Bayesian decision tables for estimation of risk of water management decisions based on uncertain surface water status: a case study of a Polish catchment
Background Uncertain results of the status assessment performed as required by the Water Framework Directive can be responsible for misclassification of a water body’s status and may lead either to risk due to undertaking unnecessary remediation actions or risk of penalties for refraining from any a...
Saved in:
Published in | Environmental sciences Europe Vol. 34; no. 1; p. 42 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 2190-4707 2190-4715 |
DOI | 10.1186/s12302-022-00625-z |
Cover
Loading…
Abstract | Background
Uncertain results of the status assessment performed as required by the Water Framework Directive can be responsible for misclassification of a water body’s status and may lead either to risk due to undertaking unnecessary remediation actions or risk of penalties for refraining from any action and not reaching environmental goals. Based on Bayesian decision theory, optimal decision tables are shown for two examples of water quality indicators, for a river catchment in central Poland. To overcome the problem of scarcity of publicly available monitoring data, the existing SWAT model for the studied catchment was used to generate nutrient concentration time series for the baseline conditions and under different scenarios. The status classes assessed based on annual mean concentrations of daily values for total phosphorus and total nitrogen were adopted as the ‘true’ status classes of the water bodies based on each indicator. SWAT simulation results enabled calculation of probability distributions of concentrations for the stochastic states of the water body, both for the period before and after the performance of corrective actions.
Results
Bayesian decision tables consisted of alternative management decisions including modernization of the existing wastewater treatment plants in the case of phosphorous and also of fallowing agricultural areas in the case of nitrogen. An example of a penalty calculation procedure is presented in the event that the subject of the case before the EU Court of Justice would be failure to achieve the environmental objectives by all water bodies belonging to the selected catchment.
Conclusions
Detailed discussion of this analysis indicates the potential benefits in terms of minimization of costs/losses that the proposed methodology may bring to the protection of surface waters.
The presented method of risk analysis for making decisions on remedial actions when uncertainty exists about the water status assessment, can be considered as a prototype of a general methodology prepared for implementation in water protection. Unfortunately paying fines instead of taking remediation measures might be optimal for uncertain status of water bodies. |
---|---|
AbstractList | BACKGROUND: Uncertain results of the status assessment performed as required by the Water Framework Directive can be responsible for misclassification of a water body’s status and may lead either to risk due to undertaking unnecessary remediation actions or risk of penalties for refraining from any action and not reaching environmental goals. Based on Bayesian decision theory, optimal decision tables are shown for two examples of water quality indicators, for a river catchment in central Poland. To overcome the problem of scarcity of publicly available monitoring data, the existing SWAT model for the studied catchment was used to generate nutrient concentration time series for the baseline conditions and under different scenarios. The status classes assessed based on annual mean concentrations of daily values for total phosphorus and total nitrogen were adopted as the ‘true’ status classes of the water bodies based on each indicator. SWAT simulation results enabled calculation of probability distributions of concentrations for the stochastic states of the water body, both for the period before and after the performance of corrective actions. RESULTS: Bayesian decision tables consisted of alternative management decisions including modernization of the existing wastewater treatment plants in the case of phosphorous and also of fallowing agricultural areas in the case of nitrogen. An example of a penalty calculation procedure is presented in the event that the subject of the case before the EU Court of Justice would be failure to achieve the environmental objectives by all water bodies belonging to the selected catchment. CONCLUSIONS: Detailed discussion of this analysis indicates the potential benefits in terms of minimization of costs/losses that the proposed methodology may bring to the protection of surface waters. The presented method of risk analysis for making decisions on remedial actions when uncertainty exists about the water status assessment, can be considered as a prototype of a general methodology prepared for implementation in water protection. Unfortunately paying fines instead of taking remediation measures might be optimal for uncertain status of water bodies. Background Uncertain results of the status assessment performed as required by the Water Framework Directive can be responsible for misclassification of a water body’s status and may lead either to risk due to undertaking unnecessary remediation actions or risk of penalties for refraining from any action and not reaching environmental goals. Based on Bayesian decision theory, optimal decision tables are shown for two examples of water quality indicators, for a river catchment in central Poland. To overcome the problem of scarcity of publicly available monitoring data, the existing SWAT model for the studied catchment was used to generate nutrient concentration time series for the baseline conditions and under different scenarios. The status classes assessed based on annual mean concentrations of daily values for total phosphorus and total nitrogen were adopted as the ‘true’ status classes of the water bodies based on each indicator. SWAT simulation results enabled calculation of probability distributions of concentrations for the stochastic states of the water body, both for the period before and after the performance of corrective actions. Results Bayesian decision tables consisted of alternative management decisions including modernization of the existing wastewater treatment plants in the case of phosphorous and also of fallowing agricultural areas in the case of nitrogen. An example of a penalty calculation procedure is presented in the event that the subject of the case before the EU Court of Justice would be failure to achieve the environmental objectives by all water bodies belonging to the selected catchment. Conclusions Detailed discussion of this analysis indicates the potential benefits in terms of minimization of costs/losses that the proposed methodology may bring to the protection of surface waters. The presented method of risk analysis for making decisions on remedial actions when uncertainty exists about the water status assessment, can be considered as a prototype of a general methodology prepared for implementation in water protection. Unfortunately paying fines instead of taking remediation measures might be optimal for uncertain status of water bodies. BackgroundUncertain results of the status assessment performed as required by the Water Framework Directive can be responsible for misclassification of a water body’s status and may lead either to risk due to undertaking unnecessary remediation actions or risk of penalties for refraining from any action and not reaching environmental goals. Based on Bayesian decision theory, optimal decision tables are shown for two examples of water quality indicators, for a river catchment in central Poland. To overcome the problem of scarcity of publicly available monitoring data, the existing SWAT model for the studied catchment was used to generate nutrient concentration time series for the baseline conditions and under different scenarios. The status classes assessed based on annual mean concentrations of daily values for total phosphorus and total nitrogen were adopted as the ‘true’ status classes of the water bodies based on each indicator. SWAT simulation results enabled calculation of probability distributions of concentrations for the stochastic states of the water body, both for the period before and after the performance of corrective actions.ResultsBayesian decision tables consisted of alternative management decisions including modernization of the existing wastewater treatment plants in the case of phosphorous and also of fallowing agricultural areas in the case of nitrogen. An example of a penalty calculation procedure is presented in the event that the subject of the case before the EU Court of Justice would be failure to achieve the environmental objectives by all water bodies belonging to the selected catchment.ConclusionsDetailed discussion of this analysis indicates the potential benefits in terms of minimization of costs/losses that the proposed methodology may bring to the protection of surface waters.The presented method of risk analysis for making decisions on remedial actions when uncertainty exists about the water status assessment, can be considered as a prototype of a general methodology prepared for implementation in water protection. Unfortunately paying fines instead of taking remediation measures might be optimal for uncertain status of water bodies. |
ArticleNumber | 42 |
Author | Marcinkowski, Paweł Loga, Małgorzata Piniewski, Mikołaj |
Author_xml | – sequence: 1 givenname: Małgorzata orcidid: 0000-0002-9866-4870 surname: Loga fullname: Loga, Małgorzata email: malgorzata.loga@pw.edu.pl organization: Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology – sequence: 2 givenname: Mikołaj surname: Piniewski fullname: Piniewski, Mikołaj organization: Department of Hydrology, Meteorology and Water Management, Warsaw University of Life Sciences – sequence: 3 givenname: Paweł surname: Marcinkowski fullname: Marcinkowski, Paweł organization: Department of Hydrology, Meteorology and Water Management, Warsaw University of Life Sciences |
BookMark | eNp9kc9qFTEUxgepYK19ga4CbtyM5s-dScadFqtCQRd2Hc4kJ23q3EzNySC3b9K3NdNbKnTRQDjJ4fd9nOR73RykOWHTnAj-XgjTfyAhFZctl3XzXnbt7YvmUIqBtxstuoPHM9evmmOia15XJ43edIfN3WfYIUVIzKOLFOfECowTEgtzZkglbqGs3TmwHOn3Wv9Cwcy2kOASt5jKo5TYCISeVXxJDnOBmBgtOYDDBxUVKAt9ZMBcRet18bvVE9jPeYp0VdvFXa2ub5qXASbC44d61Fycffl1-q09__H1--mn89Yp2Zd2A0aF0XEn1NAZAUGOAx_RBDC-l0GJIPy4ATDaqwG91N55xZ0PfkSpR6OOmnd735s8_1nqi-02ksNpgoTzQlb2uuu04kpX9O0T9HpecqrTVapXRprBqEqZPeXyTJQxWBfL_SeWDHGygts1NruPzdbY7H1s9rZK5RPpTa4B5N3zIrUXUYXTJeb_Uz2j-gdiAbCX |
CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3351754 |
Cites_doi | 10.1007/s40710-020-00458-z 10.1002/rra.3903 10.3390/w7020747 10.1007/698_2015_420 10.1016/S0304-3800(99)00061-7 10.1007/s10750-009-9872-z 10.1007/s10661-018-6603-9 10.1577/1548-8446(2003)28[10:QDAFSF]2.0.CO;2 10.1007/s10661-020-08746-9 10.1038/s41598-021-93051-9 10.1007/s11269-018-1922-8 10.3390/w9030156 10.2136/vzj2004.1340 10.5194/essd-8-127-2016 10.1016/j.scitotenv.2010.05.031 10.1007/978-1-4020-5493-8_31 10.1007/s10750-012-1245-3 10.1016/j.jhydrol.2005.07.007 10.1007/s11269-012-0217-8 10.1007/s11269-017-1723-5 10.1016/j.ecolind.2012.12.010 10.1016/j.jhydrol.2009.08.003 10.1111/j.1752-1688.1998.tb05961.x 10.1007/s10750-006-0093-4 10.1016/j.scitotenv.2016.02.027 10.3390/w13070934 10.1139/f98-206 10.1029/WR008i001p00033 10.1080/02630258508970405 10.13031/trans.58.10710 10.1016/j.jhydrol.2015.03.027 10.1021/acs.est.6b02155 10.1016/j.ecolind.2011.10.009 10.2166/hydro.2013.065 10.1515/jwld-2016-0040 10.1016/0022-1694(76)90022-6 10.1016/j.ecolind.2021.107754 10.1007/s13280-017-0977-8 10.1016/S1364-8152(97)00008-X |
ContentType | Journal Article |
Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 8C1 ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ PATMY PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS PYCSY 7S9 L.6 |
DOI | 10.1186/s12302-022-00625-z |
DatabaseName | Springer Nature OA Free Journals CrossRef Public Health Database ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection Environmental Science Database ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Agricultural & Environmental Science Collection ProQuest Central (New) ProQuest Public Health ProQuest One Academic Eastern Edition Health Research Premium Collection (Alumni) Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database ProQuest One Academic ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA ProQuest Central Student |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: BENPR name: Proquest Central Journals url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Environmental Sciences |
EISSN | 2190-4715 |
EndPage | 42 |
ExternalDocumentID | 10_1186_s12302_022_00625_z |
GeographicLocations | Poland |
GeographicLocations_xml | – name: Poland |
GroupedDBID | -A0 0R~ 2VQ 3V. 4.4 40G 5VS 7XC 8C1 8FE 8FH AAFWJ AAHBH AAIAL AAJSJ AAKKN AAYZH ABEEZ ABQSL ABUWG ACACY ACGFS ACULB ADBBV ADINQ ADQRH ADRFC AEUYN AFBBN AFGXO AFKRA AFLOW AFPKN AGJBK AHBYD AHSBF AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP ASPBG ATCPS AVWKF AZFZN BAPOH BCNDV BENPR BHPHI BPHCQ C24 C6C CCPQU EBLON EBS EDH EJD FYUFA GROUPED_DOAJ H4N HCIFZ HG6 HZ~ KQ8 M~E N2Q O9- OK1 PATMY PQQKQ PROAC PYCSY RBZ RSV SCK SCLPG SEV SOJ U2A UKHRP AASML AAYXX CITATION PHGZM PHGZT AZQEC DWQXO GNUQQ PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c326t-4a83fbc0c139581af2b90be8fa8d62f31f1db4aa87d39ed27dcd30cdfdbe27b83 |
IEDL.DBID | BENPR |
ISSN | 2190-4707 |
IngestDate | Thu Sep 04 17:08:54 EDT 2025 Sun Jul 13 03:05:43 EDT 2025 Thu Apr 24 23:05:01 EDT 2025 Tue Jul 01 04:20:40 EDT 2025 Fri Feb 21 02:47:09 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Bayesian decision theory SWAT model Water management Uncertainty of water body status |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c326t-4a83fbc0c139581af2b90be8fa8d62f31f1db4aa87d39ed27dcd30cdfdbe27b83 |
Notes | ObjectType-Case Study-2 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-4 ObjectType-Report-1 ObjectType-Article-3 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-9866-4870 |
OpenAccessLink | https://doi.org/10.1186/s12302-022-00625-z |
PQID | 2663828983 |
PQPubID | 1026358 |
PageCount | 1 |
ParticipantIDs | proquest_miscellaneous_2675573037 proquest_journals_2663828983 crossref_citationtrail_10_1186_s12302_022_00625_z crossref_primary_10_1186_s12302_022_00625_z springer_journals_10_1186_s12302_022_00625_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-01 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Environmental sciences Europe |
PublicationTitleAbbrev | Environ Sci Eur |
PublicationYear | 2022 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | KuikkaSHildénMGislasonHHanssonSSparholtHVarisOModeling environmentally driven uncertainties in Baltic cod (Gadus morhua) management by Bayesian influence diagramsCan J Fish Aquat Sci199956462964110.1139/f98-206 SEC (2005) 1658 COMMUNICATION FROM THE COMMISSION application of Article 228 of the EC Treaty https://ec.europa.eu/atwork/applying-eu-law/docs/sec_2005_1658_en.pdf Munné A, Ginebreda A, Prat N (2015) Water status assessment in the Catalan River basin district: experience gathered after 15 years with the Water Framework Directive (WFD). In Experiences from surface water quality monitoring, pp 1–35, Springer, Cham HutorowiczAPasztaleniecAUncertainty in phytoplankton-based lake ecological status classification: Implications of sampling frequency and metric simplificationEcol Ind202112710.1016/j.ecolind.2021.107754 SušnikJMolinaJLVamvakeridou-LyroudiaLSSavićDAKapelanZComparative analysis of system dynamics and object-oriented bayesian networks modelling for water systems managementWater Resour Manag201327381984110.1007/s11269-012-0217-8 CIS (2005) Overall Approach to the Classification of Ecological Status and Ecological Potential. Common Implementation Strategy for The Water Framework Directive (2000/60/Ec). Guidance Document No 13 AbbaspourKCRouholahnejadEVaghefiSSrinivasanRYangHKløveBA continental-scale hydrology and water quality model for Europe: calibration and uncertainty of a high-resolution large-scale SWAT modelJ Hydrol201552473375210.1016/j.jhydrol.2015.03.027 ArnoldJGSrinivasanRMuttiahRSWilliamsJRLarge area hydrologic modeling and assessment part I: model development 1JAWRA J Am Water Resour Assoc199834173891:CAS:528:DyaK1cXitleju74%3D10.1111/j.1752-1688.1998.tb05961.x https://ec.europa.eu/environment/water/water-framework/index_en.html. RodeMWadeAJCohenMJHensleyRTBowesMJKirchnerJWSensors in the stream: the high-frequency wave of the presentEnviron Sci Technol201610.1021/acs.est.6b02155 BirkSBonneWBorjaABrucetSCourratAPoikaneSThree hundred ways to assess Europe's surface waters: an almost complete overview of biological methods to implement the Water Framework DirectiveEcol Ind201218314110.1016/j.ecolind.2011.10.009 Brussels, 18.9.2018 C (2018) 5851 final communication from the commission Updating of data used to calculate lump sum and penalty payments to be proposed by the Commission to the Court of Justice in infringement proceedings https://ec.europa.eu/atwork/applying-eu-law/docs/c_2018_5851_en.pdf GuzmanJAShirmohammadiASadeghiAMWangXChuMLJhaMKParajuliPBHarmelRDKhareYPHernandezJEUncertainty considerations in calibration and validation of hydrologic and water quality modelsTrans ASABE20155861745176210.13031/trans.58.10710 Clarke RT, Lorenz A, Sandin L, Schmidt-Kloiber A, Strackbein J, Kneebone NT, Haase P. (2006). Effects of sampling and sub-sampling variation using the STAR-AQEM sampling protocol on the precision of macroinvertebrate metrics. In The ecological status of European Rivers: evaluation and intercalibration of assessment methods. Springer, Dordrecht, pp. 441–459. LogaMWierzchołowska-DziedzicAMartyszunisAThe problem of water body status misclassification—a hierarchical approachEnviron Monit Assess2018190511610.1007/s10661-018-6603-9 KellyMBennionHBurgessAEllisJJugginsSGuthrieRUncertainty in ecological status assessments of lakes and rivers using diatomsHydrobiologia200963315151:CAS:528:DC%2BD1MXptlKntLw%3D10.1007/s10750-009-9872-z Luce RD, Raiffa H (1989) Games and decisions: introduction and critical survey. Courier Corporation. PoikaneSKellyMCantonatiMBenthic algal assessment of ecological status in European lakes and rivers: challenges and opportunitiesSci Total Environ20165686036131:CAS:528:DC%2BC28XjtlKktL0%3D10.1016/j.scitotenv.2016.02.027 GrosserPWGoodmanASDetermination of groundwater sampling frequencies through Bayesian decision theoryCiv Eng Syst19852418619410.1080/02630258508970405 JUDGMENT OF 12. 7. 2005—CASE C-304/02 JUDGMENT OF THE COURT (Grand Chamber) 12 July 2005 * Maastricht Treaty https://curia.europa.eu/juris/liste.jsf?language=en&num=c-278/01 MaiaRThe WFD implementation in the European member statesWater Resour Manag201731103043306010.1007/s11269-017-1723-5 CramerMKoegstTTraencknerJMulti-criterial evaluation of P-removal optimization in rural wastewater treatment plants for a sub-catchment of the Baltic SeaAmbio2018471931021:CAS:528:DC%2BC2sXhvV2gt7bP10.1007/s13280-017-0977-8 Laws J (2019) item. 2149. The Act onthe classification of ecological status, ecological potential and chemical status as well as the method of classifying the status of surface water bodies (in Polish) Abbaspour K (2008) SWAT-CUP2: SWAT calibration and uncertainty programs—a user manual MarcinkowskiPPiniewskiMKardelISzcześniakMBenestadRSrinivasanREffect of climate change on hydrology, sediment and nutrient losses in two lowland catchments in PolandWater20179315610.3390/w9030156 DavisDRDucksteinLFogelMMUncertainty in the return period of maximum hydrologic events: a Bayesian approachJ Hydrol1976311–2819510.1016/0022-1694(76)90022-6 BerezowskiTSzcześniakMKardelIMichałowskiROkruszkoTMezghaniAPiniewskiMCPLFD-GDPT5: High-resolution gridded daily precipitation and temperature data set for two largest Polish river basinsEarth Syst Sci Data2016812713910.5194/essd-8-127-2016 AbbaspourKJohnsonCAvan GenuchtenMTEstimating uncertain flow and transport parameters using a sequential uncertainty fitting procedureVadose Zone J200431340135210.2136/vzj2004.1340 https://www.eea.europa.eu/policy-documents/quality-of-bathing-water-76 Loga M (2016) Estimating confidence and precision—basic measures of uncertainty in the assessment of the state of surface waters. Ochr Srodowiska 38(1) (in Polish) StaniszewskiRSzoszkiewiczKZbierskaJLesnyJJusikSClarkeRTAssessment of sources of uncertainty in macrophyte surveys and the consequences for river classificationHydrobiologia2006566123524610.1007/s10750-006-0093-4 HardyTWuWImpact of different restoration methods on coastal wetland loss in Louisiana: Bayesian analysisEnviron Monit Assess2021193110.1007/s10661-020-08746-9 DavisDRKisielCCDucksteinLBayesian decision theory applied to design in hydrologyWater Resour Res197281334110.1029/WR008i001p00033 https://wroclaw.rzgw.gov.pl/files_mce/Region%20wodny/Planowanie/RDW/Barycz%20Widawa/zadanie_ii_cz_tekstowa.pdf ZachariasILiakouPBilianiIA Review of the status of surface European waters twenty years after WFD introductionEnviron Process202010.1007/s40710-020-00458-z ArmahEKChettyMAdedejiJAKukwaDTMutsveneBShabanguKPBakareBFEmerging trends in wastewater treatment technologies: the current perspectivePromis Tech Wastewater Treat Water Qual Assess2021171 PetersonJTPeaseJEWhitmanLWhiteJStratton-GarvinLRoundsSWallickRIntegrated tools for identifying optimal flow regimes and evaluating alternative minimum flows for recovering at-risk salmonids in a highly managed systemRiver Res Appl20223829330810.1002/rra.3903 MarcinkowskiPPiniewskiMKardelISrinivasanROkruszkoTChallenges in modelling of water quantity and quality in two contrasting meso-scale catchments in PolandJ Water Land Dev201631971111:CAS:528:DC%2BC2sXhs1egsL0%3D10.1515/jwld-2016-0040 PetersonJTEvansJWQuantitative decision analysis for sport fisheries managementFisheries2003281102110.1577/1548-8446(2003)28[10:QDAFSF]2.0.CO;2 SantillánDMedieroLGarroteLModelling uncertainty of flood quantile estimations at ungauged sites by Bayesian networksJ Hydroinf201416482283810.2166/hydro.2013.065 LogaMUncertainty in the assessment of the ecological status of surface waters. Scientific Works of the Warsaw University of TechnologyEnviron Eng2019804183in Polish VarisOBayesian decision analysis for environmental and resource managementEnviron Model Softw1997122–317718510.1016/S1364-8152(97)00008-X PasztaleniecAHutorowiczAPhytoplankton metrics response to the increasing phosphorus and nitrogen gradient in shallow lakesJ Elem2012172289303 BevenKJA manifesto for the equifinality thesisJ Hydrol2006320183610.1016/j.jhydrol.2005.07.007 HeringDBorjaACarstensenJCarvalhoLElliottMFeldCKThe European Water Framework Directive at the age of 10: a critical review of the achievements with recommendations for the futureSci Total Environ201040819400740191:CAS:528:DC%2BC3cXptVWgurc%3D10.1016/j.scitotenv.2010.05.031 SzcześniakMPiniewskiMImprovement of hydrological simulations by applying daily precipitation interpolation schemes in meso-scale catchmentsWater20157274777910.3390/w7020747 VarisOKuikkaSLearning Bayesian decision analysis by doing: lessons from environmental and natural resources managementEcol Model19991192–317719510.1016/S0304-3800(99)00061-7 ThackeraySJNogesPDunbarMJDudleyBJSkjelbredBMorabitoGQuantifying uncertainties in biologically-based water quality assessment: a pan-European analysis of lake phytoplankton community metricsEcol Ind20132934471:CAS:528:DC%2BC3sXjslKmurw%3D10.1016/j.ecolind.2012.12.010 SambitoMFreniGStrategies for improving optimal positioning of quality sensors in urban drainage systems for non-conservative contaminantsWater202113793410.3390/w13070934 Kristensen P, Whalley C, Zal FNN, Christiansen T (2018) European waters assessment of status and pressures 2018. EEA Report (7/2018) GuptaHVKlingHYilmazKKMartinezGFDecomposition of the mean squared error and nse performance criteria: implications for improving hydrological modellingJ Hydrol2009377809110.1016/j.jhydrol.2009.08.003 https://www.gios.gov.pl/pl/stan-srodowiska/monitoring-wod PaganoAPluchinottaIGiordanoRPetrangeliABFratinoUVurroMDealing with uncertainty in decision-making for drinking water supply systems exposed to extreme eventsWater Resour Manag20183262131214510.1007/s11269-018-1922-8 CIS (2018) Best Practice for establishing nutrient concentrations to support good ecological status. Guidance document WG ECOSTAT. Neitsch SL, Arnold JG, Kiniry JR, Williams JR (2011) Soil and water assessment tool theoretical documentation version 2009. Texas Water Resources Institute BergerJOStatistical decision theory and Bayesian analysis2013ChamSpringer Science & Business Media ClarkeRTEstim JO Berger (625_CR40) 2013 A Pasztaleniec (625_CR5) 2012; 17 R Maia (625_CR16) 2017; 31 DR Davis (625_CR50) 1972; 8 O Varis (625_CR43) 1999; 119 A Hutorowicz (625_CR6) 2021; 127 625_CR13 HV Gupta (625_CR39) 2009; 377 625_CR58 625_CR7 625_CR15 625_CR59 625_CR9 JT Peterson (625_CR22) 2022; 38 625_CR19 RT Clarke (625_CR8) 2013; 704 T Berezowski (625_CR36) 2016; 8 625_CR1 M Cramer (625_CR25) 2018; 47 D Hering (625_CR10) 2010; 408 S Birk (625_CR11) 2012; 18 625_CR20 625_CR24 D Santillán (625_CR48) 2014; 16 625_CR29 M Kelly (625_CR3) 2009; 633 P Marcinkowski (625_CR35) 2016; 31 M Szcześniak (625_CR56) 2015; 7 SJ Thackeray (625_CR4) 2013; 29 KC Abbaspour (625_CR53) 2015; 524 I Zacharias (625_CR14) 2020 K Abbaspour (625_CR38) 2004; 3 625_CR31 625_CR34 O Varis (625_CR44) 1997; 12 T Hardy (625_CR46) 2021; 193 J Sušnik (625_CR47) 2013; 27 M Rode (625_CR26) 2016 625_CR32 625_CR33 M Sambito (625_CR23) 2021; 13 KJ Beven (625_CR54) 2006; 320 625_CR37 A Pagano (625_CR49) 2018; 32 S Kuikka (625_CR45) 1999; 56 EK Armah (625_CR28) 2021; 1 JA Guzman (625_CR55) 2015; 58 S Poikane (625_CR12) 2016; 568 M Loga (625_CR17) 2018; 190 M Loga (625_CR30) 2019; 80 625_CR41 JG Arnold (625_CR27) 1998; 34 625_CR42 DR Davis (625_CR51) 1976; 31 P Marcinkowski (625_CR57) 2017; 9 M Loga (625_CR18) 2021; 11 PW Grosser (625_CR52) 1985; 2 R Staniszewski (625_CR2) 2006; 566 JT Peterson (625_CR21) 2003; 28 |
References_xml | – reference: BevenKJA manifesto for the equifinality thesisJ Hydrol2006320183610.1016/j.jhydrol.2005.07.007 – reference: BirkSBonneWBorjaABrucetSCourratAPoikaneSThree hundred ways to assess Europe's surface waters: an almost complete overview of biological methods to implement the Water Framework DirectiveEcol Ind201218314110.1016/j.ecolind.2011.10.009 – reference: VarisOKuikkaSLearning Bayesian decision analysis by doing: lessons from environmental and natural resources managementEcol Model19991192–317719510.1016/S0304-3800(99)00061-7 – reference: AbbaspourKJohnsonCAvan GenuchtenMTEstimating uncertain flow and transport parameters using a sequential uncertainty fitting procedureVadose Zone J200431340135210.2136/vzj2004.1340 – reference: https://wroclaw.rzgw.gov.pl/files_mce/Region%20wodny/Planowanie/RDW/Barycz%20Widawa/zadanie_ii_cz_tekstowa.pdf – reference: HutorowiczAPasztaleniecAUncertainty in phytoplankton-based lake ecological status classification: Implications of sampling frequency and metric simplificationEcol Ind202112710.1016/j.ecolind.2021.107754 – reference: PasztaleniecAHutorowiczAPhytoplankton metrics response to the increasing phosphorus and nitrogen gradient in shallow lakesJ Elem2012172289303 – reference: https://curia.europa.eu/juris/liste.jsf?language=en&num=c-278/01 – reference: HardyTWuWImpact of different restoration methods on coastal wetland loss in Louisiana: Bayesian analysisEnviron Monit Assess2021193110.1007/s10661-020-08746-9 – reference: Abbaspour K (2008) SWAT-CUP2: SWAT calibration and uncertainty programs—a user manual – reference: PoikaneSKellyMCantonatiMBenthic algal assessment of ecological status in European lakes and rivers: challenges and opportunitiesSci Total Environ20165686036131:CAS:528:DC%2BC28XjtlKktL0%3D10.1016/j.scitotenv.2016.02.027 – reference: RodeMWadeAJCohenMJHensleyRTBowesMJKirchnerJWSensors in the stream: the high-frequency wave of the presentEnviron Sci Technol201610.1021/acs.est.6b02155 – reference: MarcinkowskiPPiniewskiMKardelISrinivasanROkruszkoTChallenges in modelling of water quantity and quality in two contrasting meso-scale catchments in PolandJ Water Land Dev201631971111:CAS:528:DC%2BC2sXhs1egsL0%3D10.1515/jwld-2016-0040 – reference: https://www.gios.gov.pl/pl/stan-srodowiska/monitoring-wod – reference: CIS (2018) Best Practice for establishing nutrient concentrations to support good ecological status. Guidance document WG ECOSTAT. – reference: SambitoMFreniGStrategies for improving optimal positioning of quality sensors in urban drainage systems for non-conservative contaminantsWater202113793410.3390/w13070934 – reference: BerezowskiTSzcześniakMKardelIMichałowskiROkruszkoTMezghaniAPiniewskiMCPLFD-GDPT5: High-resolution gridded daily precipitation and temperature data set for two largest Polish river basinsEarth Syst Sci Data2016812713910.5194/essd-8-127-2016 – reference: VarisOBayesian decision analysis for environmental and resource managementEnviron Model Softw1997122–317718510.1016/S1364-8152(97)00008-X – reference: Brussels, 18.9.2018 C (2018) 5851 final communication from the commission Updating of data used to calculate lump sum and penalty payments to be proposed by the Commission to the Court of Justice in infringement proceedings https://ec.europa.eu/atwork/applying-eu-law/docs/c_2018_5851_en.pdf – reference: Neitsch SL, Arnold JG, Kiniry JR, Williams JR (2011) Soil and water assessment tool theoretical documentation version 2009. Texas Water Resources Institute – reference: LogaMPrzeździeckiKUncertainty of chemical status in surface watersSci Rep202111111210.1038/s41598-021-93051-9 – reference: ArmahEKChettyMAdedejiJAKukwaDTMutsveneBShabanguKPBakareBFEmerging trends in wastewater treatment technologies: the current perspectivePromis Tech Wastewater Treat Water Qual Assess2021171 – reference: DavisDRKisielCCDucksteinLBayesian decision theory applied to design in hydrologyWater Resour Res197281334110.1029/WR008i001p00033 – reference: CramerMKoegstTTraencknerJMulti-criterial evaluation of P-removal optimization in rural wastewater treatment plants for a sub-catchment of the Baltic SeaAmbio2018471931021:CAS:528:DC%2BC2sXhvV2gt7bP10.1007/s13280-017-0977-8 – reference: SušnikJMolinaJLVamvakeridou-LyroudiaLSSavićDAKapelanZComparative analysis of system dynamics and object-oriented bayesian networks modelling for water systems managementWater Resour Manag201327381984110.1007/s11269-012-0217-8 – reference: JUDGMENT OF 12. 7. 2005—CASE C-304/02 JUDGMENT OF THE COURT (Grand Chamber) 12 July 2005 * Maastricht Treaty – reference: KuikkaSHildénMGislasonHHanssonSSparholtHVarisOModeling environmentally driven uncertainties in Baltic cod (Gadus morhua) management by Bayesian influence diagramsCan J Fish Aquat Sci199956462964110.1139/f98-206 – reference: MaiaRThe WFD implementation in the European member statesWater Resour Manag201731103043306010.1007/s11269-017-1723-5 – reference: MarcinkowskiPPiniewskiMKardelISzcześniakMBenestadRSrinivasanREffect of climate change on hydrology, sediment and nutrient losses in two lowland catchments in PolandWater20179315610.3390/w9030156 – reference: Kristensen P, Whalley C, Zal FNN, Christiansen T (2018) European waters assessment of status and pressures 2018. EEA Report (7/2018) – reference: KellyMBennionHBurgessAEllisJJugginsSGuthrieRUncertainty in ecological status assessments of lakes and rivers using diatomsHydrobiologia200963315151:CAS:528:DC%2BD1MXptlKntLw%3D10.1007/s10750-009-9872-z – reference: LogaMWierzchołowska-DziedzicAMartyszunisAThe problem of water body status misclassification—a hierarchical approachEnviron Monit Assess2018190511610.1007/s10661-018-6603-9 – reference: PetersonJTPeaseJEWhitmanLWhiteJStratton-GarvinLRoundsSWallickRIntegrated tools for identifying optimal flow regimes and evaluating alternative minimum flows for recovering at-risk salmonids in a highly managed systemRiver Res Appl20223829330810.1002/rra.3903 – reference: ThackeraySJNogesPDunbarMJDudleyBJSkjelbredBMorabitoGQuantifying uncertainties in biologically-based water quality assessment: a pan-European analysis of lake phytoplankton community metricsEcol Ind20132934471:CAS:528:DC%2BC3sXjslKmurw%3D10.1016/j.ecolind.2012.12.010 – reference: GrosserPWGoodmanASDetermination of groundwater sampling frequencies through Bayesian decision theoryCiv Eng Syst19852418619410.1080/02630258508970405 – reference: ArnoldJGSrinivasanRMuttiahRSWilliamsJRLarge area hydrologic modeling and assessment part I: model development 1JAWRA J Am Water Resour Assoc199834173891:CAS:528:DyaK1cXitleju74%3D10.1111/j.1752-1688.1998.tb05961.x – reference: SEC (2005) 1658 COMMUNICATION FROM THE COMMISSION application of Article 228 of the EC Treaty https://ec.europa.eu/atwork/applying-eu-law/docs/sec_2005_1658_en.pdf – reference: ZachariasILiakouPBilianiIA Review of the status of surface European waters twenty years after WFD introductionEnviron Process202010.1007/s40710-020-00458-z – reference: Laws J (2019) item. 2149. The Act onthe classification of ecological status, ecological potential and chemical status as well as the method of classifying the status of surface water bodies (in Polish) – reference: AbbaspourKCRouholahnejadEVaghefiSSrinivasanRYangHKløveBA continental-scale hydrology and water quality model for Europe: calibration and uncertainty of a high-resolution large-scale SWAT modelJ Hydrol201552473375210.1016/j.jhydrol.2015.03.027 – reference: Luce RD, Raiffa H (1989) Games and decisions: introduction and critical survey. Courier Corporation. – reference: Loga M (2016) Estimating confidence and precision—basic measures of uncertainty in the assessment of the state of surface waters. Ochr Srodowiska 38(1) (in Polish) – reference: SzcześniakMPiniewskiMImprovement of hydrological simulations by applying daily precipitation interpolation schemes in meso-scale catchmentsWater20157274777910.3390/w7020747 – reference: Munné A, Ginebreda A, Prat N (2015) Water status assessment in the Catalan River basin district: experience gathered after 15 years with the Water Framework Directive (WFD). In Experiences from surface water quality monitoring, pp 1–35, Springer, Cham – reference: PetersonJTEvansJWQuantitative decision analysis for sport fisheries managementFisheries2003281102110.1577/1548-8446(2003)28[10:QDAFSF]2.0.CO;2 – reference: SantillánDMedieroLGarroteLModelling uncertainty of flood quantile estimations at ungauged sites by Bayesian networksJ Hydroinf201416482283810.2166/hydro.2013.065 – reference: HeringDBorjaACarstensenJCarvalhoLElliottMFeldCKThe European Water Framework Directive at the age of 10: a critical review of the achievements with recommendations for the futureSci Total Environ201040819400740191:CAS:528:DC%2BC3cXptVWgurc%3D10.1016/j.scitotenv.2010.05.031 – reference: StaniszewskiRSzoszkiewiczKZbierskaJLesnyJJusikSClarkeRTAssessment of sources of uncertainty in macrophyte surveys and the consequences for river classificationHydrobiologia2006566123524610.1007/s10750-006-0093-4 – reference: https://ec.europa.eu/environment/water/water-framework/index_en.html. – reference: https://www.eea.europa.eu/policy-documents/quality-of-bathing-water-76 – reference: PaganoAPluchinottaIGiordanoRPetrangeliABFratinoUVurroMDealing with uncertainty in decision-making for drinking water supply systems exposed to extreme eventsWater Resour Manag20183262131214510.1007/s11269-018-1922-8 – reference: Clarke RT, Lorenz A, Sandin L, Schmidt-Kloiber A, Strackbein J, Kneebone NT, Haase P. (2006). Effects of sampling and sub-sampling variation using the STAR-AQEM sampling protocol on the precision of macroinvertebrate metrics. In The ecological status of European Rivers: evaluation and intercalibration of assessment methods. Springer, Dordrecht, pp. 441–459. – reference: LogaMUncertainty in the assessment of the ecological status of surface waters. Scientific Works of the Warsaw University of TechnologyEnviron Eng2019804183in Polish – reference: GuzmanJAShirmohammadiASadeghiAMWangXChuMLJhaMKParajuliPBHarmelRDKhareYPHernandezJEUncertainty considerations in calibration and validation of hydrologic and water quality modelsTrans ASABE20155861745176210.13031/trans.58.10710 – reference: ClarkeRTEstimating confidence of European WFD ecological status class and WISER Bioassessment Uncertainty Guidance Software (WISERBUGS)Hydrobiologia20137041395610.1007/s10750-012-1245-3 – reference: DavisDRDucksteinLFogelMMUncertainty in the return period of maximum hydrologic events: a Bayesian approachJ Hydrol1976311–2819510.1016/0022-1694(76)90022-6 – reference: BergerJOStatistical decision theory and Bayesian analysis2013ChamSpringer Science & Business Media – reference: CIS (2005) Overall Approach to the Classification of Ecological Status and Ecological Potential. Common Implementation Strategy for The Water Framework Directive (2000/60/Ec). Guidance Document No 13 – reference: GuptaHVKlingHYilmazKKMartinezGFDecomposition of the mean squared error and nse performance criteria: implications for improving hydrological modellingJ Hydrol2009377809110.1016/j.jhydrol.2009.08.003 – year: 2020 ident: 625_CR14 publication-title: Environ Process doi: 10.1007/s40710-020-00458-z – volume: 38 start-page: 293 year: 2022 ident: 625_CR22 publication-title: River Res Appl doi: 10.1002/rra.3903 – ident: 625_CR41 – volume: 7 start-page: 747 issue: 2 year: 2015 ident: 625_CR56 publication-title: Water doi: 10.3390/w7020747 – ident: 625_CR13 doi: 10.1007/698_2015_420 – volume: 119 start-page: 177 issue: 2–3 year: 1999 ident: 625_CR43 publication-title: Ecol Model doi: 10.1016/S0304-3800(99)00061-7 – volume: 633 start-page: 5 issue: 1 year: 2009 ident: 625_CR3 publication-title: Hydrobiologia doi: 10.1007/s10750-009-9872-z – volume: 190 start-page: 1 issue: 5 year: 2018 ident: 625_CR17 publication-title: Environ Monit Assess doi: 10.1007/s10661-018-6603-9 – volume: 28 start-page: 10 issue: 1 year: 2003 ident: 625_CR21 publication-title: Fisheries doi: 10.1577/1548-8446(2003)28[10:QDAFSF]2.0.CO;2 – volume: 193 start-page: 1 year: 2021 ident: 625_CR46 publication-title: Environ Monit Assess doi: 10.1007/s10661-020-08746-9 – ident: 625_CR29 – ident: 625_CR31 – volume: 11 start-page: 1 issue: 1 year: 2021 ident: 625_CR18 publication-title: Sci Rep doi: 10.1038/s41598-021-93051-9 – ident: 625_CR58 – volume: 32 start-page: 2131 issue: 6 year: 2018 ident: 625_CR49 publication-title: Water Resour Manag doi: 10.1007/s11269-018-1922-8 – volume: 9 start-page: 156 issue: 3 year: 2017 ident: 625_CR57 publication-title: Water doi: 10.3390/w9030156 – volume: 3 start-page: 1340 year: 2004 ident: 625_CR38 publication-title: Vadose Zone J doi: 10.2136/vzj2004.1340 – ident: 625_CR15 – volume: 8 start-page: 127 year: 2016 ident: 625_CR36 publication-title: Earth Syst Sci Data doi: 10.5194/essd-8-127-2016 – volume: 408 start-page: 4007 issue: 19 year: 2010 ident: 625_CR10 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2010.05.031 – ident: 625_CR19 – ident: 625_CR1 – ident: 625_CR42 – ident: 625_CR7 doi: 10.1007/978-1-4020-5493-8_31 – volume: 17 start-page: 289 issue: 2 year: 2012 ident: 625_CR5 publication-title: J Elem – volume: 704 start-page: 39 issue: 1 year: 2013 ident: 625_CR8 publication-title: Hydrobiologia doi: 10.1007/s10750-012-1245-3 – volume: 320 start-page: 18 year: 2006 ident: 625_CR54 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2005.07.007 – ident: 625_CR32 – volume: 27 start-page: 819 issue: 3 year: 2013 ident: 625_CR47 publication-title: Water Resour Manag doi: 10.1007/s11269-012-0217-8 – volume: 31 start-page: 3043 issue: 10 year: 2017 ident: 625_CR16 publication-title: Water Resour Manag doi: 10.1007/s11269-017-1723-5 – volume: 29 start-page: 34 year: 2013 ident: 625_CR4 publication-title: Ecol Ind doi: 10.1016/j.ecolind.2012.12.010 – ident: 625_CR37 – volume: 377 start-page: 80 year: 2009 ident: 625_CR39 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2009.08.003 – ident: 625_CR33 – volume: 34 start-page: 73 issue: 1 year: 1998 ident: 625_CR27 publication-title: JAWRA J Am Water Resour Assoc doi: 10.1111/j.1752-1688.1998.tb05961.x – volume: 566 start-page: 235 issue: 1 year: 2006 ident: 625_CR2 publication-title: Hydrobiologia doi: 10.1007/s10750-006-0093-4 – ident: 625_CR9 – volume: 568 start-page: 603 year: 2016 ident: 625_CR12 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2016.02.027 – volume: 13 start-page: 934 issue: 7 year: 2021 ident: 625_CR23 publication-title: Water doi: 10.3390/w13070934 – volume: 56 start-page: 629 issue: 4 year: 1999 ident: 625_CR45 publication-title: Can J Fish Aquat Sci doi: 10.1139/f98-206 – volume: 8 start-page: 33 issue: 1 year: 1972 ident: 625_CR50 publication-title: Water Resour Res doi: 10.1029/WR008i001p00033 – volume: 2 start-page: 186 issue: 4 year: 1985 ident: 625_CR52 publication-title: Civ Eng Syst doi: 10.1080/02630258508970405 – volume: 58 start-page: 1745 issue: 6 year: 2015 ident: 625_CR55 publication-title: Trans ASABE doi: 10.13031/trans.58.10710 – volume: 524 start-page: 733 year: 2015 ident: 625_CR53 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2015.03.027 – year: 2016 ident: 625_CR26 publication-title: Environ Sci Technol doi: 10.1021/acs.est.6b02155 – volume: 18 start-page: 31 year: 2012 ident: 625_CR11 publication-title: Ecol Ind doi: 10.1016/j.ecolind.2011.10.009 – ident: 625_CR34 – volume: 16 start-page: 822 issue: 4 year: 2014 ident: 625_CR48 publication-title: J Hydroinf doi: 10.2166/hydro.2013.065 – volume: 31 start-page: 97 year: 2016 ident: 625_CR35 publication-title: J Water Land Dev doi: 10.1515/jwld-2016-0040 – volume: 80 start-page: 4 year: 2019 ident: 625_CR30 publication-title: Environ Eng – volume: 1 start-page: 71 year: 2021 ident: 625_CR28 publication-title: Promis Tech Wastewater Treat Water Qual Assess – volume-title: Statistical decision theory and Bayesian analysis year: 2013 ident: 625_CR40 – ident: 625_CR24 – volume: 31 start-page: 81 issue: 1–2 year: 1976 ident: 625_CR51 publication-title: J Hydrol doi: 10.1016/0022-1694(76)90022-6 – volume: 127 year: 2021 ident: 625_CR6 publication-title: Ecol Ind doi: 10.1016/j.ecolind.2021.107754 – ident: 625_CR20 – ident: 625_CR59 – volume: 47 start-page: 93 issue: 1 year: 2018 ident: 625_CR25 publication-title: Ambio doi: 10.1007/s13280-017-0977-8 – volume: 12 start-page: 177 issue: 2–3 year: 1997 ident: 625_CR44 publication-title: Environ Model Softw doi: 10.1016/S1364-8152(97)00008-X |
SSID | ssj0000528745 |
Score | 2.2623577 |
Snippet | Background
Uncertain results of the status assessment performed as required by the Water Framework Directive can be responsible for misclassification of a... BackgroundUncertain results of the status assessment performed as required by the Water Framework Directive can be responsible for misclassification of a water... BACKGROUND: Uncertain results of the status assessment performed as required by the Water Framework Directive can be responsible for misclassification of a... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 42 |
SubjectTerms | Bayesian analysis Bayesian theory case studies Concentration time Cost analysis Decision analysis Decision making Decision theory Earth and Environmental Science Ecotoxicology Environment Environmental objective Fallowing Fines & penalties Fines payments Management decisions Modernization Nitrogen Nutrient concentrations nutrient content Optimization Phosphorus Poland Pollution prototypes Remediation risk Risk analysis River catchments rivers Soil and Water Assessment Tool model Surface water time series analysis total nitrogen total phosphorus uncertainty Wastewater treatment Wastewater treatment plants Water bodies Water management Water protection Water quality watersheds |
SummonAdditionalLinks | – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60XryIr2K1ygreNJhks9mtNy2W4sGThd7CPvGgrTQpYv-J_9aZJE1VVPAUSGYnkNnd-SY73wwhZ2HiAFcAcrMOQpTEujhQXECoIh2LveLgA8tqn_fpcJTcjfm4LpODXJjP5_eRTC9z2FkxRxZCJqT78WCxTjY41hnDg9m03_xPCXlZuR17ySE7OhGhWHJkflTz1Q-twOW389DSzQy2yVaND-l1ZdAdsuYmu6R9u6KjwcN6PeZ75P1GvTmkQVJb98qhBXKhcgpYlGIBjYqZSKeeYhI5Xl8BXc7oc5P20gzNKbo0S0EcnF2VKkDz-cwr4-pRSD-a51dUUQOitKxNizoVxTy6_BFuwyxArftkNLh96A-DutlCYADBFUGiJPPahAZMx2WkfKx7oXbSK2nT2LPIR1YnSklhWc_ZWFhjWWist9rFQkvWJq3JdOIOCAWnx4WKmDeRSpyRgCGY9qm2VkvBYtsh0fLTZ6auRI4NMZ6yMiKRaVaZKwNzZaW5skWHnDdjXqo6HH9Kd5cWzeo1mWcARRjGl5J1yGnzGFYTHpGoiZvOUUZwDpseEx1ysZwJKxW_v_Hwf-JHZDPGyVjmxXRJq5jN3TGgm0KflNP6A89387U priority: 102 providerName: Springer Nature |
Title | Bayesian decision tables for estimation of risk of water management decisions based on uncertain surface water status: a case study of a Polish catchment |
URI | https://link.springer.com/article/10.1186/s12302-022-00625-z https://www.proquest.com/docview/2663828983 https://www.proquest.com/docview/2675573037 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7R7YUL4lWxUFZG4gZREztOXC6oXW2pOFQIsVJvkZ_iALtlvStE_wn_lhnHyQokenGUxHakzHjmG3seAK_L2iOuQOTmPJootfO80LJFU0V5wYOWqANTts-r5nJZf7yW13nDLWa3ykEmJkHt1pb2yE9QkQiyDpR4f_OjoKpRdLqaS2gcwCGKYCUncHi-uPr0edxlKWXK5z5Ey6jmJKKoJqdbtMEoflAWt39rpD3M_OdkNCmci4fwICNFdtaT9hHc86vHcLTYB6bhy7wy4xP4fa5_eQqIZC5XzWFbioqKDFEpo1QafYwiWwdG7uR0_Yk4c8O-jw4w49DISLk5ht1R7fVOAyzuNkFbn0dRINIuvmOaWezKUpZamlMz8qiLX_Ex8gPN-hSWF4sv88sil10oLGK5bVFrJYKxpUUiSlXpwM1pabwKWrmGB1GFyplaa9U6ceodb511orQuOON5a5Q4gslqvfLPgKH6k62uRLCVrr1ViCaECY1xzqhWcDeFavj1nc05yak0xrcu2Saq6XpydUiuLpGru53Cm3HMTZ-R487exwNFu7w6Y7fnpSm8Gl_juqLDEr3y6x31aaVE8SfaKbwdOGE_xf-_-PzuL76A-5yYL3nEHMNku9n5l4hrtmYGB3X5AVs1r2aZkfFuzmtqm_ks7Rdgu-RnfwCUF_8t |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LaxRBEC5ictCL-AquRtOCnnTITPf0TK8gkuiGjYmLSAK5tf0kB92NO7uE5J_4J_yNVs1rUTC3nAamX8NUddVX3fUAeJnmAXEFIjcf0ETJfeCJkSWaKioIHo1EHVhn-5wU45P806k8XYPfXSwMuVV2MrEW1H7m6Ix8BxWJIOtAiffnPxOqGkW3q10JjYYtDsPlBZps1buDj0jfV5zvj44_jJO2qkDiEKosktwoEa1LHX6jVJmJ3A5TG1Q0yhc8iixm3ubGqNKLYfC89M6L1PnobeClVQLnvQUbCDOGuIs29kaTL1_7U51U1vnju-gcVexUqBrIyRdtPopXlMnV3xpwBWv_uYmtFdz-PbjbIlO227DSfVgL0wewOVoFwmFjKwmqh_Brz1wGCsBkvq3SwxYUhVUxRMGMUnc0MZFsFhm5r9PzAnHtnP3oHW76oRUjZeoZdkc12zgpsGo5j8aFdhQFPi2rt8wwh11ZnRWX5jSMPPiqM3yN_EezPoKTGyHIJqxPZ9PwGBiqW1maTESXmTw4hehF2FhY760qBfcDyLpfr12bA51KcXzXtS2kCt2QSyO5dE0ufTWA1_2Y8yYDyLW9tzqK6lYaVHrFuwN40TfjPqbLGTMNsyX1KaVEcSvKAbzpOGE1xf9XfHL9ittwe3z8-UgfHUwOn8IdToxYe-NswfpivgzPEFMt7POWkRl8u-m98wfvSjnD |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LaxRBEC7iBsSLxEdwTdQW9KTDznTPoyOIGLNLYmQJYiC3tp940N24s0tI_ol_xV9n1UzPLArmltPATHfPslVd31fT9QB4keYeeQUyN-fRRcmd54kuKnRVpBc86AIxsKn2OS0PT_OPZ8XZBvzucmEorLKziY2hdnNL38hHCCSCvAMpRiGGRZwcTN6d_0yogxSdtHbtNFoVOfaXF-i-1W-PDlDWLzmfjL98OExih4HEIm1ZJrmWIhibWvy9hcx04GYvNV4GLV3Jg8hC5kyutayc2POOV846kVoXnPG8MlLgurdgs0JUlAPY3B9PTz73X3jSoqkl32XqyHJUI0xQwC_6f5S7WCRXf6PhmuL-cyrbgN1kC-5Glsret2p1Dzb87D5sj9dJcfgwWoX6Afza15eekjGZix172JIysmqGjJhRGY82P5LNA6NQdrpeIMddsB998E0_tWYErI7hcITcNmCB1atF0NbHWZQEtarfMM0sDmVNhVxaUzOK5qu_4W3URVr1IZzeiEC2YTCbz_wjYAi9RaUzEWymc28lMhlhQmmcM7IS3A0h6_56ZWM9dGrL8V01fpEsVSsuheJSjbjU1RBe9XPO22og147e7SSqomWo1VqPh_C8f4x7mg5q9MzPVzSmKgo0vaIawutOE9ZL_P-Nj69_4zO4jXtGfTqaHu_AHU562ATm7MJguVj5J0ivluZp1GMGX2966_wBCMs97w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+decision+tables+for+estimation+of+risk+of+water+management+decisions+based+on+uncertain+surface+water+status%3A+a+case+study+of+a+Polish+catchment&rft.jtitle=Environmental+sciences+Europe&rft.au=Loga%2C+Ma%C5%82gorzata&rft.au=Piniewski%2C+Miko%C5%82aj&rft.au=Marcinkowski%2C+Pawe%C5%82&rft.date=2022-12-01&rft.issn=2190-4707&rft.volume=34&rft.issue=1+p.42-42&rft.spage=42&rft.epage=42&rft_id=info:doi/10.1186%2Fs12302-022-00625-z&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2190-4707&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2190-4707&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2190-4707&client=summon |