Neural-Network-Based Constrained Output-Feedback Control for MEMS Gyroscopes Considering Scarce Transmission Bandwidth
In this article, a neural-network-based constrained output-feedback control is considered for microelectromechanical system (MEMS) gyroscopes subject to scarce transmission bandwidth and lumped disturbances resulting from model uncertainties, dynamic coupling, and environmental disturbances. First,...
Saved in:
Published in | IEEE transactions on cybernetics Vol. 52; no. 11; pp. 12351 - 12363 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.11.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this article, a neural-network-based constrained output-feedback control is considered for microelectromechanical system (MEMS) gyroscopes subject to scarce transmission bandwidth and lumped disturbances resulting from model uncertainties, dynamic coupling, and environmental disturbances. First, a hybrid quantizer capable of achieving an adjustable communication rate and quantization density is proposed to convert continuous control signals into discrete values, allowing for reduced chattering behavior even when control actions vary within large regions and enhanced tracking accuracy can be ensured. Subsequently, by applying two types of nonlinear mapping, all state variables of MEMS gyroscopes are restrained within the predefined time-varying asymmetric functions without imposing stringent feasibility conditions on virtual control laws. Furthermore, an echo-state network-based minimal learning parameter neural observer is developed to simultaneously recover the unmeasurable velocity-state variables, matched as well as unmatched disturbances in constrained MEMS gyroscopes dynamics, enabling an output-feedback control solution with a decreased online learning complexity. It is shown via the Lyapunov stability and nonsmooth analysis that all signals in the closed-loop system remain ultimately uniformly bounded even with discontinuous control actions. Comparison simulations are produced to certify the effectiveness of the presented controller. |
---|---|
AbstractList | In this article, a neural-network-based constrained output-feedback control is considered for microelectromechanical system (MEMS) gyroscopes subject to scarce transmission bandwidth and lumped disturbances resulting from model uncertainties, dynamic coupling, and environmental disturbances. First, a hybrid quantizer capable of achieving an adjustable communication rate and quantization density is proposed to convert continuous control signals into discrete values, allowing for reduced chattering behavior even when control actions vary within large regions and enhanced tracking accuracy can be ensured. Subsequently, by applying two types of nonlinear mapping, all state variables of MEMS gyroscopes are restrained within the predefined time-varying asymmetric functions without imposing stringent feasibility conditions on virtual control laws. Furthermore, an echo-state network-based minimal learning parameter neural observer is developed to simultaneously recover the unmeasurable velocity-state variables, matched as well as unmatched disturbances in constrained MEMS gyroscopes dynamics, enabling an output-feedback control solution with a decreased online learning complexity. It is shown via the Lyapunov stability and nonsmooth analysis that all signals in the closed-loop system remain ultimately uniformly bounded even with discontinuous control actions. Comparison simulations are produced to certify the effectiveness of the presented controller. In this article, a neural-network-based constrained output-feedback control is considered for microelectromechanical system (MEMS) gyroscopes subject to scarce transmission bandwidth and lumped disturbances resulting from model uncertainties, dynamic coupling, and environmental disturbances. First, a hybrid quantizer capable of achieving an adjustable communication rate and quantization density is proposed to convert continuous control signals into discrete values, allowing for reduced chattering behavior even when control actions vary within large regions and enhanced tracking accuracy can be ensured. Subsequently, by applying two types of nonlinear mapping, all state variables of MEMS gyroscopes are restrained within the predefined time-varying asymmetric functions without imposing stringent feasibility conditions on virtual control laws. Furthermore, an echo-state network-based minimal learning parameter neural observer is developed to simultaneously recover the unmeasurable velocity-state variables, matched as well as unmatched disturbances in constrained MEMS gyroscopes dynamics, enabling an output-feedback control solution with a decreased online learning complexity. It is shown via the Lyapunov stability and nonsmooth analysis that all signals in the closed-loop system remain ultimately uniformly bounded even with discontinuous control actions. Comparison simulations are produced to certify the effectiveness of the presented controller.In this article, a neural-network-based constrained output-feedback control is considered for microelectromechanical system (MEMS) gyroscopes subject to scarce transmission bandwidth and lumped disturbances resulting from model uncertainties, dynamic coupling, and environmental disturbances. First, a hybrid quantizer capable of achieving an adjustable communication rate and quantization density is proposed to convert continuous control signals into discrete values, allowing for reduced chattering behavior even when control actions vary within large regions and enhanced tracking accuracy can be ensured. Subsequently, by applying two types of nonlinear mapping, all state variables of MEMS gyroscopes are restrained within the predefined time-varying asymmetric functions without imposing stringent feasibility conditions on virtual control laws. Furthermore, an echo-state network-based minimal learning parameter neural observer is developed to simultaneously recover the unmeasurable velocity-state variables, matched as well as unmatched disturbances in constrained MEMS gyroscopes dynamics, enabling an output-feedback control solution with a decreased online learning complexity. It is shown via the Lyapunov stability and nonsmooth analysis that all signals in the closed-loop system remain ultimately uniformly bounded even with discontinuous control actions. Comparison simulations are produced to certify the effectiveness of the presented controller. |
Author | Shi, Yi Shao, Xingling |
Author_xml | – sequence: 1 givenname: Xingling orcidid: 0000-0002-6187-4575 surname: Shao fullname: Shao, Xingling email: shaoxl@nuc.edu.cn organization: Key Laboratory of Instrumentation Science and Dynamic Measurement, Ministry of Education, North University of China, Taiyuan, China – sequence: 2 givenname: Yi surname: Shi fullname: Shi, Yi email: shi_yi1996@163.com organization: Key Laboratory of Instrumentation Science and Dynamic Measurement, Ministry of Education, North University of China, Taiyuan, China |
BookMark | eNp9kT1vHCEQhlHkKHYc_4AozUpp0uyFrwW2zJ1sJ5I_Cl-TCrEwm2Cv4QKsLf_7sDnLhYvQzDC8zzDwvkcHIQZA6CPBK0Jw_3W7-bleUUzJimGJCZNv0BElQrWUyu7gJRfyEJ3kfIvrUrXUq3fokHHMWNfJI_RwBXMyU3sF5TGmu3ZtMrhmE0MuyfhQ8-u57ObSngG4wdi75aykODVjTM3l6eVNc_6UYrZxB_kf5x0kH341N9YkC802mZDvfc4-hmZtgnv0rvz-gN6OZspw8hyP0fbsdLv53l5cn__YfLtoLaOitJzxfuiYo44PMPCRYGcEjKyzI0BvRqmcGeqeCwVUOCWNU5hTa1XXGerYMfqyb7tL8c8Mueg6iYVpMgHinDXtGKWcKiqr9PMr6W2cU6jDaSqpIBTzTlQV2atsfXNOMOpd8vcmPWmC9WKLXmzRiy362ZbKyFeM9cUUv_yj8dN_yU970gPAy00951gJzv4CBrqb-g |
CODEN | ITCEB8 |
CitedBy_id | crossref_primary_10_1016_j_ast_2022_107351 crossref_primary_10_1109_TNNLS_2023_3265321 crossref_primary_10_1109_TFUZZ_2024_3392296 crossref_primary_10_1016_j_measurement_2025_116996 crossref_primary_10_1002_rnc_6018 crossref_primary_10_1007_s40435_022_01110_4 crossref_primary_10_1007_s11063_023_11360_8 crossref_primary_10_1109_ACCESS_2021_3101038 crossref_primary_10_1109_TSMC_2021_3129275 crossref_primary_10_1109_TASE_2024_3432937 crossref_primary_10_1109_ACCESS_2021_3095465 crossref_primary_10_1155_2022_4880505 crossref_primary_10_1109_TSMC_2023_3288585 crossref_primary_10_1016_j_cja_2023_12_016 crossref_primary_10_1109_TSMC_2022_3215474 crossref_primary_10_1002_dac_5382 crossref_primary_10_1016_j_sna_2024_115765 crossref_primary_10_1007_s11071_022_07603_3 |
Cites_doi | 10.1109/JSEN.2008.2012237 10.1002/rnc.3669 10.1109/JSEN.2008.2006451 10.1016/j.automatica.2018.05.014 10.1109/TSMCB.2009.2033563 10.1016/j.jfranklin.2018.01.006 10.1109/TFUZZ.2014.2317515 10.2514/1.23370 10.1109/TAES.2020.3040519 10.1109/TNNLS.2014.2312001 10.1109/TSMC.2017.2769683 10.1109/TAC.2018.2845707 10.1109/TIE.2011.2169636 10.1109/JSYST.2020.3022901 10.1109/20.911850 10.1016/j.neucom.2015.10.116 10.1109/TNNLS.2018.2790982 10.1109/TNNLS.2017.2672998 10.1109/TCYB.2017.2715980 10.1002/rnc.3983 10.1109/TSMC.2015.2508962 10.1109/TNNLS.2020.3030712 10.1002/acs.2795 10.1109/TNNLS.2016.2532351 10.1007/s11071-017-3985-0 10.1007/s11071-017-3347-y 10.1016/j.jfranklin.2018.10.011 10.1109/TIE.2020.3026297 10.1002/rnc.4087 10.1109/TNNLS.2017.2651104 10.1109/TNNLS.2019.2919931 10.1109/TNNLS.2020.3018107 10.1109/TCYB.2018.2828308 10.1007/s00498-010-0048-1 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TCYB.2021.3070137 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | Aerospace Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2168-2275 |
EndPage | 12363 |
ExternalDocumentID | 10_1109_TCYB_2021_3070137 9440864 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61803348 funderid: 10.13039/501100001809 – fundername: National Nature Science Foundation of China as National Major Scientific Instruments Development Project grantid: 61927807 funderid: 10.13039/501100001809 – fundername: Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi grantid: 2020L0266 – fundername: Youth Academic North University of China grantid: QX201803 funderid: 10.13039/501100007926 – fundername: Program for the Innovative Talents of Higher Education Institutions of Shanxi – fundername: Shanxi Province Science Foundation for Youths grantid: 201701D221123 funderid: 10.13039/501100010010 – fundername: Shanxi “1331 Project” Key Subjects Construction grantid: 1331KSC – fundername: State Key Laboratory of Deep Buried Target Damage grantid: DXMBJJ2019-02 funderid: 10.13039/501100019613 |
GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c326t-4349b53d2d4beb4f10da6ef35cfee9af78dabef3468e26d87ad8042cc855a2d3 |
IEDL.DBID | RIE |
ISSN | 2168-2267 2168-2275 |
IngestDate | Fri Jul 11 01:03:30 EDT 2025 Mon Jun 30 03:35:46 EDT 2025 Tue Jul 01 00:53:59 EDT 2025 Thu Apr 24 23:12:22 EDT 2025 Wed Aug 27 02:18:30 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c326t-4349b53d2d4beb4f10da6ef35cfee9af78dabef3468e26d87ad8042cc855a2d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6187-4575 |
PMID | 34033557 |
PQID | 2726120456 |
PQPubID | 85422 |
PageCount | 13 |
ParticipantIDs | crossref_primary_10_1109_TCYB_2021_3070137 crossref_citationtrail_10_1109_TCYB_2021_3070137 ieee_primary_9440864 proquest_miscellaneous_2532242827 proquest_journals_2726120456 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-01 |
PublicationDateYYYYMMDD | 2022-11-01 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on cybernetics |
PublicationTitleAbbrev | TCYB |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref34 ref15 ref14 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref21 doi: 10.1109/JSEN.2008.2012237 – ident: ref29 doi: 10.1002/rnc.3669 – ident: ref4 doi: 10.1109/JSEN.2008.2006451 – ident: ref19 doi: 10.1016/j.automatica.2018.05.014 – ident: ref10 doi: 10.1109/TSMCB.2009.2033563 – ident: ref1 doi: 10.1016/j.jfranklin.2018.01.006 – ident: ref18 doi: 10.1109/TFUZZ.2014.2317515 – ident: ref22 doi: 10.2514/1.23370 – ident: ref31 doi: 10.1109/TAES.2020.3040519 – ident: ref28 doi: 10.1109/TNNLS.2014.2312001 – ident: ref25 doi: 10.1109/TSMC.2017.2769683 – ident: ref24 doi: 10.1109/TAC.2018.2845707 – ident: ref32 doi: 10.1109/TIE.2011.2169636 – ident: ref34 doi: 10.1109/JSYST.2020.3022901 – ident: ref6 doi: 10.1109/20.911850 – ident: ref11 doi: 10.1016/j.neucom.2015.10.116 – ident: ref17 doi: 10.1109/TNNLS.2018.2790982 – ident: ref3 doi: 10.1109/TNNLS.2017.2672998 – ident: ref8 doi: 10.1109/TCYB.2017.2715980 – ident: ref5 doi: 10.1002/rnc.3983 – ident: ref13 doi: 10.1109/TSMC.2015.2508962 – ident: ref2 doi: 10.1109/TNNLS.2020.3030712 – ident: ref15 doi: 10.1002/acs.2795 – ident: ref16 doi: 10.1109/TNNLS.2016.2532351 – ident: ref30 doi: 10.1007/s11071-017-3985-0 – ident: ref12 doi: 10.1007/s11071-017-3347-y – ident: ref14 doi: 10.1016/j.jfranklin.2018.10.011 – ident: ref33 doi: 10.1109/TIE.2020.3026297 – ident: ref26 doi: 10.1002/rnc.4087 – ident: ref27 doi: 10.1109/TNNLS.2017.2651104 – ident: ref23 doi: 10.1109/TNNLS.2019.2919931 – ident: ref9 doi: 10.1109/TNNLS.2020.3018107 – ident: ref7 doi: 10.1109/TCYB.2018.2828308 – ident: ref20 doi: 10.1007/s00498-010-0048-1 |
SSID | ssj0000816898 |
Score | 2.4203124 |
Snippet | In this article, a neural-network-based constrained output-feedback control is considered for microelectromechanical system (MEMS) gyroscopes subject to scarce... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 12351 |
SubjectTerms | Artificial neural networks Bandwidth Bandwidths Control systems Control theory Disturbances Feedback control Gyroscopes Hybrid quantizer (HQ) learning complexity microelectromechanical system (MEMS) gyroscopes Microelectromechanical systems Micromechanical devices neural adaptive Neural networks Nonlinear systems Output feedback Quantization (signal) Stability analysis State variable Velocity measurement |
Title | Neural-Network-Based Constrained Output-Feedback Control for MEMS Gyroscopes Considering Scarce Transmission Bandwidth |
URI | https://ieeexplore.ieee.org/document/9440864 https://www.proquest.com/docview/2726120456 https://www.proquest.com/docview/2532242827 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbanrhAS0EsFGQkDoDwNutHnBzZqkuFtOXAIpVT5KeKWmVXNCmCX8-M443EQ4hL5MhOFGfGnhnP4yPkhRciKi0rFoUrmXQB9sHI8aJMDLrCGlUYbXFenn2S7y_UxQ55M-bChBBS8FmYYjP58v3a9XhUdlwjPHIpd8kuGG5DrtZ4npIAJBL0LYcGA61CZyfmrKiPVyef52AM8tkUeXwmEHtPyEKAtNW_SKQEsfLHvpyEzeIeWW4_c4gxuZr2nZ26H79VcPzfeeyTu1nrpG8HNjkgO6G9Tw7yur6hL3Px6VeH5BardZhrdj6Eh7M5SDlPEdYzgUlA-0PfbfqOLUDsWeOusA-D3Slov3R5uvxI333HCpnrDbx4CwcK8pGiq8cFmoQjMBee0tG5af23L767fEBWi9PVyRnL2AzMgcLXMSlkbZXw3EsbrIyzwpsyRKFcDKE2UVfeWLiXZRV46SttfAX7g3OVUoZ78ZDstes2PCI08qrEXEDQa2pppKutBmqG6FVZKyHthBRb8jQu1y3HGV83yX4p6gaJ2yBxm0zcCXk9PrIZinb8a_AhUmgcmIkzIUdbHmjysr5puMaKa6gFT8jzsRv-GXpZTBvWPYxRsEeCUcf147-_-Qm5wzGHIiU0HpG97msfnoJm09lniaV_AsS-89U |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoALtBTUhRaMxAEQ2SZ-5HFkqy4LdJcDi1ROkeOHQK2yK5qA6K_vjJONxEOIS-TIThRnxjNjz-MDeGaF8CqTeeSFSSNpHMpBz-mitHdZTjWqKNpikc4-yXdn6mwLXg25MM65EHzmxtQMvny7Mi0dlR0VBI-cyhtwE_W-SrpsreFEJUBIBPBbjo0I7Yqsd2MmcXG0PP48we0gT8bE5Ykg9D0hY4H6NvtFJwWQlT8kc1A307sw33xoF2VyPm6bamyufqvh-L8z2YE7vd3JXneMsgtbrr4Hu_3KvmTP-_LTL_bgO9Xr0BfRogsQjyao5ywjYM8AJ4HtD22zbptoioqv0uac-ijcnaH9y-Yn84_szU-qkbla44s3gKCoIRk5e4xjQT0ie9E5HZvo2v74apsv92E5PVkez6IenSEyaPI1kRSyqJSw3MrKVdInsdWp80IZ71yhfZZbXeG9THPHU5tn2uYoIYzJldLcigewXa9qtw_M8zylbEC0bAqppSmqDKnpvFVpoYSsRhBvyFOavnI5zfiiDDuYuCiJuCURt-yJO4KXwyPrrmzHvwbvEYWGgT1xRnCw4YGyX9iXJc-o5hrZwSN4OnTjPyM_i67dqsUxCqUkbut49vDvb34Ct2bL-Wl5-nbx_hHc5pRREdIbD2C7-da6Q7RzmupxYO9roU73Hg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural-Network-Based+Constrained+Output-Feedback+Control+for+MEMS+Gyroscopes+Considering+Scarce+Transmission+Bandwidth&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Shao%2C+Xingling&rft.au=Shi%2C+Yi&rft.date=2022-11-01&rft.issn=2168-2275&rft.eissn=2168-2275&rft.volume=52&rft.issue=11&rft.spage=12351&rft_id=info:doi/10.1109%2FTCYB.2021.3070137&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |