Survey on Visual Analysis of Event Sequence Data

Event sequence data record series of discrete events in the time order of occurrence. They are commonly observed in a variety of applications ranging from electronic health records to network logs, with the characteristics of large-scale, high-dimensional and heterogeneous. This high complexity of e...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on visualization and computer graphics Vol. 28; no. 12; pp. 5091 - 5112
Main Authors Guo, Yi, Guo, Shunan, Jin, Zhuochen, Kaul, Smiti, Gotz, David, Cao, Nan
Format Journal Article
LanguageEnglish
Published New York IEEE 01.12.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Event sequence data record series of discrete events in the time order of occurrence. They are commonly observed in a variety of applications ranging from electronic health records to network logs, with the characteristics of large-scale, high-dimensional and heterogeneous. This high complexity of event sequence data makes it difficult for analysts to manually explore and find patterns, resulting in ever-increasing needs for computational and perceptual aids from visual analytics techniques to extract and communicate insights from event sequence datasets. In this paper, we review the state-of-the-art visual analytics approaches, characterize them with our proposed design space, and categorize them based on analytical tasks and applications. From our review of relevant literature, we have also identified several remaining research challenges and future research opportunities.
AbstractList Event sequence data record series of discrete events in the time order of occurrence. They are commonly observed in a variety of applications ranging from electronic health records to network logs, with the characteristics of large-scale, high-dimensional and heterogeneous. This high complexity of event sequence data makes it difficult for analysts to manually explore and find patterns, resulting in ever-increasing needs for computational and perceptual aids from visual analytics techniques to extract and communicate insights from event sequence datasets. In this paper, we review the state-of-the-art visual analytics approaches, characterize them with our proposed design space, and categorize them based on analytical tasks and applications. From our review of relevant literature, we have also identified several remaining research challenges and future research opportunities.Event sequence data record series of discrete events in the time order of occurrence. They are commonly observed in a variety of applications ranging from electronic health records to network logs, with the characteristics of large-scale, high-dimensional and heterogeneous. This high complexity of event sequence data makes it difficult for analysts to manually explore and find patterns, resulting in ever-increasing needs for computational and perceptual aids from visual analytics techniques to extract and communicate insights from event sequence datasets. In this paper, we review the state-of-the-art visual analytics approaches, characterize them with our proposed design space, and categorize them based on analytical tasks and applications. From our review of relevant literature, we have also identified several remaining research challenges and future research opportunities.
Event sequence data record series of discrete events in the time order of occurrence. They are commonly observed in a variety of applications ranging from electronic health records to network logs, with the characteristics of large-scale, high-dimensional and heterogeneous. This high complexity of event sequence data makes it difficult for analysts to manually explore and find patterns, resulting in ever-increasing needs for computational and perceptual aids from visual analytics techniques to extract and communicate insights from event sequence datasets. In this paper, we review the state-of-the-art visual analytics approaches, characterize them with our proposed design space, and categorize them based on analytical tasks and applications. From our review of relevant literature, we have also identified several remaining research challenges and future research opportunities.
Author Guo, Shunan
Kaul, Smiti
Gotz, David
Jin, Zhuochen
Cao, Nan
Guo, Yi
Author_xml – sequence: 1
  givenname: Yi
  surname: Guo
  fullname: Guo, Yi
  email: dennis.guo.china@gmail.com
  organization: Intelligent Big Data Visualization Lab, Tongji University, Shanghai, China
– sequence: 2
  givenname: Shunan
  orcidid: 0000-0001-5355-8399
  surname: Guo
  fullname: Guo, Shunan
  email: g.shunan@gmail.com
  organization: Intelligent Big Data Visualization Lab, Tongji University, Shanghai, China
– sequence: 3
  givenname: Zhuochen
  surname: Jin
  fullname: Jin, Zhuochen
  email: chjzcjames@gmail.com
  organization: Intelligent Big Data Visualization Lab, Tongji University, Shanghai, China
– sequence: 4
  givenname: Smiti
  orcidid: 0000-0001-6435-0497
  surname: Kaul
  fullname: Kaul, Smiti
  email: smiti@unc.edu
  organization: Visual Analysis and Communication Lab, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
– sequence: 5
  givenname: David
  orcidid: 0000-0002-6424-7374
  surname: Gotz
  fullname: Gotz, David
  email: gotz@unc.edu
  organization: Visual Analysis and Communication Lab, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
– sequence: 6
  givenname: Nan
  orcidid: 0000-0003-1316-7515
  surname: Cao
  fullname: Cao, Nan
  email: nan.cao@gmail.com
  organization: Intelligent Big Data Visualization Lab, Tongji University, Shanghai, China
BookMark eNp9kD9vwjAQxa2KqvxpP0DVJVKXLqG--BzHI6KUVkLqAGWNLHOWgkJC4wSJb18jUAeGTveG37t394asV9UVMfYIfAzA9etqPZ2PE57AWADnCOKGDUAjxFzytBc0VypO0iTts6H3W84BMdN3rC9QAAqZDRhfds2BjlFdRevCd6aMJpUpj77wUe2i2YGqNlrST0eVpejNtOae3TpTenq4zBH7fp-tph_x4mv-OZ0sYiuStI0FoVICIUVhDSGnFDbSCYfKgQkXK4VScwOZFRYDS-h00EDGuY21iRixl_PefVOHeN_mu8JbKktTUd35PJFSasW14AF9vkK3ddeENwKlkkwqQCkCBWfKNrX3Dbl83xQ70xxz4PmpzvxUZ36qM7_UGTzqymOL1rRFXbWNKcp_nU9nZ0FEf0katUolil84xn-y
CODEN ITVGEA
CitedBy_id crossref_primary_10_1109_TVCG_2024_3456187
crossref_primary_10_1109_ACCESS_2024_3437418
crossref_primary_10_1007_s12650_022_00884_1
crossref_primary_10_1111_cgf_15200
crossref_primary_10_1109_ACCESS_2023_3259972
crossref_primary_10_1109_TVCG_2024_3358919
crossref_primary_10_1109_TVCG_2024_3382760
crossref_primary_10_1109_TVCG_2024_3388523
crossref_primary_10_1109_TVCG_2021_3114840
crossref_primary_10_1109_TVCG_2023_3282364
crossref_primary_10_1007_s12650_022_00857_4
crossref_primary_10_1109_TVCG_2022_3209430
crossref_primary_10_3390_info13020054
crossref_primary_10_1111_cgf_14819
crossref_primary_10_1145_3643894
crossref_primary_10_1016_j_chb_2024_108247
crossref_primary_10_1007_s41095_022_0275_7
crossref_primary_10_3390_aerospace10070595
crossref_primary_10_1007_s12650_022_00890_3
crossref_primary_10_1016_j_visinf_2025_02_002
crossref_primary_10_1016_j_visinf_2023_02_001
crossref_primary_10_1109_TVCG_2022_3207929
crossref_primary_10_1111_cgf_15072
crossref_primary_10_1109_TVCG_2024_3456510
crossref_primary_10_1007_s12650_023_00913_7
crossref_primary_10_1109_TVCG_2024_3456215
crossref_primary_10_1109_TVCG_2023_3326930
crossref_primary_10_3233_THC_232054
crossref_primary_10_1111_cgf_14821
crossref_primary_10_1145_3637303
crossref_primary_10_1111_cgf_14824
crossref_primary_10_1016_j_imu_2024_101558
crossref_primary_10_1109_TVCG_2021_3114878
crossref_primary_10_1109_TVCG_2023_3245609
crossref_primary_10_1111_cgf_14805
crossref_primary_10_1111_cgf_14926
crossref_primary_10_1093_jamia_ocae230
crossref_primary_10_1109_MCG_2023_3345742
crossref_primary_10_1007_s00371_023_02961_4
crossref_primary_10_2196_38041
crossref_primary_10_3390_educsci15010028
crossref_primary_10_1093_jamia_ocae158
crossref_primary_10_1007_s10489_021_03122_7
crossref_primary_10_1016_j_visinf_2023_06_008
crossref_primary_10_1109_ACCESS_2023_3286304
Cites_doi 10.1007/s12650-018-0530-2
10.1145/2702123.2702419
10.1145/305786.305884
10.1016/j.jbi.2015.06.020
10.1145/3334480.3382971
10.1055/s-0039-1687862
10.1109/TVCG.2017.2745278
10.1109/TVCG.2014.2346920
10.1109/TVCG.2018.2865027
10.1109/TVCG.2018.2825424
10.1109/TVCG.2014.2346682
10.1109/TVCG.2011.188
10.1109/TVCG.2014.2346922
10.1109/TVCG.2020.3030465
10.1109/TVCG.2018.2859969
10.1109/TVCG.2014.2350494
10.1145/2380116.2380125
10.2352/ISSN.2470-1173.2019.1.VDA-681
10.1609/aaai.v34i04.5725
10.1145/2858036.2858529
10.1111/cgf.13208
10.1117/12.818777
10.1016/j.jbi.2013.12.012
10.1145/2856767.2856779
10.1109/VAST.2016.7883512
10.1016/j.jvlc.2017.03.006
10.1109/PacificVis.2018.00026
10.1109/VAST.2017.8585647
10.1109/BigData.2018.8622571
10.1109/TVCG.2018.2865026
10.1145/1631162.1631169
10.1109/TVCG.2009.187
10.1109/BigData47090.2019.9005687
10.1145/1978942.1979196
10.1145/2702123.2702262
10.1109/TVCG.2020.3030358
10.1145/3200490
10.1109/TVCG.2019.2934609
10.1145/238386.238493
10.1109/MCG.2018.042731661
10.1145/3290605.3300803
10.1109/TVCG.2015.2505305
10.1093/iwc/iwu043
10.1109/VAST.2017.8585721
10.1109/TVCG.2016.2598664
10.1559/152304006777323136
10.1109/iV.2018.00051
10.1145/1357054.1357129
10.1145/3300115.3309514
10.1109/VAST.2009.5332595
10.1145/3025453.3025777
10.1145/2468356.2468434
10.1109/TVCG.2018.2864886
10.1109/TVCG.2014.2346454
10.1080/15230406.2016.1139467
10.1109/TVCG.2020.3028957
10.1186/1753-6561-9-S6-S6
10.1109/TVCG.2016.2598797
10.1109/VAST.2006.261421
10.1109/TVCG.2017.2744158
10.1109/VL.1996.545307
10.1186/1471-2105-6-115
10.1111/cgf.12095
10.1145/774833.774836
10.1016/j.visinf.2020.04.001
10.1109/TMM.2016.2614220
10.1109/TVCG.2020.2985689
10.1109/VAST.2014.7042535
10.1109/TVCG.2015.2467931
10.1109/TVCG.2015.2467622
10.1007/s12650-019-00566-5
10.1109/TVCG.2016.2539960
10.1561/1100000039
10.1145/2557500.2557508
10.1109/TVCG.2007.70528
10.1111/cgf.12891
10.1111/cgf.12617
10.1145/2858036.2858107
10.1145/2678025.2701407
10.1177/1473871611415994
10.1109/TVCG.2019.2934263
10.1145/3106775
10.1145/3344258
10.1145/2890478
10.1145/2379690.2379701
10.1109/TVCG.2017.2745083
10.1177/1473871614526077
10.1109/MC.2002.1016905
10.1109/TVCG.2012.225
10.1007/s11390-013-1383-8
10.1109/INFVIS.2004.5
10.1109/TVCG.2015.2467196
10.1109/VAST.2015.7347682
10.1109/TVCG.2016.2534558
10.1111/0033-0124.00158
10.1109/TVCG.2018.2865076
10.1109/TVCG.2018.2872961
10.1016/j.jvlc.2017.11.004
10.1109/TVCG.2015.2467591
10.1109/MCG.2015.73
10.1145/3152888
10.1057/palgrave.ivs.9500074
10.1109/VAST.2012.6400494
10.1145/3183347
10.1109/TVCG.2017.2745320
10.1109/TVCG.2018.2864885
10.1007/978-1-4614-7138-7
10.1109/MC.2011.313
10.1109/MC.2018.2890217
10.1109/TVCG.2012.291
10.1109/TVCG.2009.116
10.1007/978-3-030-04921-8_12
10.1109/TVCG.2016.2614803
10.1109/TVCG.2009.117
10.1109/TBDATA.2020.2964169
10.1145/2488388.2488504
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TVCG.2021.3100413
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0506
EndPage 5112
ExternalDocumentID 10_1109_TVCG_2021_3100413
9497654
Genre orig-research
GrantInformation_xml – fundername: NSFC
  grantid: 62061136003
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TN5
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c326t-3e477341643cae40e61d5f3f47f1a021774590a18c3c4e47e4f98c31eaffdcc23
IEDL.DBID RIE
ISSN 1077-2626
1941-0506
IngestDate Thu Jul 10 19:25:53 EDT 2025
Sun Jun 29 13:21:45 EDT 2025
Thu Apr 24 23:01:28 EDT 2025
Tue Jul 01 03:58:58 EDT 2025
Wed Aug 27 02:29:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c326t-3e477341643cae40e61d5f3f47f1a021774590a18c3c4e47e4f98c31eaffdcc23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ORCID 0000-0001-5355-8399
0000-0003-1316-7515
0000-0001-6435-0497
0000-0002-6424-7374
PMID 34314358
PQID 2728571453
PQPubID 75741
PageCount 22
ParticipantIDs crossref_primary_10_1109_TVCG_2021_3100413
proquest_miscellaneous_2555970930
crossref_citationtrail_10_1109_TVCG_2021_3100413
proquest_journals_2728571453
ieee_primary_9497654
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on visualization and computer graphics
PublicationTitleAbbrev TVCG
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref56
ref59
ref58
ref52
ref55
ref54
xu (ref129) 2020; 26
slack (ref102) 2004
choi (ref16) 2016
ref51
ref50
cao (ref5) 2012; 18
monroe (ref72) 2014
ref48
ref47
ref42
ref41
ref44
ref43
james (ref46) 2013; 112
ref49
mu (ref73) 2019
ref7
ref9
ref4
ref6
xu (ref128) 2016
mei (ref69) 2017
ref100
zhang (ref134) 2020
perer (ref80) 2012
ref101
ref40
huisman (ref45) 2005
ref35
ref37
ref36
ref31
ref30
ref33
ref32
plaisant (ref84) 2016
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
chankhihort (ref8) 2017; 13
ref28
ref27
ref29
michotte (ref70) 1963; 60
ref13
ref12
ref15
ref14
ref126
ref127
seo (ref98) 2002; 35
ref96
ref124
ref99
ref11
ref125
ref10
ref17
qi (ref87) 2020; 26
ref18
gotz (ref34) 2020; 26
ref133
ref93
liu (ref64) 2016
ref92
ref131
ref95
ref132
ref94
ref130
ref91
ref90
sun (ref105) 2020; 26
ref89
ref139
ref137
ref86
ref138
ref85
ref135
ref136
keim (ref53) 2008
ref82
ref81
ref83
ref140
ref141
ref79
ref78
ref109
kwon (ref61) 2016
ref106
ref107
ref75
ref104
ref74
ref77
trümper (ref108) 2012
ref76
ref103
ref2
ref1
ref71
ref111
ref112
ref68
ref67
ref117
ref118
ref115
ref63
ref116
ref66
ref113
ref65
ref114
wongsuphasawat (ref119) 2011
senin (ref97) 2015
cook (ref19) 2005
vrotsou (ref110) 2010
ref60
ref122
riehmann (ref88) 2005
ref123
ref62
ref120
ref121
cao (ref3) 2011; 17
References_xml – ident: ref140
  doi: 10.1007/s12650-018-0530-2
– ident: ref139
  doi: 10.1145/2702123.2702419
– ident: ref55
  doi: 10.1145/305786.305884
– ident: ref82
  doi: 10.1016/j.jbi.2015.06.020
– ident: ref21
  doi: 10.1145/3334480.3382971
– ident: ref91
  doi: 10.1055/s-0039-1687862
– ident: ref7
  doi: 10.1109/TVCG.2017.2745278
– ident: ref125
  doi: 10.1109/TVCG.2014.2346920
– ident: ref60
  doi: 10.1109/TVCG.2018.2865027
– ident: ref103
  doi: 10.1109/TVCG.2018.2825424
– ident: ref32
  doi: 10.1109/TVCG.2014.2346682
– year: 2020
  ident: ref134
  article-title: Cause: Learning granger causality from event sequences using attribution methods
– volume: 17
  start-page: 2581
  year: 2011
  ident: ref3
  article-title: DICON: Interactive visual analysis of multidimensional clusters
  publication-title: IEEE Trans Vis Comput Graph
  doi: 10.1109/TVCG.2011.188
– volume: 60
  start-page: 9
  year: 1963
  ident: ref70
  article-title: La causalité perceptive
  publication-title: Journal de Psychologie Normale et Pathologique
– ident: ref138
  doi: 10.1109/TVCG.2014.2346922
– ident: ref49
  doi: 10.1109/TVCG.2020.3030465
– year: 2016
  ident: ref84
  article-title: The diversity of data and tasks in event analytics
  publication-title: Proc IEEE VIS Workshop Temporal Sequential Event Anal
– year: 2005
  ident: ref19
  publication-title: Illuminating the Path The Research and Development Agenda for Visual Analytics
– ident: ref77
  doi: 10.1109/TVCG.2018.2859969
– ident: ref137
  doi: 10.1109/TVCG.2014.2350494
– ident: ref93
  doi: 10.1145/2380116.2380125
– ident: ref35
  doi: 10.2352/ISSN.2470-1173.2019.1.VDA-681
– ident: ref1
  doi: 10.1609/aaai.v34i04.5725
– ident: ref56
  doi: 10.1145/2858036.2858529
– ident: ref65
  doi: 10.1111/cgf.13208
– ident: ref117
  doi: 10.1117/12.818777
– start-page: 2
  year: 2016
  ident: ref64
  article-title: Mining, pruning and visualizing frequent patterns for temporal event sequence analysis
  publication-title: Proc IEEE VIS Workshop Temporal Sequential Event Anal
– ident: ref75
  doi: 10.1016/j.jbi.2013.12.012
– ident: ref33
  doi: 10.1145/2856767.2856779
– ident: ref22
  doi: 10.1109/VAST.2016.7883512
– ident: ref29
  doi: 10.1016/j.jvlc.2017.03.006
– ident: ref123
  doi: 10.1109/PacificVis.2018.00026
– ident: ref114
  doi: 10.1109/VAST.2017.8585647
– ident: ref14
  doi: 10.1109/BigData.2018.8622571
– ident: ref126
  doi: 10.1109/TVCG.2018.2865026
– ident: ref54
  doi: 10.1145/1631162.1631169
– ident: ref116
  doi: 10.1109/TVCG.2009.187
– ident: ref38
  doi: 10.1109/BigData47090.2019.9005687
– year: 2014
  ident: ref72
  article-title: Interactive event sequence query and transformation
– start-page: 37
  year: 2004
  ident: ref102
  article-title: SequenceJuxtaposer: Fluid navigation for large-scale sequence comparison in context
  publication-title: Proc German Conf Bioinf
– ident: ref121
  doi: 10.1145/1978942.1979196
– ident: ref133
  doi: 10.1145/2702123.2702262
– ident: ref18
  doi: 10.1109/TVCG.2020.3030358
– ident: ref24
  doi: 10.1145/3200490
– ident: ref76
  doi: 10.1109/TVCG.2019.2934609
– volume: 26
  start-page: 1107
  year: 2020
  ident: ref129
  article-title: CloudDet: Interactive visual analysis of anomalous performances in cloud computing systems
  publication-title: IEEE Trans Vis Comput Graph
– ident: ref83
  doi: 10.1145/238386.238493
– ident: ref17
  doi: 10.1109/MCG.2018.042731661
– ident: ref37
  doi: 10.1145/3290605.3300803
– ident: ref10
  doi: 10.1109/TVCG.2015.2505305
– ident: ref31
  doi: 10.1093/iwc/iwu043
– volume: 26
  start-page: 1054
  year: 2020
  ident: ref87
  article-title: STBins: Visual tracking and comparison of multiple data sequences using temporal binning
  publication-title: IEEE Trans Vis Comput Graph
– ident: ref71
  doi: 10.1109/VAST.2017.8585721
– ident: ref130
  doi: 10.1109/TVCG.2016.2598664
– ident: ref131
  doi: 10.1559/152304006777323136
– ident: ref43
  doi: 10.1109/iV.2018.00051
– year: 2010
  ident: ref110
  article-title: Everyday mining: Exploring sequences in event-based data
– ident: ref115
  doi: 10.1145/1357054.1357129
– volume: 26
  start-page: 440
  year: 2020
  ident: ref34
  article-title: Visual analysis of high-dimensional event sequence data via dynamic hierarchical aggregation
  publication-title: IEEE Trans Vis Comput Graph
– ident: ref42
  doi: 10.1145/3300115.3309514
– ident: ref122
  doi: 10.1109/VAST.2009.5332595
– ident: ref23
  doi: 10.1145/3025453.3025777
– ident: ref79
  doi: 10.1145/2468356.2468434
– ident: ref62
  doi: 10.1109/TVCG.2018.2864886
– start-page: 716
  year: 2012
  ident: ref80
  article-title: MatrixFlow: Temporal network visual analytics to track symptom evolution during disease progression
  publication-title: Proc AMIA Annu Symp Proc
– ident: ref50
  doi: 10.1109/TVCG.2014.2346454
– volume: 26
  start-page: 579
  year: 2020
  ident: ref105
  article-title: PlanningVis: A visual analytics approach to production planning in smart factories
  publication-title: IEEE Trans Vis Comput Graph
– start-page: 6757
  year: 2017
  ident: ref69
  article-title: The neural hawkes process: A neurally self-modulating multivariate point process
  publication-title: Proc 31st Int Conf Neural Inf Process Syst
– ident: ref90
  doi: 10.1080/15230406.2016.1139467
– ident: ref127
  doi: 10.1109/TVCG.2020.3028957
– volume: 13
  start-page: 21
  year: 2017
  ident: ref8
  article-title: A visualization scheme with a calendar heat map for abnormal pattern analysis in the manufacturing process
  publication-title: Int J of Cont
– start-page: 481
  year: 2015
  ident: ref97
  article-title: Time series anomaly discovery with grammar-based compression
  publication-title: Proc Intl Conf Extending Database Technology
– ident: ref20
  doi: 10.1186/1753-6561-9-S6-S6
– ident: ref66
  doi: 10.1109/TVCG.2016.2598797
– ident: ref28
  doi: 10.1109/VAST.2006.261421
– start-page: 155
  year: 2005
  ident: ref45
  article-title: The complexities of everyday life: balancing practical and realistic approaches to modeling probable presence in space-time
  publication-title: Proc 17th Annu Colloq Spatial Inf Res Centre
– ident: ref104
  doi: 10.1109/TVCG.2017.2744158
– ident: ref100
  doi: 10.1109/VL.1996.545307
– ident: ref44
  doi: 10.1186/1471-2105-6-115
– ident: ref92
  doi: 10.1111/cgf.12095
– ident: ref26
  doi: 10.1145/774833.774836
– ident: ref36
  doi: 10.1016/j.visinf.2020.04.001
– ident: ref124
  doi: 10.1109/TMM.2016.2614220
– ident: ref59
  doi: 10.1109/TVCG.2020.2985689
– start-page: 45
  year: 2012
  ident: ref108
  article-title: ViewFusion: Correlating structure and activity views for execution traces
  publication-title: Proc Theory Pract Comput Graph
– start-page: 25
  year: 2011
  ident: ref119
  article-title: Outflow: Visualizing patient flow by symptoms and outcome
  publication-title: Proc IEEE VisWeek Workshop Vis Analytics Healthcare
– ident: ref132
  doi: 10.1109/VAST.2014.7042535
– ident: ref113
  doi: 10.1109/TVCG.2015.2467931
– ident: ref57
  doi: 10.1109/TVCG.2015.2467622
– ident: ref63
  doi: 10.1007/s12650-019-00566-5
– ident: ref25
  doi: 10.1109/TVCG.2016.2539960
– ident: ref89
  doi: 10.1561/1100000039
– ident: ref81
  doi: 10.1145/2557500.2557508
– ident: ref51
  doi: 10.1109/TVCG.2007.70528
– ident: ref96
  doi: 10.1111/cgf.12891
– start-page: 3504
  year: 2016
  ident: ref16
  article-title: Retain: An interpretable predictive model for healthcare using reverse time attention mechanism
  publication-title: Proc 30th Conf Neural Inf Process Syst
– ident: ref41
  doi: 10.1111/cgf.12617
– ident: ref112
  doi: 10.1145/2858036.2858107
– ident: ref67
  doi: 10.1145/2678025.2701407
– ident: ref52
  doi: 10.1177/1473871611415994
– ident: ref13
  doi: 10.1109/TVCG.2019.2934263
– start-page: 233
  year: 2005
  ident: ref88
  article-title: Interactive sankey diagrams
  publication-title: Proc IEEE Symp Inf Vis
– ident: ref106
  doi: 10.1145/3106775
– ident: ref48
  doi: 10.1145/3344258
– start-page: 91
  year: 2019
  ident: ref73
  article-title: MOOCad: Visual analysis of anomalous learning activities in massive open online courses
  publication-title: Proc EuroVis
– ident: ref68
  doi: 10.1145/2890478
– ident: ref30
  doi: 10.1145/2379690.2379701
– ident: ref15
  doi: 10.1109/TVCG.2017.2745083
– ident: ref136
  doi: 10.1177/1473871614526077
– volume: 35
  start-page: 80
  year: 2002
  ident: ref98
  article-title: Interactively exploring hierarchical clustering results
  publication-title: Computer
  doi: 10.1109/MC.2002.1016905
– ident: ref120
  doi: 10.1109/TVCG.2012.225
– ident: ref107
  doi: 10.1007/s11390-013-1383-8
– ident: ref95
  doi: 10.1109/INFVIS.2004.5
– ident: ref6
  doi: 10.1109/TVCG.2015.2467196
– ident: ref85
  doi: 10.1109/VAST.2015.7347682
– ident: ref74
  doi: 10.1109/TVCG.2016.2534558
– ident: ref58
  doi: 10.1111/0033-0124.00158
– year: 2016
  ident: ref61
  article-title: Peekquence: Visual analytics for event sequence data
  publication-title: Proc ACM Workshop Interactive Data Exploration Analytics
– ident: ref135
  doi: 10.1109/TVCG.2018.2865076
– ident: ref11
  doi: 10.1109/TVCG.2018.2872961
– ident: ref141
  doi: 10.1016/j.jvlc.2017.11.004
– ident: ref94
  doi: 10.1109/TVCG.2015.2467591
– start-page: 154
  year: 2008
  ident: ref53
  article-title: Visual analytics: Definition, process, and challenges
  publication-title: Proc Inf Vis
– ident: ref4
  doi: 10.1109/MCG.2015.73
– ident: ref86
  doi: 10.1145/3152888
– ident: ref27
  doi: 10.1057/palgrave.ivs.9500074
– ident: ref118
  doi: 10.1109/VAST.2012.6400494
– ident: ref12
  doi: 10.1145/3183347
– ident: ref40
  doi: 10.1109/TVCG.2017.2745320
– ident: ref39
  doi: 10.1109/TVCG.2018.2864885
– volume: 112
  year: 2013
  ident: ref46
  publication-title: An Introduction to Statistical Learning with Applications in R
  doi: 10.1007/978-1-4614-7138-7
– ident: ref9
  doi: 10.1109/MC.2011.313
– ident: ref101
  doi: 10.1109/MC.2018.2890217
– start-page: 1717
  year: 2016
  ident: ref128
  article-title: Learning granger causality for hawkes processes
  publication-title: Proc Int Conf Mach Learn
– volume: 18
  start-page: 2649
  year: 2012
  ident: ref5
  article-title: Whisper: Tracing the spatiotemporal process of information diffusion in real time
  publication-title: IEEE Trans Vis Comput Graph
  doi: 10.1109/TVCG.2012.291
– ident: ref78
  doi: 10.1109/TVCG.2009.116
– ident: ref47
  doi: 10.1007/978-3-030-04921-8_12
– ident: ref2
  doi: 10.1109/TVCG.2016.2614803
– ident: ref111
  doi: 10.1109/TVCG.2009.117
– ident: ref99
  doi: 10.1109/TBDATA.2020.2964169
– ident: ref109
  doi: 10.1145/2488388.2488504
SSID ssj0014489
Score 2.5972102
SecondaryResourceType review_article
Snippet Event sequence data record series of discrete events in the time order of occurrence. They are commonly observed in a variety of applications ranging from...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5091
SubjectTerms Data mining
Data visualization
Electronic health records
Event detection
event sequences
Literature reviews
Mathematical analysis
Medical diagnostic imaging
Sequences
State-of-the-art reviews
Visual analysis
Visual analytics
visualization
Title Survey on Visual Analysis of Event Sequence Data
URI https://ieeexplore.ieee.org/document/9497654
https://www.proquest.com/docview/2728571453
https://www.proquest.com/docview/2555970930
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Lb9YwDLe2HaZxAMZAfLChInGa6Le82jRHtKcmjcse2q1KE0dCoBZtLRL89ThtvgoYQtwi1alaO4nt-Gcb4F1QWjTS-9xLLXMVvM6bsjB5g6RvRVmVU7mmi4_l2bU6vy1u1-D9nAuDiCP4DJdxOMbyfeeGeFV2YBQpz0Ktwzo5blOu1hwxIDfDTPhCnQuy0lMEkzNzcHVzeEqeoODLeJtNp_YWbEpSnGQpVL-po7G_yoNDedQ0J0_gYvWNE8Dk83Lom6X78Uf5xv_9iafwOJmc2YdpjWzDGrbP4NEvhQh3gF0Od9_we9a12c2n-yFSp2IlWRey44iJzC4T6Do7sr19Dtcnx1eHZ3nqpZA7MtD6XKLSmjQWGSDOomJYcl8ESaIK3Ea_RKvCMMsrJ50iWlTB0JijDcE7J-QL2Gi7Fl9ChlxWwSup0QrlrK8Y6oYH5iuPaBq-ALZiae1SofHY7-JLPToczNRRIHUUSJ0EsoD9ecrXqcrGv4h3IldnwsTQBeyu5FanfXhfCy2qQnNV0Ky382PaQTEsYlvsBqIpolfFjGSv_v7m17AlYtLDCGLZhY3-bsA9MkX65s24Bn8CvxjWSA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIkE58GpRFwoEiRMiWzu24-SISssC3V66rXqLHHssIVBStQkS_HrGiTfiJcTNUsZRMmP7m_G8AF56qbNaOJc6oUUqvdNpnasyrZHwNsuLfCzXtDzJF2fyw4W62IDXUy4MIg7BZzgPw8GX71rbh6uy_VISeCp5A24S7is-ZmtNPgMyNMoxwlCnGenp0YfJWbm_Oj94R7ZgxufhPpvO7S24JQg6SVcofgGkocPKH8fygDVH92C5_soxxOTzvO_quf3-WwHH__2N-3A3Kp3Jm3GVPIANbB7CnZ9KEW4DO-2vvuK3pG2S80_XfaCO5UqS1ieHISoyOY1h18lb05kdODs6XB0s0thNIbWkonWpQKk1YRapINagZJhzp7wgYXlugmWipSqZ4YUVVhItSl_SmKPx3lmbiUew2bQN7kKCXBTeSaHRZNIaVzDUNffMFQ6xrPkM2JqllY2lxkPHiy_VYHKwsgoCqYJAqiiQGbyaplyOdTb-RbwduDoRRobOYG8ttyruxOsq01mhNJeKZr2YHtMeCo4R02DbE40KdhUrBXv89zc_h9uL1fK4On5_8vEJbGUhBWIIadmDze6qx6ekmHT1s2E9_gAbDtmR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Survey+on+Visual+Analysis+of+Event+Sequence+Data&rft.jtitle=IEEE+transactions+on+visualization+and+computer+graphics&rft.au=Guo%2C+Yi&rft.au=Guo%2C+Shunan&rft.au=Jin%2C+Zhuochen&rft.au=Kaul%2C+Smiti&rft.date=2022-12-01&rft.issn=1941-0506&rft.eissn=1941-0506&rft.volume=28&rft.issue=12&rft.spage=5091&rft_id=info:doi/10.1109%2FTVCG.2021.3100413&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-2626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-2626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-2626&client=summon