Luttinger-liquid behaviour in carbon nanotubes

Electron transport in conductors is usually well described by Fermi-liquid theory, which assumes that the energy states of the electrons near the Fermi level EF are not qualitatively altered by Coulomb interactions. In one-dimensional systems, however, even weak Coulomb interactions cause strong per...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 397; no. 6720; pp. 598 - 601
Main Authors McEuen, Paul L, Bockrath, Marc, Cobden, David H, Lu, Jia, Rinzler, Andrew G, Smalley, Richard E, Balents, Leon
Format Journal Article
LanguageEnglish
Published London Nature Publishing 18.02.1999
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electron transport in conductors is usually well described by Fermi-liquid theory, which assumes that the energy states of the electrons near the Fermi level EF are not qualitatively altered by Coulomb interactions. In one-dimensional systems, however, even weak Coulomb interactions cause strong perturbations. The resulting system, known as a Luttinger liquid, is predicted to be distinctly different from its two- and three-dimensional counterparts. For example, tunnelling into a Luttinger liquid at energies near the Fermi level is predicted to be strongly suppressed, unlike in two- and three-dimensional metals. Experiments on one-dimensional semiconductor wires, have been interpreted by using Luttinger-liquid theory, but an unequivocal verification of the theoretical predictions has not yet been obtained. Similarly, the edge excitations seen in fractional quantum Hall conductors are consistent with Luttinger-liquid behaviour, , but recent experiments failed to confirm the predicted relationship between the electrical properties of the bulk state and those of the edge states. Electrically conducting single-walled carbon nanotubes (SWNTs) represent quantum wires that may exhibit Luttinger-liquid behaviour, . Here we present measurements of the conductance of bundles ('ropes') of SWNTs as a function of temperature and voltage that agree with predictions for tunnelling into a Luttinger liquid. In particular, we find that the conductance and differential conductance scale as power laws with respect to temperature and bias voltage, respectively, and that the functional forms and the exponents are in good agreement with theoretical predictions.
AbstractList Electron transport in conductors is usually well described by Fermi-liquid theory, which assumes that the energy states of the electrons near the Fermi level EF are not qualitatively altered by Coulomb interactions. In one-dimensional systems, however, even weak Coulomb interactions cause strong perturbations. The resulting system, known as a Luttinger liquid, is predicted to be distinctly different from its two- and three-dimensional counterparts. For example, tunnelling into a Luttinger liquid at energies near the Fermi level is predicted to be strongly suppressed, unlike in two- and three-dimensional metals. Experiments on one-dimensional semiconductor wires, have been interpreted by using Luttinger-liquid theory, but an unequivocal verification of the theoretical predictions has not yet been obtained. Similarly, the edge excitations seen in fractional quantum Hall conductors are consistent with Luttinger-liquid behaviour, , but recent experiments failed to confirm the predicted relationship between the electrical properties of the bulk state and those of the edge states. Electrically conducting single-walled carbon nanotubes (SWNTs) represent quantum wires that may exhibit Luttinger-liquid behaviour, . Here we present measurements of the conductance of bundles ('ropes') of SWNTs as a function of temperature and voltage that agree with predictions for tunnelling into a Luttinger liquid. In particular, we find that the conductance and differential conductance scale as power laws with respect to temperature and bias voltage, respectively, and that the functional forms and the exponents are in good agreement with theoretical predictions.
Electrically conducting single-walled carbon nanotubes (SWNTs) represent quantum wires that may exhibit Luttinger-liquid behavior. Here we present measurements of the conductance of bundles of SWNTs as a function of temperature and voltage that agree with predictions for tunnelling into a Luttinger liquid. In particular, we find that the conductance and differential conductance scale as power laws with respect to temperature and bias voltage, respectively, and that the functional forms and the exponents are in good agreement with theoretical predictions. (Author)
Electron transport in conductors is usually well described by Fermi-liquid theory, which assumes that the energy states of the electrons near the Fermi level EF are not qualitatively altered by Coulomb interactions. In one-dimensional systems, however, even weak Coulomb interactions cause strong perturbations.
Author McEuen, Paul L
Rinzler, Andrew G
Balents, Leon
Cobden, David H
Bockrath, Marc
Lu, Jia
Smalley, Richard E
Author_xml – sequence: 1
  givenname: Paul L
  surname: McEuen
  fullname: McEuen, Paul L
  organization: Department of Physics, University of California and Materials Sciences Division, Lawrence Berkeley National Laboratory
– sequence: 2
  givenname: Marc
  surname: Bockrath
  fullname: Bockrath, Marc
  organization: Department of Physics, University of California and Materials Sciences Division, Lawrence Berkeley National Laboratory
– sequence: 3
  givenname: David H
  surname: Cobden
  fullname: Cobden, David H
  organization: Department of Physics, University of California and Materials Sciences Division, Lawrence Berkeley National Laboratory
– sequence: 4
  givenname: Jia
  surname: Lu
  fullname: Lu, Jia
  organization: Department of Physics, University of California and Materials Sciences Division, Lawrence Berkeley National Laboratory
– sequence: 5
  givenname: Andrew G
  surname: Rinzler
  fullname: Rinzler, Andrew G
  organization: Center for Nanoscale Science and Technology, Rice Quantum Institute and Department of Chemistry and Physics, MS-100, Rice University
– sequence: 6
  givenname: Richard E
  surname: Smalley
  fullname: Smalley, Richard E
  organization: Center for Nanoscale Science and Technology, Rice Quantum Institute and Department of Chemistry and Physics, MS-100, Rice University
– sequence: 7
  givenname: Leon
  surname: Balents
  fullname: Balents, Leon
  organization: Institute for Theoretical Physics, University of California
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1729871$$DView record in Pascal Francis
BookMark eNpdkEtLAzEUhYNUsK39BW4GUXdT85i8llJ8QcGNrodMJtGUadImE8F_74wtKK7uhfOdw-HMwMQHbwBYILhEkIhbxCmTJ2CKKs7Kigk-AVMIsSihIOwMzFLaQAgp4tUULNe5751_N7Hs3D67tmjMh_p0IcfC-UKr2ARfeOVDnxuTzsGpVV0yi-Odg7eH-9fVU7l-eXxe3a1LTTDrSyIVxLzlxlrbSi6lbhuOmaGIMY4biQhtbEUF4dIipoWgcvxNowbNYETm4OaQu4thn03q661L2nSd8ibkVGMmJWGDaQ4u_4GbobofutUYVpWgnMMBuj5AOoaUorH1Lrqtil81gvU4Wf0z2cBdHcNU0qqzUXnt0i_MsRR8LHdxwLzqczR_9DHkGxVXcwo
CODEN NATUAS
CitedBy_id crossref_primary_10_1103_PhysRevB_79_035312
crossref_primary_10_1103_PhysRevResearch_2_043283
crossref_primary_10_1103_PhysRevB_100_165404
crossref_primary_10_1103_PhysRevB_73_235326
crossref_primary_10_1016_j_physb_2011_12_052
crossref_primary_10_1103_PhysRevB_74_085410
crossref_primary_10_1103_PhysRevLett_90_166403
crossref_primary_10_1038_nphys1811
crossref_primary_10_1103_PhysRevB_79_035319
crossref_primary_10_1103_PhysRevMaterials_8_016003
crossref_primary_10_1103_PhysRevB_85_165430
crossref_primary_10_1246_cl_130961
crossref_primary_10_1021_acsanm_2c00377
crossref_primary_10_1103_PhysRevLett_105_156604
crossref_primary_10_1142_S0217751X18501749
crossref_primary_10_1103_PhysRevB_74_085403
crossref_primary_10_1063_5_0069551
crossref_primary_10_1088_2515_7639_aad57f
crossref_primary_10_1103_PhysRevB_90_195415
crossref_primary_10_1063_1_1789291
crossref_primary_10_1103_PhysRevLett_100_066407
crossref_primary_10_1103_PhysRevLett_117_106402
crossref_primary_10_1088_0953_8984_21_9_095009
crossref_primary_10_1016_j_mee_2005_03_042
crossref_primary_10_1038_35024031
crossref_primary_10_1103_PhysRevB_74_085409
crossref_primary_10_1103_PhysRevLett_88_116401
crossref_primary_10_1088_1751_8121_abb0fe
crossref_primary_10_1143_JPSJ_74_73
crossref_primary_10_1002_adma_200801994
crossref_primary_10_1063_1_1630383
crossref_primary_10_1103_PhysRevLett_95_256601
crossref_primary_10_1126_science_288_5465_494
crossref_primary_10_1016_j_cjph_2019_03_006
crossref_primary_10_1080_00018732_2012_719674
crossref_primary_10_1088_0957_4484_20_15_155501
crossref_primary_10_1103_PhysRevLett_93_126801
crossref_primary_10_1016_j_physleta_2019_06_049
crossref_primary_10_1088_0957_4484_24_1_015707
crossref_primary_10_1021_nn700080p
crossref_primary_10_1140_epjb_e2006_00252_4
crossref_primary_10_1038_nature08918
crossref_primary_10_1143_JPSJS_72SA_195
crossref_primary_10_1039_C8RA00078F
crossref_primary_10_1103_PhysRevB_90_161410
crossref_primary_10_1002_pssb_201100191
crossref_primary_10_1088_0953_8984_17_25_008
crossref_primary_10_1126_science_1110265
crossref_primary_10_1088_0953_8984_18_12_004
crossref_primary_10_1103_PhysRevB_66_155404
crossref_primary_10_1140_epjb_e2007_00097_3
crossref_primary_10_1088_1361_648X_ab04be
crossref_primary_10_4213_tmf9661
crossref_primary_10_1063_1_2155116
crossref_primary_10_1088_0031_8949_90_7_074043
crossref_primary_10_1103_PhysRevLett_83_5547
crossref_primary_10_1063_1_1884437
crossref_primary_10_1209_epl_i2001_00558_3
crossref_primary_10_1209_epl_i2003_00387_4
crossref_primary_10_1103_PhysRevB_77_041406
crossref_primary_10_1103_PhysRevB_109_L060406
crossref_primary_10_1016_j_carbon_2010_04_014
crossref_primary_10_1016_j_revip_2018_07_001
crossref_primary_10_1103_RevModPhys_87_703
crossref_primary_10_1002_pssb_200879651
crossref_primary_10_1063_1_3319350
crossref_primary_10_1209_0295_5075_86_57006
crossref_primary_10_1063_1_2935329
crossref_primary_10_1103_PhysRevB_67_014528
crossref_primary_10_1016_j_jallcom_2014_04_202
crossref_primary_10_1088_0953_8984_15_19_317
crossref_primary_10_1103_PhysRevB_72_205406
crossref_primary_10_1088_0953_4075_39_10_S07
crossref_primary_10_1103_PhysRevB_72_125416
crossref_primary_10_1038_s41535_020_00305_2
crossref_primary_10_1103_PhysRevB_79_045132
crossref_primary_10_1103_PhysRevB_86_115445
crossref_primary_10_1103_PhysRevLett_93_226401
crossref_primary_10_1134_1_1355400
crossref_primary_10_1002_andp_200751910_1102
crossref_primary_10_1002_smll_200700436
crossref_primary_10_1063_1_2345196
crossref_primary_10_1063_1_2387875
crossref_primary_10_1103_PhysRevLett_95_176401
crossref_primary_10_1103_PhysRevB_90_045118
crossref_primary_10_1038_s41586_022_04514_6
crossref_primary_10_1103_PhysRevB_84_085110
crossref_primary_10_1103_PhysRevB_106_L241102
crossref_primary_10_1088_0957_4484_27_13_135302
crossref_primary_10_1016_S0550_3213_03_00384_5
crossref_primary_10_1103_PhysRevA_78_054301
crossref_primary_10_1063_1_3093443
crossref_primary_10_1103_PhysRevB_80_041404
crossref_primary_10_1103_PhysRevB_93_035305
crossref_primary_10_1142_S0217979206035084
crossref_primary_10_1103_PhysRevB_66_165434
crossref_primary_10_1016_j_physe_2019_02_003
crossref_primary_10_1103_PhysRevB_61_7930
crossref_primary_10_1021_nl900052s
crossref_primary_10_1103_PhysRevB_92_085124
crossref_primary_10_1088_0034_4885_64_3_201
crossref_primary_10_1103_PhysRevLett_117_116401
crossref_primary_10_1063_1_1356437
crossref_primary_10_1016_S0022_3697_00_00178_5
crossref_primary_10_1088_0953_8984_18_33_S27
crossref_primary_10_1021_acs_nanolett_6b01485
crossref_primary_10_1021_cm901431f
crossref_primary_10_1021_jp912233e
crossref_primary_10_1134_S1063776110080182
crossref_primary_10_1063_1_3006392
crossref_primary_10_1063_1_2738380
crossref_primary_10_1021_acs_nanolett_3c01373
crossref_primary_10_1103_PhysRevB_74_115121
crossref_primary_10_1038_nphys4062
crossref_primary_10_1088_0957_4484_21_27_272001
crossref_primary_10_1103_PhysRevB_65_241403
crossref_primary_10_1103_PhysRevLett_122_126802
crossref_primary_10_1364_AO_58_000257
crossref_primary_10_1103_PhysRevB_79_195442
crossref_primary_10_1109_TNANO_2002_806823
crossref_primary_10_1088_0953_8984_14_20_319
crossref_primary_10_1021_jp992328o
crossref_primary_10_1088_1361_648X_aa6bd4
crossref_primary_10_1007_s11671_010_9656_4
crossref_primary_10_1016_S0921_4526_99_01771_8
crossref_primary_10_1016_S0038_1098_01_00300_3
crossref_primary_10_1016_j_cap_2008_08_028
crossref_primary_10_1103_PhysRevB_66_085409
crossref_primary_10_1038_ncomms3387
crossref_primary_10_1103_PhysRevB_74_155430
crossref_primary_10_1088_0256_307X_22_8_060
crossref_primary_10_1103_PhysRevB_76_045104
crossref_primary_10_1103_PhysRevLett_97_196802
crossref_primary_10_1126_sciadv_abm2781
crossref_primary_10_1103_PhysRevB_75_094414
crossref_primary_10_1016_j_jcp_2023_112551
crossref_primary_10_1103_PhysRevB_76_205325
crossref_primary_10_1063_1_1928323
crossref_primary_10_1063_1_4886758
crossref_primary_10_1103_PhysRevB_84_075317
crossref_primary_10_1002_pssb_201552547
crossref_primary_10_1080_10426910600613595
crossref_primary_10_1016_S0301_0104_02_00376_2
crossref_primary_10_1021_acs_nanolett_8b05031
crossref_primary_10_1103_PhysRevLett_95_186403
crossref_primary_10_1103_PhysRevLett_95_186402
crossref_primary_10_1016_j_synthmet_2005_07_262
crossref_primary_10_1063_1_1429751
crossref_primary_10_1103_PhysRevB_105_L081408
crossref_primary_10_1103_PhysRevB_64_193307
crossref_primary_10_1103_PhysRevB_76_045110
crossref_primary_10_1103_PhysRevLett_83_5334
crossref_primary_10_1126_science_290_5496_1549
crossref_primary_10_1103_PhysRevB_77_155422
crossref_primary_10_1016_S0038_1098_00_00425_7
crossref_primary_10_1016_S0167_9317_02_00616_0
crossref_primary_10_1103_PhysRevB_78_165130
crossref_primary_10_1002_pssb_200879606
crossref_primary_10_1103_PhysRevB_74_045117
crossref_primary_10_1103_PhysRevB_81_075108
crossref_primary_10_1039_C2CS35335K
crossref_primary_10_1103_PhysRevB_90_235124
crossref_primary_10_1021_acs_nanolett_5b02716
crossref_primary_10_1038_s41563_020_0652_5
crossref_primary_10_1103_PhysRevB_92_075128
crossref_primary_10_1103_PhysRevB_85_235462
crossref_primary_10_1038_s41467_023_44677_y
crossref_primary_10_1109_TED_2023_3259930
crossref_primary_10_1103_PhysRevLett_98_246803
crossref_primary_10_1016_j_diamond_2016_01_004
crossref_primary_10_1103_PhysRevB_79_245414
crossref_primary_10_1103_PhysRevLett_124_016102
crossref_primary_10_1209_epl_i2003_00624_x
crossref_primary_10_1209_0295_5075_90_57003
crossref_primary_10_1016_j_spmi_2008_10_027
crossref_primary_10_1016_j_diamond_2004_07_018
crossref_primary_10_1016_j_measurement_2017_10_018
crossref_primary_10_1103_PhysRevB_95_085101
crossref_primary_10_1103_PhysRevLett_84_2941
crossref_primary_10_1103_PhysRevB_72_075438
crossref_primary_10_1063_1_3309704
crossref_primary_10_1021_jp021654s
crossref_primary_10_1021_acs_inorgchem_5b02980
crossref_primary_10_1016_j_physe_2003_12_023
crossref_primary_10_1380_ejssnt_2018_66
crossref_primary_10_1021_nn3035183
crossref_primary_10_21468_SciPostPhys_2_1_007
crossref_primary_10_1088_0953_8984_13_22_301
crossref_primary_10_1364_OE_25_027165
crossref_primary_10_1103_PhysRevB_73_153308
crossref_primary_10_1209_0295_5075_82_17008
crossref_primary_10_1103_PhysRevB_65_241407
crossref_primary_10_1103_PhysRevB_77_085431
crossref_primary_10_1103_PhysRevB_65_241405
crossref_primary_10_3367_UFNr_0177_200709a_0921
crossref_primary_10_1002_adma_202404553
crossref_primary_10_1016_j_ssc_2004_05_044
crossref_primary_10_1103_PhysRevB_100_041404
crossref_primary_10_3390_condmat4030062
crossref_primary_10_1103_PhysRevLett_87_246801
crossref_primary_10_1140_epjb_e2017_80530_8
crossref_primary_10_1103_PhysRevB_85_045120
crossref_primary_10_1103_PhysRevB_70_195111
crossref_primary_10_1103_PhysRevB_74_121403
crossref_primary_10_1557_PROC_772_M7_10
crossref_primary_10_1103_PhysRevB_62_7150
crossref_primary_10_1063_1_4747799
crossref_primary_10_1103_PhysRevB_61_7316
crossref_primary_10_1016_j_cplett_2009_04_046
crossref_primary_10_1088_0034_4885_69_3_R01
crossref_primary_10_1103_PhysRevLett_116_135302
crossref_primary_10_1016_j_ssc_2004_05_031
crossref_primary_10_1088_1402_4896_ab957f
crossref_primary_10_1103_PhysRevB_63_155412
crossref_primary_10_1039_C4DT00627E
crossref_primary_10_1103_PhysRevB_71_033315
crossref_primary_10_1103_PhysRevB_78_235115
crossref_primary_10_1142_S0218625X02002427
crossref_primary_10_1364_JOSAB_33_00C102
crossref_primary_10_1007_s12274_012_0197_2
crossref_primary_10_1088_0953_8984_13_29_201
crossref_primary_10_1088_1367_2630_17_11_115011
crossref_primary_10_1103_PhysRevB_74_201403
crossref_primary_10_1103_PhysRevLett_105_266404
crossref_primary_10_1142_S0217979201007221
crossref_primary_10_1016_S0921_4526_01_01486_7
crossref_primary_10_1021_jp0009305
crossref_primary_10_1103_PhysRevB_61_7320
crossref_primary_10_1140_epjb_e2008_00204_0
crossref_primary_10_1140_epjb_e2010_10698_2
crossref_primary_10_1016_j_ssc_2004_05_024
crossref_primary_10_1021_nn403165q
crossref_primary_10_1016_S0009_2614_02_00294_4
crossref_primary_10_1038_s41467_023_43361_5
crossref_primary_10_1016_S1359_0286_99_00034_0
crossref_primary_10_1103_PhysRevB_70_195109
crossref_primary_10_1103_PhysRevB_98_125139
crossref_primary_10_1103_PhysRevB_99_085430
crossref_primary_10_1103_PhysRevLett_119_027701
crossref_primary_10_1116_1_1570843
crossref_primary_10_1103_PhysRevB_77_125430
crossref_primary_10_1103_PhysRevB_85_035136
crossref_primary_10_1103_PhysRevB_91_245410
crossref_primary_10_1140_epjb_e2011_20497_x
crossref_primary_10_1103_PhysRevB_90_085408
crossref_primary_10_1016_j_commatsci_2004_02_021
crossref_primary_10_1103_PhysRevB_65_075115
crossref_primary_10_1088_0953_8984_22_17_175301
crossref_primary_10_1103_PhysRevB_91_165409
crossref_primary_10_1103_PhysRevLett_88_126801
crossref_primary_10_1021_acsnano_1c00781
crossref_primary_10_1038_46241
crossref_primary_10_1002_pssb_201200446
crossref_primary_10_1103_PhysRevB_79_035121
crossref_primary_10_1103_PhysRevB_97_035445
crossref_primary_10_1103_PhysRevB_63_165419
crossref_primary_10_1103_PhysRevB_75_014523
crossref_primary_10_1103_PhysRevD_89_085011
crossref_primary_10_1063_1_1646752
crossref_primary_10_1016_S0379_6779_02_00408_3
crossref_primary_10_1002_adma_201204493
crossref_primary_10_1063_1_1318392
crossref_primary_10_1038_s41598_017_09372_1
crossref_primary_10_1063_1_3467464
crossref_primary_10_1103_PhysRevB_68_155402
crossref_primary_10_1103_PhysRevLett_90_176401
crossref_primary_10_1088_0953_8984_20_16_164211
crossref_primary_10_7566_JPSJNC_2_03
crossref_primary_10_1021_acs_nanolett_9b02853
crossref_primary_10_1103_RevModPhys_88_025005
crossref_primary_10_1103_PhysRevLett_126_186601
crossref_primary_10_1016_S0301_0104_02_00345_2
crossref_primary_10_1007_s00339_005_3391_1
crossref_primary_10_1103_PhysRevLett_87_066401
crossref_primary_10_1515_nanoph_2022_0039
crossref_primary_10_1021_nl049612y
crossref_primary_10_1103_PhysRevB_63_165403
crossref_primary_10_1103_PhysRevB_65_161404
crossref_primary_10_1016_j_carbon_2010_07_011
crossref_primary_10_1063_1_1554751
crossref_primary_10_1063_1_4901005
crossref_primary_10_1063_1_1362281
crossref_primary_10_1103_PhysRevB_68_235323
crossref_primary_10_1038_ncomms2696
crossref_primary_10_1103_PhysRevB_91_060407
crossref_primary_10_1126_science_1175850
crossref_primary_10_1016_S0168_583X_02_01863_3
crossref_primary_10_1088_0953_8984_19_13_136215
crossref_primary_10_1103_PhysRevB_71_075110
crossref_primary_10_1016_j_physe_2015_08_010
crossref_primary_10_1103_PhysRevB_88_125407
crossref_primary_10_1038_nphys2051
crossref_primary_10_1063_1_4862168
crossref_primary_10_1103_PhysRevB_72_075416
crossref_primary_10_1103_PhysRevB_74_235432
crossref_primary_10_1103_PhysRevLett_88_206402
crossref_primary_10_1016_j_comptc_2021_113438
crossref_primary_10_1007_s10971_016_4002_7
crossref_primary_10_1103_PhysRevB_74_235438
crossref_primary_10_1103_PhysRevB_92_195414
crossref_primary_10_1016_j_physe_2003_12_003
crossref_primary_10_1016_j_ssc_2007_02_028
crossref_primary_10_1142_S021797920704263X
crossref_primary_10_1103_PhysRevB_78_205407
crossref_primary_10_1016_S0370_2693_02_02276_1
crossref_primary_10_1103_PhysRevB_73_165104
crossref_primary_10_1103_PhysRevB_67_205408
crossref_primary_10_1126_science_1066266
crossref_primary_10_1103_PhysRevLett_87_256806
crossref_primary_10_1088_0953_4075_45_10_105501
crossref_primary_10_1088_0953_8984_24_31_313202
crossref_primary_10_1139_cjp_2013_0600
crossref_primary_10_1016_j_ssc_2007_03_055
crossref_primary_10_1103_PhysRevB_86_045458
crossref_primary_10_1103_PhysRevB_73_094520
crossref_primary_10_1063_1_4897916
crossref_primary_10_1007_s10909_012_0468_z
crossref_primary_10_1016_j_physe_2010_05_012
crossref_primary_10_1103_PhysRevLett_96_076601
crossref_primary_10_1109_TMTT_2011_2164548
crossref_primary_10_1007_s10909_015_1384_9
crossref_primary_10_1016_S0928_4931_01_00229_6
crossref_primary_10_1021_nl802456t
crossref_primary_10_1143_JJAP_43_2027
crossref_primary_10_1002_pssr_201105442
crossref_primary_10_1021_acs_nanolett_0c00090
crossref_primary_10_1016_j_mee_2005_07_060
crossref_primary_10_1103_PhysRevB_81_125406
crossref_primary_10_1038_nnano_2012_52
crossref_primary_10_1063_1_1842373
crossref_primary_10_1126_science_1059011
crossref_primary_10_1016_j_cap_2005_01_040
crossref_primary_10_1016_j_aop_2013_08_007
crossref_primary_10_1103_PhysRevB_99_115105
crossref_primary_10_1016_S1631_0705_02_01353_1
crossref_primary_10_1103_PhysRevB_95_035128
crossref_primary_10_1088_1361_648X_ac718c
crossref_primary_10_1063_1_1796272
crossref_primary_10_1103_PhysRevB_66_125106
crossref_primary_10_1103_PhysRevB_102_035130
crossref_primary_10_1103_PhysRevB_64_144515
crossref_primary_10_1007_s11467_009_0023_9
crossref_primary_10_1016_S0550_3213_02_01107_0
crossref_primary_10_1103_PhysRevB_66_035407
crossref_primary_10_1016_j_cjph_2018_05_019
crossref_primary_10_1073_pnas_0813162106
crossref_primary_10_1103_PhysRevB_96_195441
crossref_primary_10_1103_PhysRevB_85_205432
crossref_primary_10_1103_PhysRevLett_99_196804
crossref_primary_10_1115_1_1597619
crossref_primary_10_1063_1_1523895
crossref_primary_10_1103_PhysRevB_88_115115
crossref_primary_10_1134_S0036023608140039
crossref_primary_10_1021_acs_nanolett_7b02880
crossref_primary_10_1209_0295_5075_113_37002
crossref_primary_10_1021_ja205407q
crossref_primary_10_1109_TNANO_2014_2340132
crossref_primary_10_1134_1_1830666
crossref_primary_10_1016_S0921_4526_99_00734_6
crossref_primary_10_1016_S1386_9477_99_00228_3
crossref_primary_10_21468_SciPostPhysCore_7_2_019
crossref_primary_10_1103_PhysRevB_75_064209
crossref_primary_10_1103_PhysRevB_77_125327
crossref_primary_10_1088_0268_1242_17_11_201
crossref_primary_10_1103_PhysRevB_90_155432
crossref_primary_10_1134_1_1567775
crossref_primary_10_4028_www_scientific_net_SSP_121_123_545
crossref_primary_10_1016_j_mseb_2023_116785
crossref_primary_10_1088_0953_8984_23_47_475601
crossref_primary_10_1103_PhysRevB_69_165402
crossref_primary_10_1103_PhysRevB_95_205143
crossref_primary_10_1063_1_2172237
crossref_primary_10_1103_PhysRevLett_89_256401
crossref_primary_10_1039_c3nr01359f
crossref_primary_10_1103_PhysRevLett_106_216801
crossref_primary_10_1063_1_2400695
crossref_primary_10_1103_PhysRevLett_104_075701
crossref_primary_10_1007_s10825_012_0426_7
crossref_primary_10_1103_PhysRevB_67_113409
crossref_primary_10_1103_PhysRevLett_91_046801
crossref_primary_10_1103_PhysRevB_76_233408
crossref_primary_10_1103_PhysRevLett_83_5098
crossref_primary_10_1016_S0040_6090_01_01064_1
crossref_primary_10_1002_qua_25974
crossref_primary_10_1016_j_micrna_2022_207434
crossref_primary_10_1002_adma_202200956
crossref_primary_10_1103_PhysRevB_67_125419
crossref_primary_10_1140_epjb_s10051_023_00563_6
crossref_primary_10_1103_PhysRevB_76_035113
crossref_primary_10_1016_j_carbon_2008_10_043
crossref_primary_10_1016_j_aop_2008_04_006
crossref_primary_10_1103_PhysRevB_100_201101
crossref_primary_10_1016_j_carbon_2021_07_057
crossref_primary_10_1016_j_ultramic_2015_02_012
crossref_primary_10_1021_nl803698b
crossref_primary_10_1002_adma_200290009
crossref_primary_10_1016_S0921_4526_99_02917_8
crossref_primary_10_1073_pnas_0504581102
crossref_primary_10_1103_PhysRevB_83_245114
crossref_primary_10_1103_PhysRevB_81_081306
crossref_primary_10_1103_PhysRevB_61_R2468
crossref_primary_10_1016_j_ssc_2005_05_014
crossref_primary_10_1103_PhysRevB_71_224510
crossref_primary_10_1088_1367_2630_8_10_220
crossref_primary_10_1039_D1NR02346B
crossref_primary_10_1103_PhysRevB_74_045427
crossref_primary_10_1103_PhysRevB_99_140502
crossref_primary_10_1016_S0167_9317_02_00436_7
crossref_primary_10_1103_PhysRevB_66_045404
crossref_primary_10_1103_PhysRevB_71_075416
crossref_primary_10_3938_jkps_61_671
crossref_primary_10_1016_S0301_0104_02_00337_3
crossref_primary_10_1016_j_ssc_2013_04_007
crossref_primary_10_2139_ssrn_4108644
crossref_primary_10_1103_PhysRevB_92_205103
crossref_primary_10_1146_annurev_physchem_56_092503_141226
crossref_primary_10_1103_PhysRevB_71_075418
crossref_primary_10_1142_S1793292012500269
crossref_primary_10_1016_j_ssc_2004_09_020
crossref_primary_10_1557_jmr_2006_0361
crossref_primary_10_1103_PhysRevB_82_165116
crossref_primary_10_1063_1_1510578
crossref_primary_10_1016_j_optmat_2006_03_019
crossref_primary_10_1063_1_4899910
crossref_primary_10_1103_PhysRevLett_90_247001
crossref_primary_10_1126_science_1061797
crossref_primary_10_1103_PhysRevLett_93_106402
crossref_primary_10_1063_1_126107
crossref_primary_10_1103_PhysRevB_72_165427
crossref_primary_10_1103_PhysRevB_68_075407
crossref_primary_10_1088_1757_899X_64_1_012002
crossref_primary_10_1103_PhysRevB_65_195101
crossref_primary_10_1103_PhysRevB_93_155106
crossref_primary_10_1088_0953_8984_16_23_L01
crossref_primary_10_1007_JHEP10_2020_017
crossref_primary_10_1007_s10909_016_1704_8
crossref_primary_10_1021_ja002008e
crossref_primary_10_1103_PhysRevB_80_085402
crossref_primary_10_1103_PhysRevLett_97_026402
crossref_primary_10_1002_jsde_12702
crossref_primary_10_1016_j_carbon_2014_10_045
crossref_primary_10_1103_PhysRevB_63_195412
crossref_primary_10_1134_S1063783407110017
crossref_primary_10_1088_1742_5468_2006_02_P02008
crossref_primary_10_1134_S1063776121040142
crossref_primary_10_1063_1_3666052
crossref_primary_10_1002_smll_202303238
crossref_primary_10_1002_andp_200710258
crossref_primary_10_1103_PhysRevB_80_085404
crossref_primary_10_1103_PhysRevB_67_125423
crossref_primary_10_1143_APEX_4_075101
crossref_primary_10_1143_JPSJ_80_114704
crossref_primary_10_1016_S1567_1739_01_00044_X
crossref_primary_10_1103_PhysRevLett_99_036802
crossref_primary_10_1140_epjb_e2014_50093_5
crossref_primary_10_1016_j_physe_2007_12_005
crossref_primary_10_1038_ncomms1406
crossref_primary_10_1103_PhysRevLett_84_6082
crossref_primary_10_1103_PhysRevLett_88_036804
crossref_primary_10_1103_PhysRevB_95_205103
crossref_primary_10_1063_1_1616638
crossref_primary_10_1103_PhysRevB_76_075420
crossref_primary_10_1088_2053_1591_aa949c
crossref_primary_10_1140_epjb_e2014_50445_1
crossref_primary_10_1103_PhysRevB_64_201106
crossref_primary_10_1103_PhysRevB_83_165439
crossref_primary_10_1016_j_aop_2005_08_010
crossref_primary_10_1021_nl0350027
crossref_primary_10_1103_PhysRevLett_101_256805
crossref_primary_10_1103_PhysRevB_76_195105
crossref_primary_10_1063_1_4876156
crossref_primary_10_1080_09500839_2020_1836414
crossref_primary_10_1021_nn2031935
crossref_primary_10_1021_cr970102g
crossref_primary_10_1103_PhysRevLett_97_176401
crossref_primary_10_1038_s41467_020_20395_7
crossref_primary_10_1016_S0379_6779_99_00302_1
crossref_primary_10_1038_ncomms2708
crossref_primary_10_1063_1_2403909
crossref_primary_10_1021_nl051970t
crossref_primary_10_1016_j_crci_2007_04_009
crossref_primary_10_1039_c3tc00947e
crossref_primary_10_1038_srep37783
crossref_primary_10_1103_PhysRevB_72_125114
crossref_primary_10_1103_RevModPhys_83_543
crossref_primary_10_1103_PhysRevLett_120_217206
crossref_primary_10_1088_1742_5468_2011_11_P11001
crossref_primary_10_1038_s41467_018_03381_y
crossref_primary_10_1103_PhysRevLett_101_246804
crossref_primary_10_1038_35042545
crossref_primary_10_1103_PhysRevX_7_021016
crossref_primary_10_1038_s41467_022_33676_0
crossref_primary_10_1063_1_4874880
crossref_primary_10_1103_PhysRevB_69_085120
crossref_primary_10_1103_PhysRevB_72_035419
crossref_primary_10_1103_PhysRevLett_95_266802
crossref_primary_10_1038_s41598_018_37015_6
crossref_primary_10_1103_PhysRevB_62_2034
crossref_primary_10_1103_PhysRevB_77_165402
crossref_primary_10_1209_epl_i2004_10266_6
crossref_primary_10_1002_wcms_1257
crossref_primary_10_1016_j_snb_2004_12_073
crossref_primary_10_1007_s00339_006_3760_4
crossref_primary_10_1088_0953_8984_15_34_303
crossref_primary_10_1209_epl_i2002_00161_8
crossref_primary_10_1134_S1063784212010239
crossref_primary_10_1021_acsnano_0c05397
crossref_primary_10_1103_PhysRevB_63_161404
crossref_primary_10_1103_PhysRevB_70_155420
crossref_primary_10_1016_j_optmat_2004_11_014
crossref_primary_10_1063_1_4819803
crossref_primary_10_1103_PhysRevB_63_161403
crossref_primary_10_1021_jp5098074
crossref_primary_10_3762_bjnano_5_229
crossref_primary_10_1038_s42254_019_0135_2
crossref_primary_10_1088_1367_2630_9_9_348
crossref_primary_10_1146_annurev_conmatphys_070909_103928
crossref_primary_10_1021_nl050738k
crossref_primary_10_1063_1_3662331
crossref_primary_10_1088_0953_8984_25_1_014003
crossref_primary_10_1103_PhysRevB_105_195404
crossref_primary_10_1209_0295_5075_89_27003
crossref_primary_10_1088_0953_8984_25_1_014001
crossref_primary_10_1063_1_5118967
crossref_primary_10_1103_PhysRevLett_84_1272
crossref_primary_10_1103_PhysRevB_66_165411
crossref_primary_10_1088_0953_8984_25_1_014008
crossref_primary_10_1063_1_2219389
crossref_primary_10_1088_0953_8984_25_1_014004
crossref_primary_10_1103_PhysRevB_62_15996
crossref_primary_10_1103_PhysRevLett_95_067204
crossref_primary_10_1143_JJAP_45_L679
crossref_primary_10_1038_s41467_023_42821_2
crossref_primary_10_1038_nphoton_2015_123
crossref_primary_10_1103_PhysRevB_75_125407
crossref_primary_10_1088_0953_8984_17_34_L02
crossref_primary_10_1103_PhysRevLett_115_206402
crossref_primary_10_1103_RevModPhys_75_1449
crossref_primary_10_1134_S1063776115090149
crossref_primary_10_1103_PhysRevLett_98_096403
crossref_primary_10_4028_www_scientific_net_AMM_251_366
crossref_primary_10_1103_PhysRevB_64_125407
crossref_primary_10_1002_adom_202300720
crossref_primary_10_1063_1_1373413
crossref_primary_10_1103_PhysRevB_97_155426
crossref_primary_10_1103_PhysRevLett_84_3682
crossref_primary_10_1103_PhysRevB_78_115425
crossref_primary_10_1103_PhysRevB_86_155423
crossref_primary_10_1021_acs_nanolett_1c04807
crossref_primary_10_7498_aps_71_20220052
crossref_primary_10_1103_PhysRevLett_101_027602
crossref_primary_10_1103_PhysRevLett_101_236802
crossref_primary_10_1103_PhysRevLett_119_266801
crossref_primary_10_1088_1742_5468_ac12c7
crossref_primary_10_1103_PhysRevLett_91_076401
crossref_primary_10_1002_pssb_201800258
crossref_primary_10_1088_0022_3727_43_37_374003
crossref_primary_10_1103_PhysRevB_77_233105
crossref_primary_10_1103_PhysRevLett_111_165302
crossref_primary_10_1063_1_1428117
crossref_primary_10_1007_s12274_020_2803_z
crossref_primary_10_1063_5_0007388
crossref_primary_10_1088_1367_2630_11_12_125011
crossref_primary_10_1002_que2_10
crossref_primary_10_1021_acs_nanolett_1c00497
crossref_primary_10_1103_PhysRevB_100_195423
crossref_primary_10_1002_qua_22625
crossref_primary_10_1088_0957_4484_20_50_505401
crossref_primary_10_1103_PhysRevB_101_075130
crossref_primary_10_1088_1367_2630_7_1_244
crossref_primary_10_1038_s41563_022_01277_3
crossref_primary_10_1063_1_4922739
crossref_primary_10_1103_PhysRevLett_93_096805
crossref_primary_10_1063_1_1748836
crossref_primary_10_1016_j_carbon_2008_09_044
crossref_primary_10_1016_j_ssc_2012_11_017
crossref_primary_10_1016_j_physb_2004_06_019
crossref_primary_10_1016_S1386_9477_02_00971_2
crossref_primary_10_1111_j_1749_6632_2002_tb03035_x
crossref_primary_10_1143_JPSJ_74_777
crossref_primary_10_1021_ic301469u
crossref_primary_10_1103_PhysRevLett_101_106408
crossref_primary_10_1088_0953_8984_15_34_301
crossref_primary_10_1103_PhysRevB_68_125312
crossref_primary_10_1103_PhysRevB_71_165309
crossref_primary_10_1142_S0217979212440043
crossref_primary_10_1021_acs_nanolett_3c01789
crossref_primary_10_1088_0957_4484_25_32_322001
crossref_primary_10_1088_0953_2048_13_9_315
crossref_primary_10_1103_PhysRevB_90_115411
crossref_primary_10_1016_S0038_1098_03_00310_7
crossref_primary_10_1016_j_physe_2022_115455
crossref_primary_10_1103_PhysRevB_71_214516
crossref_primary_10_1103_PhysRevB_77_245312
crossref_primary_10_1088_1361_648X_aaa526
crossref_primary_10_1103_PhysRevLett_100_176403
crossref_primary_10_1103_PhysRevLett_101_256401
crossref_primary_10_1063_1_1644909
crossref_primary_10_1088_0953_2048_15_9_310
crossref_primary_10_1006_spmi_2000_0871
crossref_primary_10_1103_PhysRevB_81_155438
crossref_primary_10_1103_PhysRevB_62_4238
crossref_primary_10_1103_PhysRevB_106_115412
crossref_primary_10_1103_PhysRevLett_102_036804
crossref_primary_10_1016_S1369_7021_10_70030_4
crossref_primary_10_1016_j_physe_2004_03_004
crossref_primary_10_1007_JHEP01_2010_114
crossref_primary_10_1103_PhysRevB_101_220508
crossref_primary_10_1103_PhysRevB_65_165327
crossref_primary_10_1088_1361_648X_aae3cb
crossref_primary_10_1088_1742_6596_286_1_012049
crossref_primary_10_1088_1361_648X_ac45b6
crossref_primary_10_1209_epl_i2001_00140_7
crossref_primary_10_1038_s41535_021_00381_y
crossref_primary_10_1103_PhysRevResearch_2_013313
crossref_primary_10_1103_PhysRevB_104_165409
crossref_primary_10_1103_PhysRevB_73_134504
crossref_primary_10_1088_0953_8984_18_19_012
crossref_primary_10_1016_S1386_9477_01_00229_6
crossref_primary_10_1103_PhysRevB_75_205116
crossref_primary_10_1016_j_ssc_2011_06_041
crossref_primary_10_1103_PhysRevB_109_205116
crossref_primary_10_1103_PhysRevLett_89_037901
crossref_primary_10_1134_S1063776116130033
crossref_primary_10_1038_s41586_018_0778_7
crossref_primary_10_1063_1_3502485
crossref_primary_10_1103_PhysRevX_8_031075
crossref_primary_10_1016_j_cplett_2011_04_095
crossref_primary_10_1109_TED_2015_2483749
crossref_primary_10_1103_PhysRevLett_84_4164
crossref_primary_10_1016_j_matchemphys_2015_05_080
crossref_primary_10_1103_PhysRevB_71_115435
crossref_primary_10_1021_acs_nanolett_8b03801
crossref_primary_10_1103_PhysRevLett_94_066801
crossref_primary_10_1103_PhysRevLett_94_235501
crossref_primary_10_1557_PROC_1057_II15_20
crossref_primary_10_1063_1_2189454
crossref_primary_10_1103_PhysRevB_79_195114
crossref_primary_10_1016_j_physe_2007_10_038
crossref_primary_10_1103_PhysRevB_109_045105
crossref_primary_10_1007_s42452_022_05016_w
crossref_primary_10_1016_j_nimb_2004_11_026
crossref_primary_10_1103_PhysRevLett_85_1730
crossref_primary_10_1088_0953_8984_22_8_084026
crossref_primary_10_1103_PhysRevB_81_085436
crossref_primary_10_1088_0953_8984_21_21_215608
crossref_primary_10_1063_1_4931355
crossref_primary_10_1021_jacs_3c13535
crossref_primary_10_1103_PhysRevB_79_115425
crossref_primary_10_1016_j_physe_2007_08_102
crossref_primary_10_1088_1361_648X_ab2a56
crossref_primary_10_1209_0295_5075_93_17009
crossref_primary_10_1063_1_1414571
crossref_primary_10_1103_PhysRevB_106_235141
crossref_primary_10_1103_PhysRevB_93_195129
crossref_primary_10_1088_0957_4484_20_13_135205
crossref_primary_10_1209_epl_i2001_00426_2
crossref_primary_10_1038_s41467_019_10613_2
crossref_primary_10_1103_PhysRevLett_123_075302
crossref_primary_10_1209_0295_5075_89_47001
crossref_primary_10_1103_PhysRevB_81_075401
crossref_primary_10_1103_PhysRevB_71_161304
crossref_primary_10_1088_1402_4896_aa7e16
crossref_primary_10_1103_PhysRevLett_86_2416
crossref_primary_10_1103_PhysRevB_64_195412
crossref_primary_10_1103_PhysRevLett_112_246403
crossref_primary_10_1142_S0217979208049455
crossref_primary_10_1063_1_1471570
crossref_primary_10_1016_j_physc_2007_03_286
crossref_primary_10_1016_j_physe_2004_04_019
crossref_primary_10_1143_JJAP_44_461
crossref_primary_10_1364_OE_19_015077
crossref_primary_10_1007_s10909_018_1969_1
crossref_primary_10_1103_PhysRevB_92_075414
crossref_primary_10_1088_0268_1242_15_6_201
crossref_primary_10_1038_s41586_024_07596_6
crossref_primary_10_1103_PhysRevB_82_115444
crossref_primary_10_1103_PhysRevB_62_R10653
crossref_primary_10_1103_PhysRevB_84_075482
crossref_primary_10_1039_C9NR10765G
crossref_primary_10_1103_PhysRevB_86_045136
crossref_primary_10_1103_PhysRevLett_91_076801
crossref_primary_10_1103_PhysRevLett_127_113602
crossref_primary_10_1002_pssb_200982301
crossref_primary_10_4236_wjcmp_2015_54030
crossref_primary_10_1016_j_physleta_2010_04_061
crossref_primary_10_1021_jacs_3c01576
crossref_primary_10_1063_1_2932343
crossref_primary_10_1007_s11051_005_9034_9
crossref_primary_10_1016_j_carbon_2011_07_037
crossref_primary_10_1103_PhysRevB_63_014506
crossref_primary_10_1088_0953_8984_12_31_306
crossref_primary_10_1103_PhysRevLett_91_076803
crossref_primary_10_1103_PhysRevB_65_125416
crossref_primary_10_1103_PhysRevLett_97_076402
crossref_primary_10_1103_PhysRevB_66_165311
crossref_primary_10_1557_PROC_789_N16_2
crossref_primary_10_1016_j_mejo_2007_05_014
crossref_primary_10_1103_PhysRevB_83_125323
crossref_primary_10_1039_c0cp02691c
crossref_primary_10_1103_PhysRevB_66_155335
crossref_primary_10_1103_PhysRevLett_103_067401
crossref_primary_10_1103_PhysRevB_80_165119
crossref_primary_10_1103_PhysRevB_75_035126
crossref_primary_10_1103_PhysRevLett_99_076801
crossref_primary_10_1103_PhysRevB_74_165104
crossref_primary_10_1007_s40820_020_00556_5
crossref_primary_10_1002_chem_201700731
crossref_primary_10_1021_acsnano_2c07316
crossref_primary_10_1103_PhysRevB_67_165420
crossref_primary_10_1103_PhysRevB_69_195406
crossref_primary_10_1103_PhysRevB_68_205402
crossref_primary_10_7498_aps_71_20220272
crossref_primary_10_1103_PhysRevLett_89_046803
crossref_primary_10_1126_science_1171769
crossref_primary_10_1103_PhysRevB_66_073307
crossref_primary_10_1103_PhysRevLett_112_100601
crossref_primary_10_1016_S0009_2614_02_01243_5
crossref_primary_10_1103_PhysRevB_87_035439
crossref_primary_10_1016_j_carbon_2009_10_022
crossref_primary_10_1039_c2nr32769d
crossref_primary_10_1103_PhysRevB_84_245449
crossref_primary_10_1016_j_materresbull_2004_03_022
crossref_primary_10_1088_0953_8984_21_14_144203
crossref_primary_10_1039_C6RA22065G
crossref_primary_10_1103_PhysRevB_67_165410
crossref_primary_10_1103_PhysRevB_74_085301
crossref_primary_10_1063_1_3151916
crossref_primary_10_1088_1742_6596_38_1_009
crossref_primary_10_1016_j_physe_2021_115097
crossref_primary_10_1126_science_1075242
crossref_primary_10_1021_acs_nanolett_2c02701
crossref_primary_10_1063_1_2826274
crossref_primary_10_1103_PhysRevB_91_184507
crossref_primary_10_1002_pssb_200982327
crossref_primary_10_1007_s11664_009_0712_8
crossref_primary_10_1103_PhysRevB_92_235435
crossref_primary_10_1103_PhysRevB_76_205441
crossref_primary_10_1103_PhysRevB_68_035421
crossref_primary_10_1103_PhysRevB_79_205421
crossref_primary_10_1103_PhysRevLett_107_116804
crossref_primary_10_1103_PhysRevB_78_165402
crossref_primary_10_1103_PhysRevLett_114_147004
crossref_primary_10_1039_C3NR03856D
crossref_primary_10_1103_PhysRevResearch_3_L032013
crossref_primary_10_1103_PhysRevB_78_165405
crossref_primary_10_1103_PhysRevLett_99_166402
crossref_primary_10_1103_PhysRevResearch_2_043336
crossref_primary_10_4236_wjcmp_2016_61008
crossref_primary_10_1103_PhysRevB_72_235112
crossref_primary_10_1038_s42005_023_01223_y
crossref_primary_10_1103_PhysRevB_84_075443
crossref_primary_10_1103_PhysRevB_99_155304
crossref_primary_10_1088_0953_8984_16_24_R01
crossref_primary_10_1088_0953_8984_19_39_395016
crossref_primary_10_1103_PhysRevLett_110_136405
crossref_primary_10_1116_1_3300061
crossref_primary_10_1016_j_cclet_2024_110100
crossref_primary_10_1002_polb_20856
crossref_primary_10_1016_j_chemphys_2005_04_026
crossref_primary_10_1103_PhysRevB_68_205423
crossref_primary_10_1103_PhysRevB_92_235423
crossref_primary_10_1088_1367_2630_8_5_073
crossref_primary_10_1039_C4CP03571B
crossref_primary_10_1103_PhysRevB_82_045416
crossref_primary_10_1021_acs_nanolett_5b01506
crossref_primary_10_1002_adfm_200800324
crossref_primary_10_1021_jp040650f
crossref_primary_10_1080_00268976_2015_1017018
crossref_primary_10_1103_RevModPhys_79_677
crossref_primary_10_1103_PhysRevLett_91_166402
crossref_primary_10_1103_PhysRevB_63_235301
crossref_primary_10_1021_nn200444x
crossref_primary_10_1103_PhysRevB_64_233401
crossref_primary_10_1016_j_jssc_2005_02_021
crossref_primary_10_1063_1_2750522
crossref_primary_10_1142_S0217984909020473
crossref_primary_10_1103_PhysRevB_70_115313
crossref_primary_10_1103_PhysRevB_90_195134
crossref_primary_10_1088_0953_8984_17_12_015
crossref_primary_10_1103_PhysRevLett_96_057001
crossref_primary_10_1038_s41598_017_03138_5
crossref_primary_10_1109_JPHOT_2012_2202282
crossref_primary_10_1016_j_surfrep_2011_11_001
crossref_primary_10_1038_nature00913
crossref_primary_10_1103_PhysRevB_66_193405
crossref_primary_10_1016_j_matpr_2023_12_017
crossref_primary_10_1063_1_2970033
crossref_primary_10_1103_PhysRevB_75_153406
crossref_primary_10_1103_PhysRevB_85_235128
crossref_primary_10_1063_1_126548
crossref_primary_10_1134_S1063776108100026
crossref_primary_10_1103_PhysRevB_75_033313
crossref_primary_10_1103_PhysRevA_85_013634
crossref_primary_10_1209_epl_i2003_10273_1
crossref_primary_10_1103_PhysRevB_71_125408
crossref_primary_10_1103_PhysRevB_82_012503
crossref_primary_10_1134_S1063783406080269
crossref_primary_10_7498_aps_61_117104
crossref_primary_10_1103_PhysRevB_83_041106
crossref_primary_10_1103_PhysRevB_90_014309
crossref_primary_10_1103_PhysRevLett_93_196601
crossref_primary_10_1088_0953_8984_14_43_317
crossref_primary_10_1038_nature02074
crossref_primary_10_1103_PhysRevB_71_045421
crossref_primary_10_1103_PhysRevB_62_R16353
crossref_primary_10_1109_TED_2024_3350552
crossref_primary_10_1063_1_2221910
crossref_primary_10_1088_1751_8113_46_9_095006
crossref_primary_10_1088_0953_8984_18_42_011
crossref_primary_10_1021_acs_jpcc_7b07176
crossref_primary_10_1080_08927020802635137
crossref_primary_10_1103_PhysRevB_69_245109
crossref_primary_10_1021_acs_nanolett_1c02069
crossref_primary_10_12693_APhysPolA_113_1039
crossref_primary_10_1007_s10853_007_1943_9
crossref_primary_10_1146_annurev_matsci_32_112601_134925
crossref_primary_10_1103_PhysRevB_74_195103
crossref_primary_10_1063_1_2402119
crossref_primary_10_1103_PhysRevB_84_155426
crossref_primary_10_1103_PhysRevLett_87_106801
crossref_primary_10_1080_15421400590954506
crossref_primary_10_1103_PhysRevB_71_125431
crossref_primary_10_1021_acsnano_3c10120
crossref_primary_10_1103_PhysRevB_68_214521
crossref_primary_10_1209_0295_5075_77_37001
crossref_primary_10_1088_0953_8984_12_20_101
crossref_primary_10_1103_PhysRevB_96_195111
crossref_primary_10_1103_PhysRevB_75_195418
crossref_primary_10_1103_PhysRevB_94_085122
crossref_primary_10_1002_adma_200800589
crossref_primary_10_1063_1_126772
crossref_primary_10_1088_0957_4484_15_5_007
crossref_primary_10_1103_PhysRevLett_107_187204
crossref_primary_10_1103_PhysRevLett_90_214501
crossref_primary_10_1038_s41467_020_14383_0
crossref_primary_10_1103_PhysRevLett_97_256403
crossref_primary_10_1039_b704037g
crossref_primary_10_1103_PhysRevLett_94_056803
crossref_primary_10_1103_PhysRevB_71_125425
crossref_primary_10_3367_UFNr_0170_200008f_0906
crossref_primary_10_1103_PhysRevLett_92_036801
crossref_primary_10_1103_PhysRevB_78_075403
crossref_primary_10_1103_PhysRevLett_112_216402
crossref_primary_10_1016_S0921_5093_02_00912_7
crossref_primary_10_1002_piuz_200501069
crossref_primary_10_1103_PhysRevLett_100_256805
crossref_primary_10_1103_PhysRevB_70_195408
crossref_primary_10_1016_j_physb_2021_413544
crossref_primary_10_1103_PhysRevB_74_245327
crossref_primary_10_1103_PhysRevLett_89_226404
crossref_primary_10_1016_j_diamond_2024_110924
crossref_primary_10_1038_nphys412
crossref_primary_10_1038_nphys895
crossref_primary_10_1103_PhysRevLett_112_066801
crossref_primary_10_1143_JPSJ_70_1464
crossref_primary_10_1063_1_481258
crossref_primary_10_3390_nano13202791
crossref_primary_10_1103_PhysRevB_75_045332
crossref_primary_10_1103_PhysRevA_82_011603
crossref_primary_10_1063_1_3274807
crossref_primary_10_1038_s41563_020_0675_y
crossref_primary_10_1103_PhysRevLett_90_016401
crossref_primary_10_1103_PhysRevB_72_064406
crossref_primary_10_3139_146_110610
crossref_primary_10_1143_JJAP_44_8237
crossref_primary_10_1103_PhysRevB_64_035310
crossref_primary_10_1063_1_1622450
crossref_primary_10_1103_PhysRevLett_105_106801
crossref_primary_10_1103_PhysRevB_69_081405
crossref_primary_10_1103_PhysRevB_82_033407
crossref_primary_10_1103_PhysRevLett_121_047702
crossref_primary_10_1103_PhysRevLett_88_076403
crossref_primary_10_1016_j_physleta_2004_06_081
crossref_primary_10_1103_PhysRevB_96_081101
crossref_primary_10_1002_pssb_200982951
crossref_primary_10_1007_s10955_011_0181_3
crossref_primary_10_1103_PhysRevB_66_041101
crossref_primary_10_1103_PhysRevLett_101_126803
crossref_primary_10_1103_PhysRevLett_101_126802
crossref_primary_10_1103_PhysRevB_67_041401
crossref_primary_10_1088_0953_8984_21_39_395303
crossref_primary_10_1016_j_physb_2007_12_007
crossref_primary_10_1038_s41567_019_0697_z
crossref_primary_10_1186_s11671_015_0734_5
crossref_primary_10_1016_S0038_1098_03_00417_4
crossref_primary_10_1143_JJAP_39_7053
crossref_primary_10_1134_S1063783418020075
crossref_primary_10_1021_acs_nanolett_0c03091
crossref_primary_10_1557_PROC_1081_P04_02
crossref_primary_10_1103_PhysRevLett_89_136805
crossref_primary_10_1103_PhysRevB_66_241403
crossref_primary_10_1103_PhysRevB_92_045432
crossref_primary_10_1038_s41467_020_20238_5
crossref_primary_10_1038_nnano_2011_182
crossref_primary_10_1134_S1063776113110137
crossref_primary_10_1038_426511a
crossref_primary_10_1126_science_adf9728
crossref_primary_10_1103_PhysRevB_72_245406
crossref_primary_10_1021_ja209333m
crossref_primary_10_1021_jp049483
crossref_primary_10_1016_j_ssc_2004_02_015
crossref_primary_10_1103_PhysRevB_76_165406
crossref_primary_10_1016_j_physe_2016_02_043
crossref_primary_10_1140_epjb_e2004_00243_5
crossref_primary_10_1103_PhysRevB_96_241406
crossref_primary_10_1103_PhysRevB_85_033306
crossref_primary_10_1021_ic0519382
crossref_primary_10_1103_PhysRevLett_111_106404
crossref_primary_10_1103_PhysRevB_72_245411
crossref_primary_10_1038_990052
crossref_primary_10_1088_0953_8984_25_47_475302
crossref_primary_10_1021_nl0342343
crossref_primary_10_1103_PhysRevB_79_100507
crossref_primary_10_1103_PhysRevB_100_075151
crossref_primary_10_1142_S0219581X02000292
crossref_primary_10_1088_0957_4484_14_1_318
crossref_primary_10_1103_PhysRevLett_101_206401
crossref_primary_10_1002_pssb_201600293
crossref_primary_10_1103_PhysRevB_69_085404
crossref_primary_10_1016_j_apsusc_2007_07_118
crossref_primary_10_1088_1367_2630_2_1_309
crossref_primary_10_1103_PhysRevLett_97_096601
crossref_primary_10_1103_PhysRevB_107_115414
crossref_primary_10_1039_D4CP00293H
crossref_primary_10_1103_PhysRevLett_91_126804
crossref_primary_10_1088_1367_2630_5_1_146
crossref_primary_10_1103_PhysRevB_67_033404
crossref_primary_10_1103_RevModPhys_79_1291
crossref_primary_10_1016_j_electacta_2019_03_083
crossref_primary_10_1016_j_physleta_2006_07_042
crossref_primary_10_1021_cr030647c
crossref_primary_10_1016_j_physleta_2009_12_024
crossref_primary_10_1103_PhysRevB_72_245403
crossref_primary_10_1002_pat_3109
crossref_primary_10_1103_PhysRevB_69_035110
crossref_primary_10_1103_PhysRevB_70_045410
crossref_primary_10_1088_1361_6633_aaed0d
crossref_primary_10_1103_PhysRevLett_94_116804
crossref_primary_10_1103_PhysRevB_69_233303
crossref_primary_10_1016_j_jpowsour_2019_01_010
crossref_primary_10_1051_epjap_2009132
crossref_primary_10_1103_PhysRevB_65_115115
crossref_primary_10_1080_15421406_2020_1732558
crossref_primary_10_1088_1367_2630_5_1_117
crossref_primary_10_1103_PhysRevB_66_035313
crossref_primary_10_1002_andp_202100354
crossref_primary_10_1103_PhysRevB_80_045106
crossref_primary_10_4028_www_scientific_net_SSP_121_123_13
crossref_primary_10_1016_j_ccr_2010_02_014
crossref_primary_10_1103_PhysRevB_93_235114
crossref_primary_10_1103_PhysRevLett_108_175502
crossref_primary_10_1016_S0022_3697_02_00075_6
crossref_primary_10_1016_S0038_1098_00_00222_2
crossref_primary_10_1103_PhysRevLett_104_036402
crossref_primary_10_1088_0256_307X_20_8_344
crossref_primary_10_1021_nn800678v
crossref_primary_10_1002_pssb_200460031
crossref_primary_10_1103_PhysRevB_92_045106
crossref_primary_10_1063_1_4882995
crossref_primary_10_1103_PhysRevB_87_165404
crossref_primary_10_1103_PhysRevB_109_155415
crossref_primary_10_1103_PhysRevB_66_104522
crossref_primary_10_1103_PhysRevB_96_115424
crossref_primary_10_1103_PhysRevB_101_075430
crossref_primary_10_1103_PhysRevB_72_233409
crossref_primary_10_1103_PhysRevLett_87_136401
crossref_primary_10_1134_S0040577919050106
crossref_primary_10_1103_PhysRevB_86_155141
crossref_primary_10_1002_adma_200500928
crossref_primary_10_1103_PhysRevX_9_011055
crossref_primary_10_1103_PhysRevB_77_115401
crossref_primary_10_1103_PhysRevB_94_235426
crossref_primary_10_1103_PhysRevLett_93_176602
crossref_primary_10_1103_PhysRevB_65_115108
crossref_primary_10_1038_nnano_2013_143
crossref_primary_10_1103_PhysRevB_79_235408
crossref_primary_10_1002_adma_202008029
crossref_primary_10_1021_acs_jpcc_5b02944
crossref_primary_10_1021_acsanm_3c01630
crossref_primary_10_7566_JPSJ_93_014701
crossref_primary_10_1103_PhysRevLett_87_276802
crossref_primary_10_7566_JPSJ_88_081009
crossref_primary_10_1103_PhysRevLett_127_257702
crossref_primary_10_1126_science_290_5497_1742
crossref_primary_10_1038_s41598_018_26428_y
crossref_primary_10_1016_S1386_9477_01_00145_X
crossref_primary_10_1063_10_0009286
crossref_primary_10_1088_1742_6596_2639_1_012051
crossref_primary_10_1002_cta_587
crossref_primary_10_1063_1_4974839
crossref_primary_10_1103_PhysRevB_62_16900
crossref_primary_10_1103_PhysRevLett_97_096801
crossref_primary_10_1016_S1567_1739_01_00089_X
crossref_primary_10_1063_1_1739160
crossref_primary_10_1088_0957_4484_17_8_005
crossref_primary_10_1021_acsnano_3c12802
crossref_primary_10_1021_acsnano_7b02671
crossref_primary_10_1063_1_1882761
crossref_primary_10_1016_j_crhy_2009_04_004
crossref_primary_10_1088_0953_8984_14_47_324
crossref_primary_10_1103_PhysRevB_69_132402
crossref_primary_10_1103_PhysRevLett_84_1764
crossref_primary_10_1038_s41565_021_00884_6
crossref_primary_10_1103_PhysRevLett_92_216804
crossref_primary_10_1103_PhysRevB_72_073402
crossref_primary_10_1103_PhysRevLett_85_3464
crossref_primary_10_1140_epjst_e2015_50334_7
crossref_primary_10_1103_PhysRevB_72_073403
crossref_primary_10_1126_science_1244152
crossref_primary_10_1103_PhysRevB_104_235142
crossref_primary_10_1016_j_physb_2008_06_026
crossref_primary_10_1088_0256_307X_24_4_060
crossref_primary_10_1103_PhysRevLett_85_5400
crossref_primary_10_1143_JJAP_43_L1081
crossref_primary_10_1038_nphys2692
crossref_primary_10_1209_0295_5075_90_17004
crossref_primary_10_1021_ja801448c
crossref_primary_10_1103_PhysRevB_82_041306
crossref_primary_10_1103_PhysRevB_77_045301
crossref_primary_10_1088_0957_4484_14_2_344
crossref_primary_10_1016_j_mejo_2006_10_002
crossref_primary_10_1016_S0038_1101_00_00213_6
crossref_primary_10_1103_PhysRevLett_93_196403
crossref_primary_10_1103_PhysRevMaterials_3_126002
crossref_primary_10_1039_C8NR00310F
crossref_primary_10_1103_PhysRevB_103_L241403
crossref_primary_10_1103_PhysRevB_65_085104
crossref_primary_10_1021_jp053739
crossref_primary_10_1088_0957_4484_25_2_025708
crossref_primary_10_1016_j_physe_2010_12_006
crossref_primary_10_1515_nanoph_2022_0782
crossref_primary_10_1103_PhysRevLett_115_256104
crossref_primary_10_1063_1_3574026
crossref_primary_10_1103_PhysRevLett_88_226404
crossref_primary_10_1103_PhysRevB_102_144505
crossref_primary_10_1103_PhysRevB_85_045315
crossref_primary_10_1103_PhysRevB_62_7850
crossref_primary_10_1016_j_physleta_2014_09_007
crossref_primary_10_1021_nl503558g
crossref_primary_10_1038_s41567_022_01829_z
crossref_primary_10_1126_science_291_5502_283
crossref_primary_10_1063_1_2722722
crossref_primary_10_1038_nnano_2008_60
crossref_primary_10_1063_5_0088229
crossref_primary_10_1103_PhysRevB_71_165402
crossref_primary_10_1140_epjb_e2008_00364_9
crossref_primary_10_1103_PhysRevB_66_233401
crossref_primary_10_1103_PhysRevB_96_180202
crossref_primary_10_1103_PhysRevLett_84_4441
crossref_primary_10_1109_TNS_2014_2367519
crossref_primary_10_1063_1_3702777
crossref_primary_10_1063_1_2731681
crossref_primary_10_1088_0268_1242_21_11_S11
crossref_primary_10_7566_JPSJ_87_094801
crossref_primary_10_1063_1_1359220
crossref_primary_10_1039_c0cs00103a
crossref_primary_10_1103_PhysRevB_75_085421
crossref_primary_10_1038_nphys2878
crossref_primary_10_1007_s11051_006_9191_5
crossref_primary_10_1016_S1386_9477_00_00173_9
crossref_primary_10_1016_j_physe_2024_115979
crossref_primary_10_1103_PhysRevLett_87_166801
crossref_primary_10_1021_acs_nanolett_3c00765
crossref_primary_10_1039_D3NR04301K
crossref_primary_10_1103_PhysRevB_63_205106
crossref_primary_10_1103_PhysRevB_72_035301
crossref_primary_10_1088_0268_1242_21_11_S05
crossref_primary_10_1103_PhysRevLett_92_226405
crossref_primary_10_1002_adma_200902857
crossref_primary_10_1088_0268_1242_21_11_S07
crossref_primary_10_1088_1751_8121_aca7e5
crossref_primary_10_1073_pnas_1421020112
crossref_primary_10_1103_PhysRevB_74_085114
crossref_primary_10_1088_0268_1242_21_11_S08
crossref_primary_10_1103_PhysRevLett_86_143
crossref_primary_10_1088_0268_1242_21_11_S01
crossref_primary_10_1088_0953_8984_16_17_002
crossref_primary_10_1103_PhysRevB_76_245121
crossref_primary_10_1103_PhysRevB_63_205103
crossref_primary_10_1002_pssb_201800557
crossref_primary_10_1021_acsnano_0c08782
crossref_primary_10_1209_epl_i2003_00159_8
crossref_primary_10_1103_PhysRevB_103_035130
crossref_primary_10_1038_s41586_019_0913_0
crossref_primary_10_1103_PhysRevB_69_155332
crossref_primary_10_1103_PhysRevB_76_155434
crossref_primary_10_1103_PhysRevLett_95_026801
crossref_primary_10_1103_PhysRevLett_95_196402
crossref_primary_10_1021_nn1009038
crossref_primary_10_1103_PhysRevLett_106_026801
crossref_primary_10_1016_S0167_9317_02_00640_8
crossref_primary_10_1016_S0038_1098_02_00410_6
crossref_primary_10_1103_PhysRevB_65_235310
crossref_primary_10_1038_17682
crossref_primary_10_1039_c3tc31104j
crossref_primary_10_1063_1_2337863
crossref_primary_10_1080_01411594_2020_1765349
crossref_primary_10_1360_TB_2022_0553
crossref_primary_10_1038_ncomms2810
crossref_primary_10_1103_PhysRevB_79_241402
crossref_primary_10_1016_S1386_9477_02_00970_0
crossref_primary_10_1103_PhysRevLett_93_166403
crossref_primary_10_1103_PhysRevB_76_155440
crossref_primary_10_1103_PhysRevB_72_235428
crossref_primary_10_1142_S0217979213300156
crossref_primary_10_1103_PhysRevB_86_155304
crossref_primary_10_1039_B715021K
crossref_primary_10_1063_1_1598282
crossref_primary_10_1103_PhysRevB_72_045315
crossref_primary_10_1103_PhysRevB_108_L121409
crossref_primary_10_1103_PhysRevB_76_155408
crossref_primary_10_1103_PhysRevLett_89_196402
crossref_primary_10_1134_1_568197
crossref_primary_10_1088_1742_6596_248_1_012032
crossref_primary_10_1103_PhysRevB_75_205431
crossref_primary_10_1103_PhysRevB_69_205416
crossref_primary_10_1140_epjb_e2004_00381_8
crossref_primary_10_1016_j_spmi_2004_03_032
crossref_primary_10_1016_j_spmi_2004_03_031
crossref_primary_10_1021_acs_nanolett_0c02585
crossref_primary_10_1103_PhysRevB_66_024431
crossref_primary_10_1016_j_physb_2010_12_009
crossref_primary_10_1016_j_mser_2015_06_001
crossref_primary_10_1007_s44214_024_00050_8
crossref_primary_10_1016_j_spmi_2004_03_033
crossref_primary_10_1038_nmat2470
crossref_primary_10_1063_1_2430769
crossref_primary_10_1063_1_4868037
crossref_primary_10_1103_PhysRevB_94_245414
crossref_primary_10_1103_PhysRevB_68_075112
crossref_primary_10_1103_PhysRevB_88_045101
crossref_primary_10_1142_S0218625X00000774
crossref_primary_10_1016_S0921_4526_99_01774_3
crossref_primary_10_1103_PhysRevLett_100_225503
crossref_primary_10_1103_PhysRevB_88_045107
crossref_primary_10_1103_PhysRevB_69_113315
crossref_primary_10_1093_nsr_nwab214
crossref_primary_10_1103_PhysRevLett_88_256403
crossref_primary_10_1038_nnano_2013_312
crossref_primary_10_1038_nmat2482
crossref_primary_10_1103_PhysRevB_75_075418
crossref_primary_10_1103_PhysRevB_77_201405
crossref_primary_10_1088_0953_8984_14_48_317
crossref_primary_10_1088_1367_2630_15_8_083021
crossref_primary_10_1103_PhysRevB_68_075107
crossref_primary_10_1103_PhysRevLett_112_107402
crossref_primary_10_1063_1_4723873
crossref_primary_10_1186_1556_276X_9_374
crossref_primary_10_1063_1_1920427
crossref_primary_10_1103_RevModPhys_83_471
crossref_primary_10_1103_PhysRevB_71_155401
crossref_primary_10_1103_PhysRevB_78_115123
crossref_primary_10_1103_PhysRevB_66_153304
crossref_primary_10_1088_0953_8984_19_8_086215
crossref_primary_10_1126_science_aay3588
crossref_primary_10_1103_PhysRevB_67_233308
crossref_primary_10_1088_1361_648X_aab980
crossref_primary_10_1103_PhysRevB_93_165431
crossref_primary_10_1063_1_4790613
crossref_primary_10_1088_0957_4484_26_32_325201
crossref_primary_10_1103_PhysRevB_71_165423
crossref_primary_10_1103_PhysRevLett_115_136804
crossref_primary_10_1021_acs_nanolett_0c03897
crossref_primary_10_1021_ar500175h
crossref_primary_10_1103_PhysRevB_94_245436
crossref_primary_10_1088_1367_2630_5_1_158
crossref_primary_10_1103_PhysRevB_71_081101
crossref_primary_10_1103_PhysRevB_72_035330
crossref_primary_10_1103_PhysRevB_70_205416
crossref_primary_10_1103_PhysRevLett_84_2682
crossref_primary_10_1126_science_286_5438_263
crossref_primary_10_1063_1_2996036
crossref_primary_10_1103_PhysRevB_94_045104
crossref_primary_10_1103_PhysRevLett_129_087001
crossref_primary_10_1209_0295_5075_104_37004
crossref_primary_10_1002_pssb_200669120
crossref_primary_10_1103_PhysRevLett_102_116403
crossref_primary_10_1103_PhysRevB_88_195113
crossref_primary_10_1016_j_susc_2006_12_047
crossref_primary_10_1016_j_cplett_2005_10_071
crossref_primary_10_1021_acs_inorgchem_2c00473
crossref_primary_10_1103_PhysRevLett_92_017403
crossref_primary_10_1021_acsnano_4c02379
crossref_primary_10_1088_0957_4484_22_31_315705
crossref_primary_10_1103_PhysRevB_72_035323
crossref_primary_10_1143_JPSJ_70_17
crossref_primary_10_7567_1882_0786_ab3bf1
crossref_primary_10_1143_JPSJ_71_2512
crossref_primary_10_1209_0295_5075_111_36001
crossref_primary_10_1103_PhysRevB_74_205123
Cites_doi 10.1103/PhysRevLett.79.5086
10.1103/PhysRevLett.81.681
10.1016/0038-1098(95)00102-6
10.1016/0038-1098(95)00181-6
10.1038/29494
10.1103/PhysRevLett.79.5082
10.1103/PhysRevLett.80.2881
10.1038/34139
10.1103/PhysRevLett.70.990
10.1103/PhysRevLett.80.1062
10.1103/PhysRevLett.78.1932
10.1103/PhysRevLett.54.1605
10.1103/PhysRevLett.77.4612
10.1007/978-1-4757-2166-9
10.1038/34145
10.1126/science.275.5308.1922
10.1038/386474a0
10.1103/PhysRevLett.80.4036
10.1103/PhysRevLett.77.2538
10.1103/PhysRevLett.54.1609
ContentType Journal Article
Copyright 1999 INIST-CNRS
Copyright Macmillan Journals Ltd. Feb 18, 1999
Copyright_xml – notice: 1999 INIST-CNRS
– notice: Copyright Macmillan Journals Ltd. Feb 18, 1999
DBID IQODW
AAYXX
CITATION
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PQEST
PQQKQ
PQUKI
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
H8D
L7M
DOI 10.1038/17569
DatabaseName Pascal-Francis
CrossRef
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
ProQuest Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
ProQuest Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
eLibrary
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agriculture Science Database
Health & Medical Collection (Alumni Edition)
Medical Database
Psychology Database
ProQuest research library
ProQuest Science Journals
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest One Psychology
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
Environmental Sciences and Pollution Management
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
University of Michigan
Technology Collection
Technology Research Database
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Technology Research Database
Agricultural Science Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 601
ExternalDocumentID 39221141
10_1038_17569
1729871
17569
GroupedDBID -
00M
02
08R
0B8
0R
0WA
123
186
1VR
29M
2KS
39C
3EH
3O-
3V.
4
4.4
42X
53G
55
5RE
68V
69O
6XO
70F
7RV
7V
7X2
7X7
7XC
85S
88
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
9M8
A6W
A7Z
A8Z
AADWK
AAEEF
AAIKC
AAJWC
AAJYS
AAPBV
AASDW
AAVBQ
AAYEP
AAYOK
AAZLF
ABAWZ
ABDBF
ABDEX
ABEFU
ABFLS
ABFSI
ABGIJ
ABIVO
ABJCF
ABOCM
ABPPZ
ABPTK
ABUWG
ABWJO
ABZEH
ACGFS
ACGOD
ACIWK
ACNCT
ACPRK
ACTDY
ADBBV
ADBIT
ADFPY
ADYSU
AEFTE
AENEX
AETEA
AFDAS
AFFDN
AFFNX
AFHKK
AFKRA
AFLOW
AFMIJ
AFRAH
AGEZK
AGHTU
AGNAY
AGSOS
AHGBK
AHMBA
AHSBF
AIDAL
AIDUJ
ALFFA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARTTT
ASPBG
ATCPS
AVRDS
AVWKF
AXYYD
AZFZN
AZQEC
B-7
B0M
BBAFP
BBNVY
BCU
BEC
BENPR
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKOMP
BKSAR
BPHCQ
BVXVI
CJ0
CS3
D1I
D1J
D1K
DB5
DO4
DU5
DWQXO
DZ
E.-
E.L
EAD
EAP
EAS
EAZ
EBC
EBD
EBO
EBS
ECC
EE.
EJD
EMB
EMF
EMH
EMK
EPL
EPS
ESE
ESN
ESX
ET
EX3
EXGXG
F20
F5P
FEDTE
FQGFK
FSGXE
FYUFA
G8K
GJ
GNUQQ
GUQSH
HCIFZ
HG6
HR
HVGLF
HZ
I-F
I-U
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IPY
J5H
K6-
K78
KB.
KM
KOO
L-9
L6V
L7B
LK5
LK8
M0K
M0L
M1P
M2M
M2O
M2P
M7P
M7R
M7S
MVM
N9A
NAPCQ
NEJ
NEPJS
O9-
OBC
OES
OHM
OHT
OMK
OVD
P-O
P2P
P62
PATMY
PCBAR
PDBOC
PM3
PQEST
PQQKQ
PQUKI
PROAC
PSQYO
PTHSS
PYCSY
Q2X
R05
RIG
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SIXXV
SJFOW
SJN
SNYQT
SV3
TAE
TAOOD
TEORI
TH9
TN5
TSG
TUS
TWZ
U1R
U5U
UBY
UHB
UKR
UMD
UQL
VOH
VQA
WH7
WOW
X
X7M
XFK
XHC
XKW
XZ
XZL
Y6R
YAE
YCJ
YNT
YQJ
YXB
YZZ
Z
ZA5
ZCG
ZGI
ZHY
ZKB
ZKG
ZR0
ZY4
~88
---
--Z
-DZ
-ET
-~X
.-4
.55
.CO
.GJ
.HR
.XZ
07C
08P
0R~
1CY
1OL
1VW
2XV
354
41X
41~
4R4
663
6TJ
79B
97L
AADEA
AAEXX
AAGJQ
AAHTB
AAJMP
AAKAB
AAKAS
AAMNW
AAUGY
AAYJO
ABEEJ
ABGFU
ABLJU
ABPEJ
ABTAH
ABVXF
ACBEA
ACBMV
ACBNA
ACBRV
ACBTR
ACBYP
ACGFO
ACIGE
ACKOT
ACTTH
ACVWB
ACWUS
ADFRT
ADMDM
ADQMX
ADRHT
ADZCM
ADZGE
AEDAW
AFNRJ
AFSHS
AGAYW
AGCDD
AGGBP
AGHSJ
AIYXT
AJDOV
AJUXI
AMRJV
AMTXH
APEBS
ARMCB
ATWCN
BCR
BDKGC
BES
BLC
CCPQU
EMOBN
ESTFP
FA8
FAC
HZ~
ICQ
IEP
IQODW
ISR
ITC
LSO
N4W
OHH
PEA
PSYQQ
PV9
QS-
R4F
RHI
SHXYY
SKT
TBHMF
TDRGL
TUD
UAO
UKHRP
USG
VVN
X7L
XIH
XOL
YFH
YJ6
YOC
YQI
YQT
YR2
YV5
YXA
YYP
YYQ
ZCA
ZE2
~02
~7V
~8M
~G0
~KM
AAHBH
AAYXX
ABJNI
ACBWK
ACMJI
ADUKH
AFBBN
AFRQD
ALIPV
CITATION
HMCUK
LGEZI
LOTEE
NADUK
NXXTH
ODYON
UIG
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
Q9U
RC3
SOI
H8D
L7M
ID FETCH-LOGICAL-c326t-39a027d7efffd9799cdb726e516672b9135bf458379f16c88598379ebab91e213
IEDL.DBID 8FG
ISSN 0028-0836
IngestDate Sat Oct 05 04:58:50 EDT 2024
Fri Oct 04 06:01:05 EDT 2024
Thu Sep 26 19:33:30 EDT 2024
Sun Oct 29 17:10:21 EDT 2023
Thu Oct 07 20:41:32 EDT 2021
IsPeerReviewed true
IsScholarly true
Issue 6720
Keywords Temperature dependence
Luttinger liquid
Electrical conductivity
Bias voltage
Nanotubes
Transport processes
Carbon
Power law
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c326t-39a027d7efffd9799cdb726e516672b9135bf458379f16c88598379ebab91e213
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 204485770
PQPubID 40569
PageCount 4
ParticipantIDs proquest_miscellaneous_26993698
proquest_journals_204485770
crossref_primary_10_1038_17569
pascalfrancis_primary_1729871
nature_primary_17569
ProviderPackageCode RNTTT
ABGIJ
AAZLF
DB5
L-9
RND
RNT
AADWK
AHGBK
70F
EE.
~88
PublicationCentury 1900
PublicationDate 1999-02-18
PublicationDateYYYYMMDD 1999-02-18
PublicationDate_xml – month: 02
  year: 1999
  text: 1999-02-18
  day: 18
PublicationDecade 1990
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature (London)
PublicationYear 1999
Publisher Nature Publishing
Nature Publishing Group
Publisher_xml – name: Nature Publishing
– name: Nature Publishing Group
References Fisher, M. P. A., Dorsey, A. (b19) 1985; 54
Grayson, M. (b6) 1998; 80
Grabert, H., Devoret, M. H. (b15) 1992
Kane, C. L., Mele, E. J. (b16) 1997; 78
Tans, S. J., Devoret, M. H., Groeneveld, R. J. A., Dekker, C. (b14) 1998; 394
Tans, S. J. (b10) 1997; 386
Egger, R., Gogolin, A. (b11) 1997; 79
Tarucha, S., Honda, T., Saku, T. (b2) 1995; 94
Yacoby, A. (b3) 1996; 77
Chang, A. M., Pfeiffer, L. N., West, K. W. (b5) 1996; 77
Odom, T. W., Huang, J., Kim, P., Lieber, C. M. (b8) 1998; 391
Matveev, K. A., Glazman, L. I. (b18) 1993; 70
Cobden, D. H. (b13) 1998; 81
Bockrath, M. (b9) 1997; 275
Bezryadin, A., Verschueren, A. R. M., Tans, S. J., Dekker, C. (b17) 1998; 80
Grabert, H., Weiss, U. (b20) 1985; 54
Komnik, A., Egger, R. (b21) 1998; 80
Milliken, F. P., Umbach, C. P., Webb, R. A. (b4) 1996; 97
Kane, C., Balents, L., Fisher, M. P. A. (b12) 1997; 79
Fisher, M. P. A., Glazman, A. (b1) 1997
Wildoer, J. W. G. (b7) 1998; 391
FP Milliken (BF17569_CR4) 1996; 97
SJ Tans (BF17569_CR14) 1998; 394
AM Chang (BF17569_CR5) 1996; 77
M Bockrath (BF17569_CR9) 1997; 275
SJ Tans (BF17569_CR10) 1997; 386
MPA Fisher (BF17569_CR1) 1997
MPA Fisher (BF17569_CR19) 1985; 54
C Kane (BF17569_CR12) 1997; 79
DH Cobden (BF17569_CR13) 1998; 81
M Grayson (BF17569_CR6) 1998; 80
A Komnik (BF17569_CR21) 1998; 80
A Yacoby (BF17569_CR3) 1996; 77
R Egger (BF17569_CR11) 1997; 79
JWG Wildoer (BF17569_CR7) 1998; 391
TW Odom (BF17569_CR8) 1998; 391
H Grabert (BF17569_CR15) 1992
S Tarucha (BF17569_CR2) 1995; 94
CL Kane (BF17569_CR16) 1997; 78
H Grabert (BF17569_CR20) 1985; 54
A Bezryadin (BF17569_CR17) 1998; 80
KA Matveev (BF17569_CR18) 1993; 70
References_xml – volume: 81
  start-page: 681
  year: 1998
  end-page: 684
  ident: b13
  publication-title: Phys. Rev. Lett.
  contributor:
    fullname: Cobden, D. H.
– volume: 79
  start-page: 5082
  year: 1997
  end-page: 5085
  ident: b11
  publication-title: Phys. Rev. Lett.
  contributor:
    fullname: Gogolin, A.
– volume: 94
  start-page: 413
  year: 1995
  end-page: 418
  ident: b2
  publication-title: Solid State Commun.
  contributor:
    fullname: Saku, T.
– volume: 79
  start-page: 5086
  year: 1997
  end-page: 5089
  ident: b12
  publication-title: Phys. Rev. Lett.
  contributor:
    fullname: Fisher, M. P. A.
– volume: 70
  start-page: 990
  year: 1993
  end-page: 993
  ident: b18
  publication-title: Phys. Rev. Lett.
  contributor:
    fullname: Glazman, L. I.
– volume: 77
  start-page: 4612
  year: 1996
  end-page: 4615
  ident: b3
  publication-title: Phys. Rev. Lett.
  contributor:
    fullname: Yacoby, A.
– volume: 394
  start-page: 761
  year: 1998
  end-page: 764
  ident: b14
  publication-title: Nature
  contributor:
    fullname: Dekker, C.
– volume: 80
  start-page: 4036
  year: 1998
  end-page: 4039
  ident: b17
  publication-title: Phys. Rev. Lett.
  contributor:
    fullname: Dekker, C.
– volume: 97
  start-page: 309
  year: 1996
  end-page: 313
  ident: b4
  publication-title: Solid State Commun.
  contributor:
    fullname: Webb, R. A.
– volume: 54
  start-page: 1605
  year: 1985
  end-page: 1608
  ident: b20
  publication-title: Phys. Rev. Lett.
  contributor:
    fullname: Weiss, U.
– volume: 78
  start-page: 1932
  year: 1997
  end-page: 1935
  ident: b16
  publication-title: Phys. Rev. Lett.
  contributor:
    fullname: Mele, E. J.
– volume: 80
  start-page: 2881
  year: 1998
  end-page: 2884
  ident: b21
  publication-title: Phys. Rev. Lett.
  contributor:
    fullname: Egger, R.
– volume: 386
  start-page: 474
  year: 1997
  end-page: 477
  ident: b10
  publication-title: Nature
  contributor:
    fullname: Tans, S. J.
– volume: 80
  start-page: 1062
  year: 1998
  end-page: 1065
  ident: b6
  publication-title: Phys. Rev. Lett.
  contributor:
    fullname: Grayson, M.
– volume: 391
  start-page: 62
  year: 1998
  end-page: 64
  ident: b8
  publication-title: Nature
  contributor:
    fullname: Lieber, C. M.
– year: 1992
  ident: b15
  article-title: Single Charge Tunneling: Coulomb Blockade Phenomena in Nanostructures
  contributor:
    fullname: Devoret, M. H.
– year: 1997
  ident: b1
  article-title: Mesoscopic Electron Transport
  contributor:
    fullname: Glazman, A.
– volume: 275
  start-page: 1922
  year: 1997
  end-page: 1925
  ident: b9
  publication-title: Science
  contributor:
    fullname: Bockrath, M.
– volume: 77
  start-page: 2538
  year: 1996
  end-page: 2541
  ident: b5
  publication-title: Phys. Rev. Lett.
  contributor:
    fullname: West, K. W.
– volume: 54
  start-page: 1609
  year: 1985
  end-page: 1612
  ident: b19
  publication-title: Phys. Rev. Lett.
  contributor:
    fullname: Dorsey, A.
– volume: 391
  start-page: 59
  year: 1998
  end-page: 62
  ident: b7
  publication-title: Nature
  contributor:
    fullname: Wildoer, J. W. G.
– volume: 79
  start-page: 5086
  year: 1997
  ident: BF17569_CR12
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.79.5086
  contributor:
    fullname: C Kane
– volume-title: Mesoscopic Electron Transport
  year: 1997
  ident: BF17569_CR1
  contributor:
    fullname: MPA Fisher
– volume: 81
  start-page: 681
  year: 1998
  ident: BF17569_CR13
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.81.681
  contributor:
    fullname: DH Cobden
– volume: 94
  start-page: 413
  year: 1995
  ident: BF17569_CR2
  publication-title: Solid State Commun.
  doi: 10.1016/0038-1098(95)00102-6
  contributor:
    fullname: S Tarucha
– volume: 97
  start-page: 309
  year: 1996
  ident: BF17569_CR4
  publication-title: Solid State Commun.
  doi: 10.1016/0038-1098(95)00181-6
  contributor:
    fullname: FP Milliken
– volume: 394
  start-page: 761
  year: 1998
  ident: BF17569_CR14
  publication-title: Nature
  doi: 10.1038/29494
  contributor:
    fullname: SJ Tans
– volume: 79
  start-page: 5082
  year: 1997
  ident: BF17569_CR11
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.79.5082
  contributor:
    fullname: R Egger
– volume: 80
  start-page: 2881
  year: 1998
  ident: BF17569_CR21
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.80.2881
  contributor:
    fullname: A Komnik
– volume: 391
  start-page: 59
  year: 1998
  ident: BF17569_CR7
  publication-title: Nature
  doi: 10.1038/34139
  contributor:
    fullname: JWG Wildoer
– volume: 70
  start-page: 990
  year: 1993
  ident: BF17569_CR18
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.70.990
  contributor:
    fullname: KA Matveev
– volume: 80
  start-page: 1062
  year: 1998
  ident: BF17569_CR6
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.80.1062
  contributor:
    fullname: M Grayson
– volume: 78
  start-page: 1932
  year: 1997
  ident: BF17569_CR16
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.78.1932
  contributor:
    fullname: CL Kane
– volume: 54
  start-page: 1605
  year: 1985
  ident: BF17569_CR20
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.54.1605
  contributor:
    fullname: H Grabert
– volume: 77
  start-page: 4612
  year: 1996
  ident: BF17569_CR3
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.4612
  contributor:
    fullname: A Yacoby
– volume-title: Single Charge Tunneling: Coulomb Blockade Phenomena in Nanostructures
  year: 1992
  ident: BF17569_CR15
  doi: 10.1007/978-1-4757-2166-9
  contributor:
    fullname: H Grabert
– volume: 391
  start-page: 62
  year: 1998
  ident: BF17569_CR8
  publication-title: Nature
  doi: 10.1038/34145
  contributor:
    fullname: TW Odom
– volume: 275
  start-page: 1922
  year: 1997
  ident: BF17569_CR9
  publication-title: Science
  doi: 10.1126/science.275.5308.1922
  contributor:
    fullname: M Bockrath
– volume: 386
  start-page: 474
  year: 1997
  ident: BF17569_CR10
  publication-title: Nature
  doi: 10.1038/386474a0
  contributor:
    fullname: SJ Tans
– volume: 80
  start-page: 4036
  year: 1998
  ident: BF17569_CR17
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.80.4036
  contributor:
    fullname: A Bezryadin
– volume: 77
  start-page: 2538
  year: 1996
  ident: BF17569_CR5
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.2538
  contributor:
    fullname: AM Chang
– volume: 54
  start-page: 1609
  year: 1985
  ident: BF17569_CR19
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.54.1609
  contributor:
    fullname: MPA Fisher
SSID ssj0005174
Score 2.313401
Snippet Electron transport in conductors is usually well described by Fermi-liquid theory, which assumes that the energy states of the electrons near the Fermi level...
Electron transport in conductors is usually well described by Fermi-liquid theory, which assumes that the energy states of the electrons near the Fermi level...
Electrically conducting single-walled carbon nanotubes (SWNTs) represent quantum wires that may exhibit Luttinger-liquid behavior. Here we present measurements...
SourceID proquest
crossref
pascalfrancis
nature
SourceType Aggregation Database
Index Database
Publisher
StartPage 598
SubjectTerms Carbon
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Cross-disciplinary physics: materials science; rheology
Electron states
Exact sciences and technology
Fermions in reduced dimensions (anyons, composite fermions, Luttinger liquid, etc.)
Materials science
Nanoscale materials and structures: fabrication and characterization
Nanotechnology
Physics
Semiconductors
Theories and models of many electron systems
Title Luttinger-liquid behaviour in carbon nanotubes
URI http://dx.doi.org/10.1038/17569
https://www.proquest.com/docview/204485770/abstract/
https://search.proquest.com/docview/26993698
Volume 397
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB5aiyKI2FYx1sYcPOhhbbN5bU6iYhVREbHQW9jd7EJBkjaP_-9ukrY-wEsImSSHbx8zszPzDcC5y2OBXUYRJQ5Frk9cRCQnSI5jybErmajquF9e_cep-zTzZi14WNXC6LTK1Z5YbdRxyvUZuXLSlSPhBcF4RJk-BODF6HqxRLp9lA6zNr002tCxNSWeLhmfPGxyPX7RMe_AXl1vTkZKfepk529KaU2pubeguQJK1h0u_mzWlQaaHMB-YzpaN_VYd6Elkh5sVymcPO9Bt1mmuXXRcElf9uHquawSm0WGPufLch5bTV1-mVnzxOI0Y2liJTRJi5KJ_BCmk_uPu0fUtEhAXNldBXJCqvzKOBBSylhH6HjMAuwLz_b9ALPQdjwmdWg0CKXtc0K8UN8LRpVMYNs5gq0kTcQxWNIXWNmCmCqLyCWChU7Mlfbiuvc3Vj8xwFxhFC1qJoyoimA7JKpANKBfI7cR14-HP3D8JsWhctcMGKxwjZr1k0fr0TbgbC1VE19HM2gi0lK94oe6GSE5-ff7AezWRAsY2eQUtoqsFENlRhTMhHYwC9SV3NlmNV1M6Nzev769fwGu9sl5
link.rule.ids 315,786,790,12083,12250,12792,21416,27957,27958,31754,31755,33301,33302,33408,33409,33779,33780,43345,43614,43635,43840,74102,74371,74392,74659
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT8IwFH9RjB8JMQIaEYEdPOihyrqv7mQMkaACJ0i4LW3XJiRmA8b-f9utIGribdnbdnht38fe770fwJ3LY4FdRhElDkWuT1xEJCdI9mLJsSuZKPq4xxN_OHPf597cYHMyA6vc2sTCUMcp1__IVZKuEgkvCHrPyxXSpFG6uGoYNA7hyHWUn9GN4v09hMevIcwnUC27zMmTcpoa4rzninaDNKtLmin1yJLX4o-JLvzO4ALOTcBovZQrXIMDkdThuABu8qwONXM4M-veTJB-aMDjKC_gzGKNPherfBFbphs_X1uLxOJ0zdLESmiSbnImskuYDV6n_SEyxAiIq2hrg5yQqmwyDoSUMtZ1OR6zAPvCs30_wCy0HY9JXRANQmn7nBAv1NeCUSUT2HauoJKkibgGS_oCqwgQUxUHuUSw0Im58llcM35j9ZEmdLY6ipbl_IuoqFs7JCqU2IRGqblvcXm7_UOPe1IcqiStCa2tXiNzarJot8ZN6O6karvrGgZNRJqrR_xQUxCSm3_f78LpcDoeRaO3yUcLzspRCxjZ5BYqm3Uu2iqQ2LBOsV2-AHOpxSQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB60oghFtFWstW0OHvSwajbJZnMSUWvVKh4UvIV9QkGS2jT_391kW1_gLWSSHGZn55H5dj6Ao1BIhUPOEKMBQyGhIaJaUKTPpRY41FxV57gfn8joNbx_i97cSKHCwSoXPrFy1DIX9h-5KdJNIRHF8fmZdqiI5-vhxfQDWQIp22h1bBqrsGZzbEtmQIe3X2iPXwOZN6BZnzinZyaAWrjzt7C0HKrZnLLCqErXHBd_3HUVg4bbsOWSR--yXu0dWFFZC9YrEKcoWrDjNmrhHbtp0idtOB2XFbRZzdD75KOcSM-dzC9n3iTzBJvxPPMyluXzkqtiF16HNy9XI-RIEpAwmdccBQkzlaWMldZa2h6dkDzGREU-ITHmiR9EXNvmaJxonwhKo8ReK86MTGE_2INGlmdqHzxNFDbZIGYmJwqp4kkghYlfwrJ_Y_ORDvQXOkqn9SyMtOphBzStlNiBdq25L3F9u_dDj9-kODEFWwe6C72mbgcV6XK9OzBYSo3p234Gy1RemkdIYukI6cG_7w9gw1hKOr57eujCZj11ASOfHkJjPitVz-QUc96vrOUT4MfJjg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Luttinger-liquid+behaviour+in+carbon+nanotubes&rft.jtitle=Nature+%28London%29&rft.au=BOCKRATH%2C+M&rft.au=COBDEN%2C+D.+H&rft.au=JIA+LU&rft.au=RLNZLER%2C+A.+G&rft.date=1999-02-18&rft.pub=Nature+Publishing&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=397&rft.issue=6720&rft.spage=598&rft.epage=601&rft_id=info:doi/10.1038%2F17569&rft.externalDBID=n%2Fa&rft.externalDocID=1729871
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon