentration time series for the baseline conditions and under different scenarios. The status classes assessed based on annual mean concentrations of daily values for total phosphorus and total nitrogen were adopted as the ‘true’ status classes of the water bodies based on each indicator. SWAT simulation results enabled calculation of probability distributions of concentrations for the stochastic states of the water body, both for the period before and after the performance of corrective actions. RESULTS: Bayesian decision tables consisted of alternative management decisions including modernization of the existing wastewater treatment plants in the case of phosphorous and also of fallowing agricultural areas in the case of nitrogen. An example of a penalty calculation procedure is presented in the event that the subject of the case before the EU Court of Justice would be failure to achieve the environmental objectives by all water bodies belonging to the selected catchment. CONCLUSIONS: Detailed discussion of this analysis indicates the potential benefits in terms of minimization of costs/losses that the proposed methodology may bring to the protection of surface waters. The presented method of risk analysis for making decisions on remedial actions when uncertainty exists about the water status assessment, can be considered as a prototype of a general methodology prepared for implementation in water protection. Unfortunately paying fines instead of taking remediation measures might be optimal for uncertain status of water bodies.
Background Uncertain results of the status assessment performed as required by the Water Framework Directive can be responsible for misclassification of a water body’s status and may lead either to risk due to undertaking unnecessary remediation actions or risk of penalties for refraining from any action and not reaching environmental goals. Based on Bayesian decision theory, optimal decision tables are shown for two examples of water quality indicators, for a river catchment in central Poland. To overcome the problem of scarcity of publicly available monitoring data, the existing SWAT model for the studied catchment was used to generate nutrient concentration time series for the baseline conditions and under different scenarios. The status classes assessed based on annual mean concentrations of daily values for total phosphorus and total nitrogen were adopted as the ‘true’ status classes of the water bodies based on each indicator. SWAT simulation results enabled calculation of probability distributions of concentrations for the stochastic states of the water body, both for the period before and after the performance of corrective actions. Results Bayesian decision tables consisted of alternative management decisions including modernization of the existing wastewater treatment plants in the case of phosphorous and also of fallowing agricultural areas in the case of nitrogen. An example of a penalty calculation procedure is presented in the event that the subject of the case before the EU Court of Justice would be failure to achieve the environmental objectives by all water bodies belonging to the selected catchment. Conclusions Detailed discussion of this analysis indicates the potential benefits in terms of minimization of costs/losses that the proposed methodology may bring to the protection of surface waters. The presented method of risk analysis for making decisions on remedial actions when uncertainty exists about the water status assessment, can be considered as a prototype of a general methodology prepared for implementation in water protection. Unfortunately paying fines instead of taking remediation measures might be optimal for uncertain status of water bodies.
BackgroundUncertain results of the status assessment performed as required by the Water Framework Directive can be responsible for misclassification of a water body’s status and may lead either to risk due to undertaking unnecessary remediation actions or risk of penalties for refraining from any action and not reaching environmental goals. Based on Bayesian decision theory, optimal decision tables are shown for two examples of water quality indicators, for a river catchment in central Poland. To overcome the problem of scarcity of publicly available monitoring data, the existing SWAT model for the studied catchment was used to generate nutrient concentration time series for the baseline conditions and under different scenarios. The status classes assessed based on annual mean concentrations of daily values for total phosphorus and total nitrogen were adopted as the ‘true’ status classes of the water bodies based on each indicator. SWAT simulation results enabled calculation of probability distributions of concentrations for the stochastic states of the water body, both for the period before and after the performance of corrective actions.ResultsBayesian decision tables consisted of alternative management decisions including modernization of the existing wastewater treatment plants in the case of phosphorous and also of fallowing agricultural areas in the case of nitrogen. An example of a penalty calculation procedure is presented in the event that the subject of the case before the EU Court of Justice would be failure to achieve the environmental objectives by all water bodies belonging to the selected catchment.ConclusionsDetailed discussion of this analysis indicates the potential benefits in terms of minimization of costs/losses that the proposed methodology may bring to the protection of surface waters.The presented method of risk analysis for making decisions on remedial actions when uncertainty exists about the water status assessment, can be considered as a prototype of a general methodology prepared for implementation in water protection. Unfortunately paying fines instead of taking remediation measures might be optimal for uncertain status of water bodies.
ArticleNumber 42
Author Marcinkowski, Paweł
Loga, Małgorzata
Piniewski, Mikołaj
Author_xml – sequence: 1
  givenname: Małgorzata
  orcidid: 0000-0002-9866-4870
  surname: Loga
  fullname: Loga, Małgorzata
  email: malgorzata.loga@pw.edu.pl
  organization: Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology
– sequence: 2
  givenname: Mikołaj
  surname: Piniewski
  fullname: Piniewski, Mikołaj
  organization: Department of Hydrology, Meteorology and Water Management, Warsaw University of Life Sciences
– sequence: 3
  givenname: Paweł
  surname: Marcinkowski
  fullname: Marcinkowski, Paweł
  organization: Department of Hydrology, Meteorology and Water Management, Warsaw University of Life Sciences
BookMark eNp9kc9qFTEUxgepYK19ga4CbtyM5s-dScadFqtCQRd2Hc4kJ23q3EzNySC3b9K3NdNbKnTRQDjJ4fd9nOR73RykOWHTnAj-XgjTfyAhFZctl3XzXnbt7YvmUIqBtxstuoPHM9evmmOia15XJ43edIfN3WfYIUVIzKOLFOfECowTEgtzZkglbqGs3TmwHOn3Wv9Cwcy2kOASt5jKo5TYCISeVXxJDnOBmBgtOYDDBxUVKAt9ZMBcRet18bvVE9jPeYp0VdvFXa2ub5qXASbC44d61Fycffl1-q09__H1--mn89Yp2Zd2A0aF0XEn1NAZAUGOAx_RBDC-l0GJIPy4ATDaqwG91N55xZ0PfkSpR6OOmnd735s8_1nqi-02ksNpgoTzQlb2uuu04kpX9O0T9HpecqrTVapXRprBqEqZPeXyTJQxWBfL_SeWDHGygts1NruPzdbY7H1s9rZK5RPpTa4B5N3zIrUXUYXTJeb_Uz2j-gdiAbCX
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3351754
Cites_doi 10.1007/s40710-020-00458-z
10.1002/rra.3903
10.3390/w7020747
10.1007/698_2015_420
10.1016/S0304-3800(99)00061-7
10.1007/s10750-009-9872-z
10.1007/s10661-018-6603-9
10.1577/1548-8446(2003)28[10:QDAFSF]2.0.CO;2
10.1007/s10661-020-08746-9
10.1038/s41598-021-93051-9
10.1007/s11269-018-1922-8
10.3390/w9030156
10.2136/vzj2004.1340
10.5194/essd-8-127-2016
10.1016/j.scitotenv.2010.05.031
10.1007/978-1-4020-5493-8_31
10.1007/s10750-012-1245-3
10.1016/j.jhydrol.2005.07.007
10.1007/s11269-012-0217-8
10.1007/s11269-017-1723-5
10.1016/j.ecolind.2012.12.010
10.1016/j.jhydrol.2009.08.003
10.1111/j.1752-1688.1998.tb05961.x
10.1007/s10750-006-0093-4
10.1016/j.scitotenv.2016.02.027
10.3390/w13070934
10.1139/f98-206
10.1029/WR008i001p00033
10.1080/02630258508970405
10.13031/trans.58.10710
10.1016/j.jhydrol.2015.03.027
10.1021/acs.est.6b02155
10.1016/j.ecolind.2011.10.009
10.2166/hydro.2013.065
10.1515/jwld-2016-0040
10.1016/0022-1694(76)90022-6
10.1016/j.ecolind.2021.107754
10.1007/s13280-017-0977-8
10.1016/S1364-8152(97)00008-X
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8C1
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
PATMY
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
7S9
L.6
DOI 10.1186/s12302-022-00625-z
DatabaseName Springer Nature OA Free Journals
CrossRef
Public Health Database
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Agricultural & Environmental Science Collection
ProQuest Central (New)
ProQuest Public Health
ProQuest One Academic Eastern Edition
Health Research Premium Collection (Alumni)
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

ProQuest Central Student
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: BENPR
  name: Proquest Central Journals
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
EISSN 2190-4715
EndPage 42
ExternalDocumentID 10_1186_s12302_022_00625_z
GeographicLocations Poland
GeographicLocations_xml – name: Poland
GroupedDBID -A0
0R~
2VQ
3V.
4.4
40G
5VS
7XC
8C1
8FE
8FH
AAFWJ
AAHBH
AAIAL
AAJSJ
AAKKN
AAYZH
ABEEZ
ABQSL
ABUWG
ACACY
ACGFS
ACULB
ADBBV
ADINQ
ADQRH
ADRFC
AEUYN
AFBBN
AFGXO
AFKRA
AFLOW
AFPKN
AGJBK
AHBYD
AHSBF
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ASPBG
ATCPS
AVWKF
AZFZN
BAPOH
BCNDV
BENPR
BHPHI
BPHCQ
C24
C6C
CCPQU
EBLON
EBS
EDH
EJD
FYUFA
GROUPED_DOAJ
H4N
HCIFZ
HG6
HZ~
KQ8
M~E
N2Q
O9-
OK1
PATMY
PQQKQ
PROAC
PYCSY
RBZ
RSV
SCK
SCLPG
SEV
SOJ
U2A
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
AZQEC
DWQXO
GNUQQ
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c326t-4a83fbc0c139581af2b90be8fa8d62f31f1db4aa87d39ed27dcd30cdfdbe27b83
IEDL.DBID BENPR
ISSN 2190-4707
IngestDate Thu Sep 04 17:08:54 EDT 2025
Sun Jul 13 03:05:43 EDT 2025
Thu Apr 24 23:05:01 EDT 2025
Tue Jul 01 04:20:40 EDT 2025
Fri Feb 21 02:47:09 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Bayesian decision theory
SWAT model
Water management
Uncertainty of water body status
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c326t-4a83fbc0c139581af2b90be8fa8d62f31f1db4aa87d39ed27dcd30cdfdbe27b83
Notes ObjectType-Case Study-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-4
ObjectType-Report-1
ObjectType-Article-3
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9866-4870
OpenAccessLink https://doi.org/10.1186/s12302-022-00625-z
PQID 2663828983
PQPubID 1026358
PageCount 1
ParticipantIDs proquest_miscellaneous_2675573037
proquest_journals_2663828983
crossref_citationtrail_10_1186_s12302_022_00625_z
crossref_primary_10_1186_s12302_022_00625_z
springer_journals_10_1186_s12302_022_00625_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Environmental sciences Europe
PublicationTitleAbbrev Environ Sci Eur
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References KuikkaSHildénMGislasonHHanssonSSparholtHVarisOModeling environmentally driven uncertainties in Baltic cod (Gadus morhua) management by Bayesian influence diagramsCan J Fish Aquat Sci199956462964110.1139/f98-206
SEC (2005) 1658 COMMUNICATION FROM THE COMMISSION application of Article 228 of the EC Treaty https://ec.europa.eu/atwork/applying-eu-law/docs/sec_2005_1658_en.pdf
Munné A, Ginebreda A, Prat N (2015) Water status assessment in the Catalan River basin district: experience gathered after 15 years with the Water Framework Directive (WFD). In Experiences from surface water quality monitoring, pp 1–35, Springer, Cham
HutorowiczAPasztaleniecAUncertainty in phytoplankton-based lake ecological status classification: Implications of sampling frequency and metric simplificationEcol Ind202112710.1016/j.ecolind.2021.107754
SušnikJMolinaJLVamvakeridou-LyroudiaLSSavićDAKapelanZComparative analysis of system dynamics and object-oriented bayesian networks modelling for water systems managementWater Resour Manag201327381984110.1007/s11269-012-0217-8
CIS (2005) Overall Approach to the Classification of Ecological Status and Ecological Potential. Common Implementation Strategy for The Water Framework Directive (2000/60/Ec). Guidance Document No 13
AbbaspourKCRouholahnejadEVaghefiSSrinivasanRYangHKløveBA continental-scale hydrology and water quality model for Europe: calibration and uncertainty of a high-resolution large-scale SWAT modelJ Hydrol201552473375210.1016/j.jhydrol.2015.03.027
ArnoldJGSrinivasanRMuttiahRSWilliamsJRLarge area hydrologic modeling and assessment part I: model development 1JAWRA J Am Water Resour Assoc199834173891:CAS:528:DyaK1cXitleju74%3D10.1111/j.1752-1688.1998.tb05961.x
https://ec.europa.eu/environment/water/water-framework/index_en.html.
RodeMWadeAJCohenMJHensleyRTBowesMJKirchnerJWSensors in the stream: the high-frequency wave of the presentEnviron Sci Technol201610.1021/acs.est.6b02155
BirkSBonneWBorjaABrucetSCourratAPoikaneSThree hundred ways to assess Europe's surface waters: an almost complete overview of biological methods to implement the Water Framework DirectiveEcol Ind201218314110.1016/j.ecolind.2011.10.009
Brussels, 18.9.2018 C (2018) 5851 final communication from the commission Updating of data used to calculate lump sum and penalty payments to be proposed by the Commission to the Court of Justice in infringement proceedings https://ec.europa.eu/atwork/applying-eu-law/docs/c_2018_5851_en.pdf
GuzmanJAShirmohammadiASadeghiAMWangXChuMLJhaMKParajuliPBHarmelRDKhareYPHernandezJEUncertainty considerations in calibration and validation of hydrologic and water quality modelsTrans ASABE20155861745176210.13031/trans.58.10710
Clarke RT, Lorenz A, Sandin L, Schmidt-Kloiber A, Strackbein J, Kneebone NT, Haase P. (2006). Effects of sampling and sub-sampling variation using the STAR-AQEM sampling protocol on the precision of macroinvertebrate metrics. In The ecological status of European Rivers: evaluation and intercalibration of assessment methods. Springer, Dordrecht, pp. 441–459.
LogaMWierzchołowska-DziedzicAMartyszunisAThe problem of water body status misclassification—a hierarchical approachEnviron Monit Assess2018190511610.1007/s10661-018-6603-9
KellyMBennionHBurgessAEllisJJugginsSGuthrieRUncertainty in ecological status assessments of lakes and rivers using diatomsHydrobiologia200963315151:CAS:528:DC%2BD1MXptlKntLw%3D10.1007/s10750-009-9872-z
Luce RD, Raiffa H (1989) Games and decisions: introduction and critical survey. Courier Corporation.
PoikaneSKellyMCantonatiMBenthic algal assessment of ecological status in European lakes and rivers: challenges and opportunitiesSci Total Environ20165686036131:CAS:528:DC%2BC28XjtlKktL0%3D10.1016/j.scitotenv.2016.02.027
GrosserPWGoodmanASDetermination of groundwater sampling frequencies through Bayesian decision theoryCiv Eng Syst19852418619410.1080/02630258508970405
JUDGMENT OF 12. 7. 2005—CASE C-304/02 JUDGMENT OF THE COURT (Grand Chamber) 12 July 2005 * Maastricht Treaty
https://curia.europa.eu/juris/liste.jsf?language=en&num=c-278/01
MaiaRThe WFD implementation in the European member statesWater Resour Manag201731103043306010.1007/s11269-017-1723-5
CramerMKoegstTTraencknerJMulti-criterial evaluation of P-removal optimization in rural wastewater treatment plants for a sub-catchment of the Baltic SeaAmbio2018471931021:CAS:528:DC%2BC2sXhvV2gt7bP10.1007/s13280-017-0977-8
Laws J (2019) item. 2149. The Act onthe classification of ecological status, ecological potential and chemical status as well as the method of classifying the status of surface water bodies (in Polish)
Abbaspour K (2008) SWAT-CUP2: SWAT calibration and uncertainty programs—a user manual
MarcinkowskiPPiniewskiMKardelISzcześniakMBenestadRSrinivasanREffect of climate change on hydrology, sediment and nutrient losses in two lowland catchments in PolandWater20179315610.3390/w9030156
DavisDRDucksteinLFogelMMUncertainty in the return period of maximum hydrologic events: a Bayesian approachJ Hydrol1976311–2819510.1016/0022-1694(76)90022-6
BerezowskiTSzcześniakMKardelIMichałowskiROkruszkoTMezghaniAPiniewskiMCPLFD-GDPT5: High-resolution gridded daily precipitation and temperature data set for two largest Polish river basinsEarth Syst Sci Data2016812713910.5194/essd-8-127-2016
AbbaspourKJohnsonCAvan GenuchtenMTEstimating uncertain flow and transport parameters using a sequential uncertainty fitting procedureVadose Zone J200431340135210.2136/vzj2004.1340
https://www.eea.europa.eu/policy-documents/quality-of-bathing-water-76
Loga M (2016) Estimating confidence and precision—basic measures of uncertainty in the assessment of the state of surface waters. Ochr Srodowiska 38(1) (in Polish)
StaniszewskiRSzoszkiewiczKZbierskaJLesnyJJusikSClarkeRTAssessment of sources of uncertainty in macrophyte surveys and the consequences for river classificationHydrobiologia2006566123524610.1007/s10750-006-0093-4
HardyTWuWImpact of different restoration methods on coastal wetland loss in Louisiana: Bayesian analysisEnviron Monit Assess2021193110.1007/s10661-020-08746-9
DavisDRKisielCCDucksteinLBayesian decision theory applied to design in hydrologyWater Resour Res197281334110.1029/WR008i001p00033
https://wroclaw.rzgw.gov.pl/files_mce/Region%20wodny/Planowanie/RDW/Barycz%20Widawa/zadanie_ii_cz_tekstowa.pdf
ZachariasILiakouPBilianiIA Review of the status of surface European waters twenty years after WFD introductionEnviron Process202010.1007/s40710-020-00458-z
ArmahEKChettyMAdedejiJAKukwaDTMutsveneBShabanguKPBakareBFEmerging trends in wastewater treatment technologies: the current perspectivePromis Tech Wastewater Treat Water Qual Assess2021171
PetersonJTPeaseJEWhitmanLWhiteJStratton-GarvinLRoundsSWallickRIntegrated tools for identifying optimal flow regimes and evaluating alternative minimum flows for recovering at-risk salmonids in a highly managed systemRiver Res Appl20223829330810.1002/rra.3903
MarcinkowskiPPiniewskiMKardelISrinivasanROkruszkoTChallenges in modelling of water quantity and quality in two contrasting meso-scale catchments in PolandJ Water Land Dev201631971111:CAS:528:DC%2BC2sXhs1egsL0%3D10.1515/jwld-2016-0040
PetersonJTEvansJWQuantitative decision analysis for sport fisheries managementFisheries2003281102110.1577/1548-8446(2003)28[10:QDAFSF]2.0.CO;2
SantillánDMedieroLGarroteLModelling uncertainty of flood quantile estimations at ungauged sites by Bayesian networksJ Hydroinf201416482283810.2166/hydro.2013.065
LogaMUncertainty in the assessment of the ecological status of surface waters. Scientific Works of the Warsaw University of TechnologyEnviron Eng2019804183in Polish
VarisOBayesian decision analysis for environmental and resource managementEnviron Model Softw1997122–317718510.1016/S1364-8152(97)00008-X
PasztaleniecAHutorowiczAPhytoplankton metrics response to the increasing phosphorus and nitrogen gradient in shallow lakesJ Elem2012172289303
BevenKJA manifesto for the equifinality thesisJ Hydrol2006320183610.1016/j.jhydrol.2005.07.007
HeringDBorjaACarstensenJCarvalhoLElliottMFeldCKThe European Water Framework Directive at the age of 10: a critical review of the achievements with recommendations for the futureSci Total Environ201040819400740191:CAS:528:DC%2BC3cXptVWgurc%3D10.1016/j.scitotenv.2010.05.031
SzcześniakMPiniewskiMImprovement of hydrological simulations by applying daily precipitation interpolation schemes in meso-scale catchmentsWater20157274777910.3390/w7020747
VarisOKuikkaSLearning Bayesian decision analysis by doing: lessons from environmental and natural resources managementEcol Model19991192–317719510.1016/S0304-3800(99)00061-7
ThackeraySJNogesPDunbarMJDudleyBJSkjelbredBMorabitoGQuantifying uncertainties in biologically-based water quality assessment: a pan-European analysis of lake phytoplankton community metricsEcol Ind20132934471:CAS:528:DC%2BC3sXjslKmurw%3D10.1016/j.ecolind.2012.12.010
SambitoMFreniGStrategies for improving optimal positioning of quality sensors in urban drainage systems for non-conservative contaminantsWater202113793410.3390/w13070934
Kristensen P, Whalley C, Zal FNN, Christiansen T (2018) European waters assessment of status and pressures 2018. EEA Report (7/2018)
GuptaHVKlingHYilmazKKMartinezGFDecomposition of the mean squared error and nse performance criteria: implications for improving hydrological modellingJ Hydrol2009377809110.1016/j.jhydrol.2009.08.003
https://www.gios.gov.pl/pl/stan-srodowiska/monitoring-wod
PaganoAPluchinottaIGiordanoRPetrangeliABFratinoUVurroMDealing with uncertainty in decision-making for drinking water supply systems exposed to extreme eventsWater Resour Manag20183262131214510.1007/s11269-018-1922-8
CIS (2018) Best Practice for establishing nutrient concentrations to support good ecological status. Guidance document WG ECOSTAT.
Neitsch SL, Arnold JG, Kiniry JR, Williams JR (2011) Soil and water assessment tool theoretical documentation version 2009. Texas Water Resources Institute
BergerJOStatistical decision theory and Bayesian analysis2013ChamSpringer Science & Business Media
ClarkeRTEstim
JO Berger (625_CR40) 2013
A Pasztaleniec (625_CR5) 2012; 17
R Maia (625_CR16) 2017; 31
DR Davis (625_CR50) 1972; 8
O Varis (625_CR43) 1999; 119
A Hutorowicz (625_CR6) 2021; 127
625_CR13
HV Gupta (625_CR39) 2009; 377
625_CR58
625_CR7
625_CR15
625_CR59
625_CR9
JT Peterson (625_CR22) 2022; 38
625_CR19
RT Clarke (625_CR8) 2013; 704
T Berezowski (625_CR36) 2016; 8
625_CR1
M Cramer (625_CR25) 2018; 47
D Hering (625_CR10) 2010; 408
S Birk (625_CR11) 2012; 18
625_CR20
625_CR24
D Santillán (625_CR48) 2014; 16
625_CR29
M Kelly (625_CR3) 2009; 633
P Marcinkowski (625_CR35) 2016; 31
M Szcześniak (625_CR56) 2015; 7
SJ Thackeray (625_CR4) 2013; 29
KC Abbaspour (625_CR53) 2015; 524
I Zacharias (625_CR14) 2020
K Abbaspour (625_CR38) 2004; 3
625_CR31
625_CR34
O Varis (625_CR44) 1997; 12
T Hardy (625_CR46) 2021; 193
J Sušnik (625_CR47) 2013; 27
M Rode (625_CR26) 2016
625_CR32
625_CR33
M Sambito (625_CR23) 2021; 13
KJ Beven (625_CR54) 2006; 320
625_CR37
A Pagano (625_CR49) 2018; 32
S Kuikka (625_CR45) 1999; 56
EK Armah (625_CR28) 2021; 1
JA Guzman (625_CR55) 2015; 58
S Poikane (625_CR12) 2016; 568
M Loga (625_CR17) 2018; 190
M Loga (625_CR30) 2019; 80
625_CR41
JG Arnold (625_CR27) 1998; 34
625_CR42
DR Davis (625_CR51) 1976; 31
P Marcinkowski (625_CR57) 2017; 9
M Loga (625_CR18) 2021; 11
PW Grosser (625_CR52) 1985; 2
R Staniszewski (625_CR2) 2006; 566
JT Peterson (625_CR21) 2003; 28
References_xml – reference: BevenKJA manifesto for the equifinality thesisJ Hydrol2006320183610.1016/j.jhydrol.2005.07.007
– reference: BirkSBonneWBorjaABrucetSCourratAPoikaneSThree hundred ways to assess Europe's surface waters: an almost complete overview of biological methods to implement the Water Framework DirectiveEcol Ind201218314110.1016/j.ecolind.2011.10.009
– reference: VarisOKuikkaSLearning Bayesian decision analysis by doing: lessons from environmental and natural resources managementEcol Model19991192–317719510.1016/S0304-3800(99)00061-7
– reference: AbbaspourKJohnsonCAvan GenuchtenMTEstimating uncertain flow and transport parameters using a sequential uncertainty fitting procedureVadose Zone J200431340135210.2136/vzj2004.1340
– reference: https://wroclaw.rzgw.gov.pl/files_mce/Region%20wodny/Planowanie/RDW/Barycz%20Widawa/zadanie_ii_cz_tekstowa.pdf
– reference: HutorowiczAPasztaleniecAUncertainty in phytoplankton-based lake ecological status classification: Implications of sampling frequency and metric simplificationEcol Ind202112710.1016/j.ecolind.2021.107754
– reference: PasztaleniecAHutorowiczAPhytoplankton metrics response to the increasing phosphorus and nitrogen gradient in shallow lakesJ Elem2012172289303
– reference: https://curia.europa.eu/juris/liste.jsf?language=en&num=c-278/01
– reference: HardyTWuWImpact of different restoration methods on coastal wetland loss in Louisiana: Bayesian analysisEnviron Monit Assess2021193110.1007/s10661-020-08746-9
– reference: Abbaspour K (2008) SWAT-CUP2: SWAT calibration and uncertainty programs—a user manual
– reference: PoikaneSKellyMCantonatiMBenthic algal assessment of ecological status in European lakes and rivers: challenges and opportunitiesSci Total Environ20165686036131:CAS:528:DC%2BC28XjtlKktL0%3D10.1016/j.scitotenv.2016.02.027
– reference: RodeMWadeAJCohenMJHensleyRTBowesMJKirchnerJWSensors in the stream: the high-frequency wave of the presentEnviron Sci Technol201610.1021/acs.est.6b02155
– reference: MarcinkowskiPPiniewskiMKardelISrinivasanROkruszkoTChallenges in modelling of water quantity and quality in two contrasting meso-scale catchments in PolandJ Water Land Dev201631971111:CAS:528:DC%2BC2sXhs1egsL0%3D10.1515/jwld-2016-0040
– reference: https://www.gios.gov.pl/pl/stan-srodowiska/monitoring-wod
– reference: CIS (2018) Best Practice for establishing nutrient concentrations to support good ecological status. Guidance document WG ECOSTAT.
– reference: SambitoMFreniGStrategies for improving optimal positioning of quality sensors in urban drainage systems for non-conservative contaminantsWater202113793410.3390/w13070934
– reference: BerezowskiTSzcześniakMKardelIMichałowskiROkruszkoTMezghaniAPiniewskiMCPLFD-GDPT5: High-resolution gridded daily precipitation and temperature data set for two largest Polish river basinsEarth Syst Sci Data2016812713910.5194/essd-8-127-2016
– reference: VarisOBayesian decision analysis for environmental and resource managementEnviron Model Softw1997122–317718510.1016/S1364-8152(97)00008-X
– reference: Brussels, 18.9.2018 C (2018) 5851 final communication from the commission Updating of data used to calculate lump sum and penalty payments to be proposed by the Commission to the Court of Justice in infringement proceedings https://ec.europa.eu/atwork/applying-eu-law/docs/c_2018_5851_en.pdf
– reference: Neitsch SL, Arnold JG, Kiniry JR, Williams JR (2011) Soil and water assessment tool theoretical documentation version 2009. Texas Water Resources Institute
– reference: LogaMPrzeździeckiKUncertainty of chemical status in surface watersSci Rep202111111210.1038/s41598-021-93051-9
– reference: ArmahEKChettyMAdedejiJAKukwaDTMutsveneBShabanguKPBakareBFEmerging trends in wastewater treatment technologies: the current perspectivePromis Tech Wastewater Treat Water Qual Assess2021171
– reference: DavisDRKisielCCDucksteinLBayesian decision theory applied to design in hydrologyWater Resour Res197281334110.1029/WR008i001p00033
– reference: CramerMKoegstTTraencknerJMulti-criterial evaluation of P-removal optimization in rural wastewater treatment plants for a sub-catchment of the Baltic SeaAmbio2018471931021:CAS:528:DC%2BC2sXhvV2gt7bP10.1007/s13280-017-0977-8
– reference: SušnikJMolinaJLVamvakeridou-LyroudiaLSSavićDAKapelanZComparative analysis of system dynamics and object-oriented bayesian networks modelling for water systems managementWater Resour Manag201327381984110.1007/s11269-012-0217-8
– reference: JUDGMENT OF 12. 7. 2005—CASE C-304/02 JUDGMENT OF THE COURT (Grand Chamber) 12 July 2005 * Maastricht Treaty
– reference: KuikkaSHildénMGislasonHHanssonSSparholtHVarisOModeling environmentally driven uncertainties in Baltic cod (Gadus morhua) management by Bayesian influence diagramsCan J Fish Aquat Sci199956462964110.1139/f98-206
– reference: MaiaRThe WFD implementation in the European member statesWater Resour Manag201731103043306010.1007/s11269-017-1723-5
– reference: MarcinkowskiPPiniewskiMKardelISzcześniakMBenestadRSrinivasanREffect of climate change on hydrology, sediment and nutrient losses in two lowland catchments in PolandWater20179315610.3390/w9030156
– reference: Kristensen P, Whalley C, Zal FNN, Christiansen T (2018) European waters assessment of status and pressures 2018. EEA Report (7/2018)
– reference: KellyMBennionHBurgessAEllisJJugginsSGuthrieRUncertainty in ecological status assessments of lakes and rivers using diatomsHydrobiologia200963315151:CAS:528:DC%2BD1MXptlKntLw%3D10.1007/s10750-009-9872-z
– reference: LogaMWierzchołowska-DziedzicAMartyszunisAThe problem of water body status misclassification—a hierarchical approachEnviron Monit Assess2018190511610.1007/s10661-018-6603-9
– reference: PetersonJTPeaseJEWhitmanLWhiteJStratton-GarvinLRoundsSWallickRIntegrated tools for identifying optimal flow regimes and evaluating alternative minimum flows for recovering at-risk salmonids in a highly managed systemRiver Res Appl20223829330810.1002/rra.3903
– reference: ThackeraySJNogesPDunbarMJDudleyBJSkjelbredBMorabitoGQuantifying uncertainties in biologically-based water quality assessment: a pan-European analysis of lake phytoplankton community metricsEcol Ind20132934471:CAS:528:DC%2BC3sXjslKmurw%3D10.1016/j.ecolind.2012.12.010
– reference: GrosserPWGoodmanASDetermination of groundwater sampling frequencies through Bayesian decision theoryCiv Eng Syst19852418619410.1080/02630258508970405
– reference: ArnoldJGSrinivasanRMuttiahRSWilliamsJRLarge area hydrologic modeling and assessment part I: model development 1JAWRA J Am Water Resour Assoc199834173891:CAS:528:DyaK1cXitleju74%3D10.1111/j.1752-1688.1998.tb05961.x
– reference: SEC (2005) 1658 COMMUNICATION FROM THE COMMISSION application of Article 228 of the EC Treaty https://ec.europa.eu/atwork/applying-eu-law/docs/sec_2005_1658_en.pdf
– reference: ZachariasILiakouPBilianiIA Review of the status of surface European waters twenty years after WFD introductionEnviron Process202010.1007/s40710-020-00458-z
– reference: Laws J (2019) item. 2149. The Act onthe classification of ecological status, ecological potential and chemical status as well as the method of classifying the status of surface water bodies (in Polish)
– reference: AbbaspourKCRouholahnejadEVaghefiSSrinivasanRYangHKløveBA continental-scale hydrology and water quality model for Europe: calibration and uncertainty of a high-resolution large-scale SWAT modelJ Hydrol201552473375210.1016/j.jhydrol.2015.03.027
– reference: Luce RD, Raiffa H (1989) Games and decisions: introduction and critical survey. Courier Corporation.
– reference: Loga M (2016) Estimating confidence and precision—basic measures of uncertainty in the assessment of the state of surface waters. Ochr Srodowiska 38(1) (in Polish)
– reference: SzcześniakMPiniewskiMImprovement of hydrological simulations by applying daily precipitation interpolation schemes in meso-scale catchmentsWater20157274777910.3390/w7020747
– reference: Munné A, Ginebreda A, Prat N (2015) Water status assessment in the Catalan River basin district: experience gathered after 15 years with the Water Framework Directive (WFD). In Experiences from surface water quality monitoring, pp 1–35, Springer, Cham
– reference: PetersonJTEvansJWQuantitative decision analysis for sport fisheries managementFisheries2003281102110.1577/1548-8446(2003)28[10:QDAFSF]2.0.CO;2
– reference: SantillánDMedieroLGarroteLModelling uncertainty of flood quantile estimations at ungauged sites by Bayesian networksJ Hydroinf201416482283810.2166/hydro.2013.065
– reference: HeringDBorjaACarstensenJCarvalhoLElliottMFeldCKThe European Water Framework Directive at the age of 10: a critical review of the achievements with recommendations for the futureSci Total Environ201040819400740191:CAS:528:DC%2BC3cXptVWgurc%3D10.1016/j.scitotenv.2010.05.031
– reference: StaniszewskiRSzoszkiewiczKZbierskaJLesnyJJusikSClarkeRTAssessment of sources of uncertainty in macrophyte surveys and the consequences for river classificationHydrobiologia2006566123524610.1007/s10750-006-0093-4
– reference: https://ec.europa.eu/environment/water/water-framework/index_en.html.
– reference: https://www.eea.europa.eu/policy-documents/quality-of-bathing-water-76
– reference: PaganoAPluchinottaIGiordanoRPetrangeliABFratinoUVurroMDealing with uncertainty in decision-making for drinking water supply systems exposed to extreme eventsWater Resour Manag20183262131214510.1007/s11269-018-1922-8
– reference: Clarke RT, Lorenz A, Sandin L, Schmidt-Kloiber A, Strackbein J, Kneebone NT, Haase P. (2006). Effects of sampling and sub-sampling variation using the STAR-AQEM sampling protocol on the precision of macroinvertebrate metrics. In The ecological status of European Rivers: evaluation and intercalibration of assessment methods. Springer, Dordrecht, pp. 441–459.
– reference: LogaMUncertainty in the assessment of the ecological status of surface waters. Scientific Works of the Warsaw University of TechnologyEnviron Eng2019804183in Polish
– reference: GuzmanJAShirmohammadiASadeghiAMWangXChuMLJhaMKParajuliPBHarmelRDKhareYPHernandezJEUncertainty considerations in calibration and validation of hydrologic and water quality modelsTrans ASABE20155861745176210.13031/trans.58.10710
– reference: ClarkeRTEstimating confidence of European WFD ecological status class and WISER Bioassessment Uncertainty Guidance Software (WISERBUGS)Hydrobiologia20137041395610.1007/s10750-012-1245-3
– reference: DavisDRDucksteinLFogelMMUncertainty in the return period of maximum hydrologic events: a Bayesian approachJ Hydrol1976311–2819510.1016/0022-1694(76)90022-6
– reference: BergerJOStatistical decision theory and Bayesian analysis2013ChamSpringer Science & Business Media
– reference: CIS (2005) Overall Approach to the Classification of Ecological Status and Ecological Potential. Common Implementation Strategy for The Water Framework Directive (2000/60/Ec). Guidance Document No 13
– reference: GuptaHVKlingHYilmazKKMartinezGFDecomposition of the mean squared error and nse performance criteria: implications for improving hydrological modellingJ Hydrol2009377809110.1016/j.jhydrol.2009.08.003
– year: 2020
  ident: 625_CR14
  publication-title: Environ Process
  doi: 10.1007/s40710-020-00458-z
– volume: 38
  start-page: 293
  year: 2022
  ident: 625_CR22
  publication-title: River Res Appl
  doi: 10.1002/rra.3903
– ident: 625_CR41
– volume: 7
  start-page: 747
  issue: 2
  year: 2015
  ident: 625_CR56
  publication-title: Water
  doi: 10.3390/w7020747
– ident: 625_CR13
  doi: 10.1007/698_2015_420
– volume: 119
  start-page: 177
  issue: 2–3
  year: 1999
  ident: 625_CR43
  publication-title: Ecol Model
  doi: 10.1016/S0304-3800(99)00061-7
– volume: 633
  start-page: 5
  issue: 1
  year: 2009
  ident: 625_CR3
  publication-title: Hydrobiologia
  doi: 10.1007/s10750-009-9872-z
– volume: 190
  start-page: 1
  issue: 5
  year: 2018
  ident: 625_CR17
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-018-6603-9
– volume: 28
  start-page: 10
  issue: 1
  year: 2003
  ident: 625_CR21
  publication-title: Fisheries
  doi: 10.1577/1548-8446(2003)28[10:QDAFSF]2.0.CO;2
– volume: 193
  start-page: 1
  year: 2021
  ident: 625_CR46
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-020-08746-9
– ident: 625_CR29
– ident: 625_CR31
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  ident: 625_CR18
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-93051-9
– ident: 625_CR58
– volume: 32
  start-page: 2131
  issue: 6
  year: 2018
  ident: 625_CR49
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-018-1922-8
– volume: 9
  start-page: 156
  issue: 3
  year: 2017
  ident: 625_CR57
  publication-title: Water
  doi: 10.3390/w9030156
– volume: 3
  start-page: 1340
  year: 2004
  ident: 625_CR38
  publication-title: Vadose Zone J
  doi: 10.2136/vzj2004.1340
– ident: 625_CR15
– volume: 8
  start-page: 127
  year: 2016
  ident: 625_CR36
  publication-title: Earth Syst Sci Data
  doi: 10.5194/essd-8-127-2016
– volume: 408
  start-page: 4007
  issue: 19
  year: 2010
  ident: 625_CR10
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2010.05.031
– ident: 625_CR19
– ident: 625_CR1
– ident: 625_CR42
– ident: 625_CR7
  doi: 10.1007/978-1-4020-5493-8_31
– volume: 17
  start-page: 289
  issue: 2
  year: 2012
  ident: 625_CR5
  publication-title: J Elem
– volume: 704
  start-page: 39
  issue: 1
  year: 2013
  ident: 625_CR8
  publication-title: Hydrobiologia
  doi: 10.1007/s10750-012-1245-3
– volume: 320
  start-page: 18
  year: 2006
  ident: 625_CR54
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2005.07.007
– ident: 625_CR32
– volume: 27
  start-page: 819
  issue: 3
  year: 2013
  ident: 625_CR47
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-012-0217-8
– volume: 31
  start-page: 3043
  issue: 10
  year: 2017
  ident: 625_CR16
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-017-1723-5
– volume: 29
  start-page: 34
  year: 2013
  ident: 625_CR4
  publication-title: Ecol Ind
  doi: 10.1016/j.ecolind.2012.12.010
– ident: 625_CR37
– volume: 377
  start-page: 80
  year: 2009
  ident: 625_CR39
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2009.08.003
– ident: 625_CR33
– volume: 34
  start-page: 73
  issue: 1
  year: 1998
  ident: 625_CR27
  publication-title: JAWRA J Am Water Resour Assoc
  doi: 10.1111/j.1752-1688.1998.tb05961.x
– volume: 566
  start-page: 235
  issue: 1
  year: 2006
  ident: 625_CR2
  publication-title: Hydrobiologia
  doi: 10.1007/s10750-006-0093-4
– ident: 625_CR9
– volume: 568
  start-page: 603
  year: 2016
  ident: 625_CR12
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2016.02.027
– volume: 13
  start-page: 934
  issue: 7
  year: 2021
  ident: 625_CR23
  publication-title: Water
  doi: 10.3390/w13070934
– volume: 56
  start-page: 629
  issue: 4
  year: 1999
  ident: 625_CR45
  publication-title: Can J Fish Aquat Sci
  doi: 10.1139/f98-206
– volume: 8
  start-page: 33
  issue: 1
  year: 1972
  ident: 625_CR50
  publication-title: Water Resour Res
  doi: 10.1029/WR008i001p00033
– volume: 2
  start-page: 186
  issue: 4
  year: 1985
  ident: 625_CR52
  publication-title: Civ Eng Syst
  doi: 10.1080/02630258508970405
– volume: 58
  start-page: 1745
  issue: 6
  year: 2015
  ident: 625_CR55
  publication-title: Trans ASABE
  doi: 10.13031/trans.58.10710
– volume: 524
  start-page: 733
  year: 2015
  ident: 625_CR53
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2015.03.027
– year: 2016
  ident: 625_CR26
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.6b02155
– volume: 18
  start-page: 31
  year: 2012
  ident: 625_CR11
  publication-title: Ecol Ind
  doi: 10.1016/j.ecolind.2011.10.009
– ident: 625_CR34
– volume: 16
  start-page: 822
  issue: 4
  year: 2014
  ident: 625_CR48
  publication-title: J Hydroinf
  doi: 10.2166/hydro.2013.065
– volume: 31
  start-page: 97
  year: 2016
  ident: 625_CR35
  publication-title: J Water Land Dev
  doi: 10.1515/jwld-2016-0040
– volume: 80
  start-page: 4
  year: 2019
  ident: 625_CR30
  publication-title: Environ Eng
– volume: 1
  start-page: 71
  year: 2021
  ident: 625_CR28
  publication-title: Promis Tech Wastewater Treat Water Qual Assess
– volume-title: Statistical decision theory and Bayesian analysis
  year: 2013
  ident: 625_CR40
– ident: 625_CR24
– volume: 31
  start-page: 81
  issue: 1–2
  year: 1976
  ident: 625_CR51
  publication-title: J Hydrol
  doi: 10.1016/0022-1694(76)90022-6
– volume: 127
  year: 2021
  ident: 625_CR6
  publication-title: Ecol Ind
  doi: 10.1016/j.ecolind.2021.107754
– ident: 625_CR20
– ident: 625_CR59
– volume: 47
  start-page: 93
  issue: 1
  year: 2018
  ident: 625_CR25
  publication-title: Ambio
  doi: 10.1007/s13280-017-0977-8
– volume: 12
  start-page: 177
  issue: 2–3
  year: 1997
  ident: 625_CR44
  publication-title: Environ Model Softw
  doi: 10.1016/S1364-8152(97)00008-X
SSID ssj0000528745
Score 2.2623577
Snippet Background Uncertain results of the status assessment performed as required by the Water Framework Directive can be responsible for misclassification of a...
BackgroundUncertain results of the status assessment performed as required by the Water Framework Directive can be responsible for misclassification of a water...
BACKGROUND: Uncertain results of the status assessment performed as required by the Water Framework Directive can be responsible for misclassification of a...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 42
SubjectTerms Bayesian analysis
Bayesian theory
case studies
Concentration time
Cost analysis
Decision analysis
Decision making
Decision theory
Earth and Environmental Science
Ecotoxicology
Environment
Environmental objective
Fallowing
Fines & penalties
Fines payments
Management decisions
Modernization
Nitrogen
Nutrient concentrations
nutrient content
Optimization
Phosphorus
Poland
Pollution
prototypes
Remediation
risk
Risk analysis
River catchments
rivers
Soil and Water Assessment Tool model
Surface water
time series analysis
total nitrogen
total phosphorus
uncertainty
Wastewater treatment
Wastewater treatment plants
Water bodies
Water management
Water protection
Water quality
watersheds
SummonAdditionalLinks – databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60XryIr2K1ygreNJhks9mtNy2W4sGThd7CPvGgrTQpYv-J_9aZJE1VVPAUSGYnkNnd-SY73wwhZ2HiAFcAcrMOQpTEujhQXECoIh2LveLgA8tqn_fpcJTcjfm4LpODXJjP5_eRTC9z2FkxRxZCJqT78WCxTjY41hnDg9m03_xPCXlZuR17ySE7OhGhWHJkflTz1Q-twOW389DSzQy2yVaND-l1ZdAdsuYmu6R9u6KjwcN6PeZ75P1GvTmkQVJb98qhBXKhcgpYlGIBjYqZSKeeYhI5Xl8BXc7oc5P20gzNKbo0S0EcnF2VKkDz-cwr4-pRSD-a51dUUQOitKxNizoVxTy6_BFuwyxArftkNLh96A-DutlCYADBFUGiJPPahAZMx2WkfKx7oXbSK2nT2LPIR1YnSklhWc_ZWFhjWWist9rFQkvWJq3JdOIOCAWnx4WKmDeRSpyRgCGY9qm2VkvBYtsh0fLTZ6auRI4NMZ6yMiKRaVaZKwNzZaW5skWHnDdjXqo6HH9Kd5cWzeo1mWcARRjGl5J1yGnzGFYTHpGoiZvOUUZwDpseEx1ysZwJKxW_v_Hwf-JHZDPGyVjmxXRJq5jN3TGgm0KflNP6A89387U
  priority: 102
  providerName: Springer Nature
Title Bayesian decision tables for estimation of risk of water management decisions based on uncertain surface water status: a case study of a Polish catchment
URI https://link.springer.com/article/10.1186/s12302-022-00625-z
https://www.proquest.com/docview/2663828983
https://www.proquest.com/docview/2675573037
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7R7YUL4lWxUFZG4gZREztOXC6oXW2pOFQIsVJvkZ_iALtlvStE_wn_lhnHyQokenGUxHakzHjmG3seAK_L2iOuQOTmPJootfO80LJFU0V5wYOWqANTts-r5nJZf7yW13nDLWa3ykEmJkHt1pb2yE9QkQiyDpR4f_OjoKpRdLqaS2gcwCGKYCUncHi-uPr0edxlKWXK5z5Ey6jmJKKoJqdbtMEoflAWt39rpD3M_OdkNCmci4fwICNFdtaT9hHc86vHcLTYB6bhy7wy4xP4fa5_eQqIZC5XzWFbioqKDFEpo1QafYwiWwdG7uR0_Yk4c8O-jw4w49DISLk5ht1R7fVOAyzuNkFbn0dRINIuvmOaWezKUpZamlMz8qiLX_Ex8gPN-hSWF4sv88sil10oLGK5bVFrJYKxpUUiSlXpwM1pabwKWrmGB1GFyplaa9U6ceodb511orQuOON5a5Q4gslqvfLPgKH6k62uRLCVrr1ViCaECY1xzqhWcDeFavj1nc05yak0xrcu2Saq6XpydUiuLpGru53Cm3HMTZ-R487exwNFu7w6Y7fnpSm8Gl_juqLDEr3y6x31aaVE8SfaKbwdOGE_xf-_-PzuL76A-5yYL3nEHMNku9n5l4hrtmYGB3X5AVs1r2aZkfFuzmtqm_ks7Rdgu-RnfwCUF_8t
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LaxRBEC5ictCL-AquRtOCnnTITPf0TK8gkuiGjYmLSAK5tf0kB92NO7uE5J_4J_yNVs1rUTC3nAamX8NUddVX3fUAeJnmAXEFIjcf0ETJfeCJkSWaKioIHo1EHVhn-5wU45P806k8XYPfXSwMuVV2MrEW1H7m6Ix8BxWJIOtAiffnPxOqGkW3q10JjYYtDsPlBZps1buDj0jfV5zvj44_jJO2qkDiEKosktwoEa1LHX6jVJmJ3A5TG1Q0yhc8iixm3ubGqNKLYfC89M6L1PnobeClVQLnvQUbCDOGuIs29kaTL1_7U51U1vnju-gcVexUqBrIyRdtPopXlMnV3xpwBWv_uYmtFdz-PbjbIlO227DSfVgL0wewOVoFwmFjKwmqh_Brz1wGCsBkvq3SwxYUhVUxRMGMUnc0MZFsFhm5r9PzAnHtnP3oHW76oRUjZeoZdkc12zgpsGo5j8aFdhQFPi2rt8wwh11ZnRWX5jSMPPiqM3yN_EezPoKTGyHIJqxPZ9PwGBiqW1maTESXmTw4hehF2FhY760qBfcDyLpfr12bA51KcXzXtS2kCt2QSyO5dE0ufTWA1_2Y8yYDyLW9tzqK6lYaVHrFuwN40TfjPqbLGTMNsyX1KaVEcSvKAbzpOGE1xf9XfHL9ittwe3z8-UgfHUwOn8IdToxYe-NswfpivgzPEFMt7POWkRl8u-m98wfvSjnD
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LaxRBEC7iBsSLxEdwTdQW9KTDznTPoyOIGLNLYmQJYiC3tp940N24s0tI_ol_xV9n1UzPLArmltPATHfPslVd31fT9QB4keYeeQUyN-fRRcmd54kuKnRVpBc86AIxsKn2OS0PT_OPZ8XZBvzucmEorLKziY2hdnNL38hHCCSCvAMpRiGGRZwcTN6d_0yogxSdtHbtNFoVOfaXF-i-1W-PDlDWLzmfjL98OExih4HEIm1ZJrmWIhibWvy9hcx04GYvNV4GLV3Jg8hC5kyutayc2POOV846kVoXnPG8MlLgurdgs0JUlAPY3B9PTz73X3jSoqkl32XqyHJUI0xQwC_6f5S7WCRXf6PhmuL-cyrbgN1kC-5Glsret2p1Dzb87D5sj9dJcfgwWoX6Afza15eekjGZix172JIysmqGjJhRGY82P5LNA6NQdrpeIMddsB998E0_tWYErI7hcITcNmCB1atF0NbHWZQEtarfMM0sDmVNhVxaUzOK5qu_4W3URVr1IZzeiEC2YTCbz_wjYAi9RaUzEWymc28lMhlhQmmcM7IS3A0h6_56ZWM9dGrL8V01fpEsVSsuheJSjbjU1RBe9XPO22og147e7SSqomWo1VqPh_C8f4x7mg5q9MzPVzSmKgo0vaIawutOE9ZL_P-Nj69_4zO4jXtGfTqaHu_AHU562ATm7MJguVj5J0ivluZp1GMGX2966_wBCMs97w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+decision+tables+for+estimation+of+risk+of+water+management+decisions+based+on+uncertain+surface+water+status%3A+a+case+study+of+a+Polish+catchment&rft.jtitle=Environmental+sciences+Europe&rft.au=Loga%2C+Ma%C5%82gorzata&rft.au=Piniewski%2C+Miko%C5%82aj&rft.au=Marcinkowski%2C+Pawe%C5%82&rft.date=2022-12-01&rft.issn=2190-4707&rft.volume=34&rft.issue=1+p.42-42&rft.spage=42&rft.epage=42&rft_id=info:doi/10.1186%2Fs12302-022-00625-z&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2190-4707&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2190-4707&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2190-4707&client=summon