Secure Distributed Adaptive Platooning Control of Automated Vehicles Over Vehicular Ad-Hoc Networks Under Denial-of-Service Attacks
This article deals with the problem of secure distributed adaptive platooning control of automated vehicles over vehicular ad-hoc networks (VANETs) in the presence of intermittent denial-of-service (DoS) attacks. The platoon, which is wirelessly connected via directed vehicle-to-vehicle (V2V) commun...
Saved in:
Published in | IEEE transactions on cybernetics Vol. 52; no. 11; pp. 12003 - 12015 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.11.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This article deals with the problem of secure distributed adaptive platooning control of automated vehicles over vehicular ad-hoc networks (VANETs) in the presence of intermittent denial-of-service (DoS) attacks. The platoon, which is wirelessly connected via directed vehicle-to-vehicle (V2V) communication, is composed of a group of following vehicles subject to unknown heterogeneous nonlinearities and external disturbance inputs, and a leading vehicle subject to unknown nonlinearity and external disturbance as well as an unknown control input. Under such a platoon setting, this article aims to accomplish secure distributed platoon formation tracking with the desired longitudinal spacing and the same velocities and accelerations guided by the leader regardless of the simultaneous presence of nonlinearities, uncertainties, and DoS attacks. First, a new logical data packet processor is developed on each vehicle to identify the intermittent DoS attacks via verifying the time-stamps of the received data packets. Then, a scalable distributed neural-network-based adaptive control design approach is proposed to achieve secure platooning control. It is proved that under the established design procedure, the vehicle state estimation errors and platoon tracking errors can be regulated to reside in small neighborhoods around zero. Finally, comparative simulation studies are provided to substantiate the effectiveness and merits of the proposed control design approach on maintaining the desired platooning performance and attack tolerance. |
---|---|
AbstractList | This article deals with the problem of secure distributed adaptive platooning control of automated vehicles over vehicular ad-hoc networks (VANETs) in the presence of intermittent denial-of-service (DoS) attacks. The platoon, which is wirelessly connected via directed vehicle-to-vehicle (V2V) communication, is composed of a group of following vehicles subject to unknown heterogeneous nonlinearities and external disturbance inputs, and a leading vehicle subject to unknown nonlinearity and external disturbance as well as an unknown control input. Under such a platoon setting, this article aims to accomplish secure distributed platoon formation tracking with the desired longitudinal spacing and the same velocities and accelerations guided by the leader regardless of the simultaneous presence of nonlinearities, uncertainties, and DoS attacks. First, a new logical data packet processor is developed on each vehicle to identify the intermittent DoS attacks via verifying the time-stamps of the received data packets. Then, a scalable distributed neural-network-based adaptive control design approach is proposed to achieve secure platooning control. It is proved that under the established design procedure, the vehicle state estimation errors and platoon tracking errors can be regulated to reside in small neighborhoods around zero. Finally, comparative simulation studies are provided to substantiate the effectiveness and merits of the proposed control design approach on maintaining the desired platooning performance and attack tolerance.This article deals with the problem of secure distributed adaptive platooning control of automated vehicles over vehicular ad-hoc networks (VANETs) in the presence of intermittent denial-of-service (DoS) attacks. The platoon, which is wirelessly connected via directed vehicle-to-vehicle (V2V) communication, is composed of a group of following vehicles subject to unknown heterogeneous nonlinearities and external disturbance inputs, and a leading vehicle subject to unknown nonlinearity and external disturbance as well as an unknown control input. Under such a platoon setting, this article aims to accomplish secure distributed platoon formation tracking with the desired longitudinal spacing and the same velocities and accelerations guided by the leader regardless of the simultaneous presence of nonlinearities, uncertainties, and DoS attacks. First, a new logical data packet processor is developed on each vehicle to identify the intermittent DoS attacks via verifying the time-stamps of the received data packets. Then, a scalable distributed neural-network-based adaptive control design approach is proposed to achieve secure platooning control. It is proved that under the established design procedure, the vehicle state estimation errors and platoon tracking errors can be regulated to reside in small neighborhoods around zero. Finally, comparative simulation studies are provided to substantiate the effectiveness and merits of the proposed control design approach on maintaining the desired platooning performance and attack tolerance. This article deals with the problem of secure distributed adaptive platooning control of automated vehicles over vehicular ad-hoc networks (VANETs) in the presence of intermittent denial-of-service (DoS) attacks. The platoon, which is wirelessly connected via directed vehicle-to-vehicle (V2V) communication, is composed of a group of following vehicles subject to unknown heterogeneous nonlinearities and external disturbance inputs, and a leading vehicle subject to unknown nonlinearity and external disturbance as well as an unknown control input. Under such a platoon setting, this article aims to accomplish secure distributed platoon formation tracking with the desired longitudinal spacing and the same velocities and accelerations guided by the leader regardless of the simultaneous presence of nonlinearities, uncertainties, and DoS attacks. First, a new logical data packet processor is developed on each vehicle to identify the intermittent DoS attacks via verifying the time-stamps of the received data packets. Then, a scalable distributed neural-network-based adaptive control design approach is proposed to achieve secure platooning control. It is proved that under the established design procedure, the vehicle state estimation errors and platoon tracking errors can be regulated to reside in small neighborhoods around zero. Finally, comparative simulation studies are provided to substantiate the effectiveness and merits of the proposed control design approach on maintaining the desired platooning performance and attack tolerance. |
Author | Xiao, Shunyuan Zhang, Yijun Han, Qing-Long Ge, Xiaohua |
Author_xml | – sequence: 1 givenname: Shunyuan orcidid: 0000-0001-6628-8535 surname: Xiao fullname: Xiao, Shunyuan email: sxiao@swin.edu.au organization: School of Software and Electrical Engineering, Swinburne University of Technology, Melbourne, VIC, Australia – sequence: 2 givenname: Xiaohua orcidid: 0000-0003-0180-0897 surname: Ge fullname: Ge, Xiaohua email: xge@swin.edu.au organization: School of Software and Electrical Engineering, Swinburne University of Technology, Melbourne, VIC, Australia – sequence: 3 givenname: Qing-Long orcidid: 0000-0002-7207-0716 surname: Han fullname: Han, Qing-Long email: qhan@swin.edu.au organization: School of Software and Electrical Engineering, Swinburne University of Technology, Melbourne, VIC, Australia – sequence: 4 givenname: Yijun orcidid: 0000-0003-2705-6672 surname: Zhang fullname: Zhang, Yijun email: zhangyijun@njust.edu.cn organization: School of Automation, Nanjing University of Science and Technology, Nanjing, China |
BookMark | eNp9kU1v3CAQhlGVqvlofkDVC1IvvXjLgG3s43bTNpGiplI-pJwswOOWhDUbwFvl3D8erI1yyKFzYYZ53hnEe0j2Rj8iIR-ALQBY--Vqdft1wRmHhWCyFNC8IQcc6qbgXFZ7L3kt98lxjHcsR5Ov2uYd2RclE6KS_ID8u0QzBaQnNqZg9ZSwp8tebZLdIv3lVPJ-tONvuvJjCt5RP9DllPxazeAN_rHGYaQXWwy7anIq5AHFqTf0J6a_PtxHej32uX-Co1Wu8ENxiWFrDdJlSsrcx_fk7aBcxOPn84hcf_92tTotzi9-nK2W54URvE5FWVV9LbWs-sFA1etBqFpLrTXUHAyUUtWNAJSs4k1fthoHrRhDBKV61O0gjsjn3dxN8A8TxtStbTTonBrRT7HjleC8hBJYRj-9Qu_8FMb8uo5LXgNIaESmYEeZ4GMMOHSbYNcqPHbAutmkbjapm03qnk3KGvlKY2xSyc7_q6z7r_LjTmkR8WVTW5a534gn8tmgUA |
CODEN | ITCEB8 |
CitedBy_id | crossref_primary_10_1016_j_ins_2022_08_025 crossref_primary_10_1109_TVT_2024_3406608 crossref_primary_10_1109_TVT_2022_3147371 crossref_primary_10_1109_TITS_2024_3431012 crossref_primary_10_1007_s40815_024_01711_5 crossref_primary_10_1016_j_automatica_2022_110531 crossref_primary_10_1016_j_ins_2021_10_032 crossref_primary_10_1049_cth2_12614 crossref_primary_10_1016_j_isatra_2022_04_019 crossref_primary_10_1109_TITS_2023_3286403 crossref_primary_10_1016_j_arcontrol_2023_03_004 crossref_primary_10_1109_TITS_2021_3137826 crossref_primary_10_1016_j_engappai_2024_108950 crossref_primary_10_1177_01423312231169560 crossref_primary_10_1016_j_comnet_2024_110560 crossref_primary_10_1109_TSP_2024_3382404 crossref_primary_10_1109_TCSII_2023_3254585 crossref_primary_10_1016_j_eng_2023_10_007 crossref_primary_10_1109_ACCESS_2024_3379420 crossref_primary_10_1109_TCYB_2024_3430324 crossref_primary_10_1007_s42154_023_00228_1 crossref_primary_10_1109_TIV_2023_3338235 crossref_primary_10_1109_JAS_2022_105548 crossref_primary_10_1002_spy2_433 crossref_primary_10_1016_j_isatra_2022_02_046 crossref_primary_10_47134_pjise_v1i2_2654 crossref_primary_10_1049_itr2_12289 crossref_primary_10_1109_TFUZZ_2022_3222905 crossref_primary_10_1016_j_isatra_2023_06_040 crossref_primary_10_1109_TCYB_2023_3337891 crossref_primary_10_1016_j_ins_2023_01_142 crossref_primary_10_1109_TCYB_2021_3103328 crossref_primary_10_3390_electronics13132654 crossref_primary_10_1109_TSMC_2023_3257297 crossref_primary_10_1109_TVT_2023_3287272 crossref_primary_10_1002_rnc_7155 crossref_primary_10_1109_TITS_2023_3240731 crossref_primary_10_1109_TSMC_2024_3400879 crossref_primary_10_1080_23307706_2024_2381657 crossref_primary_10_1080_00207721_2023_2209846 crossref_primary_10_1109_TVT_2024_3420451 crossref_primary_10_1049_cth2_12394 crossref_primary_10_1109_JAS_2023_123483 crossref_primary_10_1109_JAS_2021_1004263 crossref_primary_10_1049_cth2_12757 crossref_primary_10_1109_TCSII_2023_3288149 crossref_primary_10_1109_TCYB_2022_3229430 crossref_primary_10_1109_TVT_2024_3356516 crossref_primary_10_1016_j_neucom_2023_126546 crossref_primary_10_1109_TCYB_2023_3312346 crossref_primary_10_3390_s24072347 crossref_primary_10_53941_ijndi_2024_100026 crossref_primary_10_1631_FITEE_2400497 crossref_primary_10_1007_s41870_023_01712_x crossref_primary_10_1016_j_ins_2022_01_014 crossref_primary_10_1080_15472450_2024_2425297 crossref_primary_10_1109_TCYB_2022_3219142 crossref_primary_10_1109_JAS_2022_105941 crossref_primary_10_1109_TGCN_2024_3381346 crossref_primary_10_1016_j_jfranklin_2022_02_036 crossref_primary_10_1109_JAS_2022_105845 crossref_primary_10_1109_TSMC_2022_3147773 crossref_primary_10_1109_TR_2024_3373810 crossref_primary_10_1016_j_amc_2024_129184 crossref_primary_10_1002_oca_2975 crossref_primary_10_1109_TITS_2024_3422028 crossref_primary_10_3390_futuretransp2040057 crossref_primary_10_1109_TCNS_2023_3290071 crossref_primary_10_1109_ACCESS_2022_3212555 crossref_primary_10_1109_TII_2022_3171343 crossref_primary_10_1109_TFUZZ_2024_3386507 crossref_primary_10_1109_TII_2021_3126644 crossref_primary_10_1109_TIV_2023_3298578 crossref_primary_10_3390_app14198936 crossref_primary_10_1109_JAS_2023_123723 crossref_primary_10_1109_TITS_2024_3391372 crossref_primary_10_1109_TCYB_2024_3350331 crossref_primary_10_1080_00207721_2021_1998843 crossref_primary_10_1109_JAS_2022_105578 crossref_primary_10_1109_TVT_2022_3215966 crossref_primary_10_1109_TCSII_2023_3271150 |
Cites_doi | 10.1109/TII.2019.2933596 10.1016/j.jfranklin.2017.05.026 10.1109/TSMC.2020.3010825 10.1145/2714576.2714619 10.1109/TVT.2016.2565001 10.1109/TCYB.2017.2788819 10.1109/TIE.2016.2535119 10.1109/LCOMM.2019.2894767 10.1109/TITS.2020.2975815 10.1109/COMST.2015.2410831 10.1109/TVT.2018.2863284 10.1109/TVT.2019.2921816 10.1109/TITS.2018.2791484 10.1109/TCOMM.2019.2927570 10.1109/TAC.2009.2026934 10.1109/TCYB.2015.2475376 10.1109/TCYB.2019.2956137 10.1109/TSMC.2020.3041121 10.1109/TITS.2006.884615 10.1109/TITS.2015.2402153 10.1145/2523649.2523658 10.1109/TCYB.2019.2900478 10.1109/TITS.2014.2316016 10.1109/TSMC.2020.2968606 10.1016/j.ymssp.2019.106430 10.1016/j.automatica.2019.108557 10.1109/TCYB.2019.2962601 10.1109/TNNLS.2013.2293499 10.1109/TITS.2019.2934481 10.1109/TCST.2011.2160543 10.1016/j.physa.2011.06.045 10.1109/TCYB.2016.2623898 10.1002/rnc.2872 10.23919/ACC.2017.7963725 10.1201/9781003062714 10.1016/j.physa.2006.08.015 10.1016/j.automatica.2013.09.034 10.1109/TCYB.2016.2581220 10.1109/TAC.2020.2972220 10.1109/TITS.2013.2291493 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TCYB.2021.3074318 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Aerospace Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Digital Libary (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2168-2275 |
EndPage | 12015 |
ExternalDocumentID | 10_1109_TCYB_2021_3074318 9440748 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61973166 funderid: 10.13039/501100001809 |
GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c326t-455d67b75dfc15dbf3a6b7bbb1621c147a6831e70528d49befba00ee1aadeb9f3 |
IEDL.DBID | RIE |
ISSN | 2168-2267 2168-2275 |
IngestDate | Thu Jul 10 17:52:41 EDT 2025 Sun Jun 29 15:56:22 EDT 2025 Tue Jul 01 00:53:59 EDT 2025 Thu Apr 24 22:58:43 EDT 2025 Wed Aug 27 02:18:30 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c326t-455d67b75dfc15dbf3a6b7bbb1621c147a6831e70528d49befba00ee1aadeb9f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0180-0897 0000-0003-2705-6672 0000-0002-7207-0716 0000-0001-6628-8535 |
PMID | 34033572 |
PQID | 2726117183 |
PQPubID | 85422 |
PageCount | 13 |
ParticipantIDs | crossref_primary_10_1109_TCYB_2021_3074318 proquest_miscellaneous_2532241410 ieee_primary_9440748 crossref_citationtrail_10_1109_TCYB_2021_3074318 proquest_journals_2726117183 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-01 |
PublicationDateYYYYMMDD | 2022-11-01 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on cybernetics |
PublicationTitleAbbrev | TCYB |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref23 doi: 10.1109/TII.2019.2933596 – ident: ref39 doi: 10.1016/j.jfranklin.2017.05.026 – ident: ref9 doi: 10.1109/TSMC.2020.3010825 – ident: ref12 doi: 10.1145/2714576.2714619 – ident: ref13 doi: 10.1109/TVT.2016.2565001 – ident: ref36 doi: 10.1109/TCYB.2017.2788819 – ident: ref17 doi: 10.1109/TIE.2016.2535119 – ident: ref18 doi: 10.1109/LCOMM.2019.2894767 – ident: ref29 doi: 10.1109/TITS.2020.2975815 – ident: ref1 doi: 10.1109/COMST.2015.2410831 – ident: ref3 doi: 10.1109/TVT.2018.2863284 – ident: ref10 doi: 10.1109/TVT.2019.2921816 – ident: ref15 doi: 10.1109/TITS.2018.2791484 – ident: ref16 doi: 10.1109/TCOMM.2019.2927570 – ident: ref5 doi: 10.1109/TAC.2009.2026934 – ident: ref34 doi: 10.1109/TCYB.2015.2475376 – ident: ref19 doi: 10.1109/TCYB.2019.2956137 – ident: ref24 doi: 10.1109/TSMC.2020.3041121 – ident: ref2 doi: 10.1109/TITS.2006.884615 – ident: ref7 doi: 10.1109/TITS.2015.2402153 – ident: ref11 doi: 10.1145/2523649.2523658 – ident: ref20 doi: 10.1109/TCYB.2019.2900478 – ident: ref37 doi: 10.1109/TITS.2014.2316016 – ident: ref28 doi: 10.1109/TSMC.2020.2968606 – ident: ref30 doi: 10.1016/j.ymssp.2019.106430 – ident: ref21 doi: 10.1016/j.automatica.2019.108557 – ident: ref22 doi: 10.1109/TCYB.2019.2962601 – ident: ref33 doi: 10.1109/TNNLS.2013.2293499 – ident: ref14 doi: 10.1109/TITS.2019.2934481 – ident: ref25 doi: 10.1109/TCST.2011.2160543 – ident: ref40 doi: 10.1016/j.physa.2011.06.045 – ident: ref35 doi: 10.1109/TCYB.2016.2623898 – ident: ref4 doi: 10.1002/rnc.2872 – ident: ref27 doi: 10.23919/ACC.2017.7963725 – ident: ref31 doi: 10.1201/9781003062714 – ident: ref38 doi: 10.1016/j.physa.2006.08.015 – ident: ref6 doi: 10.1016/j.automatica.2013.09.034 – ident: ref32 doi: 10.1109/TCYB.2016.2581220 – ident: ref26 doi: 10.1109/TAC.2020.2972220 – ident: ref8 doi: 10.1109/TITS.2013.2291493 |
SSID | ssj0000816898 |
Score | 2.5915933 |
Snippet | This article deals with the problem of secure distributed adaptive platooning control of automated vehicles over vehicular ad-hoc networks (VANETs) in the... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 12003 |
SubjectTerms | Adaptive control Artificial neural networks Automated vehicles Automatic control Automation Denial of service attacks denial-of-service (DoS) attacks Denial-of-service attack directed communication topology Microprocessors Mobile ad hoc networks Network topology Neural networks neural networks (NNs) Nonlinearity Packets (communication) Platooning Roads secure control State estimation Topology Tracking errors Vehicle dynamics Vehicles Vehicular ad hoc networks vehicular ad-hoc network (VANET) |
Title | Secure Distributed Adaptive Platooning Control of Automated Vehicles Over Vehicular Ad-Hoc Networks Under Denial-of-Service Attacks |
URI | https://ieeexplore.ieee.org/document/9440748 https://www.proquest.com/docview/2726117183 https://www.proquest.com/docview/2532241410 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbanrgApSAWCjISB0B4a8eOnRyXLdUKqYVDi8op8iuqxGpTscmFK3-cGccbiYcQt0SZWInm4ZnxzHyEvOSltcEXmjkPJlD5mrM64iRMob0LSkNQgs3J5xd6daU-XJfXe-Tt1AsTY0zFZ3GOl-ksP3R-wFTZSa0g_FDVPtmHwG3s1ZryKQlAIkHfFnDBwKsw-RBT8PrkcvnlHQSDhZjLtGciTJ9UXMrSFL_sSAli5Q-7nDabs3vkfPeZY43J1_nQu7n__tsEx__9j_vkbvY66WIUk0OyFzcPyGHW6y19lYdPvz4iP1ICPtJTHKiLWFgx0EWwt2gV6ac1hOgpf0uXY4k77Vq6GPoO_F4g_BxvUpUd_QgKMt5hlSsswFadpxdjyfmWJrAleop1fmvWtSwbLLroe2z5f0iuzt5fLlcsAzUwD95fz1RZBm2cKUPrRRlcK612xjkndCG8UMbqSopoeFlUQdUuts5yHqMAOYmubuUjcrDpNvExobowvsKRiVW0SltZa2OtAa8iGMOt1DPCd8xqfJ5ijmAa6yZFM7xukNUNsrrJrJ6RN9Mrt-MIj38RHyG_JsLMqhk53klEk5V82xQGwk8Bm7uckRfTY1BPPHOxm9gNQFNKdJKU4E_-vvJTcqfAjorU3nhMDvpvQ3wGfk7vnicB_wkuEvej |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB4tywEuwLKgLSxgJA6ASNeOHTs5li6rAtvCoYuWU-RXhETVrGhy4cofZ-y4lXgIcUuUiZVoZjwPz8wH8IwWWjuby8xY3AKFrWhW-TAJk0lrnJAYlITm5PlCzi7Eu8vicg9e7XphvPex-MyPw2U8y3et7UOq7KQSGH6I8hpcR7tfsKFba5dRiRASEfw2x4sM_QqVjjEZrU6W08-vMRzM2ZhHqxmA-rignBcq_8UmRZCVP3bmaG7ObsN8-6FDlcnXcd-Zsf3-2wzH__2TO3Ar-Z1kMgjKAez59V04SJq9Ic_T-OkXh_AjpuA9OQ0jdQMalndk4vRV2BfJxxUG6TGDS6ZDkTtpGzLpuxY9XyT85L_EOjvyAVVkuAt1rrhANmstWQxF5xsS4ZbIaaj0W2Vtk6Uti0y6LjT934OLszfL6SxLUA2ZRf-vy5AdTiqjCtdYVjjTcC2NMsYwmTPLhNKy5MwrWuSlE5XxjdGUes9QUrypGn4f9tft2h8BkbmyZRiaWHotpOaVVFor9CucUlRzOQK6ZVZt0xzzAKexqmM8Q6s6sLoOrK4Tq0fwcvfK1TDE41_Eh4FfO8LEqhEcbyWiTmq-qXOFAShD885H8HT3GBU0nLrotW97pCl4cJMEow_-vvITuDFbzs_r87eL9w_hZh76K2Kz4zHsd996_wi9ns48jsL-Ez1--uw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Secure+Distributed+Adaptive+Platooning+Control+of+Automated+Vehicles+Over+Vehicular+Ad-Hoc+Networks+Under+Denial-of-Service+Attacks&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Xiao%2C+Shunyuan&rft.au=Ge%2C+Xiaohua&rft.au=Han%2C+Qing-Long&rft.au=Zhang%2C+Yijun&rft.date=2022-11-01&rft.issn=2168-2275&rft.eissn=2168-2275&rft.volume=52&rft.issue=11&rft.spage=12003&rft_id=info:doi/10.1109%2FTCYB.2021.3074318&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |