A Two-Stage Cooperative Evolutionary Algorithm With Problem-Specific Knowledge for Energy-Efficient Scheduling of No-Wait Flow-Shop Problem
Green scheduling in the manufacturing industry has attracted increasing attention in academic research and industrial applications with a focus on energy saving. As a typical scheduling problem, the no-wait flow-shop scheduling has been extensively studied due to its wide industrial applications. Ho...
Saved in:
Published in | IEEE transactions on cybernetics Vol. 51; no. 11; pp. 5291 - 5303 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.11.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Green scheduling in the manufacturing industry has attracted increasing attention in academic research and industrial applications with a focus on energy saving. As a typical scheduling problem, the no-wait flow-shop scheduling has been extensively studied due to its wide industrial applications. However, energy consumption is usually ignored in the study of typical scheduling problems. In this article, a two-stage cooperative evolutionary algorithm with problem-specific knowledge called TS-CEA is proposed to address energy-efficient scheduling of the no-wait flow-shop problem (EENWFSP) with the criteria of minimizing both makespan and total energy consumption. In TS-CEA, two constructive heuristics are designed to generate a desirable initial solution after analyzing the properties of the problem. In the first stage of TS-CEA, an iterative local search strategy (ILS) is employed to explore potential extreme solutions. Moreover, a hybrid neighborhood structure is designed to improve the quality of the solution. In the second stage of TS-CEA, a mutation strategy based on critical path knowledge is proposed to extend the extreme solutions to the Pareto front. Moreover, a co-evolutionary closed-loop system is generated with ILS and mutation strategies in the iteration process. Numerical results demonstrate the effectiveness and efficiency of TS-CEA in solving the EENWFSP. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2168-2267 2168-2275 2168-2275 |
DOI: | 10.1109/TCYB.2020.3025662 |