A Two-Stage Cooperative Evolutionary Algorithm With Problem-Specific Knowledge for Energy-Efficient Scheduling of No-Wait Flow-Shop Problem

Green scheduling in the manufacturing industry has attracted increasing attention in academic research and industrial applications with a focus on energy saving. As a typical scheduling problem, the no-wait flow-shop scheduling has been extensively studied due to its wide industrial applications. Ho...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 51; no. 11; pp. 5291 - 5303
Main Authors Zhao, Fuqing, He, Xuan, Wang, Ling
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.11.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-2267
2168-2275
2168-2275
DOI10.1109/TCYB.2020.3025662

Cover

Loading…
Abstract Green scheduling in the manufacturing industry has attracted increasing attention in academic research and industrial applications with a focus on energy saving. As a typical scheduling problem, the no-wait flow-shop scheduling has been extensively studied due to its wide industrial applications. However, energy consumption is usually ignored in the study of typical scheduling problems. In this article, a two-stage cooperative evolutionary algorithm with problem-specific knowledge called TS-CEA is proposed to address energy-efficient scheduling of the no-wait flow-shop problem (EENWFSP) with the criteria of minimizing both makespan and total energy consumption. In TS-CEA, two constructive heuristics are designed to generate a desirable initial solution after analyzing the properties of the problem. In the first stage of TS-CEA, an iterative local search strategy (ILS) is employed to explore potential extreme solutions. Moreover, a hybrid neighborhood structure is designed to improve the quality of the solution. In the second stage of TS-CEA, a mutation strategy based on critical path knowledge is proposed to extend the extreme solutions to the Pareto front. Moreover, a co-evolutionary closed-loop system is generated with ILS and mutation strategies in the iteration process. Numerical results demonstrate the effectiveness and efficiency of TS-CEA in solving the EENWFSP.
AbstractList Green scheduling in the manufacturing industry has attracted increasing attention in academic research and industrial applications with a focus on energy saving. As a typical scheduling problem, the no-wait flow-shop scheduling has been extensively studied due to its wide industrial applications. However, energy consumption is usually ignored in the study of typical scheduling problems. In this article, a two-stage cooperative evolutionary algorithm with problem-specific knowledge called TS-CEA is proposed to address energy-efficient scheduling of the no-wait flow-shop problem (EENWFSP) with the criteria of minimizing both makespan and total energy consumption. In TS-CEA, two constructive heuristics are designed to generate a desirable initial solution after analyzing the properties of the problem. In the first stage of TS-CEA, an iterative local search strategy (ILS) is employed to explore potential extreme solutions. Moreover, a hybrid neighborhood structure is designed to improve the quality of the solution. In the second stage of TS-CEA, a mutation strategy based on critical path knowledge is proposed to extend the extreme solutions to the Pareto front. Moreover, a co-evolutionary closed-loop system is generated with ILS and mutation strategies in the iteration process. Numerical results demonstrate the effectiveness and efficiency of TS-CEA in solving the EENWFSP.
Green scheduling in the manufacturing industry has attracted increasing attention in academic research and industrial applications with a focus on energy saving. As a typical scheduling problem, the no-wait flow-shop scheduling has been extensively studied due to its wide industrial applications. However, energy consumption is usually ignored in the study of typical scheduling problems. In this article, a two-stage cooperative evolutionary algorithm with problem-specific knowledge called TS-CEA is proposed to address energy-efficient scheduling of the no-wait flow-shop problem (EENWFSP) with the criteria of minimizing both makespan and total energy consumption. In TS-CEA, two constructive heuristics are designed to generate a desirable initial solution after analyzing the properties of the problem. In the first stage of TS-CEA, an iterative local search strategy (ILS) is employed to explore potential extreme solutions. Moreover, a hybrid neighborhood structure is designed to improve the quality of the solution. In the second stage of TS-CEA, a mutation strategy based on critical path knowledge is proposed to extend the extreme solutions to the Pareto front. Moreover, a co-evolutionary closed-loop system is generated with ILS and mutation strategies in the iteration process. Numerical results demonstrate the effectiveness and efficiency of TS-CEA in solving the EENWFSP.Green scheduling in the manufacturing industry has attracted increasing attention in academic research and industrial applications with a focus on energy saving. As a typical scheduling problem, the no-wait flow-shop scheduling has been extensively studied due to its wide industrial applications. However, energy consumption is usually ignored in the study of typical scheduling problems. In this article, a two-stage cooperative evolutionary algorithm with problem-specific knowledge called TS-CEA is proposed to address energy-efficient scheduling of the no-wait flow-shop problem (EENWFSP) with the criteria of minimizing both makespan and total energy consumption. In TS-CEA, two constructive heuristics are designed to generate a desirable initial solution after analyzing the properties of the problem. In the first stage of TS-CEA, an iterative local search strategy (ILS) is employed to explore potential extreme solutions. Moreover, a hybrid neighborhood structure is designed to improve the quality of the solution. In the second stage of TS-CEA, a mutation strategy based on critical path knowledge is proposed to extend the extreme solutions to the Pareto front. Moreover, a co-evolutionary closed-loop system is generated with ILS and mutation strategies in the iteration process. Numerical results demonstrate the effectiveness and efficiency of TS-CEA in solving the EENWFSP.
Author Zhao, Fuqing
He, Xuan
Wang, Ling
Author_xml – sequence: 1
  givenname: Fuqing
  orcidid: 0000-0002-7336-9699
  surname: Zhao
  fullname: Zhao, Fuqing
  email: fzhao2000@hotmail.com
  organization: School of Computer and Communication Technology, Lanzhou University of Technology, Lanzhou, China
– sequence: 2
  givenname: Xuan
  surname: He
  fullname: He, Xuan
  email: 2369084655@qq.com
  organization: School of Computer and Communication Technology, Lanzhou University of Technology, Lanzhou, China
– sequence: 3
  givenname: Ling
  orcidid: 0000-0001-8964-6454
  surname: Wang
  fullname: Wang, Ling
  email: wangling@tsinghua.edu.cn
  organization: Department of Automation, Tsinghua University, Beijing, China
BookMark eNp9UcFuGyEURFWqJk3zAVUvSL30si6wCwtH13KaqlFbya6inlYs-7CJ8OKwbKx8Q386rJzmkEM5wOO9mdHTzFt00oceEHpPyYxSoj6vF3--zBhhZFYSxoVgr9AZo0IWjNX85LkW9Sm6GIZbko_MLSXfoNOyJIrXTJ6hv3O8PoRilfQG8CKEPUSd3D3g5X3wY3Kh1_EBz_0mRJe2O3yTb_wrhtbDrljtwTjrDP7eh4OHLkvYEPGyh7h5KJY2jxz0Ca_MFrrRu36Dg8U_QnGjXcKXPhyK1Tbs_-m9Q6-t9gNcPL3n6Pflcr24Kq5_fv22mF8XpmQiFSXpbMtbSy2XXErNlFIaSFuSSrcWdFWDlK0hpjKqyz8hOCEguOlaVlGhy3P06ai7j-FuhCE1OzcY8F73EMahYRWvaCWpYhn68QX0Noyxz9s1jGcLqeJyQtVHlIlhGCLYxrikJ_NS1M43lDRTZM0UWTNF1jxFlpn0BXMf3S5b_l_OhyPHAcAzPi8rK6HKR2LoosY
CODEN ITCEB8
CitedBy_id crossref_primary_10_1049_cim2_12065
crossref_primary_10_1016_j_ejor_2025_02_009
crossref_primary_10_1016_j_eswa_2022_119192
crossref_primary_10_1007_s12065_024_00965_0
crossref_primary_10_1080_21681015_2024_2337029
crossref_primary_10_1016_j_engappai_2023_107458
crossref_primary_10_3233_JCM_230019
crossref_primary_10_1109_TCYB_2022_3210228
crossref_primary_10_3934_mbe_2022410
crossref_primary_10_1016_j_asoc_2023_111126
crossref_primary_10_3390_sym15071430
crossref_primary_10_1080_0305215X_2022_2124406
crossref_primary_10_1155_2022_8374300
crossref_primary_10_1016_j_jii_2024_100655
crossref_primary_10_3934_mbe_2022659
crossref_primary_10_1016_j_knosys_2023_110663
crossref_primary_10_1002_adc2_157
crossref_primary_10_1016_j_eswa_2023_120191
crossref_primary_10_1109_TCYB_2021_3120875
crossref_primary_10_28979_jarnas_936151
crossref_primary_10_1016_j_cie_2024_110324
crossref_primary_10_1016_j_swevo_2022_101193
crossref_primary_10_1016_j_knosys_2022_109890
crossref_primary_10_1016_j_procs_2024_05_043
crossref_primary_10_1007_s44196_023_00346_y
crossref_primary_10_1016_j_knosys_2023_110808
crossref_primary_10_1109_TII_2022_3192881
crossref_primary_10_1016_j_eswa_2022_118134
crossref_primary_10_1016_j_eswa_2022_117566
crossref_primary_10_1016_j_cor_2024_106783
crossref_primary_10_1002_eng2_12774
crossref_primary_10_1016_j_eswa_2022_118416
crossref_primary_10_1016_j_cor_2023_106360
crossref_primary_10_1016_j_eswa_2023_120113
crossref_primary_10_3390_app14198712
crossref_primary_10_1016_j_asoc_2024_111593
crossref_primary_10_1016_j_eswa_2022_117154
crossref_primary_10_3390_math11133012
crossref_primary_10_1016_j_ejor_2023_03_038
crossref_primary_10_1007_s00607_022_01132_y
crossref_primary_10_3934_math_2022685
crossref_primary_10_1007_s11431_022_2096_6
crossref_primary_10_1016_j_swevo_2022_101139
crossref_primary_10_3390_app14199133
crossref_primary_10_1109_TSMC_2023_3305541
crossref_primary_10_1109_TASE_2024_3365518
crossref_primary_10_1007_s10489_022_03999_y
crossref_primary_10_1007_s10586_023_04022_w
crossref_primary_10_23919_CSMS_2024_0003
crossref_primary_10_3233_JIFS_221994
crossref_primary_10_1016_j_comnet_2025_111080
crossref_primary_10_1109_TSMC_2024_3376292
crossref_primary_10_1007_s10586_024_04545_w
crossref_primary_10_1155_2022_5699472
crossref_primary_10_1016_j_eswa_2023_121667
crossref_primary_10_1016_j_eswa_2023_120571
crossref_primary_10_1177_16878132221106296
crossref_primary_10_1016_j_swevo_2024_101686
crossref_primary_10_1177_00202940231180622
crossref_primary_10_1016_j_engappai_2023_107017
crossref_primary_10_1109_TASE_2023_3327792
crossref_primary_10_1016_j_eswa_2025_126526
crossref_primary_10_1109_TSMC_2022_3219380
crossref_primary_10_1016_j_eswa_2022_119035
crossref_primary_10_1007_s10951_024_00813_0
crossref_primary_10_1016_j_eswa_2022_118068
crossref_primary_10_1038_s41598_023_47729_x
crossref_primary_10_1109_TCYB_2021_3135539
crossref_primary_10_3390_su15086884
crossref_primary_10_1515_cppm_2022_0044
crossref_primary_10_23919_CSMS_2023_0021
crossref_primary_10_1016_j_swevo_2023_101399
crossref_primary_10_1016_j_ins_2021_12_122
crossref_primary_10_1093_jcde_qwac038
crossref_primary_10_3390_sym16010063
crossref_primary_10_4018_JOEUC_313194
crossref_primary_10_1088_1742_6596_2587_1_012066
crossref_primary_10_23919_CSMS_2021_0010
crossref_primary_10_1080_17455030_2023_2226249
crossref_primary_10_1016_j_eij_2023_05_008
crossref_primary_10_1109_TEVC_2023_3339558
crossref_primary_10_1016_j_cie_2022_108205
crossref_primary_10_1016_j_engappai_2023_106454
crossref_primary_10_1016_j_physa_2022_127764
crossref_primary_10_3390_math12162575
crossref_primary_10_1080_00207543_2025_2470991
crossref_primary_10_20965_jaciii_2022_p0974
crossref_primary_10_1109_TCYB_2022_3158334
crossref_primary_10_1016_j_asoc_2024_112247
crossref_primary_10_1109_TASE_2023_3300922
crossref_primary_10_1109_TSMC_2024_3510384
crossref_primary_10_1016_j_cie_2023_109082
crossref_primary_10_1109_TASE_2023_3267714
crossref_primary_10_1016_j_compeleceng_2024_109780
crossref_primary_10_1109_TSMC_2023_3256484
crossref_primary_10_1016_j_swevo_2022_101148
crossref_primary_10_1080_02533839_2022_2141340
crossref_primary_10_1016_j_swevo_2022_101149
crossref_primary_10_1080_00207543_2022_2060772
crossref_primary_10_1080_0305215X_2024_2367600
crossref_primary_10_1016_j_cie_2022_108255
crossref_primary_10_1371_journal_pone_0303646
crossref_primary_10_1016_j_eswa_2022_119130
crossref_primary_10_3390_pr13030728
crossref_primary_10_1007_s10462_023_10403_9
crossref_primary_10_1016_j_knosys_2021_108036
crossref_primary_10_23919_CSMS_2022_0007
crossref_primary_10_1155_2022_1166968
crossref_primary_10_46465_endustrimuhendisligi_1328966
crossref_primary_10_1016_j_eswa_2023_119810
crossref_primary_10_1109_TCYB_2023_3280175
crossref_primary_10_1109_TSMC_2024_3370376
crossref_primary_10_1155_2022_4662760
crossref_primary_10_1371_journal_pone_0273155
crossref_primary_10_1155_2022_6400318
crossref_primary_10_3390_biomimetics9010054
crossref_primary_10_1155_2022_1088906
crossref_primary_10_1109_TASE_2024_3477982
crossref_primary_10_1016_j_cie_2024_110813
crossref_primary_10_1093_jcde_qwac099
crossref_primary_10_1155_2021_6860503
crossref_primary_10_1109_ACCESS_2022_3203813
crossref_primary_10_1109_TII_2022_3220860
crossref_primary_10_1016_j_eswa_2025_126830
crossref_primary_10_1016_j_swevo_2022_101172
crossref_primary_10_23919_CSMS_2022_0010
crossref_primary_10_1038_s41598_025_93582_5
crossref_primary_10_1016_j_eswa_2023_122434
crossref_primary_10_1109_TSMC_2023_3335998
crossref_primary_10_1016_j_compchemeng_2022_108129
crossref_primary_10_1109_TNNLS_2022_3217318
crossref_primary_10_1016_j_eswa_2023_121221
crossref_primary_10_1109_TEVC_2022_3222791
Cites_doi 10.1016/j.ins.2018.09.063
10.1109/TII.2018.2843441
10.1016/j.asoc.2018.02.032
10.1109/TEVC.2019.2893447
10.1109/TSMC.2017.2788879
10.1109/TCYB.2018.2796119
10.1016/j.cor.2016.11.022
10.1016/j.jclepro.2017.10.342
10.1016/j.engappai.2018.11.005
10.1016/j.asoc.2018.08.002
10.1109/4235.996017
10.1109/TCYB.2018.2821180
10.1109/TCYB.2017.2707067
10.1016/j.asoc.2017.08.020
10.1109/TII.2018.2839645
10.1016/j.eswa.2019.02.023
10.1016/0377-2217(93)90182-M
10.1016/j.swevo.2019.100557
10.1016/j.jclepro.2016.06.161
10.1016/j.omega.2019.102117
10.1109/TCYB.2017.2771213
10.1016/j.cor.2013.12.004
10.1016/j.cor.2018.02.003
10.1007/s40747-019-00122-6
10.1016/j.jmsy.2016.05.001
10.1016/j.eswa.2019.01.084
10.1109/TEM.2017.2774281
10.1109/TASE.2016.2643621
10.1109/TEVC.2016.2623803
10.1109/TSMC.2019.2916088
10.1080/0305215X.2018.1542693
10.1109/TEVC.2017.2669098
10.1080/00207543.2017.1414969
10.1007/s10732-010-9155-x
10.1016/j.ejor.2015.08.064
10.1109/TASE.2012.2202226
10.1080/00207543.2019.1642529
10.1016/j.omega.2015.12.002
10.1109/TASE.2018.2886303
10.1109/TEVC.2010.2093582
10.1016/j.jclepro.2018.02.004
10.1016/j.eswa.2019.01.062
10.1016/j.eswa.2017.09.028
10.1109/TEVC.2019.2912204
10.1016/j.jmsy.2017.04.007
10.1287/opre.44.3.510
10.1016/j.jclepro.2017.01.011
10.1007/s10732-008-9080-4
10.1080/00207543.2018.1504251
10.1109/CEC.2015.7257232
10.1007/s10489-019-01497-2
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TCYB.2020.3025662
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEL
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Aerospace Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore: IEL
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 5303
ExternalDocumentID 10_1109_TCYB_2020_3025662
9238469
Genre orig-research
GrantInformation_xml – fundername: Public Welfare Project of Zhejiang Natural Science Foundation
  grantid: LGJ19E050001
  funderid: 10.13039/501100004731
– fundername: Lanzhou Science Bureau Project
  grantid: 2018-rc-98
– fundername: Wenzhou Public Welfare Science and Technology Project
  grantid: G20170016
– fundername: National Natural Science Foundation of China
  grantid: 62063021; 61873328
  funderid: 10.13039/501100001809
– fundername: Key Research Programs of Science and Technology Commission Foundation of Gansu Province
  grantid: 2017GS10817
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c326t-30dfb5bf1f58588a2999ae0b304abfea47e88bc0c4c9da4766500e65cdb2416a3
IEDL.DBID RIE
ISSN 2168-2267
2168-2275
IngestDate Thu Jul 10 22:34:11 EDT 2025
Sun Jun 29 13:12:56 EDT 2025
Thu Apr 24 23:07:40 EDT 2025
Tue Jul 01 00:53:57 EDT 2025
Wed Aug 27 02:26:42 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c326t-30dfb5bf1f58588a2999ae0b304abfea47e88bc0c4c9da4766500e65cdb2416a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7336-9699
0000-0001-8964-6454
PMID 33095728
PQID 2595719582
PQPubID 85422
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_TCYB_2020_3025662
proquest_miscellaneous_2454148192
proquest_journals_2595719582
ieee_primary_9238469
crossref_primary_10_1109_TCYB_2020_3025662
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref14
ref53
ref52
ref11
ref10
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
oztop (ref8) 2018
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
garey (ref15) 1979
References_xml – ident: ref49
  doi: 10.1016/j.ins.2018.09.063
– ident: ref10
  doi: 10.1109/TII.2018.2843441
– ident: ref50
  doi: 10.1016/j.asoc.2018.02.032
– ident: ref40
  doi: 10.1109/TEVC.2019.2893447
– ident: ref13
  doi: 10.1109/TSMC.2017.2788879
– ident: ref34
  doi: 10.1109/TCYB.2018.2796119
– ident: ref26
  doi: 10.1016/j.cor.2016.11.022
– ident: ref30
  doi: 10.1016/j.jclepro.2017.10.342
– ident: ref2
  doi: 10.1016/j.engappai.2018.11.005
– year: 1979
  ident: ref15
  publication-title: A Guide to the Theory of NP-Completeness
– ident: ref22
  doi: 10.1016/j.asoc.2018.08.002
– ident: ref53
  doi: 10.1109/4235.996017
– ident: ref43
  doi: 10.1109/TCYB.2018.2821180
– ident: ref3
  doi: 10.1109/TCYB.2017.2707067
– ident: ref21
  doi: 10.1016/j.asoc.2017.08.020
– ident: ref38
  doi: 10.1109/TII.2018.2839645
– ident: ref20
  doi: 10.1016/j.eswa.2019.02.023
– ident: ref47
  doi: 10.1016/0377-2217(93)90182-M
– ident: ref6
  doi: 10.1016/j.swevo.2019.100557
– ident: ref31
  doi: 10.1016/j.jclepro.2016.06.161
– ident: ref33
  doi: 10.1016/j.omega.2019.102117
– ident: ref1
  doi: 10.1109/TCYB.2017.2771213
– start-page: 753
  year: 2018
  ident: ref8
  publication-title: Green Permutation Flowshop Scheduling A Trade- Off- Between Energy Consumption and Total Flow Time
– ident: ref51
  doi: 10.1016/j.cor.2013.12.004
– ident: ref4
  doi: 10.1016/j.cor.2018.02.003
– ident: ref12
  doi: 10.1007/s40747-019-00122-6
– ident: ref17
  doi: 10.1016/j.jmsy.2016.05.001
– ident: ref19
  doi: 10.1016/j.eswa.2019.01.084
– ident: ref9
  doi: 10.1109/TEM.2017.2774281
– ident: ref39
  doi: 10.1109/TASE.2016.2643621
– ident: ref29
  doi: 10.1109/TEVC.2016.2623803
– ident: ref11
  doi: 10.1109/TSMC.2019.2916088
– ident: ref24
  doi: 10.1080/0305215X.2018.1542693
– ident: ref44
  doi: 10.1109/TEVC.2017.2669098
– ident: ref36
  doi: 10.1080/00207543.2017.1414969
– ident: ref25
  doi: 10.1007/s10732-010-9155-x
– ident: ref46
  doi: 10.1016/j.ejor.2015.08.064
– ident: ref37
  doi: 10.1109/TASE.2012.2202226
– ident: ref28
  doi: 10.1080/00207543.2019.1642529
– ident: ref16
  doi: 10.1016/j.omega.2015.12.002
– ident: ref48
  doi: 10.1109/TASE.2018.2886303
– ident: ref42
  doi: 10.1109/TEVC.2010.2093582
– ident: ref35
  doi: 10.1016/j.jclepro.2018.02.004
– ident: ref5
  doi: 10.1016/j.eswa.2019.01.062
– ident: ref23
  doi: 10.1016/j.eswa.2017.09.028
– ident: ref41
  doi: 10.1109/TEVC.2019.2912204
– ident: ref18
  doi: 10.1016/j.jmsy.2017.04.007
– ident: ref7
  doi: 10.1287/opre.44.3.510
– ident: ref32
  doi: 10.1016/j.jclepro.2017.01.011
– ident: ref52
  doi: 10.1007/s10732-008-9080-4
– ident: ref14
  doi: 10.1080/00207543.2018.1504251
– ident: ref27
  doi: 10.1109/CEC.2015.7257232
– ident: ref45
  doi: 10.1007/s10489-019-01497-2
SSID ssj0000816898
Score 2.6221817
Snippet Green scheduling in the manufacturing industry has attracted increasing attention in academic research and industrial applications with a focus on energy...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5291
SubjectTerms Cooperative algorithm
Critical path
Energy consumption
energy efficient
Evolutionary algorithms
Feedback control
Genetic algorithms
Industrial applications
Iterative methods
Job shop scheduling
Job shops
knowledge
Manufacturing
no-wait flow-shop scheduling
Optimization
Scheduling
Search problems
Steel
total energy consumption (TEC)
Title A Two-Stage Cooperative Evolutionary Algorithm With Problem-Specific Knowledge for Energy-Efficient Scheduling of No-Wait Flow-Shop Problem
URI https://ieeexplore.ieee.org/document/9238469
https://www.proquest.com/docview/2595719582
https://www.proquest.com/docview/2454148192
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swELeAJ142GJtWYJMn8bBNc3ES5-uxq1oh0NAkimBPkT9Lta6uSjq0_Qv805wdJ5o2hPYSOYodObpz7nf23f0QOuJFSpXyUY1MEVZECeFKUsITk2mWyJgZH21xnp1cstPr9HoDfepyYbTWPvhM913Tn-UrK9duq-wYwAiYy3ITbYLj1uRqdfspnkDCU9_G0CCAKvJwiBnR8ngy_PYZnMEYfFRn5DNHYgOefJnmjob9D4vkKVb--S97YzN-jr6002xiTL7317Xoy99_VXD83-_YQc8C6sSDRk120YZevEC7YV3f4veh-PSHPXQ_wJM7SwCDTjUeWrvUTWlwPPoZlJSvfuHBfGpXs_rmB76CK_7asNIQT2ZvZhKftTt1GDAxHvn8QjLy1SpgZvgCNEW5EPgptgafW3LFZzUez-0dubixy_Z9L9HleDQZnpBA2EAkoMCaJFQZkQoTGXBCioKDqSu5piKhjAujOct1UQhJJZOlgrsM4CHVWSqVACCR8eQV2lrYhX6NcGakEHkE4EVKFhstaF7GqihKFiktc9FDtBVaJUM1c0eqMa-8V0PLyom8ciKvgsh76GM3ZNmU8niq856TW9cxiKyHDlvNqMJiv63Ag0xzV7QHRr3rHsMydWcvfKHtGvowx7fuqs_tP_7mA7Qdu3AZn-Z4iLbq1Vq_AbxTi7de0R8AYC77Ng
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfGeIAXYAxEYYCReACEOydxvh5L1aqwrUJap42nyJ9dRamrLmWCf4F_mrPjRAgQ4iVyFDtydOfc7-y7-yH0khcpVcpHNTJFWBElhCtJCU9MplkiY2Z8tMU0m5yxDxfpxQ562-XCaK198Jnuu6Y_y1dWbt1W2SGAETCX5Q10E-x-GjXZWt2OiqeQ8OS3MTQI4Io8HGNGtDycDT-9A3cwBi_VmfnM0diAL1-muSNi_8UmeZKVP_7M3tyM76KTdqJNlMnn_rYWffn9txqO__sl99CdgDvxoFGUPbSjV_fRXljZV_hVKD_9eh_9GODZtSWAQucaD61d66Y4OB59DWrKN9_wYDm3m0V9-QWfwxV_bHhpiKezNwuJj9q9OgyoGI98hiEZ-XoVMDN8CrqiXBD8HFuDp5ac80WNx0t7TU4v7bp93wN0Nh7NhhMSKBuIBBxYk4QqI1JhIgNuSFFwMHYl11QklHFhNGe5LgohqWSyVHCXAUCkOkulEgAlMp48RLsru9KPEM6MFCKPAL5IyWKjBc3LWBVFySKlZS56iLZCq2SoZ-5oNZaV92toWTmRV07kVRB5D73phqybYh7_6rzv5NZ1DCLroYNWM6qw3K8q8CHT3JXtgVEvusewUN3pC19pu4U-zDGuu_pzj__-5ufo1mR2clwdv58ePUG3Yxc845MeD9Buvdnqp4B-avHMK_1PnYj-fw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Two-Stage+Cooperative+Evolutionary+Algorithm+With+Problem-Specific+Knowledge+for+Energy-Efficient+Scheduling+of+No-Wait+Flow-Shop+Problem&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Zhao%2C+Fuqing&rft.au=He%2C+Xuan&rft.au=Wang%2C+Ling&rft.date=2021-11-01&rft.issn=2168-2267&rft.eissn=2168-2275&rft.volume=51&rft.issue=11&rft.spage=5291&rft.epage=5303&rft_id=info:doi/10.1109%2FTCYB.2020.3025662&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCYB_2020_3025662
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon