Neural-Network-Based Constrained Output-Feedback Control for MEMS Gyroscopes Considering Scarce Transmission Bandwidth

In this article, a neural-network-based constrained output-feedback control is considered for microelectromechanical system (MEMS) gyroscopes subject to scarce transmission bandwidth and lumped disturbances resulting from model uncertainties, dynamic coupling, and environmental disturbances. First,...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 52; no. 11; pp. 12351 - 12363
Main Authors Shao, Xingling, Shi, Yi
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.11.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this article, a neural-network-based constrained output-feedback control is considered for microelectromechanical system (MEMS) gyroscopes subject to scarce transmission bandwidth and lumped disturbances resulting from model uncertainties, dynamic coupling, and environmental disturbances. First, a hybrid quantizer capable of achieving an adjustable communication rate and quantization density is proposed to convert continuous control signals into discrete values, allowing for reduced chattering behavior even when control actions vary within large regions and enhanced tracking accuracy can be ensured. Subsequently, by applying two types of nonlinear mapping, all state variables of MEMS gyroscopes are restrained within the predefined time-varying asymmetric functions without imposing stringent feasibility conditions on virtual control laws. Furthermore, an echo-state network-based minimal learning parameter neural observer is developed to simultaneously recover the unmeasurable velocity-state variables, matched as well as unmatched disturbances in constrained MEMS gyroscopes dynamics, enabling an output-feedback control solution with a decreased online learning complexity. It is shown via the Lyapunov stability and nonsmooth analysis that all signals in the closed-loop system remain ultimately uniformly bounded even with discontinuous control actions. Comparison simulations are produced to certify the effectiveness of the presented controller.
AbstractList In this article, a neural-network-based constrained output-feedback control is considered for microelectromechanical system (MEMS) gyroscopes subject to scarce transmission bandwidth and lumped disturbances resulting from model uncertainties, dynamic coupling, and environmental disturbances. First, a hybrid quantizer capable of achieving an adjustable communication rate and quantization density is proposed to convert continuous control signals into discrete values, allowing for reduced chattering behavior even when control actions vary within large regions and enhanced tracking accuracy can be ensured. Subsequently, by applying two types of nonlinear mapping, all state variables of MEMS gyroscopes are restrained within the predefined time-varying asymmetric functions without imposing stringent feasibility conditions on virtual control laws. Furthermore, an echo-state network-based minimal learning parameter neural observer is developed to simultaneously recover the unmeasurable velocity-state variables, matched as well as unmatched disturbances in constrained MEMS gyroscopes dynamics, enabling an output-feedback control solution with a decreased online learning complexity. It is shown via the Lyapunov stability and nonsmooth analysis that all signals in the closed-loop system remain ultimately uniformly bounded even with discontinuous control actions. Comparison simulations are produced to certify the effectiveness of the presented controller.
In this article, a neural-network-based constrained output-feedback control is considered for microelectromechanical system (MEMS) gyroscopes subject to scarce transmission bandwidth and lumped disturbances resulting from model uncertainties, dynamic coupling, and environmental disturbances. First, a hybrid quantizer capable of achieving an adjustable communication rate and quantization density is proposed to convert continuous control signals into discrete values, allowing for reduced chattering behavior even when control actions vary within large regions and enhanced tracking accuracy can be ensured. Subsequently, by applying two types of nonlinear mapping, all state variables of MEMS gyroscopes are restrained within the predefined time-varying asymmetric functions without imposing stringent feasibility conditions on virtual control laws. Furthermore, an echo-state network-based minimal learning parameter neural observer is developed to simultaneously recover the unmeasurable velocity-state variables, matched as well as unmatched disturbances in constrained MEMS gyroscopes dynamics, enabling an output-feedback control solution with a decreased online learning complexity. It is shown via the Lyapunov stability and nonsmooth analysis that all signals in the closed-loop system remain ultimately uniformly bounded even with discontinuous control actions. Comparison simulations are produced to certify the effectiveness of the presented controller.In this article, a neural-network-based constrained output-feedback control is considered for microelectromechanical system (MEMS) gyroscopes subject to scarce transmission bandwidth and lumped disturbances resulting from model uncertainties, dynamic coupling, and environmental disturbances. First, a hybrid quantizer capable of achieving an adjustable communication rate and quantization density is proposed to convert continuous control signals into discrete values, allowing for reduced chattering behavior even when control actions vary within large regions and enhanced tracking accuracy can be ensured. Subsequently, by applying two types of nonlinear mapping, all state variables of MEMS gyroscopes are restrained within the predefined time-varying asymmetric functions without imposing stringent feasibility conditions on virtual control laws. Furthermore, an echo-state network-based minimal learning parameter neural observer is developed to simultaneously recover the unmeasurable velocity-state variables, matched as well as unmatched disturbances in constrained MEMS gyroscopes dynamics, enabling an output-feedback control solution with a decreased online learning complexity. It is shown via the Lyapunov stability and nonsmooth analysis that all signals in the closed-loop system remain ultimately uniformly bounded even with discontinuous control actions. Comparison simulations are produced to certify the effectiveness of the presented controller.
Author Shi, Yi
Shao, Xingling
Author_xml – sequence: 1
  givenname: Xingling
  orcidid: 0000-0002-6187-4575
  surname: Shao
  fullname: Shao, Xingling
  email: shaoxl@nuc.edu.cn
  organization: Key Laboratory of Instrumentation Science and Dynamic Measurement, Ministry of Education, North University of China, Taiyuan, China
– sequence: 2
  givenname: Yi
  surname: Shi
  fullname: Shi, Yi
  email: shi_yi1996@163.com
  organization: Key Laboratory of Instrumentation Science and Dynamic Measurement, Ministry of Education, North University of China, Taiyuan, China
BookMark eNp9kT1vHCEQhlHkKHYc_4AozUpp0uyFrwW2zJ1sJ5I_Cl-TCrEwm2Cv4QKsLf_7sDnLhYvQzDC8zzDwvkcHIQZA6CPBK0Jw_3W7-bleUUzJimGJCZNv0BElQrWUyu7gJRfyEJ3kfIvrUrXUq3fokHHMWNfJI_RwBXMyU3sF5TGmu3ZtMrhmE0MuyfhQ8-u57ObSngG4wdi75aykODVjTM3l6eVNc_6UYrZxB_kf5x0kH341N9YkC802mZDvfc4-hmZtgnv0rvz-gN6OZspw8hyP0fbsdLv53l5cn__YfLtoLaOitJzxfuiYo44PMPCRYGcEjKyzI0BvRqmcGeqeCwVUOCWNU5hTa1XXGerYMfqyb7tL8c8Mueg6iYVpMgHinDXtGKWcKiqr9PMr6W2cU6jDaSqpIBTzTlQV2atsfXNOMOpd8vcmPWmC9WKLXmzRiy362ZbKyFeM9cUUv_yj8dN_yU970gPAy00951gJzv4CBrqb-g
CODEN ITCEB8
CitedBy_id crossref_primary_10_1016_j_ast_2022_107351
crossref_primary_10_1109_TNNLS_2023_3265321
crossref_primary_10_1109_TFUZZ_2024_3392296
crossref_primary_10_1016_j_measurement_2025_116996
crossref_primary_10_1002_rnc_6018
crossref_primary_10_1007_s40435_022_01110_4
crossref_primary_10_1007_s11063_023_11360_8
crossref_primary_10_1109_ACCESS_2021_3101038
crossref_primary_10_1109_TSMC_2021_3129275
crossref_primary_10_1109_TASE_2024_3432937
crossref_primary_10_1109_ACCESS_2021_3095465
crossref_primary_10_1155_2022_4880505
crossref_primary_10_1109_TSMC_2023_3288585
crossref_primary_10_1016_j_cja_2023_12_016
crossref_primary_10_1109_TSMC_2022_3215474
crossref_primary_10_1002_dac_5382
crossref_primary_10_1016_j_sna_2024_115765
crossref_primary_10_1007_s11071_022_07603_3
Cites_doi 10.1109/JSEN.2008.2012237
10.1002/rnc.3669
10.1109/JSEN.2008.2006451
10.1016/j.automatica.2018.05.014
10.1109/TSMCB.2009.2033563
10.1016/j.jfranklin.2018.01.006
10.1109/TFUZZ.2014.2317515
10.2514/1.23370
10.1109/TAES.2020.3040519
10.1109/TNNLS.2014.2312001
10.1109/TSMC.2017.2769683
10.1109/TAC.2018.2845707
10.1109/TIE.2011.2169636
10.1109/JSYST.2020.3022901
10.1109/20.911850
10.1016/j.neucom.2015.10.116
10.1109/TNNLS.2018.2790982
10.1109/TNNLS.2017.2672998
10.1109/TCYB.2017.2715980
10.1002/rnc.3983
10.1109/TSMC.2015.2508962
10.1109/TNNLS.2020.3030712
10.1002/acs.2795
10.1109/TNNLS.2016.2532351
10.1007/s11071-017-3985-0
10.1007/s11071-017-3347-y
10.1016/j.jfranklin.2018.10.011
10.1109/TIE.2020.3026297
10.1002/rnc.4087
10.1109/TNNLS.2017.2651104
10.1109/TNNLS.2019.2919931
10.1109/TNNLS.2020.3018107
10.1109/TCYB.2018.2828308
10.1007/s00498-010-0048-1
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TCYB.2021.3070137
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Aerospace Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 12363
ExternalDocumentID 10_1109_TCYB_2021_3070137
9440864
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61803348
  funderid: 10.13039/501100001809
– fundername: National Nature Science Foundation of China as National Major Scientific Instruments Development Project
  grantid: 61927807
  funderid: 10.13039/501100001809
– fundername: Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi
  grantid: 2020L0266
– fundername: Youth Academic North University of China
  grantid: QX201803
  funderid: 10.13039/501100007926
– fundername: Program for the Innovative Talents of Higher Education Institutions of Shanxi
– fundername: Shanxi Province Science Foundation for Youths
  grantid: 201701D221123
  funderid: 10.13039/501100010010
– fundername: Shanxi “1331 Project” Key Subjects Construction
  grantid: 1331KSC
– fundername: State Key Laboratory of Deep Buried Target Damage
  grantid: DXMBJJ2019-02
  funderid: 10.13039/501100019613
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c326t-4349b53d2d4beb4f10da6ef35cfee9af78dabef3468e26d87ad8042cc855a2d3
IEDL.DBID RIE
ISSN 2168-2267
2168-2275
IngestDate Fri Jul 11 01:03:30 EDT 2025
Mon Jun 30 03:35:46 EDT 2025
Tue Jul 01 00:53:59 EDT 2025
Thu Apr 24 23:12:22 EDT 2025
Wed Aug 27 02:18:30 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c326t-4349b53d2d4beb4f10da6ef35cfee9af78dabef3468e26d87ad8042cc855a2d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6187-4575
PMID 34033557
PQID 2726120456
PQPubID 85422
PageCount 13
ParticipantIDs crossref_primary_10_1109_TCYB_2021_3070137
crossref_citationtrail_10_1109_TCYB_2021_3070137
ieee_primary_9440864
proquest_miscellaneous_2532242827
proquest_journals_2726120456
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref34
ref15
ref14
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref21
  doi: 10.1109/JSEN.2008.2012237
– ident: ref29
  doi: 10.1002/rnc.3669
– ident: ref4
  doi: 10.1109/JSEN.2008.2006451
– ident: ref19
  doi: 10.1016/j.automatica.2018.05.014
– ident: ref10
  doi: 10.1109/TSMCB.2009.2033563
– ident: ref1
  doi: 10.1016/j.jfranklin.2018.01.006
– ident: ref18
  doi: 10.1109/TFUZZ.2014.2317515
– ident: ref22
  doi: 10.2514/1.23370
– ident: ref31
  doi: 10.1109/TAES.2020.3040519
– ident: ref28
  doi: 10.1109/TNNLS.2014.2312001
– ident: ref25
  doi: 10.1109/TSMC.2017.2769683
– ident: ref24
  doi: 10.1109/TAC.2018.2845707
– ident: ref32
  doi: 10.1109/TIE.2011.2169636
– ident: ref34
  doi: 10.1109/JSYST.2020.3022901
– ident: ref6
  doi: 10.1109/20.911850
– ident: ref11
  doi: 10.1016/j.neucom.2015.10.116
– ident: ref17
  doi: 10.1109/TNNLS.2018.2790982
– ident: ref3
  doi: 10.1109/TNNLS.2017.2672998
– ident: ref8
  doi: 10.1109/TCYB.2017.2715980
– ident: ref5
  doi: 10.1002/rnc.3983
– ident: ref13
  doi: 10.1109/TSMC.2015.2508962
– ident: ref2
  doi: 10.1109/TNNLS.2020.3030712
– ident: ref15
  doi: 10.1002/acs.2795
– ident: ref16
  doi: 10.1109/TNNLS.2016.2532351
– ident: ref30
  doi: 10.1007/s11071-017-3985-0
– ident: ref12
  doi: 10.1007/s11071-017-3347-y
– ident: ref14
  doi: 10.1016/j.jfranklin.2018.10.011
– ident: ref33
  doi: 10.1109/TIE.2020.3026297
– ident: ref26
  doi: 10.1002/rnc.4087
– ident: ref27
  doi: 10.1109/TNNLS.2017.2651104
– ident: ref23
  doi: 10.1109/TNNLS.2019.2919931
– ident: ref9
  doi: 10.1109/TNNLS.2020.3018107
– ident: ref7
  doi: 10.1109/TCYB.2018.2828308
– ident: ref20
  doi: 10.1007/s00498-010-0048-1
SSID ssj0000816898
Score 2.4203124
Snippet In this article, a neural-network-based constrained output-feedback control is considered for microelectromechanical system (MEMS) gyroscopes subject to scarce...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 12351
SubjectTerms Artificial neural networks
Bandwidth
Bandwidths
Control systems
Control theory
Disturbances
Feedback control
Gyroscopes
Hybrid quantizer (HQ)
learning complexity
microelectromechanical system (MEMS) gyroscopes
Microelectromechanical systems
Micromechanical devices
neural adaptive
Neural networks
Nonlinear systems
Output feedback
Quantization (signal)
Stability analysis
State variable
Velocity measurement
Title Neural-Network-Based Constrained Output-Feedback Control for MEMS Gyroscopes Considering Scarce Transmission Bandwidth
URI https://ieeexplore.ieee.org/document/9440864
https://www.proquest.com/docview/2726120456
https://www.proquest.com/docview/2532242827
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbanrhAS0EsFGQkDoDwNutHnBzZqkuFtOXAIpVT5KeKWmVXNCmCX8-M443EQ4hL5MhOFGfGnhnP4yPkhRciKi0rFoUrmXQB9sHI8aJMDLrCGlUYbXFenn2S7y_UxQ55M-bChBBS8FmYYjP58v3a9XhUdlwjPHIpd8kuGG5DrtZ4npIAJBL0LYcGA61CZyfmrKiPVyef52AM8tkUeXwmEHtPyEKAtNW_SKQEsfLHvpyEzeIeWW4_c4gxuZr2nZ26H79VcPzfeeyTu1nrpG8HNjkgO6G9Tw7yur6hL3Px6VeH5BardZhrdj6Eh7M5SDlPEdYzgUlA-0PfbfqOLUDsWeOusA-D3Slov3R5uvxI333HCpnrDbx4CwcK8pGiq8cFmoQjMBee0tG5af23L767fEBWi9PVyRnL2AzMgcLXMSlkbZXw3EsbrIyzwpsyRKFcDKE2UVfeWLiXZRV46SttfAX7g3OVUoZ78ZDstes2PCI08qrEXEDQa2pppKutBmqG6FVZKyHthBRb8jQu1y3HGV83yX4p6gaJ2yBxm0zcCXk9PrIZinb8a_AhUmgcmIkzIUdbHmjysr5puMaKa6gFT8jzsRv-GXpZTBvWPYxRsEeCUcf147-_-Qm5wzGHIiU0HpG97msfnoJm09lniaV_AsS-89U
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoALtBTUhRaMxAEQ2SZ-5HFkqy4LdJcDi1ROkeOHQK2yK5qA6K_vjJONxEOIS-TIThRnxjNjz-MDeGaF8CqTeeSFSSNpHMpBz-mitHdZTjWqKNpikc4-yXdn6mwLXg25MM65EHzmxtQMvny7Mi0dlR0VBI-cyhtwE_W-SrpsreFEJUBIBPBbjo0I7Yqsd2MmcXG0PP48we0gT8bE5Ykg9D0hY4H6NvtFJwWQlT8kc1A307sw33xoF2VyPm6bamyufqvh-L8z2YE7vd3JXneMsgtbrr4Hu_3KvmTP-_LTL_bgO9Xr0BfRogsQjyao5ywjYM8AJ4HtD22zbptoioqv0uac-ijcnaH9y-Yn84_szU-qkbla44s3gKCoIRk5e4xjQT0ie9E5HZvo2v74apsv92E5PVkez6IenSEyaPI1kRSyqJSw3MrKVdInsdWp80IZ71yhfZZbXeG9THPHU5tn2uYoIYzJldLcigewXa9qtw_M8zylbEC0bAqppSmqDKnpvFVpoYSsRhBvyFOavnI5zfiiDDuYuCiJuCURt-yJO4KXwyPrrmzHvwbvEYWGgT1xRnCw4YGyX9iXJc-o5hrZwSN4OnTjPyM_i67dqsUxCqUkbut49vDvb34Ct2bL-Wl5-nbx_hHc5pRREdIbD2C7-da6Q7RzmupxYO9roU73Hg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural-Network-Based+Constrained+Output-Feedback+Control+for+MEMS+Gyroscopes+Considering+Scarce+Transmission+Bandwidth&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Shao%2C+Xingling&rft.au=Shi%2C+Yi&rft.date=2022-11-01&rft.issn=2168-2275&rft.eissn=2168-2275&rft.volume=52&rft.issue=11&rft.spage=12351&rft_id=info:doi/10.1109%2FTCYB.2021.3070137&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon