Grazing exclusion increases soil organic C through microbial necromass of root-derived C as traced by 13C labelling photosynthate
Grasslands store large amounts of C; however, the underlying mechanisms of soil C sequestration after grazing exclusion are not well known. This study aimed to elucidate the drivers of soil organic C (SOC) sequestration from plant and microbial residues in temperate grasslands after long-term (~ 40...
Saved in:
Published in | Biology and fertility of soils Vol. 60; no. 3; pp. 407 - 420 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.04.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Grasslands store large amounts of C; however, the underlying mechanisms of soil C sequestration after grazing exclusion are not well known. This study aimed to elucidate the drivers of soil organic C (SOC) sequestration from plant and microbial residues in temperate grasslands after long-term (~ 40 years) grazing exclusion. We conducted in situ
13
C-CO
2
labelling experiments in the field and traced
13
C in plant-soil systems paired with biomarkers to assess the C input from plants into soils. Long-term grazing exclusion increased all plant and soil pools including shoots, roots, microbial biomass and necromass.
13
C allocation in these pools also increased, whereas
13
C was lost via respiration as CO
2
from soils decreased.
13
C incorporation into the soil and microbial biomass increased with
13
C allocation into the roots. Grazing exclusion for over 40 years increased the total SOC content by 190%, largely due to increases in fungal necromass C, and there was a minor contribution of lignin phenols to SOC accrual (0.8%). Consequently, grazing exclusion boosts not only aboveground biomass, but also larger roots and rhizodeposition, leading to microbial biomass and necromass formation. Microbial necromass and lignin phenols contribute to SOC accrual under grazing exclusion, and microbial necromass, especially fungal necromass, makes a larger contribution than lignin phenols. |
---|---|
AbstractList | Grasslands store large amounts of C; however, the underlying mechanisms of soil C sequestration after grazing exclusion are not well known. This study aimed to elucidate the drivers of soil organic C (SOC) sequestration from plant and microbial residues in temperate grasslands after long-term (~ 40 years) grazing exclusion. We conducted in situ ¹³C-CO₂ labelling experiments in the field and traced ¹³C in plant-soil systems paired with biomarkers to assess the C input from plants into soils. Long-term grazing exclusion increased all plant and soil pools including shoots, roots, microbial biomass and necromass. ¹³C allocation in these pools also increased, whereas ¹³C was lost via respiration as CO₂ from soils decreased. ¹³C incorporation into the soil and microbial biomass increased with ¹³C allocation into the roots. Grazing exclusion for over 40 years increased the total SOC content by 190%, largely due to increases in fungal necromass C, and there was a minor contribution of lignin phenols to SOC accrual (0.8%). Consequently, grazing exclusion boosts not only aboveground biomass, but also larger roots and rhizodeposition, leading to microbial biomass and necromass formation. Microbial necromass and lignin phenols contribute to SOC accrual under grazing exclusion, and microbial necromass, especially fungal necromass, makes a larger contribution than lignin phenols. Grasslands store large amounts of C; however, the underlying mechanisms of soil C sequestration after grazing exclusion are not well known. This study aimed to elucidate the drivers of soil organic C (SOC) sequestration from plant and microbial residues in temperate grasslands after long-term (~ 40 years) grazing exclusion. We conducted in situ 13 C-CO 2 labelling experiments in the field and traced 13 C in plant-soil systems paired with biomarkers to assess the C input from plants into soils. Long-term grazing exclusion increased all plant and soil pools including shoots, roots, microbial biomass and necromass. 13 C allocation in these pools also increased, whereas 13 C was lost via respiration as CO 2 from soils decreased. 13 C incorporation into the soil and microbial biomass increased with 13 C allocation into the roots. Grazing exclusion for over 40 years increased the total SOC content by 190%, largely due to increases in fungal necromass C, and there was a minor contribution of lignin phenols to SOC accrual (0.8%). Consequently, grazing exclusion boosts not only aboveground biomass, but also larger roots and rhizodeposition, leading to microbial biomass and necromass formation. Microbial necromass and lignin phenols contribute to SOC accrual under grazing exclusion, and microbial necromass, especially fungal necromass, makes a larger contribution than lignin phenols. Grasslands store large amounts of C; however, the underlying mechanisms of soil C sequestration after grazing exclusion are not well known. This study aimed to elucidate the drivers of soil organic C (SOC) sequestration from plant and microbial residues in temperate grasslands after long-term (~ 40 years) grazing exclusion. We conducted in situ 13C-CO2 labelling experiments in the field and traced 13C in plant-soil systems paired with biomarkers to assess the C input from plants into soils. Long-term grazing exclusion increased all plant and soil pools including shoots, roots, microbial biomass and necromass. 13C allocation in these pools also increased, whereas 13C was lost via respiration as CO2 from soils decreased. 13C incorporation into the soil and microbial biomass increased with 13C allocation into the roots. Grazing exclusion for over 40 years increased the total SOC content by 190%, largely due to increases in fungal necromass C, and there was a minor contribution of lignin phenols to SOC accrual (0.8%). Consequently, grazing exclusion boosts not only aboveground biomass, but also larger roots and rhizodeposition, leading to microbial biomass and necromass formation. Microbial necromass and lignin phenols contribute to SOC accrual under grazing exclusion, and microbial necromass, especially fungal necromass, makes a larger contribution than lignin phenols. |
Author | Deng, Lei Kuzyakov, Yakov Deng, Jun Hai, Xuying Shangguan, Zhouping Qu, Qing Gunina, Anna |
Author_xml | – sequence: 1 givenname: Qing surname: Qu fullname: Qu, Qing organization: State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, University of Chinese Academy of Sciences – sequence: 2 givenname: Lei orcidid: 0000-0002-5898-5100 surname: Deng fullname: Deng, Lei email: leideng@ms.iswc.ac.cn organization: State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, University of Chinese Academy of Sciences, Northwest A&F University – sequence: 3 givenname: Anna surname: Gunina fullname: Gunina, Anna organization: Department of Environmental Chemistry, University of Kassel, Tyumen State University – sequence: 4 givenname: Xuying surname: Hai fullname: Hai, Xuying organization: University of Chinese Academy of Sciences – sequence: 5 givenname: Jun surname: Deng fullname: Deng, Jun organization: Administration Bureau of Ningxia Yunwushan National Nature Reserve – sequence: 6 givenname: Zhouping surname: Shangguan fullname: Shangguan, Zhouping organization: State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, University of Chinese Academy of Sciences, Northwest A&F University – sequence: 7 givenname: Yakov surname: Kuzyakov fullname: Kuzyakov, Yakov organization: Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Göttingen, Peoples Friendship University of Russia (RUDN University) |
BookMark | eNp9kTtvFDEUhS0UJDaBP0BliYZmiB-zfpRoBQEpEg3U1h3PnV1Hs_ZiexBDxz-PwyJFSpHCurc4n-_ROZfkIqaIhLzl7ANnTF8XxqTuOyba44bpbn1BNryXomPa2AuyYVybTmglXpHLUu4Y41vD7Yb8vcnwJ8Q9xd9-XkpIkYboM0LBQksKM015DzF4uqP1kNOyP9Bj8DkNAWYasW1HKIWmieaUajdiDr9wbGootGbwbR9WyuWOzjDgPD_cOh1STWWN9QAVX5OXE8wF3_yfV-TH50_fd1-62283X3cfbzsvhaqd3A5KmAG18BKgH5FbUJZbnMw4yH7wYFGPygLXIFFxPeC4NVKLXvFR9JO8Iu_P_55y-rlgqe4Yim-OIGJaipN8KxW3ktkmffdEepeWHJs7J6wyWgimRFOJs6plUErGyZ1yOEJeHWfuoRV3bsW1Vty_VtzaIPME8qFCbbm3sML8PCrPaGl34h7zo6tnqHsE5qXW |
CitedBy_id | crossref_primary_10_1007_s00374_024_01834_9 crossref_primary_10_1016_j_jenvman_2024_123366 crossref_primary_10_1016_j_agee_2024_109196 crossref_primary_10_1016_j_soilbio_2025_109750 crossref_primary_10_1007_s00374_025_01907_3 crossref_primary_10_3389_fmicb_2024_1377338 |
Cites_doi | 10.1111/gcb.12113 10.1038/s43017-021-00207-2 10.1007/BF00384433 10.1016/j.soilbio.2020.108024 10.1016/j.tplants.2022.04.009 10.1016/j.soilbio.2019.04.016 10.1007/s00374-018-1288-3 10.1111/gcb.14482 10.1016/j.soilbio.2014.09.023 10.1111/gcb.14781 10.1016/j.rhisph.2021.100441 10.1007/978-3-319-92318-5_4 10.1016/j.agee.2017.10.011 10.1016/j.agee.2022.108119 10.1007/s00374-002-0480-6 10.1016/0038-0717(87)90052-6 10.1007/s00374-020-01503-7 10.1111/gcb.14009 10.1002/ecy.3113 10.1016/j.agee.2023.108771 10.1111/gcb.16951 10.2136/sssaj1998.03615995006200050032x 10.1002/eap.1473 10.1016/j.catena.2017.08.002 10.1038/nmicrobiol.2017.105 10.1038/s41564-018-0129-3 10.1016/j.soilbio.2019.107660 10.1111/gcb.14859 10.1007/s10533-006-9014-x 10.1007/s00374-020-01516-2 10.1016/j.soilbio.2022.108799 10.1111/gcb.13850 10.1016/j.soilbio.2020.107879 10.1016/j.foreco.2022.120074 10.1007/s003740000275 10.1007/s11104-021-04854-8 10.1016/j.soilbio.2021.108189 10.1016/j.copbio.2016.07.001 10.1016/0038-0717(96)00117-4 10.1016/j.ejsobi.2007.09.008 10.1016/j.agee.2020.107256 10.1111/gcb.14070 10.1007/s00374-022-01681-6 10.1126/sciadv.abd3176 10.1016/j.quascirev.2013.12.028 10.1016/j.soilbio.2022.108688 10.1016/j.soilbio.2018.05.026 10.1007/s10533-011-9658-z 10.1007/s00374-021-01549-1 10.1111/j.1365-2486.2011.02557.x 10.1038/s41561-019-0484-6 10.1016/j.soilbio.2010.03.017 10.1016/j.earscirev.2017.08.008 10.1111/1365-2435.14290 10.1038/s41467-018-05891-1 10.1016/j.agrformet.2015.12.005 10.1038/s41586-023-06042-3 10.1016/j.soilbio.2021.108422 10.1126/science.abo2380 10.1016/j.still.2013.11.002 10.1111/1365-2435.13510 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION 3V. 7SN 7T7 7UA 7X2 7XB 88I 8FD 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO F1W FR3 GNUQQ H95 HCIFZ L.G LK8 M0K M2P M7P P64 PATMY PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PYCSY Q9U 7S9 L.6 |
DOI | 10.1007/s00374-024-01807-y |
DatabaseName | CrossRef ProQuest Central (Corporate) Ecology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Water Resources Abstracts Agricultural Science Collection ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources SciTech Premium Collection Aquatic Science & Fisheries Abstracts (ASFA) Professional Biological Sciences Agricultural Science Database Science Database Biological Science Database Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection ProQuest Central Basic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Agricultural Science Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Agricultural Science Collection Biological Science Database ProQuest SciTech Collection Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Science Collection ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Agricultural Science Database |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Biology Ecology |
EISSN | 1432-0789 |
EndPage | 420 |
ExternalDocumentID | 10_1007_s00374_024_01807_y |
GrantInformation_xml | – fundername: the Fundamental Research Funds for the Central Universities grantid: 2023HHZX002 – fundername: West-Siberian Interregional Science and Education Center’s project grantid: 89-DON (1) – fundername: Project CarboRus grantid: 075-15-2021-610 – fundername: the Strategic Priority Research Program of the Chinese Academy of Sciences grantid: XDA23070201 – fundername: National Natural Science Foundation of China grantid: 42277471, U2243225 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: the Scientific and Technological Innovation Project of Shaanxi Forestry Academy of Sciences grantid: SXLK2021-0206 |
GroupedDBID | -4W -5A -5G -BR -EM -XX -Y2 -~C .86 .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 23N 28- 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 4P2 53G 5GY 5QI 5VS 67M 67Z 6NX 78A 7X2 7XC 88I 8FE 8FH 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACUHS ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AZFZN AZQEC B-. BA0 BBNVY BBWZM BDATZ BENPR BGNMA BHPHI BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L8X LAS LK8 LLZTM M0K M2P M4Y M7P MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P PATMY PF0 PQQKQ PROAC PT4 PT5 PYCSY Q2X QOK QOR QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SBY SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 T16 TSG TSK TSV TUC U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK6 WK8 Y6R YLTOR Z45 Z7U Z7V Z7W Z83 Z8O Z8P Z8Q Z8W ZMTXR ZOVNA ~02 ~A9 ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SN 7T7 7UA 7XB 8FD 8FK ABRTQ C1K F1W FR3 H95 L.G P64 PKEHL PQEST PQGLB PQUKI PRINS Q9U 7S9 L.6 |
ID | FETCH-LOGICAL-c326t-35b628be72c3aa4de19a6919ef8db34bca9e7d69a17a3e617bed58372461d24f3 |
IEDL.DBID | U2A |
ISSN | 0178-2762 |
IngestDate | Fri Jul 11 00:35:33 EDT 2025 Fri Jul 25 19:17:14 EDT 2025 Tue Jul 01 02:31:06 EDT 2025 Thu Apr 24 22:54:51 EDT 2025 Fri Feb 21 02:39:35 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Particulate organic C Plant-microbe interaction Amino sugars C persistence Terrestrial C cycle Vegetation restoration Lignin phenols Mineral-associated organic C |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c326t-35b628be72c3aa4de19a6919ef8db34bca9e7d69a17a3e617bed58372461d24f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5898-5100 |
OpenAccessLink | https://resolver.sub.uni-goettingen.de/purl?gro-2/142762 |
PQID | 2968722062 |
PQPubID | 54160 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_3153619309 proquest_journals_2968722062 crossref_primary_10_1007_s00374_024_01807_y crossref_citationtrail_10_1007_s00374_024_01807_y springer_journals_10_1007_s00374_024_01807_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240400 2024-04-00 20240401 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 4 year: 2024 text: 20240400 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Biology and fertility of soils |
PublicationTitleAbbrev | Biol Fertil Soils |
PublicationYear | 2024 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | White, Murray, Rothweder, White, Murray, Rothweder (CR60) 2000 Deng, Zheng, Chen, Zheng, He, Ge, Kuzyakov, Wu, Su, Hu (CR14) 2021; 57 Cotrufo, Wallenstein, Boot, Denef, Paul (CR9) 2013; 19 Chapin, Matson, Mooney, Chapin, Matson, Mooney (CR7) 2002 Thuriès, Larré-Larrouy, Feller (CR53) 2000; 32 Liu, Ouyang, Tian, Wen, Zhao, Li, Baoyin, Kuzyakov, Xu (CR31) 2021; 57 Liu, Zamanian, Schleuss, Zarebanadkouki, Kuzyakov (CR32) 2018; 252 Qu, Zhang, Hai, Wu, Fan, Wang, Li, Shangguan, Deng (CR45) 2022; 339 Du, Gao (CR15) 2021; 308 Wang, An, Liang, Liu, Kuzyakov (CR56) 2021; 162 Xia, Chen, Zheng, Deng, Hu, Zheng, He, Wu, Kuzyakov, Su (CR62) 2020; 148 Deng, Zhang, Shangguan (CR11) 2014; 137 Six, Elliott, Paustian, Doran (CR48) 1998; 62 Miltner, Bombach, Schmidt-Bruecken, Kaestner (CR36) 2012; 111 Otto, Simpson (CR40) 2006; 80 Feyisa, Beyene, Angassa, Said, de Leeuw, Abebe, Megersa (CR16) 2017; 159 Jex, Pate, Blyth, Spencer, Hernes, Khan, Baker (CR24) 2014; 87 Zhao, Luo, Li, Li, Tian (CR69) 2016; 218 Bai, Yang, Zhang, An (CR2) 2021; 57 Zhang, Amelung (CR67) 1996; 28 Frostegard, Baath (CR17) 1996; 22 Kuzyakov, Biryukova, Kuznetzova, Mölter, Kandeler, Stahr (CR27) 2002; 35 Blaser, Conrad (CR6) 2016; 41 Neurath, Pett-Ridge, Chu-Jacoby, Herman, Whitman, Nico, Lipton, Kyle, Tfaily, Thompson, Firestone (CR39) 2021; 55 Panchal, Preece, Peñuelas, Giri (CR42) 2022; 27 Yang, Dou, Wang, Wang, Liang, An, Soromotin, Kuzyakov (CR65) 2022; 170 CR49 Wang, Yang, Song, Jin, Hu, Wu, Zheng (CR57) 2022; 509 Zhang, Liu, Song, Wang, Guo (CR68) 2018; 124 Hu, Zheng, Noll, Zhang, Wanek (CR22) 2020; 141 Pausch, Kuzyakov (CR43) 2018; 24 Villarino, Pinto, Jackson, Pineiro (CR55) 2021; 7 Cotrufo, Ranalli, Haddix, Six, Lugato (CR10) 2019; 12 Kopittke, Hernandez-Soriano, Dalal, Finn, Menzies, Hoeschen, Mueller (CR26) 2018; 24 Hall, Huang, Timokhin, Hammel (CR19) 2020; 101 Deckers, Nachtergaele, Spaargaren (CR23) 1998 Deng, Shangguan, Wu, Chang (CR12) 2017; 173 Vance, Brookes, Jenkinson (CR54) 1987; 19 Mganga, Sietiö, Meyer, Poeplau, Adamczyk, Biasi, Kalu, Räsänen, Ambus, Fritze, Pellikka, Karhu (CR35) 2022; 173 Zhalnina, Louie, Hao, Mansoori, Da Rocha, Shi, Cho, Karaoz, Loque, Bowen, Firestone, Northen, Brodie (CR66) 2018; 3 Angst, Mueller, Nierop, Simpson (CR1) 2021; 156 Lorenz, Lal, Lorenz, Lal (CR33) 2018 Bardgett, Bullock, Lavorel, Manning, Schaffner, Ostle, Chomel, Durigan, Fry, Johnson, Lavallee, Le Provost, Luo, Png, Sankaran, Hou, Zhou, Ma, Ren, Li, Ding, Li, Shi (CR4) 2021; 2 Thevenot, Dignac, Rumpel (CR52) 2010; 42 Birgander, Olsson (CR5) 2021; 462 He, Rodrigues, Soudzilovskaia, Barcelo, Olsson, Song, Tedersoo, Yuan, Yuan, Lipson, Xu (CR20) 2020; 151 Tao, Huang, Hungate, Manzoni, Frey, Schmidt, Reichstein, Carvalhais, Ciais, Jiang, Lehmann, Wang, Houlton, Ahrens, Mishra, Hugelius, Hocking, Lu, Shi, Viatkin, Vargas, Yigini, Omuto, Malik, Peralta, Cuevas-Corona, Di Paolo, Luotto, Liao, Liang, Saynes, Huang, Luo (CR51) 2023; 618 Bai, Cotrufo (CR3) 2022; 377 Deng, Shangguan, Bell, Soromotin, Peng, An, Wu, Xu, Wang, Li, Tang, Yan, Zhang, Li, Wu, Kuzyakov (CR13) 2023; 1 Pang, Xu, Tian, Cui, Ouyang, Kuzyakov (CR41) 2021; 20 Moore, Sulman, Mayes, Patterson, Classen (CR37) 2020; 34 Xia, Song, Wang, Fan, Guo, Van Zwieten, Hartley, Fang, Wang, Zhang, Liu, Wang (CR63) 2023; 37 Lavallee, Soong, Cotrufo (CR28) 2020; 26 Qin, He, Sanders, Zhang, Zhou, Wu, Lu, Yu, Li, Li, Lambers, Li, Wang (CR44) 2024; 00 Huang, Kuzyakov, Niu, Luo, Sun, Zhang, Liang (CR21) 2023; 29 Hafner, Unteregelsbacher, Seeber, Lena, Xu, Li, Guggenberger, Miehe, Kuzyakov (CR18) 2012; 18 Wilson, Strickland, Hutchings, Bianchi, Flory (CR61) 2018; 24 Joergensen (CR25) 2018; 54 Liang, Amelung, Lehmann, Kaestner (CR30) 2019; 25 Sokol, Sanderman, Bradford (CR50) 2019; 25 Nelson, Sommers, Nelson, Sommers (CR38) 1996 Qu, Deng, Shangguan, Sun, He, Wang, Zhou, Li, Peñuelas (CR46) 2024; 360 Ma, Zhu, Wang, Chen, Dai, Feng, Su, Hu, Li, Han, Liang, Bai, Feng (CR34) 2018; 9 Conant, Cerri, Osborne, Paustian (CR8) 2017; 27 Wei, Razavi, Wang, Zhu, Liu, Wu, Kuzyakov, Ge (CR59) 2019; 135 Xu, Kuzyakov, Wanek, Richter (CR64) 2008; 44 Shahzad, Chenu, Genet, Barot, Perveen, Mougin, Fontaine (CR47) 2015; 80 Liang, Schimel, Jastrow (CR29) 2017; 2 Wang, Chen, Petropoulos, Yu, Lin, Feng (CR58) 2023; 59 C Zhang (1807_CR68) 2018; 124 MF Cotrufo (1807_CR10) 2019; 12 A Otto (1807_CR40) 2006; 80 CJ Du (1807_CR15) 2021; 308 YH Xia (1807_CR62) 2020; 148 RT Conant (1807_CR8) 2017; 27 P Panchal (1807_CR42) 2022; 27 K Feyisa (1807_CR16) 2017; 159 C Liang (1807_CR29) 2017; 2 L Deng (1807_CR11) 2014; 137 PR White (1807_CR60) 2000 JAM Moore (1807_CR37) 2020; 34 L Wei (1807_CR59) 2019; 135 Q Qu (1807_CR45) 2022; 339 FSI Chapin (1807_CR7) 2002 CN Jex (1807_CR24) 2014; 87 R Pang (1807_CR41) 2021; 20 SJ Hall (1807_CR19) 2020; 101 NW Sokol (1807_CR50) 2019; 25 M Blaser (1807_CR6) 2016; 41 PM Kopittke (1807_CR26) 2018; 24 K Lorenz (1807_CR33) 2018 X Xu (1807_CR64) 2008; 44 RA Neurath (1807_CR39) 2021; 55 G Angst (1807_CR1) 2021; 156 C Liang (1807_CR30) 2019; 25 J Six (1807_CR48) 1998; 62 DW Nelson (1807_CR38) 1996 Y Yang (1807_CR65) 2022; 170 F Tao (1807_CR51) 2023; 618 K Zhalnina (1807_CR66) 2018; 3 ISSS Working Group WRB (1807_CR23) 1998 T Shahzad (1807_CR47) 2015; 80 S Xia (1807_CR63) 2023; 37 M Liu (1807_CR31) 2021; 57 L Thuriès (1807_CR53) 2000; 32 J Birgander (1807_CR5) 2021; 462 JX Zhao (1807_CR69) 2016; 218 SB Liu (1807_CR32) 2018; 252 L Deng (1807_CR13) 2023; 1 KZ Mganga (1807_CR35) 2022; 173 J Pausch (1807_CR43) 2018; 24 CH Wilson (1807_CR61) 2018; 24 LY He (1807_CR20) 2020; 151 A Miltner (1807_CR36) 2012; 111 XT Wang (1807_CR58) 2023; 59 1807_CR49 YT Hu (1807_CR22) 2020; 141 JM Lavallee (1807_CR28) 2020; 26 XD Zhang (1807_CR67) 1996; 28 QC Wang (1807_CR57) 2022; 509 BR Wang (1807_CR56) 2021; 162 YF Bai (1807_CR3) 2022; 377 Q Qu (1807_CR46) 2024; 360 M Thevenot (1807_CR52) 2010; 42 RD Bardgett (1807_CR4) 2021; 2 T Ma (1807_CR34) 2018; 9 XJ Bai (1807_CR2) 2021; 57 L Deng (1807_CR12) 2017; 173 RG Joergensen (1807_CR25) 2018; 54 GM Qin (1807_CR44) 2024; 00 SH Villarino (1807_CR55) 2021; 7 SH Deng (1807_CR14) 2021; 57 W Huang (1807_CR21) 2023; 29 ED Vance (1807_CR54) 1987; 19 MF Cotrufo (1807_CR9) 2013; 19 S Hafner (1807_CR18) 2012; 18 A Frostegard (1807_CR17) 1996; 22 Y Kuzyakov (1807_CR27) 2002; 35 |
References_xml | – volume: 19 start-page: 988 year: 2013 end-page: 995 ident: CR9 article-title: The Microbial Efficiency-Matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Glob publication-title: Chang Biol doi: 10.1111/gcb.12113 – volume: 2 start-page: 720 year: 2021 end-page: 735 ident: CR4 article-title: Combatting global grassland degradation publication-title: Nat Rev Earth Environ doi: 10.1038/s43017-021-00207-2 – volume: 22 start-page: 59 year: 1996 end-page: 65 ident: CR17 article-title: The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil publication-title: Biol Fertil Soils doi: 10.1007/BF00384433 – ident: CR49 – volume: 151 start-page: 108024 year: 2020 ident: CR20 article-title: Global biogeography of fungal and bacterial biomass carbon in topsoil publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2020.108024 – volume: 27 start-page: 749 year: 2022 end-page: 757 ident: CR42 article-title: Soil carbon sequestration by root exudates publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2022.04.009 – volume: 1 start-page: 51 year: 2023 ident: CR13 article-title: Carbon in Chinese grasslands: meta-analysis and theory of grazing effects publication-title: Carbon Res – volume: 135 start-page: 134 year: 2019 end-page: 143 ident: CR59 article-title: Labile carbon matters more than temperature for enzyme activity in paddy soil publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2019.04.016 – volume: 54 start-page: 559 year: 2018 end-page: 568 ident: CR25 article-title: Amino sugars as specific indices for fungal and bacterial residues in soil publication-title: Biol Fertil Soils doi: 10.1007/s00374-018-1288-3 – volume: 25 start-page: 12 year: 2019 end-page: 24 ident: CR50 article-title: Pathways of mineral-associated soil organic matter formation: integrating the role of plant carbon source, chemistry, and point of entry publication-title: Glob Chang Biol doi: 10.1111/gcb.14482 – volume: 80 start-page: 146 year: 2015 end-page: 155 ident: CR47 article-title: Contribution of exudates, arbuscular mycorrhizal fungi and litter depositions to the rhizosphere priming effect induced by grassland species publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2014.09.023 – volume: 25 start-page: 3578 year: 2019 end-page: 3590 ident: CR30 article-title: Quantitative assessment of microbial necromass contribution to soil organic matter publication-title: Glob Chang Biol doi: 10.1111/gcb.14781 – volume: 20 start-page: 100441 year: 2021 ident: CR41 article-title: In-situ CO labeling to trace carbon fluxes in plant-soil-microorganism systems: review and methodological guideline publication-title: Rhizosphere doi: 10.1016/j.rhisph.2021.100441 – start-page: 175 year: 2018 end-page: 209 ident: CR33 article-title: Carbon Sequestration in Grassland soils publication-title: Carbon sequestration in agricultural ecosystems doi: 10.1007/978-3-319-92318-5_4 – volume: 252 start-page: 93 year: 2018 end-page: 104 ident: CR32 article-title: Degradation of tibetan grasslands: consequences for carbon and nutrient cycles publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2017.10.011 – volume: 339 start-page: 108119 year: 2022 ident: CR45 article-title: Long-term fencing alters the vertical distribution of soil δ C and SOC turnover rate: revealed by MBC-δ C publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2022.108119 – volume: 35 start-page: 348 year: 2002 end-page: 358 ident: CR27 article-title: Carbon partitioning in plant and soil, carbon dioxide fluxes and enzyme activities as affected by cutting ryegrass publication-title: Biol Fertil Soils doi: 10.1007/s00374-002-0480-6 – volume: 19 start-page: 703 year: 1987 end-page: 707 ident: CR54 article-title: An extraction method for measuring soil microbial biomass C publication-title: Soil Biol Biochem doi: 10.1016/0038-0717(87)90052-6 – start-page: 961 year: 1996 end-page: 1010 ident: CR38 article-title: Total Carbon, Organic Carbon, and Organic Matter publication-title: Methods of soil analysis – start-page: 190 year: 2002 end-page: 193 ident: CR7 article-title: Principles of terrestrial ecosystem ecology publication-title: Part II mechanisms – volume: 57 start-page: 65 year: 2021 end-page: 76 ident: CR14 article-title: Divergent mineralization of hydrophilic and hydrophobic organic substrates and their priming effect in soils depending on their preferential utilization by bacteria and fungi publication-title: Biol Fertil Soils doi: 10.1007/s00374-020-01503-7 – volume: 24 start-page: 1762 year: 2018 end-page: 1770 ident: CR26 article-title: Nitrogen-rich microbial products provide new organo-mineral associations for the stabilization of soil organic matter publication-title: Glob Chang Biol doi: 10.1111/gcb.14009 – volume: 101 start-page: e03113 year: 2020 ident: CR19 article-title: Lignin lags, leads, or limits the decomposition of litter and soil organic carbon publication-title: Ecology doi: 10.1002/ecy.3113 – volume: 360 start-page: 108771 year: 2024 ident: CR46 article-title: Belowground C sequestrations response to grazing exclusion in global grasslands: dynamics and mechanisms publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2023.108771 – volume: 29 start-page: 6188 year: 2023 end-page: 6200 ident: CR21 article-title: Drivers of microbially and plant-derived carbon in topsoil and subsoil publication-title: Glob Chang Biol doi: 10.1111/gcb.16951 – volume: 62 start-page: 1367 year: 1998 end-page: 1377 ident: CR48 article-title: Aggregation and soil organic matter accumulation in cultivated and native grassland soils publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj1998.03615995006200050032x – volume: 27 start-page: 662 year: 2017 end-page: 668 ident: CR8 article-title: Grassland management impacts on soil carbon stocks: a new synthesis publication-title: Ecol Appl doi: 10.1002/eap.1473 – volume: 159 start-page: 9 year: 2017 end-page: 19 ident: CR16 article-title: Effects of enclosure management on carbon sequestration, soil properties and vegetation attributes in East African rangelands publication-title: CATENA doi: 10.1016/j.catena.2017.08.002 – volume: 2 start-page: 17105 year: 2017 ident: CR29 article-title: The importance of anabolism in microbial control over soil carbon storage publication-title: Nat Microbiol doi: 10.1038/nmicrobiol.2017.105 – volume: 3 start-page: 470 year: 2018 end-page: 480 ident: CR66 article-title: Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly publication-title: Nat Microbiol doi: 10.1038/s41564-018-0129-3 – volume: 141 start-page: 107660 year: 2020 ident: CR22 article-title: Direct measurement of the in situ decomposition of microbial-derived soil organic matter publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2019.107660 – volume: 26 start-page: 261 year: 2020 end-page: 273 ident: CR28 article-title: Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century publication-title: Glob Chang Biol doi: 10.1111/gcb.14859 – volume: 80 start-page: 121 year: 2006 end-page: 142 ident: CR40 article-title: Evaluation of CuO oxidation parameters for determining the source and stage of lignin degradation in soil publication-title: Biogeochemistry doi: 10.1007/s10533-006-9014-x – volume: 57 start-page: 193 year: 2021 end-page: 202 ident: CR31 article-title: Effects of rotational and continuous overgrazing on newly assimilated C allocation publication-title: Biol Fertil Soils doi: 10.1007/s00374-020-01516-2 – volume: 173 start-page: 108799 year: 2022 ident: CR35 article-title: Microbial carbon use efficiency along an altitudinal gradient publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2022.108799 – volume: 24 start-page: 1 year: 2018 end-page: 12 ident: CR43 article-title: Carbon input by roots into the soil: quantification of rhizodeposition from root to ecosystem scales publication-title: Glob Chang Biol doi: 10.1111/gcb.13850 – volume: 148 start-page: 107879 year: 2020 ident: CR62 article-title: Preferential uptake of hydrophilic and hydrophobic compounds by bacteria and fungi in upland and paddy soils publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2020.107879 – volume: 55 start-page: 13345 year: 2021 end-page: 13355 ident: CR39 article-title: Root carbon interaction with soil minerals is dynamic, leaving a legacy of microbially derived residues publication-title: Environ Sci Technol – volume: 509 start-page: 120074 year: 2022 ident: CR57 article-title: The accumulation of microbial residues and plant lignin phenols are more influenced by fertilization in young than mature subtropical forests publication-title: Ecol Manage doi: 10.1016/j.foreco.2022.120074 – volume: 32 start-page: 449 year: 2000 end-page: 457 ident: CR53 article-title: Influences of organic fertilization and solarization in a greenhouse on particle-size fractions of a Mediterranean sandy soil publication-title: Biol Fertil Soils doi: 10.1007/s003740000275 – volume: 462 start-page: 245 year: 2021 end-page: 255 ident: CR5 article-title: Temporal patterns of carbon flow from grassland vegetation to soil microorganisms measured using C-labelling and signature fatty acids publication-title: Plant Soil doi: 10.1007/s11104-021-04854-8 – volume: 156 start-page: 108189 year: 2021 ident: CR1 article-title: Plant- or microbial-derived? A review on the molecular composition of stabilized soil organic matter publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2021.108189 – start-page: 165 year: 1998 ident: CR23 article-title: World reference bases for soil resources: introduction publication-title: International Society of Soil Science (ISSS), International Soil Reference and Information Centre (ISRIC), and Food and Agriculture Organization of the United Nations – volume: 41 start-page: 122 year: 2016 end-page: 129 ident: CR6 article-title: Stable carbon isotope fractionation as tracer of carbon cycling in anoxic soil ecosystems publication-title: Curr Opin Biotechnol doi: 10.1016/j.copbio.2016.07.001 – volume: 28 start-page: 1201 year: 1996 end-page: 1206 ident: CR67 article-title: Gas chromatographic determination of muramic acid, glucosamine, mannosamine, and galactosamine in soils publication-title: Soil Biol Biochem doi: 10.1016/0038-0717(96)00117-4 – volume: 44 start-page: 22 year: 2008 end-page: 29 ident: CR64 article-title: Root-derived respiration and non-structural carbon of rice seedlings publication-title: Eur J Soil Biol doi: 10.1016/j.ejsobi.2007.09.008 – volume: 308 start-page: 107256 year: 2021 ident: CR15 article-title: Grazing exclusion alters ecological stoichiometry of plant and soil in degraded alpine grassland publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2020.107256 – volume: 24 start-page: 2997 year: 2018 end-page: 3009 ident: CR61 article-title: Grazing enhances belowground carbon allocation, microbial biomass, and soil carbon in a subtropical grassland publication-title: Glob Chang Biol doi: 10.1111/gcb.14070 – volume: 59 start-page: 513 year: 2023 end-page: 525 ident: CR58 article-title: Root–derived C distribution drives N transport and transformation after C and N labelling on paddy and upland soils publication-title: Biol Fertil Soils doi: 10.1007/s00374-022-01681-6 – volume: 00 start-page: 1 year: 2024 end-page: 13 ident: CR44 article-title: Contributions of plant- and microbial-derived residuals to mangrove soil carbon stocks: implications for blue carbon sequestration publication-title: Funct Ecol – volume: 7 start-page: eabd3176 year: 2021 ident: CR55 article-title: Plant rhizodeposition: a key factor for soil organic matter formation in stable fractions publication-title: Sci Adv doi: 10.1126/sciadv.abd3176 – volume: 87 start-page: 46 year: 2014 end-page: 59 ident: CR24 article-title: Lignin biogeochemistry: from modern processes to quaternary archives publication-title: Quat Sci Rev doi: 10.1016/j.quascirev.2013.12.028 – volume: 170 start-page: 108688 year: 2022 ident: CR65 article-title: Increasing contribution of microbial residues to soil organic carbon in grassland restoration chronosequence publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2022.108688 – volume: 124 start-page: 47 year: 2018 end-page: 58 ident: CR68 article-title: Interactions of soil bacteria and fungi with plants during long-term grazing exclusion in semiarid grasslands publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2018.05.026 – volume: 111 start-page: 41 year: 2012 end-page: 55 ident: CR36 article-title: SOM genesis: microbial biomass as a significant source publication-title: Biogeochemistry doi: 10.1007/s10533-011-9658-z – volume: 57 start-page: 563 year: 2021 end-page: 574 ident: CR2 article-title: Newly assimilated carbon allocation in grassland communities under different grazing enclosure times publication-title: Biol Fertil Soils doi: 10.1007/s00374-021-01549-1 – volume: 18 start-page: 528 year: 2012 end-page: 538 ident: CR18 article-title: Effect of grazing on carbon stocks and assimilate partitioning in a tibetan montane pasture revealed by CO pulse labeling publication-title: Glob Chang Biol doi: 10.1111/j.1365-2486.2011.02557.x – volume: 12 start-page: 989 year: 2019 end-page: 994 ident: CR10 article-title: Soil carbon storage informed by particulate and mineral-associated organic matter publication-title: Nat Geosci doi: 10.1038/s41561-019-0484-6 – volume: 42 start-page: 1200 year: 2010 end-page: 1211 ident: CR52 article-title: Fate of lignins in soils: a review publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2010.03.017 – start-page: 13 year: 2000 end-page: 15 ident: CR60 article-title: Grassland ecosystems publication-title: Pilot analysis of global ecosystems – volume: 173 start-page: 84 year: 2017 end-page: 95 ident: CR12 article-title: Effects of grazing exclusion on carbon sequestration in China’s grassland publication-title: Earth-Sci Rev doi: 10.1016/j.earscirev.2017.08.008 – volume: 37 start-page: 1067 year: 2023 end-page: 1081 ident: CR63 article-title: Patterns and determinants of plant-derived lignin phenols in coastal wetlands: implications for organic C accumulation publication-title: Funct Ecol doi: 10.1111/1365-2435.14290 – volume: 9 start-page: 3480 year: 2018 ident: CR34 article-title: Divergent accumulation of microbial necromass and plant lignin components in grassland soils publication-title: Nat Commun doi: 10.1038/s41467-018-05891-1 – volume: 218 start-page: 114 year: 2016 end-page: 121 ident: CR69 article-title: Grazing effect on growing season ecosystem respiration and its temperature sensitivity in alpine grasslands along a large altitudinal gradient on the central tibetan Plateau publication-title: Agric Meteorol doi: 10.1016/j.agrformet.2015.12.005 – volume: 618 start-page: 981 year: 2023 end-page: 985 ident: CR51 article-title: Microbial carbon use efficiency promotes global soil carbon storage publication-title: Nature doi: 10.1038/s41586-023-06042-3 – volume: 162 start-page: 108422 year: 2021 ident: CR56 article-title: Microbial necromass as the source of soil organic carbon in global ecosystems publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2021.108422 – volume: 377 start-page: 603 year: 2022 end-page: 608 ident: CR3 article-title: Grassland soil carbon sequestration: current understanding, challenges, and solutions publication-title: Science doi: 10.1126/science.abo2380 – volume: 137 start-page: 7 year: 2014 end-page: 15 ident: CR11 article-title: Long-term fencing effects on plant diversity and soil properties in China publication-title: Soil Tillage Res doi: 10.1016/j.still.2013.11.002 – volume: 34 start-page: 899 year: 2020 end-page: 910 ident: CR37 article-title: Plant roots stimulate the decomposition of complex, but not simple, soil carbon publication-title: Funct Ecol doi: 10.1111/1365-2435.13510 – volume: 00 start-page: 1 year: 2024 ident: 1807_CR44 publication-title: Funct Ecol – volume: 156 start-page: 108189 year: 2021 ident: 1807_CR1 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2021.108189 – volume: 173 start-page: 84 year: 2017 ident: 1807_CR12 publication-title: Earth-Sci Rev doi: 10.1016/j.earscirev.2017.08.008 – volume: 57 start-page: 65 year: 2021 ident: 1807_CR14 publication-title: Biol Fertil Soils doi: 10.1007/s00374-020-01503-7 – volume: 37 start-page: 1067 year: 2023 ident: 1807_CR63 publication-title: Funct Ecol doi: 10.1111/1365-2435.14290 – volume: 35 start-page: 348 year: 2002 ident: 1807_CR27 publication-title: Biol Fertil Soils doi: 10.1007/s00374-002-0480-6 – start-page: 175 volume-title: Carbon sequestration in agricultural ecosystems year: 2018 ident: 1807_CR33 doi: 10.1007/978-3-319-92318-5_4 – volume: 42 start-page: 1200 year: 2010 ident: 1807_CR52 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2010.03.017 – volume: 101 start-page: e03113 year: 2020 ident: 1807_CR19 publication-title: Ecology doi: 10.1002/ecy.3113 – volume: 27 start-page: 662 year: 2017 ident: 1807_CR8 publication-title: Ecol Appl doi: 10.1002/eap.1473 – volume: 7 start-page: eabd3176 year: 2021 ident: 1807_CR55 publication-title: Sci Adv doi: 10.1126/sciadv.abd3176 – volume: 26 start-page: 261 year: 2020 ident: 1807_CR28 publication-title: Glob Chang Biol doi: 10.1111/gcb.14859 – volume: 12 start-page: 989 year: 2019 ident: 1807_CR10 publication-title: Nat Geosci doi: 10.1038/s41561-019-0484-6 – volume: 57 start-page: 563 year: 2021 ident: 1807_CR2 publication-title: Biol Fertil Soils doi: 10.1007/s00374-021-01549-1 – volume: 55 start-page: 13345 year: 2021 ident: 1807_CR39 publication-title: Environ Sci Technol – volume: 29 start-page: 6188 year: 2023 ident: 1807_CR21 publication-title: Glob Chang Biol doi: 10.1111/gcb.16951 – volume: 339 start-page: 108119 year: 2022 ident: 1807_CR45 publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2022.108119 – volume: 170 start-page: 108688 year: 2022 ident: 1807_CR65 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2022.108688 – volume: 148 start-page: 107879 year: 2020 ident: 1807_CR62 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2020.107879 – volume: 27 start-page: 749 year: 2022 ident: 1807_CR42 publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2022.04.009 – volume: 3 start-page: 470 year: 2018 ident: 1807_CR66 publication-title: Nat Microbiol doi: 10.1038/s41564-018-0129-3 – volume: 360 start-page: 108771 year: 2024 ident: 1807_CR46 publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2023.108771 – start-page: 961 volume-title: Methods of soil analysis year: 1996 ident: 1807_CR38 – volume: 462 start-page: 245 year: 2021 ident: 1807_CR5 publication-title: Plant Soil doi: 10.1007/s11104-021-04854-8 – volume: 2 start-page: 17105 year: 2017 ident: 1807_CR29 publication-title: Nat Microbiol doi: 10.1038/nmicrobiol.2017.105 – volume: 22 start-page: 59 year: 1996 ident: 1807_CR17 publication-title: Biol Fertil Soils doi: 10.1007/BF00384433 – volume: 57 start-page: 193 year: 2021 ident: 1807_CR31 publication-title: Biol Fertil Soils doi: 10.1007/s00374-020-01516-2 – volume: 135 start-page: 134 year: 2019 ident: 1807_CR59 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2019.04.016 – volume: 151 start-page: 108024 year: 2020 ident: 1807_CR20 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2020.108024 – volume: 173 start-page: 108799 year: 2022 ident: 1807_CR35 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2022.108799 – volume: 24 start-page: 1 year: 2018 ident: 1807_CR43 publication-title: Glob Chang Biol doi: 10.1111/gcb.13850 – volume: 80 start-page: 146 year: 2015 ident: 1807_CR47 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2014.09.023 – volume: 59 start-page: 513 year: 2023 ident: 1807_CR58 publication-title: Biol Fertil Soils doi: 10.1007/s00374-022-01681-6 – volume: 618 start-page: 981 year: 2023 ident: 1807_CR51 publication-title: Nature doi: 10.1038/s41586-023-06042-3 – volume: 2 start-page: 720 year: 2021 ident: 1807_CR4 publication-title: Nat Rev Earth Environ doi: 10.1038/s43017-021-00207-2 – volume: 54 start-page: 559 year: 2018 ident: 1807_CR25 publication-title: Biol Fertil Soils doi: 10.1007/s00374-018-1288-3 – ident: 1807_CR49 – volume: 25 start-page: 3578 year: 2019 ident: 1807_CR30 publication-title: Glob Chang Biol doi: 10.1111/gcb.14781 – volume: 19 start-page: 988 year: 2013 ident: 1807_CR9 publication-title: Chang Biol doi: 10.1111/gcb.12113 – volume: 44 start-page: 22 year: 2008 ident: 1807_CR64 publication-title: Eur J Soil Biol doi: 10.1016/j.ejsobi.2007.09.008 – volume: 509 start-page: 120074 year: 2022 ident: 1807_CR57 publication-title: Ecol Manage doi: 10.1016/j.foreco.2022.120074 – volume: 28 start-page: 1201 year: 1996 ident: 1807_CR67 publication-title: Soil Biol Biochem doi: 10.1016/0038-0717(96)00117-4 – volume: 18 start-page: 528 year: 2012 ident: 1807_CR18 publication-title: Glob Chang Biol doi: 10.1111/j.1365-2486.2011.02557.x – volume: 9 start-page: 3480 year: 2018 ident: 1807_CR34 publication-title: Nat Commun doi: 10.1038/s41467-018-05891-1 – volume: 32 start-page: 449 year: 2000 ident: 1807_CR53 publication-title: Biol Fertil Soils doi: 10.1007/s003740000275 – volume: 159 start-page: 9 year: 2017 ident: 1807_CR16 publication-title: CATENA doi: 10.1016/j.catena.2017.08.002 – volume: 24 start-page: 1762 year: 2018 ident: 1807_CR26 publication-title: Glob Chang Biol doi: 10.1111/gcb.14009 – start-page: 165 volume-title: International Society of Soil Science (ISSS), International Soil Reference and Information Centre (ISRIC), and Food and Agriculture Organization of the United Nations year: 1998 ident: 1807_CR23 – volume: 34 start-page: 899 year: 2020 ident: 1807_CR37 publication-title: Funct Ecol doi: 10.1111/1365-2435.13510 – volume: 87 start-page: 46 year: 2014 ident: 1807_CR24 publication-title: Quat Sci Rev doi: 10.1016/j.quascirev.2013.12.028 – volume: 20 start-page: 100441 year: 2021 ident: 1807_CR41 publication-title: Rhizosphere doi: 10.1016/j.rhisph.2021.100441 – volume: 19 start-page: 703 year: 1987 ident: 1807_CR54 publication-title: Soil Biol Biochem doi: 10.1016/0038-0717(87)90052-6 – volume: 137 start-page: 7 year: 2014 ident: 1807_CR11 publication-title: Soil Tillage Res doi: 10.1016/j.still.2013.11.002 – volume: 62 start-page: 1367 year: 1998 ident: 1807_CR48 publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj1998.03615995006200050032x – volume: 25 start-page: 12 year: 2019 ident: 1807_CR50 publication-title: Glob Chang Biol doi: 10.1111/gcb.14482 – volume: 41 start-page: 122 year: 2016 ident: 1807_CR6 publication-title: Curr Opin Biotechnol doi: 10.1016/j.copbio.2016.07.001 – start-page: 13 volume-title: Pilot analysis of global ecosystems year: 2000 ident: 1807_CR60 – volume: 377 start-page: 603 year: 2022 ident: 1807_CR3 publication-title: Science doi: 10.1126/science.abo2380 – start-page: 190 volume-title: Part II mechanisms year: 2002 ident: 1807_CR7 – volume: 80 start-page: 121 year: 2006 ident: 1807_CR40 publication-title: Biogeochemistry doi: 10.1007/s10533-006-9014-x – volume: 124 start-page: 47 year: 2018 ident: 1807_CR68 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2018.05.026 – volume: 141 start-page: 107660 year: 2020 ident: 1807_CR22 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2019.107660 – volume: 111 start-page: 41 year: 2012 ident: 1807_CR36 publication-title: Biogeochemistry doi: 10.1007/s10533-011-9658-z – volume: 1 start-page: 51 year: 2023 ident: 1807_CR13 publication-title: Carbon Res – volume: 162 start-page: 108422 year: 2021 ident: 1807_CR56 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2021.108422 – volume: 24 start-page: 2997 year: 2018 ident: 1807_CR61 publication-title: Glob Chang Biol doi: 10.1111/gcb.14070 – volume: 252 start-page: 93 year: 2018 ident: 1807_CR32 publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2017.10.011 – volume: 218 start-page: 114 year: 2016 ident: 1807_CR69 publication-title: Agric Meteorol doi: 10.1016/j.agrformet.2015.12.005 – volume: 308 start-page: 107256 year: 2021 ident: 1807_CR15 publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2020.107256 |
SSID | ssj0015819 |
Score | 2.492314 |
Snippet | Grasslands store large amounts of C; however, the underlying mechanisms of soil C sequestration after grazing exclusion are not well known. This study aimed to... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 407 |
SubjectTerms | aboveground biomass Agriculture Biomarkers Biomass Biomedical and Life Sciences Carbon dioxide carbon sequestration Fungi Grasslands Grazing Labeling Life Sciences Lignin microbial biomass Microorganisms necromass Original Paper Phenols Plants rhizodeposition Roots Soil Soil microorganisms soil organic carbon Soil Science & Conservation Soils |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fi9QwEA66h6APoqfinqdE8E2D27RN0ic5lz0PwUPEg3sr-TG5W1jbdds97KP_uZNsdhcF7y3QtIHOJPNNJvk-Qt5Yr8C6yjChlWGFl54pzDpYAZPS5d4pHRPFL-fi7KL4fFlepg23Lh2r3K6JcaF2rQ175O95JZTkfCL4h-VPFlSjQnU1SWjcJQe4BCs1IgcfZ-dfv-3qCKWK0h5Bg55xnPfp2ky8PBepVxjGKBZIrCQb_g5Ne7z5T4k0Rp7TR-Rhgoz0ZGPjx-QONIfkwcnVKtFmwCG5t5GUHLA1izTUwxPy-9MqUEdfUfhlF-uwKUbnTcCIHXS0a-cLulF0snRKk1oP_TGPvEw4WgPhoB4ia9p6iui6Zw599QYc9tYd7VfaYtsMNMunFD0JIrc3XV63fdsNTX-NGPYpuTidfZ-esSS4wCyiuJ7lpRFcGZDc5loXDrJKiyqrwCtn8sJYXYF0otKZ1Dkg9jHgSsxwAyed44XPn5FR0zbwnFDPVZZpy4VEACFLqRHXITJ12msJmbBjkm3_dW0TG3kQxVjUOx7laJ8a7VNH-9TDmLzdvbPccHHc2vt4a8I6zcuu3nvRmLzePcYZFcokuoF23dU5BgFMK_NJNSbvtqbff-L_Ix7dPuILcp9HbwsOd0xG_WoNLxHR9OZVcts_7hHzPw priority: 102 providerName: ProQuest |
Title | Grazing exclusion increases soil organic C through microbial necromass of root-derived C as traced by 13C labelling photosynthate |
URI | https://link.springer.com/article/10.1007/s00374-024-01807-y https://www.proquest.com/docview/2968722062 https://www.proquest.com/docview/3153619309 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pi9QwFA66i6CHRVfFcdclgjcNTNM2SY8z48wuiouIA-up5Mfr7sDYLtOO2OP-5_uSabsoKnhKoGkCfS_J9_qS7yPkjS0UWJcZJrQyLClkwRRGHSyBceriwikdAsVP5-JsmXy4SC-6S2F1f9q9T0mGlXq47BaoUhjuKcyTTknW3if7Kcbu_iDXkk-G3EGqgpyH151nHOd6d1Xmz338uh3dYczf0qJht1k8JgcdTKSTnV2fkHtQHpJHk8tNR5UBh-TBTkayxdo8UE-3T8nN6cbTRV9S-GnXW_8jjK5KjwtrqGldrdZ0p-Jk6Yx2Cj30-ypwMeFoJfjDeYimaVVQRNQNc-ifP8Bha13TZqMt1k1Lo3hG0Xsg8HnT66uqqeq2bK4Qtz4jy8X86-yMdSILzCJya1icGsGVAcltrHXiIMq0yKIMCuVMnBirM5BOZDqSOgbEOwZcilGt56FzPCni52SvrEp4QWjBVRRpy4VE0CBTqRHLIRp1utASImFHJOq_dW47BnIvhLHOB-7kYJ8c7ZMH--TtiLwd3rne8W_8s_Vxb8K8m4t1zjOhJOdjwUfk9fAYZ5FPjegSqm2dx7jwYygZj7MRedeb_q6Lv4_48v-aH5GHPHifd8BjstdstvAKUU1jTsj-ZPp-uvDl6bePcyyn8_PPX06Cc98CjYDz4A |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Bb9MwFH4anRBwQDBAFAYYCU5g0dhJnBwQGqWjY1uF0Cbtljm2s1UqSWlSIEf-0H7jnp2kFUjstlukOLaU9-z3PT_7-wBeqSwySscpDWWUUj8TGY0w66C-GQSaZzqSLlE8nITjY__LSXCyARfdXRh7rLJbE91CrQtl98jfsTiMBGODkH2Y_6BWNcpWVzsJjcYt9k39C1O28v3eJ7Tva8Z2R0fDMW1VBahCqFJRHqQhi1IjmOJS-tp4sQxjLzZZpFPup0rGRugwlp6Q3GCAT40OMI2zxGua-RnHfm_Aps_DAevB5sfR5Ou3Vd0iiJyUiNW8pwzXmfaajrus56heKMZEakmzBK3_DoVrfPtPSdZFut17cLeFqGSn8an7sGHyLbizc7ZoaTrMFtxsJCxrfBo52uv6Afz5vLBU1WfE_Fazpd2EI9PcYtLSlKQspjPSKEgpMiStOhD5PnU8UDhabuzBQETypMgIovmKapwbP43G1rIk1UIqfE5r4vEhQc81jkuczM-LqijrvDpHzPwQjq_FFI-glxe5eQwkY5HnScVCgYBFBEIijkQkrGUmhfFC1Qev-9eJatnPrQjHLFnxNjv7JGifxNknqfvwZvXNvOH-uLL1dmfCpF0HymTttX14uXqNM9iWZWRuimWZcAw6mMbyQdyHt53p1138f8QnV4_4Am6Njw4PkoO9yf5TuM2c51nn24ZetViaZ4imqvR568IETq971lwCyc4wxQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VrUD0gKCA2FLASHACqxvnw8kBobLdpaWwqhCVeksdf7QrLcmyyQI58rf4dYydZFcg0VtvkeLYUubZ88ZjvwF4IU2spUoyGok4o4HhhsYYddBAD0LlGxULFyh-mkSHp8GHs_BsA353d2HsscpuTXQLtSqk3SPfY0kUc8YGEdsz7bGIk4Px2_k3aitI2UxrV06jgcixrn9g-Fa-OTpAW79kbDz6MjykbYUBKpG2VNQPs4jFmeZM-kIESnuJiBIv0SZWmR9kUiSaqygRHhe-RmefaRViSGdF2BQLjI_93oBNbqOiHmy-G01OPq9yGGHsyoog5BGLuOa0V3bcxT0n-0LRP1IroMVp_bdbXHPdf9KzzuuN78Kdlq6S_QZf92BD59uwtX-xaCU79DbcbMpZ1vg0chLY9X349X5hZasviP4pZ0u7IUemueWnpS5JWUxnpKkmJcmQtJWCyNep04TC0XJtDwkiqyeFIcjsK6pwnnzXCluLklQLIfE5q4nnDwmiWDtdcTK_LKqirPPqEvnzAzi9FlM8hF5e5PoREMNizxOSRRzJCw-5QE6JrFgJI7j2ItkHr_vXqWyV0G1Bjlm60nB29knRPqmzT1r34dXqm3mjA3Jl693OhGm7JpTpGsF9eL56jbPZpmhErotlmfrogDCk9QdJH153pl938f8Rd64e8RncwtmSfjyaHD-G28wBz2JvF3rVYqmfILGqsqctggmcX_ek-QP54TT6 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Grazing+exclusion+increases+soil+organic+C+through+microbial+necromass+of+root-derived+C+as+traced+by+13C+labelling+photosynthate&rft.jtitle=Biology+and+fertility+of+soils&rft.au=Qu%2C+Qing&rft.au=Deng%2C+Lei&rft.au=Gunina%2C+Anna&rft.au=Hai%2C+Xuying&rft.date=2024-04-01&rft.issn=0178-2762&rft.eissn=1432-0789&rft.volume=60&rft.issue=3&rft.spage=407&rft.epage=420&rft_id=info:doi/10.1007%2Fs00374-024-01807-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00374_024_01807_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-2762&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-2762&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-2762&client=summon |