Survey on Visual Analysis of Event Sequence Data
Event sequence data record series of discrete events in the time order of occurrence. They are commonly observed in a variety of applications ranging from electronic health records to network logs, with the characteristics of large-scale, high-dimensional and heterogeneous. This high complexity of e...
Saved in:
Published in | IEEE transactions on visualization and computer graphics Vol. 28; no. 12; pp. 5091 - 5112 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.12.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Event sequence data record series of discrete events in the time order of occurrence. They are commonly observed in a variety of applications ranging from electronic health records to network logs, with the characteristics of large-scale, high-dimensional and heterogeneous. This high complexity of event sequence data makes it difficult for analysts to manually explore and find patterns, resulting in ever-increasing needs for computational and perceptual aids from visual analytics techniques to extract and communicate insights from event sequence datasets. In this paper, we review the state-of-the-art visual analytics approaches, characterize them with our proposed design space, and categorize them based on analytical tasks and applications. From our review of relevant literature, we have also identified several remaining research challenges and future research opportunities. |
---|---|
AbstractList | Event sequence data record series of discrete events in the time order of occurrence. They are commonly observed in a variety of applications ranging from electronic health records to network logs, with the characteristics of large-scale, high-dimensional and heterogeneous. This high complexity of event sequence data makes it difficult for analysts to manually explore and find patterns, resulting in ever-increasing needs for computational and perceptual aids from visual analytics techniques to extract and communicate insights from event sequence datasets. In this paper, we review the state-of-the-art visual analytics approaches, characterize them with our proposed design space, and categorize them based on analytical tasks and applications. From our review of relevant literature, we have also identified several remaining research challenges and future research opportunities.Event sequence data record series of discrete events in the time order of occurrence. They are commonly observed in a variety of applications ranging from electronic health records to network logs, with the characteristics of large-scale, high-dimensional and heterogeneous. This high complexity of event sequence data makes it difficult for analysts to manually explore and find patterns, resulting in ever-increasing needs for computational and perceptual aids from visual analytics techniques to extract and communicate insights from event sequence datasets. In this paper, we review the state-of-the-art visual analytics approaches, characterize them with our proposed design space, and categorize them based on analytical tasks and applications. From our review of relevant literature, we have also identified several remaining research challenges and future research opportunities. Event sequence data record series of discrete events in the time order of occurrence. They are commonly observed in a variety of applications ranging from electronic health records to network logs, with the characteristics of large-scale, high-dimensional and heterogeneous. This high complexity of event sequence data makes it difficult for analysts to manually explore and find patterns, resulting in ever-increasing needs for computational and perceptual aids from visual analytics techniques to extract and communicate insights from event sequence datasets. In this paper, we review the state-of-the-art visual analytics approaches, characterize them with our proposed design space, and categorize them based on analytical tasks and applications. From our review of relevant literature, we have also identified several remaining research challenges and future research opportunities. |
Author | Guo, Shunan Kaul, Smiti Gotz, David Jin, Zhuochen Cao, Nan Guo, Yi |
Author_xml | – sequence: 1 givenname: Yi surname: Guo fullname: Guo, Yi email: dennis.guo.china@gmail.com organization: Intelligent Big Data Visualization Lab, Tongji University, Shanghai, China – sequence: 2 givenname: Shunan orcidid: 0000-0001-5355-8399 surname: Guo fullname: Guo, Shunan email: g.shunan@gmail.com organization: Intelligent Big Data Visualization Lab, Tongji University, Shanghai, China – sequence: 3 givenname: Zhuochen surname: Jin fullname: Jin, Zhuochen email: chjzcjames@gmail.com organization: Intelligent Big Data Visualization Lab, Tongji University, Shanghai, China – sequence: 4 givenname: Smiti orcidid: 0000-0001-6435-0497 surname: Kaul fullname: Kaul, Smiti email: smiti@unc.edu organization: Visual Analysis and Communication Lab, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA – sequence: 5 givenname: David orcidid: 0000-0002-6424-7374 surname: Gotz fullname: Gotz, David email: gotz@unc.edu organization: Visual Analysis and Communication Lab, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA – sequence: 6 givenname: Nan orcidid: 0000-0003-1316-7515 surname: Cao fullname: Cao, Nan email: nan.cao@gmail.com organization: Intelligent Big Data Visualization Lab, Tongji University, Shanghai, China |
BookMark | eNp9kD9vwjAQxa2KqvxpP0DVJVKXLqG--BzHI6KUVkLqAGWNLHOWgkJC4wSJb18jUAeGTveG37t394asV9UVMfYIfAzA9etqPZ2PE57AWADnCOKGDUAjxFzytBc0VypO0iTts6H3W84BMdN3rC9QAAqZDRhfds2BjlFdRevCd6aMJpUpj77wUe2i2YGqNlrST0eVpejNtOae3TpTenq4zBH7fp-tph_x4mv-OZ0sYiuStI0FoVICIUVhDSGnFDbSCYfKgQkXK4VScwOZFRYDS-h00EDGuY21iRixl_PefVOHeN_mu8JbKktTUd35PJFSasW14AF9vkK3ddeENwKlkkwqQCkCBWfKNrX3Dbl83xQ70xxz4PmpzvxUZ36qM7_UGTzqymOL1rRFXbWNKcp_nU9nZ0FEf0katUolil84xn-y |
CODEN | ITVGEA |
CitedBy_id | crossref_primary_10_1109_TVCG_2024_3456187 crossref_primary_10_1109_ACCESS_2024_3437418 crossref_primary_10_1007_s12650_022_00884_1 crossref_primary_10_1111_cgf_15200 crossref_primary_10_1109_ACCESS_2023_3259972 crossref_primary_10_1109_TVCG_2024_3358919 crossref_primary_10_1109_TVCG_2024_3382760 crossref_primary_10_1109_TVCG_2024_3388523 crossref_primary_10_1109_TVCG_2021_3114840 crossref_primary_10_1109_TVCG_2023_3282364 crossref_primary_10_1007_s12650_022_00857_4 crossref_primary_10_1109_TVCG_2022_3209430 crossref_primary_10_3390_info13020054 crossref_primary_10_1111_cgf_14819 crossref_primary_10_1145_3643894 crossref_primary_10_1016_j_chb_2024_108247 crossref_primary_10_1007_s41095_022_0275_7 crossref_primary_10_3390_aerospace10070595 crossref_primary_10_1007_s12650_022_00890_3 crossref_primary_10_1016_j_visinf_2025_02_002 crossref_primary_10_1016_j_visinf_2023_02_001 crossref_primary_10_1109_TVCG_2022_3207929 crossref_primary_10_1111_cgf_15072 crossref_primary_10_1109_TVCG_2024_3456510 crossref_primary_10_1007_s12650_023_00913_7 crossref_primary_10_1109_TVCG_2024_3456215 crossref_primary_10_1109_TVCG_2023_3326930 crossref_primary_10_3233_THC_232054 crossref_primary_10_1111_cgf_14821 crossref_primary_10_1145_3637303 crossref_primary_10_1111_cgf_14824 crossref_primary_10_1016_j_imu_2024_101558 crossref_primary_10_1109_TVCG_2021_3114878 crossref_primary_10_1109_TVCG_2023_3245609 crossref_primary_10_1111_cgf_14805 crossref_primary_10_1111_cgf_14926 crossref_primary_10_1093_jamia_ocae230 crossref_primary_10_1109_MCG_2023_3345742 crossref_primary_10_1007_s00371_023_02961_4 crossref_primary_10_2196_38041 crossref_primary_10_3390_educsci15010028 crossref_primary_10_1093_jamia_ocae158 crossref_primary_10_1007_s10489_021_03122_7 crossref_primary_10_1016_j_visinf_2023_06_008 crossref_primary_10_1109_ACCESS_2023_3286304 |
Cites_doi | 10.1007/s12650-018-0530-2 10.1145/2702123.2702419 10.1145/305786.305884 10.1016/j.jbi.2015.06.020 10.1145/3334480.3382971 10.1055/s-0039-1687862 10.1109/TVCG.2017.2745278 10.1109/TVCG.2014.2346920 10.1109/TVCG.2018.2865027 10.1109/TVCG.2018.2825424 10.1109/TVCG.2014.2346682 10.1109/TVCG.2011.188 10.1109/TVCG.2014.2346922 10.1109/TVCG.2020.3030465 10.1109/TVCG.2018.2859969 10.1109/TVCG.2014.2350494 10.1145/2380116.2380125 10.2352/ISSN.2470-1173.2019.1.VDA-681 10.1609/aaai.v34i04.5725 10.1145/2858036.2858529 10.1111/cgf.13208 10.1117/12.818777 10.1016/j.jbi.2013.12.012 10.1145/2856767.2856779 10.1109/VAST.2016.7883512 10.1016/j.jvlc.2017.03.006 10.1109/PacificVis.2018.00026 10.1109/VAST.2017.8585647 10.1109/BigData.2018.8622571 10.1109/TVCG.2018.2865026 10.1145/1631162.1631169 10.1109/TVCG.2009.187 10.1109/BigData47090.2019.9005687 10.1145/1978942.1979196 10.1145/2702123.2702262 10.1109/TVCG.2020.3030358 10.1145/3200490 10.1109/TVCG.2019.2934609 10.1145/238386.238493 10.1109/MCG.2018.042731661 10.1145/3290605.3300803 10.1109/TVCG.2015.2505305 10.1093/iwc/iwu043 10.1109/VAST.2017.8585721 10.1109/TVCG.2016.2598664 10.1559/152304006777323136 10.1109/iV.2018.00051 10.1145/1357054.1357129 10.1145/3300115.3309514 10.1109/VAST.2009.5332595 10.1145/3025453.3025777 10.1145/2468356.2468434 10.1109/TVCG.2018.2864886 10.1109/TVCG.2014.2346454 10.1080/15230406.2016.1139467 10.1109/TVCG.2020.3028957 10.1186/1753-6561-9-S6-S6 10.1109/TVCG.2016.2598797 10.1109/VAST.2006.261421 10.1109/TVCG.2017.2744158 10.1109/VL.1996.545307 10.1186/1471-2105-6-115 10.1111/cgf.12095 10.1145/774833.774836 10.1016/j.visinf.2020.04.001 10.1109/TMM.2016.2614220 10.1109/TVCG.2020.2985689 10.1109/VAST.2014.7042535 10.1109/TVCG.2015.2467931 10.1109/TVCG.2015.2467622 10.1007/s12650-019-00566-5 10.1109/TVCG.2016.2539960 10.1561/1100000039 10.1145/2557500.2557508 10.1109/TVCG.2007.70528 10.1111/cgf.12891 10.1111/cgf.12617 10.1145/2858036.2858107 10.1145/2678025.2701407 10.1177/1473871611415994 10.1109/TVCG.2019.2934263 10.1145/3106775 10.1145/3344258 10.1145/2890478 10.1145/2379690.2379701 10.1109/TVCG.2017.2745083 10.1177/1473871614526077 10.1109/MC.2002.1016905 10.1109/TVCG.2012.225 10.1007/s11390-013-1383-8 10.1109/INFVIS.2004.5 10.1109/TVCG.2015.2467196 10.1109/VAST.2015.7347682 10.1109/TVCG.2016.2534558 10.1111/0033-0124.00158 10.1109/TVCG.2018.2865076 10.1109/TVCG.2018.2872961 10.1016/j.jvlc.2017.11.004 10.1109/TVCG.2015.2467591 10.1109/MCG.2015.73 10.1145/3152888 10.1057/palgrave.ivs.9500074 10.1109/VAST.2012.6400494 10.1145/3183347 10.1109/TVCG.2017.2745320 10.1109/TVCG.2018.2864885 10.1007/978-1-4614-7138-7 10.1109/MC.2011.313 10.1109/MC.2018.2890217 10.1109/TVCG.2012.291 10.1109/TVCG.2009.116 10.1007/978-3-030-04921-8_12 10.1109/TVCG.2016.2614803 10.1109/TVCG.2009.117 10.1109/TBDATA.2020.2964169 10.1145/2488388.2488504 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TVCG.2021.3100413 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1941-0506 |
EndPage | 5112 |
ExternalDocumentID | 10_1109_TVCG_2021_3100413 9497654 |
Genre | orig-research |
GrantInformation_xml | – fundername: NSFC grantid: 62061136003 |
GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS TN5 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c326t-3e477341643cae40e61d5f3f47f1a021774590a18c3c4e47e4f98c31eaffdcc23 |
IEDL.DBID | RIE |
ISSN | 1077-2626 1941-0506 |
IngestDate | Thu Jul 10 19:25:53 EDT 2025 Sun Jun 29 13:21:45 EDT 2025 Thu Apr 24 23:01:28 EDT 2025 Tue Jul 01 03:58:58 EDT 2025 Wed Aug 27 02:29:15 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c326t-3e477341643cae40e61d5f3f47f1a021774590a18c3c4e47e4f98c31eaffdcc23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
ORCID | 0000-0001-5355-8399 0000-0003-1316-7515 0000-0001-6435-0497 0000-0002-6424-7374 |
PMID | 34314358 |
PQID | 2728571453 |
PQPubID | 75741 |
PageCount | 22 |
ParticipantIDs | crossref_primary_10_1109_TVCG_2021_3100413 proquest_miscellaneous_2555970930 crossref_citationtrail_10_1109_TVCG_2021_3100413 proquest_journals_2728571453 ieee_primary_9497654 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-01 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on visualization and computer graphics |
PublicationTitleAbbrev | TVCG |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref56 ref59 ref58 ref52 ref55 ref54 xu (ref129) 2020; 26 slack (ref102) 2004 choi (ref16) 2016 ref51 ref50 cao (ref5) 2012; 18 monroe (ref72) 2014 ref48 ref47 ref42 ref41 ref44 ref43 james (ref46) 2013; 112 ref49 mu (ref73) 2019 ref7 ref9 ref4 ref6 xu (ref128) 2016 mei (ref69) 2017 ref100 zhang (ref134) 2020 perer (ref80) 2012 ref101 ref40 huisman (ref45) 2005 ref35 ref37 ref36 ref31 ref30 ref33 ref32 plaisant (ref84) 2016 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 chankhihort (ref8) 2017; 13 ref28 ref27 ref29 michotte (ref70) 1963; 60 ref13 ref12 ref15 ref14 ref126 ref127 seo (ref98) 2002; 35 ref96 ref124 ref99 ref11 ref125 ref10 ref17 qi (ref87) 2020; 26 ref18 gotz (ref34) 2020; 26 ref133 ref93 liu (ref64) 2016 ref92 ref131 ref95 ref132 ref94 ref130 ref91 ref90 sun (ref105) 2020; 26 ref89 ref139 ref137 ref86 ref138 ref85 ref135 ref136 keim (ref53) 2008 ref82 ref81 ref83 ref140 ref141 ref79 ref78 ref109 kwon (ref61) 2016 ref106 ref107 ref75 ref104 ref74 ref77 trümper (ref108) 2012 ref76 ref103 ref2 ref1 ref71 ref111 ref112 ref68 ref67 ref117 ref118 ref115 ref63 ref116 ref66 ref113 ref65 ref114 wongsuphasawat (ref119) 2011 senin (ref97) 2015 cook (ref19) 2005 vrotsou (ref110) 2010 ref60 ref122 riehmann (ref88) 2005 ref123 ref62 ref120 ref121 cao (ref3) 2011; 17 |
References_xml | – ident: ref140 doi: 10.1007/s12650-018-0530-2 – ident: ref139 doi: 10.1145/2702123.2702419 – ident: ref55 doi: 10.1145/305786.305884 – ident: ref82 doi: 10.1016/j.jbi.2015.06.020 – ident: ref21 doi: 10.1145/3334480.3382971 – ident: ref91 doi: 10.1055/s-0039-1687862 – ident: ref7 doi: 10.1109/TVCG.2017.2745278 – ident: ref125 doi: 10.1109/TVCG.2014.2346920 – ident: ref60 doi: 10.1109/TVCG.2018.2865027 – ident: ref103 doi: 10.1109/TVCG.2018.2825424 – ident: ref32 doi: 10.1109/TVCG.2014.2346682 – year: 2020 ident: ref134 article-title: Cause: Learning granger causality from event sequences using attribution methods – volume: 17 start-page: 2581 year: 2011 ident: ref3 article-title: DICON: Interactive visual analysis of multidimensional clusters publication-title: IEEE Trans Vis Comput Graph doi: 10.1109/TVCG.2011.188 – volume: 60 start-page: 9 year: 1963 ident: ref70 article-title: La causalité perceptive publication-title: Journal de Psychologie Normale et Pathologique – ident: ref138 doi: 10.1109/TVCG.2014.2346922 – ident: ref49 doi: 10.1109/TVCG.2020.3030465 – year: 2016 ident: ref84 article-title: The diversity of data and tasks in event analytics publication-title: Proc IEEE VIS Workshop Temporal Sequential Event Anal – year: 2005 ident: ref19 publication-title: Illuminating the Path The Research and Development Agenda for Visual Analytics – ident: ref77 doi: 10.1109/TVCG.2018.2859969 – ident: ref137 doi: 10.1109/TVCG.2014.2350494 – ident: ref93 doi: 10.1145/2380116.2380125 – ident: ref35 doi: 10.2352/ISSN.2470-1173.2019.1.VDA-681 – ident: ref1 doi: 10.1609/aaai.v34i04.5725 – ident: ref56 doi: 10.1145/2858036.2858529 – ident: ref65 doi: 10.1111/cgf.13208 – ident: ref117 doi: 10.1117/12.818777 – start-page: 2 year: 2016 ident: ref64 article-title: Mining, pruning and visualizing frequent patterns for temporal event sequence analysis publication-title: Proc IEEE VIS Workshop Temporal Sequential Event Anal – ident: ref75 doi: 10.1016/j.jbi.2013.12.012 – ident: ref33 doi: 10.1145/2856767.2856779 – ident: ref22 doi: 10.1109/VAST.2016.7883512 – ident: ref29 doi: 10.1016/j.jvlc.2017.03.006 – ident: ref123 doi: 10.1109/PacificVis.2018.00026 – ident: ref114 doi: 10.1109/VAST.2017.8585647 – ident: ref14 doi: 10.1109/BigData.2018.8622571 – ident: ref126 doi: 10.1109/TVCG.2018.2865026 – ident: ref54 doi: 10.1145/1631162.1631169 – ident: ref116 doi: 10.1109/TVCG.2009.187 – ident: ref38 doi: 10.1109/BigData47090.2019.9005687 – year: 2014 ident: ref72 article-title: Interactive event sequence query and transformation – start-page: 37 year: 2004 ident: ref102 article-title: SequenceJuxtaposer: Fluid navigation for large-scale sequence comparison in context publication-title: Proc German Conf Bioinf – ident: ref121 doi: 10.1145/1978942.1979196 – ident: ref133 doi: 10.1145/2702123.2702262 – ident: ref18 doi: 10.1109/TVCG.2020.3030358 – ident: ref24 doi: 10.1145/3200490 – ident: ref76 doi: 10.1109/TVCG.2019.2934609 – volume: 26 start-page: 1107 year: 2020 ident: ref129 article-title: CloudDet: Interactive visual analysis of anomalous performances in cloud computing systems publication-title: IEEE Trans Vis Comput Graph – ident: ref83 doi: 10.1145/238386.238493 – ident: ref17 doi: 10.1109/MCG.2018.042731661 – ident: ref37 doi: 10.1145/3290605.3300803 – ident: ref10 doi: 10.1109/TVCG.2015.2505305 – ident: ref31 doi: 10.1093/iwc/iwu043 – volume: 26 start-page: 1054 year: 2020 ident: ref87 article-title: STBins: Visual tracking and comparison of multiple data sequences using temporal binning publication-title: IEEE Trans Vis Comput Graph – ident: ref71 doi: 10.1109/VAST.2017.8585721 – ident: ref130 doi: 10.1109/TVCG.2016.2598664 – ident: ref131 doi: 10.1559/152304006777323136 – ident: ref43 doi: 10.1109/iV.2018.00051 – year: 2010 ident: ref110 article-title: Everyday mining: Exploring sequences in event-based data – ident: ref115 doi: 10.1145/1357054.1357129 – volume: 26 start-page: 440 year: 2020 ident: ref34 article-title: Visual analysis of high-dimensional event sequence data via dynamic hierarchical aggregation publication-title: IEEE Trans Vis Comput Graph – ident: ref42 doi: 10.1145/3300115.3309514 – ident: ref122 doi: 10.1109/VAST.2009.5332595 – ident: ref23 doi: 10.1145/3025453.3025777 – ident: ref79 doi: 10.1145/2468356.2468434 – ident: ref62 doi: 10.1109/TVCG.2018.2864886 – start-page: 716 year: 2012 ident: ref80 article-title: MatrixFlow: Temporal network visual analytics to track symptom evolution during disease progression publication-title: Proc AMIA Annu Symp Proc – ident: ref50 doi: 10.1109/TVCG.2014.2346454 – volume: 26 start-page: 579 year: 2020 ident: ref105 article-title: PlanningVis: A visual analytics approach to production planning in smart factories publication-title: IEEE Trans Vis Comput Graph – start-page: 6757 year: 2017 ident: ref69 article-title: The neural hawkes process: A neurally self-modulating multivariate point process publication-title: Proc 31st Int Conf Neural Inf Process Syst – ident: ref90 doi: 10.1080/15230406.2016.1139467 – ident: ref127 doi: 10.1109/TVCG.2020.3028957 – volume: 13 start-page: 21 year: 2017 ident: ref8 article-title: A visualization scheme with a calendar heat map for abnormal pattern analysis in the manufacturing process publication-title: Int J of Cont – start-page: 481 year: 2015 ident: ref97 article-title: Time series anomaly discovery with grammar-based compression publication-title: Proc Intl Conf Extending Database Technology – ident: ref20 doi: 10.1186/1753-6561-9-S6-S6 – ident: ref66 doi: 10.1109/TVCG.2016.2598797 – ident: ref28 doi: 10.1109/VAST.2006.261421 – start-page: 155 year: 2005 ident: ref45 article-title: The complexities of everyday life: balancing practical and realistic approaches to modeling probable presence in space-time publication-title: Proc 17th Annu Colloq Spatial Inf Res Centre – ident: ref104 doi: 10.1109/TVCG.2017.2744158 – ident: ref100 doi: 10.1109/VL.1996.545307 – ident: ref44 doi: 10.1186/1471-2105-6-115 – ident: ref92 doi: 10.1111/cgf.12095 – ident: ref26 doi: 10.1145/774833.774836 – ident: ref36 doi: 10.1016/j.visinf.2020.04.001 – ident: ref124 doi: 10.1109/TMM.2016.2614220 – ident: ref59 doi: 10.1109/TVCG.2020.2985689 – start-page: 45 year: 2012 ident: ref108 article-title: ViewFusion: Correlating structure and activity views for execution traces publication-title: Proc Theory Pract Comput Graph – start-page: 25 year: 2011 ident: ref119 article-title: Outflow: Visualizing patient flow by symptoms and outcome publication-title: Proc IEEE VisWeek Workshop Vis Analytics Healthcare – ident: ref132 doi: 10.1109/VAST.2014.7042535 – ident: ref113 doi: 10.1109/TVCG.2015.2467931 – ident: ref57 doi: 10.1109/TVCG.2015.2467622 – ident: ref63 doi: 10.1007/s12650-019-00566-5 – ident: ref25 doi: 10.1109/TVCG.2016.2539960 – ident: ref89 doi: 10.1561/1100000039 – ident: ref81 doi: 10.1145/2557500.2557508 – ident: ref51 doi: 10.1109/TVCG.2007.70528 – ident: ref96 doi: 10.1111/cgf.12891 – start-page: 3504 year: 2016 ident: ref16 article-title: Retain: An interpretable predictive model for healthcare using reverse time attention mechanism publication-title: Proc 30th Conf Neural Inf Process Syst – ident: ref41 doi: 10.1111/cgf.12617 – ident: ref112 doi: 10.1145/2858036.2858107 – ident: ref67 doi: 10.1145/2678025.2701407 – ident: ref52 doi: 10.1177/1473871611415994 – ident: ref13 doi: 10.1109/TVCG.2019.2934263 – start-page: 233 year: 2005 ident: ref88 article-title: Interactive sankey diagrams publication-title: Proc IEEE Symp Inf Vis – ident: ref106 doi: 10.1145/3106775 – ident: ref48 doi: 10.1145/3344258 – start-page: 91 year: 2019 ident: ref73 article-title: MOOCad: Visual analysis of anomalous learning activities in massive open online courses publication-title: Proc EuroVis – ident: ref68 doi: 10.1145/2890478 – ident: ref30 doi: 10.1145/2379690.2379701 – ident: ref15 doi: 10.1109/TVCG.2017.2745083 – ident: ref136 doi: 10.1177/1473871614526077 – volume: 35 start-page: 80 year: 2002 ident: ref98 article-title: Interactively exploring hierarchical clustering results publication-title: Computer doi: 10.1109/MC.2002.1016905 – ident: ref120 doi: 10.1109/TVCG.2012.225 – ident: ref107 doi: 10.1007/s11390-013-1383-8 – ident: ref95 doi: 10.1109/INFVIS.2004.5 – ident: ref6 doi: 10.1109/TVCG.2015.2467196 – ident: ref85 doi: 10.1109/VAST.2015.7347682 – ident: ref74 doi: 10.1109/TVCG.2016.2534558 – ident: ref58 doi: 10.1111/0033-0124.00158 – year: 2016 ident: ref61 article-title: Peekquence: Visual analytics for event sequence data publication-title: Proc ACM Workshop Interactive Data Exploration Analytics – ident: ref135 doi: 10.1109/TVCG.2018.2865076 – ident: ref11 doi: 10.1109/TVCG.2018.2872961 – ident: ref141 doi: 10.1016/j.jvlc.2017.11.004 – ident: ref94 doi: 10.1109/TVCG.2015.2467591 – start-page: 154 year: 2008 ident: ref53 article-title: Visual analytics: Definition, process, and challenges publication-title: Proc Inf Vis – ident: ref4 doi: 10.1109/MCG.2015.73 – ident: ref86 doi: 10.1145/3152888 – ident: ref27 doi: 10.1057/palgrave.ivs.9500074 – ident: ref118 doi: 10.1109/VAST.2012.6400494 – ident: ref12 doi: 10.1145/3183347 – ident: ref40 doi: 10.1109/TVCG.2017.2745320 – ident: ref39 doi: 10.1109/TVCG.2018.2864885 – volume: 112 year: 2013 ident: ref46 publication-title: An Introduction to Statistical Learning with Applications in R doi: 10.1007/978-1-4614-7138-7 – ident: ref9 doi: 10.1109/MC.2011.313 – ident: ref101 doi: 10.1109/MC.2018.2890217 – start-page: 1717 year: 2016 ident: ref128 article-title: Learning granger causality for hawkes processes publication-title: Proc Int Conf Mach Learn – volume: 18 start-page: 2649 year: 2012 ident: ref5 article-title: Whisper: Tracing the spatiotemporal process of information diffusion in real time publication-title: IEEE Trans Vis Comput Graph doi: 10.1109/TVCG.2012.291 – ident: ref78 doi: 10.1109/TVCG.2009.116 – ident: ref47 doi: 10.1007/978-3-030-04921-8_12 – ident: ref2 doi: 10.1109/TVCG.2016.2614803 – ident: ref111 doi: 10.1109/TVCG.2009.117 – ident: ref99 doi: 10.1109/TBDATA.2020.2964169 – ident: ref109 doi: 10.1145/2488388.2488504 |
SSID | ssj0014489 |
Score | 2.5972102 |
SecondaryResourceType | review_article |
Snippet | Event sequence data record series of discrete events in the time order of occurrence. They are commonly observed in a variety of applications ranging from... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5091 |
SubjectTerms | Data mining Data visualization Electronic health records Event detection event sequences Literature reviews Mathematical analysis Medical diagnostic imaging Sequences State-of-the-art reviews Visual analysis Visual analytics visualization |
Title | Survey on Visual Analysis of Event Sequence Data |
URI | https://ieeexplore.ieee.org/document/9497654 https://www.proquest.com/docview/2728571453 https://www.proquest.com/docview/2555970930 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Lb9YwDLe2HaZxAMZAfLChInGa6Le82jRHtKcmjcse2q1KE0dCoBZtLRL89ThtvgoYQtwi1alaO4nt-Gcb4F1QWjTS-9xLLXMVvM6bsjB5g6RvRVmVU7mmi4_l2bU6vy1u1-D9nAuDiCP4DJdxOMbyfeeGeFV2YBQpz0Ktwzo5blOu1hwxIDfDTPhCnQuy0lMEkzNzcHVzeEqeoODLeJtNp_YWbEpSnGQpVL-po7G_yoNDedQ0J0_gYvWNE8Dk83Lom6X78Uf5xv_9iafwOJmc2YdpjWzDGrbP4NEvhQh3gF0Od9_we9a12c2n-yFSp2IlWRey44iJzC4T6Do7sr19Dtcnx1eHZ3nqpZA7MtD6XKLSmjQWGSDOomJYcl8ESaIK3Ea_RKvCMMsrJ50iWlTB0JijDcE7J-QL2Gi7Fl9ChlxWwSup0QrlrK8Y6oYH5iuPaBq-ALZiae1SofHY7-JLPToczNRRIHUUSJ0EsoD9ecrXqcrGv4h3IldnwsTQBeyu5FanfXhfCy2qQnNV0Ky382PaQTEsYlvsBqIpolfFjGSv_v7m17AlYtLDCGLZhY3-bsA9MkX65s24Bn8CvxjWSA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIkE58GpRFwoEiRMiWzu24-SISssC3V66rXqLHHssIVBStQkS_HrGiTfiJcTNUsZRMmP7m_G8AF56qbNaOJc6oUUqvdNpnasyrZHwNsuLfCzXtDzJF2fyw4W62IDXUy4MIg7BZzgPw8GX71rbh6uy_VISeCp5A24S7is-ZmtNPgMyNMoxwlCnGenp0YfJWbm_Oj94R7ZgxufhPpvO7S24JQg6SVcofgGkocPKH8fygDVH92C5_soxxOTzvO_quf3-WwHH__2N-3A3Kp3Jm3GVPIANbB7CnZ9KEW4DO-2vvuK3pG2S80_XfaCO5UqS1ieHISoyOY1h18lb05kdODs6XB0s0thNIbWkonWpQKk1YRapINagZJhzp7wgYXlugmWipSqZ4YUVVhItSl_SmKPx3lmbiUew2bQN7kKCXBTeSaHRZNIaVzDUNffMFQ6xrPkM2JqllY2lxkPHiy_VYHKwsgoCqYJAqiiQGbyaplyOdTb-RbwduDoRRobOYG8ttyruxOsq01mhNJeKZr2YHtMeCo4R02DbE40KdhUrBXv89zc_h9uL1fK4On5_8vEJbGUhBWIIadmDze6qx6ekmHT1s2E9_gAbDtmR |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Survey+on+Visual+Analysis+of+Event+Sequence+Data&rft.jtitle=IEEE+transactions+on+visualization+and+computer+graphics&rft.au=Guo%2C+Yi&rft.au=Guo%2C+Shunan&rft.au=Jin%2C+Zhuochen&rft.au=Kaul%2C+Smiti&rft.date=2022-12-01&rft.issn=1941-0506&rft.eissn=1941-0506&rft.volume=28&rft.issue=12&rft.spage=5091&rft_id=info:doi/10.1109%2FTVCG.2021.3100413&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-2626&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-2626&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-2626&client=summon |