A Two-Stage Cooperative Evolutionary Algorithm With Problem-Specific Knowledge for Energy-Efficient Scheduling of No-Wait Flow-Shop Problem
Green scheduling in the manufacturing industry has attracted increasing attention in academic research and industrial applications with a focus on energy saving. As a typical scheduling problem, the no-wait flow-shop scheduling has been extensively studied due to its wide industrial applications. Ho...
Saved in:
Published in | IEEE transactions on cybernetics Vol. 51; no. 11; pp. 5291 - 5303 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.11.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2168-2267 2168-2275 2168-2275 |
DOI | 10.1109/TCYB.2020.3025662 |
Cover
Loading…
Abstract | Green scheduling in the manufacturing industry has attracted increasing attention in academic research and industrial applications with a focus on energy saving. As a typical scheduling problem, the no-wait flow-shop scheduling has been extensively studied due to its wide industrial applications. However, energy consumption is usually ignored in the study of typical scheduling problems. In this article, a two-stage cooperative evolutionary algorithm with problem-specific knowledge called TS-CEA is proposed to address energy-efficient scheduling of the no-wait flow-shop problem (EENWFSP) with the criteria of minimizing both makespan and total energy consumption. In TS-CEA, two constructive heuristics are designed to generate a desirable initial solution after analyzing the properties of the problem. In the first stage of TS-CEA, an iterative local search strategy (ILS) is employed to explore potential extreme solutions. Moreover, a hybrid neighborhood structure is designed to improve the quality of the solution. In the second stage of TS-CEA, a mutation strategy based on critical path knowledge is proposed to extend the extreme solutions to the Pareto front. Moreover, a co-evolutionary closed-loop system is generated with ILS and mutation strategies in the iteration process. Numerical results demonstrate the effectiveness and efficiency of TS-CEA in solving the EENWFSP. |
---|---|
AbstractList | Green scheduling in the manufacturing industry has attracted increasing attention in academic research and industrial applications with a focus on energy saving. As a typical scheduling problem, the no-wait flow-shop scheduling has been extensively studied due to its wide industrial applications. However, energy consumption is usually ignored in the study of typical scheduling problems. In this article, a two-stage cooperative evolutionary algorithm with problem-specific knowledge called TS-CEA is proposed to address energy-efficient scheduling of the no-wait flow-shop problem (EENWFSP) with the criteria of minimizing both makespan and total energy consumption. In TS-CEA, two constructive heuristics are designed to generate a desirable initial solution after analyzing the properties of the problem. In the first stage of TS-CEA, an iterative local search strategy (ILS) is employed to explore potential extreme solutions. Moreover, a hybrid neighborhood structure is designed to improve the quality of the solution. In the second stage of TS-CEA, a mutation strategy based on critical path knowledge is proposed to extend the extreme solutions to the Pareto front. Moreover, a co-evolutionary closed-loop system is generated with ILS and mutation strategies in the iteration process. Numerical results demonstrate the effectiveness and efficiency of TS-CEA in solving the EENWFSP. Green scheduling in the manufacturing industry has attracted increasing attention in academic research and industrial applications with a focus on energy saving. As a typical scheduling problem, the no-wait flow-shop scheduling has been extensively studied due to its wide industrial applications. However, energy consumption is usually ignored in the study of typical scheduling problems. In this article, a two-stage cooperative evolutionary algorithm with problem-specific knowledge called TS-CEA is proposed to address energy-efficient scheduling of the no-wait flow-shop problem (EENWFSP) with the criteria of minimizing both makespan and total energy consumption. In TS-CEA, two constructive heuristics are designed to generate a desirable initial solution after analyzing the properties of the problem. In the first stage of TS-CEA, an iterative local search strategy (ILS) is employed to explore potential extreme solutions. Moreover, a hybrid neighborhood structure is designed to improve the quality of the solution. In the second stage of TS-CEA, a mutation strategy based on critical path knowledge is proposed to extend the extreme solutions to the Pareto front. Moreover, a co-evolutionary closed-loop system is generated with ILS and mutation strategies in the iteration process. Numerical results demonstrate the effectiveness and efficiency of TS-CEA in solving the EENWFSP.Green scheduling in the manufacturing industry has attracted increasing attention in academic research and industrial applications with a focus on energy saving. As a typical scheduling problem, the no-wait flow-shop scheduling has been extensively studied due to its wide industrial applications. However, energy consumption is usually ignored in the study of typical scheduling problems. In this article, a two-stage cooperative evolutionary algorithm with problem-specific knowledge called TS-CEA is proposed to address energy-efficient scheduling of the no-wait flow-shop problem (EENWFSP) with the criteria of minimizing both makespan and total energy consumption. In TS-CEA, two constructive heuristics are designed to generate a desirable initial solution after analyzing the properties of the problem. In the first stage of TS-CEA, an iterative local search strategy (ILS) is employed to explore potential extreme solutions. Moreover, a hybrid neighborhood structure is designed to improve the quality of the solution. In the second stage of TS-CEA, a mutation strategy based on critical path knowledge is proposed to extend the extreme solutions to the Pareto front. Moreover, a co-evolutionary closed-loop system is generated with ILS and mutation strategies in the iteration process. Numerical results demonstrate the effectiveness and efficiency of TS-CEA in solving the EENWFSP. |
Author | Zhao, Fuqing He, Xuan Wang, Ling |
Author_xml | – sequence: 1 givenname: Fuqing orcidid: 0000-0002-7336-9699 surname: Zhao fullname: Zhao, Fuqing email: fzhao2000@hotmail.com organization: School of Computer and Communication Technology, Lanzhou University of Technology, Lanzhou, China – sequence: 2 givenname: Xuan surname: He fullname: He, Xuan email: 2369084655@qq.com organization: School of Computer and Communication Technology, Lanzhou University of Technology, Lanzhou, China – sequence: 3 givenname: Ling orcidid: 0000-0001-8964-6454 surname: Wang fullname: Wang, Ling email: wangling@tsinghua.edu.cn organization: Department of Automation, Tsinghua University, Beijing, China |
BookMark | eNp9UcFuGyEURFWqJk3zAVUvSL30si6wCwtH13KaqlFbya6inlYs-7CJ8OKwbKx8Q386rJzmkEM5wOO9mdHTzFt00oceEHpPyYxSoj6vF3--zBhhZFYSxoVgr9AZo0IWjNX85LkW9Sm6GIZbko_MLSXfoNOyJIrXTJ6hv3O8PoRilfQG8CKEPUSd3D3g5X3wY3Kh1_EBz_0mRJe2O3yTb_wrhtbDrljtwTjrDP7eh4OHLkvYEPGyh7h5KJY2jxz0Ca_MFrrRu36Dg8U_QnGjXcKXPhyK1Tbs_-m9Q6-t9gNcPL3n6Pflcr24Kq5_fv22mF8XpmQiFSXpbMtbSy2XXErNlFIaSFuSSrcWdFWDlK0hpjKqyz8hOCEguOlaVlGhy3P06ai7j-FuhCE1OzcY8F73EMahYRWvaCWpYhn68QX0Noyxz9s1jGcLqeJyQtVHlIlhGCLYxrikJ_NS1M43lDRTZM0UWTNF1jxFlpn0BXMf3S5b_l_OhyPHAcAzPi8rK6HKR2LoosY |
CODEN | ITCEB8 |
CitedBy_id | crossref_primary_10_1049_cim2_12065 crossref_primary_10_1016_j_ejor_2025_02_009 crossref_primary_10_1016_j_eswa_2022_119192 crossref_primary_10_1007_s12065_024_00965_0 crossref_primary_10_1080_21681015_2024_2337029 crossref_primary_10_1016_j_engappai_2023_107458 crossref_primary_10_3233_JCM_230019 crossref_primary_10_1109_TCYB_2022_3210228 crossref_primary_10_3934_mbe_2022410 crossref_primary_10_1016_j_asoc_2023_111126 crossref_primary_10_3390_sym15071430 crossref_primary_10_1080_0305215X_2022_2124406 crossref_primary_10_1155_2022_8374300 crossref_primary_10_1016_j_jii_2024_100655 crossref_primary_10_3934_mbe_2022659 crossref_primary_10_1016_j_knosys_2023_110663 crossref_primary_10_1002_adc2_157 crossref_primary_10_1016_j_eswa_2023_120191 crossref_primary_10_1109_TCYB_2021_3120875 crossref_primary_10_28979_jarnas_936151 crossref_primary_10_1016_j_cie_2024_110324 crossref_primary_10_1016_j_swevo_2022_101193 crossref_primary_10_1016_j_knosys_2022_109890 crossref_primary_10_1016_j_procs_2024_05_043 crossref_primary_10_1007_s44196_023_00346_y crossref_primary_10_1016_j_knosys_2023_110808 crossref_primary_10_1109_TII_2022_3192881 crossref_primary_10_1016_j_eswa_2022_118134 crossref_primary_10_1016_j_eswa_2022_117566 crossref_primary_10_1016_j_cor_2024_106783 crossref_primary_10_1002_eng2_12774 crossref_primary_10_1016_j_eswa_2022_118416 crossref_primary_10_1016_j_cor_2023_106360 crossref_primary_10_1016_j_eswa_2023_120113 crossref_primary_10_3390_app14198712 crossref_primary_10_1016_j_asoc_2024_111593 crossref_primary_10_1016_j_eswa_2022_117154 crossref_primary_10_3390_math11133012 crossref_primary_10_1016_j_ejor_2023_03_038 crossref_primary_10_1007_s00607_022_01132_y crossref_primary_10_3934_math_2022685 crossref_primary_10_1007_s11431_022_2096_6 crossref_primary_10_1016_j_swevo_2022_101139 crossref_primary_10_3390_app14199133 crossref_primary_10_1109_TSMC_2023_3305541 crossref_primary_10_1109_TASE_2024_3365518 crossref_primary_10_1007_s10489_022_03999_y crossref_primary_10_1007_s10586_023_04022_w crossref_primary_10_23919_CSMS_2024_0003 crossref_primary_10_3233_JIFS_221994 crossref_primary_10_1016_j_comnet_2025_111080 crossref_primary_10_1109_TSMC_2024_3376292 crossref_primary_10_1007_s10586_024_04545_w crossref_primary_10_1155_2022_5699472 crossref_primary_10_1016_j_eswa_2023_121667 crossref_primary_10_1016_j_eswa_2023_120571 crossref_primary_10_1177_16878132221106296 crossref_primary_10_1016_j_swevo_2024_101686 crossref_primary_10_1177_00202940231180622 crossref_primary_10_1016_j_engappai_2023_107017 crossref_primary_10_1109_TASE_2023_3327792 crossref_primary_10_1016_j_eswa_2025_126526 crossref_primary_10_1109_TSMC_2022_3219380 crossref_primary_10_1016_j_eswa_2022_119035 crossref_primary_10_1007_s10951_024_00813_0 crossref_primary_10_1016_j_eswa_2022_118068 crossref_primary_10_1038_s41598_023_47729_x crossref_primary_10_1109_TCYB_2021_3135539 crossref_primary_10_3390_su15086884 crossref_primary_10_1515_cppm_2022_0044 crossref_primary_10_23919_CSMS_2023_0021 crossref_primary_10_1016_j_swevo_2023_101399 crossref_primary_10_1016_j_ins_2021_12_122 crossref_primary_10_1093_jcde_qwac038 crossref_primary_10_3390_sym16010063 crossref_primary_10_4018_JOEUC_313194 crossref_primary_10_1088_1742_6596_2587_1_012066 crossref_primary_10_23919_CSMS_2021_0010 crossref_primary_10_1080_17455030_2023_2226249 crossref_primary_10_1016_j_eij_2023_05_008 crossref_primary_10_1109_TEVC_2023_3339558 crossref_primary_10_1016_j_cie_2022_108205 crossref_primary_10_1016_j_engappai_2023_106454 crossref_primary_10_1016_j_physa_2022_127764 crossref_primary_10_3390_math12162575 crossref_primary_10_1080_00207543_2025_2470991 crossref_primary_10_20965_jaciii_2022_p0974 crossref_primary_10_1109_TCYB_2022_3158334 crossref_primary_10_1016_j_asoc_2024_112247 crossref_primary_10_1109_TASE_2023_3300922 crossref_primary_10_1109_TSMC_2024_3510384 crossref_primary_10_1016_j_cie_2023_109082 crossref_primary_10_1109_TASE_2023_3267714 crossref_primary_10_1016_j_compeleceng_2024_109780 crossref_primary_10_1109_TSMC_2023_3256484 crossref_primary_10_1016_j_swevo_2022_101148 crossref_primary_10_1080_02533839_2022_2141340 crossref_primary_10_1016_j_swevo_2022_101149 crossref_primary_10_1080_00207543_2022_2060772 crossref_primary_10_1080_0305215X_2024_2367600 crossref_primary_10_1016_j_cie_2022_108255 crossref_primary_10_1371_journal_pone_0303646 crossref_primary_10_1016_j_eswa_2022_119130 crossref_primary_10_3390_pr13030728 crossref_primary_10_1007_s10462_023_10403_9 crossref_primary_10_1016_j_knosys_2021_108036 crossref_primary_10_23919_CSMS_2022_0007 crossref_primary_10_1155_2022_1166968 crossref_primary_10_46465_endustrimuhendisligi_1328966 crossref_primary_10_1016_j_eswa_2023_119810 crossref_primary_10_1109_TCYB_2023_3280175 crossref_primary_10_1109_TSMC_2024_3370376 crossref_primary_10_1155_2022_4662760 crossref_primary_10_1371_journal_pone_0273155 crossref_primary_10_1155_2022_6400318 crossref_primary_10_3390_biomimetics9010054 crossref_primary_10_1155_2022_1088906 crossref_primary_10_1109_TASE_2024_3477982 crossref_primary_10_1016_j_cie_2024_110813 crossref_primary_10_1093_jcde_qwac099 crossref_primary_10_1155_2021_6860503 crossref_primary_10_1109_ACCESS_2022_3203813 crossref_primary_10_1109_TII_2022_3220860 crossref_primary_10_1016_j_eswa_2025_126830 crossref_primary_10_1016_j_swevo_2022_101172 crossref_primary_10_23919_CSMS_2022_0010 crossref_primary_10_1038_s41598_025_93582_5 crossref_primary_10_1016_j_eswa_2023_122434 crossref_primary_10_1109_TSMC_2023_3335998 crossref_primary_10_1016_j_compchemeng_2022_108129 crossref_primary_10_1109_TNNLS_2022_3217318 crossref_primary_10_1016_j_eswa_2023_121221 crossref_primary_10_1109_TEVC_2022_3222791 |
Cites_doi | 10.1016/j.ins.2018.09.063 10.1109/TII.2018.2843441 10.1016/j.asoc.2018.02.032 10.1109/TEVC.2019.2893447 10.1109/TSMC.2017.2788879 10.1109/TCYB.2018.2796119 10.1016/j.cor.2016.11.022 10.1016/j.jclepro.2017.10.342 10.1016/j.engappai.2018.11.005 10.1016/j.asoc.2018.08.002 10.1109/4235.996017 10.1109/TCYB.2018.2821180 10.1109/TCYB.2017.2707067 10.1016/j.asoc.2017.08.020 10.1109/TII.2018.2839645 10.1016/j.eswa.2019.02.023 10.1016/0377-2217(93)90182-M 10.1016/j.swevo.2019.100557 10.1016/j.jclepro.2016.06.161 10.1016/j.omega.2019.102117 10.1109/TCYB.2017.2771213 10.1016/j.cor.2013.12.004 10.1016/j.cor.2018.02.003 10.1007/s40747-019-00122-6 10.1016/j.jmsy.2016.05.001 10.1016/j.eswa.2019.01.084 10.1109/TEM.2017.2774281 10.1109/TASE.2016.2643621 10.1109/TEVC.2016.2623803 10.1109/TSMC.2019.2916088 10.1080/0305215X.2018.1542693 10.1109/TEVC.2017.2669098 10.1080/00207543.2017.1414969 10.1007/s10732-010-9155-x 10.1016/j.ejor.2015.08.064 10.1109/TASE.2012.2202226 10.1080/00207543.2019.1642529 10.1016/j.omega.2015.12.002 10.1109/TASE.2018.2886303 10.1109/TEVC.2010.2093582 10.1016/j.jclepro.2018.02.004 10.1016/j.eswa.2019.01.062 10.1016/j.eswa.2017.09.028 10.1109/TEVC.2019.2912204 10.1016/j.jmsy.2017.04.007 10.1287/opre.44.3.510 10.1016/j.jclepro.2017.01.011 10.1007/s10732-008-9080-4 10.1080/00207543.2018.1504251 10.1109/CEC.2015.7257232 10.1007/s10489-019-01497-2 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TCYB.2020.3025662 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEL CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | Aerospace Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore: IEL url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2168-2275 |
EndPage | 5303 |
ExternalDocumentID | 10_1109_TCYB_2020_3025662 9238469 |
Genre | orig-research |
GrantInformation_xml | – fundername: Public Welfare Project of Zhejiang Natural Science Foundation grantid: LGJ19E050001 funderid: 10.13039/501100004731 – fundername: Lanzhou Science Bureau Project grantid: 2018-rc-98 – fundername: Wenzhou Public Welfare Science and Technology Project grantid: G20170016 – fundername: National Natural Science Foundation of China grantid: 62063021; 61873328 funderid: 10.13039/501100001809 – fundername: Key Research Programs of Science and Technology Commission Foundation of Gansu Province grantid: 2017GS10817 |
GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c326t-30dfb5bf1f58588a2999ae0b304abfea47e88bc0c4c9da4766500e65cdb2416a3 |
IEDL.DBID | RIE |
ISSN | 2168-2267 2168-2275 |
IngestDate | Thu Jul 10 22:34:11 EDT 2025 Sun Jun 29 13:12:56 EDT 2025 Thu Apr 24 23:07:40 EDT 2025 Tue Jul 01 00:53:57 EDT 2025 Wed Aug 27 02:26:42 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c326t-30dfb5bf1f58588a2999ae0b304abfea47e88bc0c4c9da4766500e65cdb2416a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7336-9699 0000-0001-8964-6454 |
PMID | 33095728 |
PQID | 2595719582 |
PQPubID | 85422 |
PageCount | 13 |
ParticipantIDs | crossref_citationtrail_10_1109_TCYB_2020_3025662 proquest_miscellaneous_2454148192 proquest_journals_2595719582 ieee_primary_9238469 crossref_primary_10_1109_TCYB_2020_3025662 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-01 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on cybernetics |
PublicationTitleAbbrev | TCYB |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref14 ref53 ref52 ref11 ref10 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 oztop (ref8) 2018 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 garey (ref15) 1979 |
References_xml | – ident: ref49 doi: 10.1016/j.ins.2018.09.063 – ident: ref10 doi: 10.1109/TII.2018.2843441 – ident: ref50 doi: 10.1016/j.asoc.2018.02.032 – ident: ref40 doi: 10.1109/TEVC.2019.2893447 – ident: ref13 doi: 10.1109/TSMC.2017.2788879 – ident: ref34 doi: 10.1109/TCYB.2018.2796119 – ident: ref26 doi: 10.1016/j.cor.2016.11.022 – ident: ref30 doi: 10.1016/j.jclepro.2017.10.342 – ident: ref2 doi: 10.1016/j.engappai.2018.11.005 – year: 1979 ident: ref15 publication-title: A Guide to the Theory of NP-Completeness – ident: ref22 doi: 10.1016/j.asoc.2018.08.002 – ident: ref53 doi: 10.1109/4235.996017 – ident: ref43 doi: 10.1109/TCYB.2018.2821180 – ident: ref3 doi: 10.1109/TCYB.2017.2707067 – ident: ref21 doi: 10.1016/j.asoc.2017.08.020 – ident: ref38 doi: 10.1109/TII.2018.2839645 – ident: ref20 doi: 10.1016/j.eswa.2019.02.023 – ident: ref47 doi: 10.1016/0377-2217(93)90182-M – ident: ref6 doi: 10.1016/j.swevo.2019.100557 – ident: ref31 doi: 10.1016/j.jclepro.2016.06.161 – ident: ref33 doi: 10.1016/j.omega.2019.102117 – ident: ref1 doi: 10.1109/TCYB.2017.2771213 – start-page: 753 year: 2018 ident: ref8 publication-title: Green Permutation Flowshop Scheduling A Trade- Off- Between Energy Consumption and Total Flow Time – ident: ref51 doi: 10.1016/j.cor.2013.12.004 – ident: ref4 doi: 10.1016/j.cor.2018.02.003 – ident: ref12 doi: 10.1007/s40747-019-00122-6 – ident: ref17 doi: 10.1016/j.jmsy.2016.05.001 – ident: ref19 doi: 10.1016/j.eswa.2019.01.084 – ident: ref9 doi: 10.1109/TEM.2017.2774281 – ident: ref39 doi: 10.1109/TASE.2016.2643621 – ident: ref29 doi: 10.1109/TEVC.2016.2623803 – ident: ref11 doi: 10.1109/TSMC.2019.2916088 – ident: ref24 doi: 10.1080/0305215X.2018.1542693 – ident: ref44 doi: 10.1109/TEVC.2017.2669098 – ident: ref36 doi: 10.1080/00207543.2017.1414969 – ident: ref25 doi: 10.1007/s10732-010-9155-x – ident: ref46 doi: 10.1016/j.ejor.2015.08.064 – ident: ref37 doi: 10.1109/TASE.2012.2202226 – ident: ref28 doi: 10.1080/00207543.2019.1642529 – ident: ref16 doi: 10.1016/j.omega.2015.12.002 – ident: ref48 doi: 10.1109/TASE.2018.2886303 – ident: ref42 doi: 10.1109/TEVC.2010.2093582 – ident: ref35 doi: 10.1016/j.jclepro.2018.02.004 – ident: ref5 doi: 10.1016/j.eswa.2019.01.062 – ident: ref23 doi: 10.1016/j.eswa.2017.09.028 – ident: ref41 doi: 10.1109/TEVC.2019.2912204 – ident: ref18 doi: 10.1016/j.jmsy.2017.04.007 – ident: ref7 doi: 10.1287/opre.44.3.510 – ident: ref32 doi: 10.1016/j.jclepro.2017.01.011 – ident: ref52 doi: 10.1007/s10732-008-9080-4 – ident: ref14 doi: 10.1080/00207543.2018.1504251 – ident: ref27 doi: 10.1109/CEC.2015.7257232 – ident: ref45 doi: 10.1007/s10489-019-01497-2 |
SSID | ssj0000816898 |
Score | 2.6221817 |
Snippet | Green scheduling in the manufacturing industry has attracted increasing attention in academic research and industrial applications with a focus on energy... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5291 |
SubjectTerms | Cooperative algorithm Critical path Energy consumption energy efficient Evolutionary algorithms Feedback control Genetic algorithms Industrial applications Iterative methods Job shop scheduling Job shops knowledge Manufacturing no-wait flow-shop scheduling Optimization Scheduling Search problems Steel total energy consumption (TEC) |
Title | A Two-Stage Cooperative Evolutionary Algorithm With Problem-Specific Knowledge for Energy-Efficient Scheduling of No-Wait Flow-Shop Problem |
URI | https://ieeexplore.ieee.org/document/9238469 https://www.proquest.com/docview/2595719582 https://www.proquest.com/docview/2454148192 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swELeAJ142GJtWYJMn8bBNc3ES5-uxq1oh0NAkimBPkT9Lta6uSjq0_Qv805wdJ5o2hPYSOYodObpz7nf23f0QOuJFSpXyUY1MEVZECeFKUsITk2mWyJgZH21xnp1cstPr9HoDfepyYbTWPvhM913Tn-UrK9duq-wYwAiYy3ITbYLj1uRqdfspnkDCU9_G0CCAKvJwiBnR8ngy_PYZnMEYfFRn5DNHYgOefJnmjob9D4vkKVb--S97YzN-jr6002xiTL7317Xoy99_VXD83-_YQc8C6sSDRk120YZevEC7YV3f4veh-PSHPXQ_wJM7SwCDTjUeWrvUTWlwPPoZlJSvfuHBfGpXs_rmB76CK_7asNIQT2ZvZhKftTt1GDAxHvn8QjLy1SpgZvgCNEW5EPgptgafW3LFZzUez-0dubixy_Z9L9HleDQZnpBA2EAkoMCaJFQZkQoTGXBCioKDqSu5piKhjAujOct1UQhJJZOlgrsM4CHVWSqVACCR8eQV2lrYhX6NcGakEHkE4EVKFhstaF7GqihKFiktc9FDtBVaJUM1c0eqMa-8V0PLyom8ciKvgsh76GM3ZNmU8niq856TW9cxiKyHDlvNqMJiv63Ag0xzV7QHRr3rHsMydWcvfKHtGvowx7fuqs_tP_7mA7Qdu3AZn-Z4iLbq1Vq_AbxTi7de0R8AYC77Ng |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfGeIAXYAxEYYCReACEOydxvh5L1aqwrUJap42nyJ9dRamrLmWCf4F_mrPjRAgQ4iVyFDtydOfc7-y7-yH0khcpVcpHNTJFWBElhCtJCU9MplkiY2Z8tMU0m5yxDxfpxQ562-XCaK198Jnuu6Y_y1dWbt1W2SGAETCX5Q10E-x-GjXZWt2OiqeQ8OS3MTQI4Io8HGNGtDycDT-9A3cwBi_VmfnM0diAL1-muSNi_8UmeZKVP_7M3tyM76KTdqJNlMnn_rYWffn9txqO__sl99CdgDvxoFGUPbSjV_fRXljZV_hVKD_9eh_9GODZtSWAQucaD61d66Y4OB59DWrKN9_wYDm3m0V9-QWfwxV_bHhpiKezNwuJj9q9OgyoGI98hiEZ-XoVMDN8CrqiXBD8HFuDp5ac80WNx0t7TU4v7bp93wN0Nh7NhhMSKBuIBBxYk4QqI1JhIgNuSFFwMHYl11QklHFhNGe5LgohqWSyVHCXAUCkOkulEgAlMp48RLsru9KPEM6MFCKPAL5IyWKjBc3LWBVFySKlZS56iLZCq2SoZ-5oNZaV92toWTmRV07kVRB5D73phqybYh7_6rzv5NZ1DCLroYNWM6qw3K8q8CHT3JXtgVEvusewUN3pC19pu4U-zDGuu_pzj__-5ufo1mR2clwdv58ePUG3Yxc845MeD9Buvdnqp4B-avHMK_1PnYj-fw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Two-Stage+Cooperative+Evolutionary+Algorithm+With+Problem-Specific+Knowledge+for+Energy-Efficient+Scheduling+of+No-Wait+Flow-Shop+Problem&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Zhao%2C+Fuqing&rft.au=He%2C+Xuan&rft.au=Wang%2C+Ling&rft.date=2021-11-01&rft.issn=2168-2267&rft.eissn=2168-2275&rft.volume=51&rft.issue=11&rft.spage=5291&rft.epage=5303&rft_id=info:doi/10.1109%2FTCYB.2020.3025662&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCYB_2020_3025662 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |