FPGA-based Inference Parallelization for Onboard RL-based Routing in Dynamic LEO Satellite Networks

This paper addresses the problem of onboard computer application of dynamic low-orbit satellite network routing algorithms. In low-orbit satellite networks, the satellite topology changes in real time, and satellite disconnection occurs frequently. The problem of routing algorithms for low-orbit sat...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of aeronautical and space sciences Vol. 25; no. 3; pp. 1135 - 1145
Main Authors Kim, Dohyung, Lee, Heoncheol, Won, Dongshik, Han, Myounghun
Format Journal Article
LanguageEnglish
Published Seoul The Korean Society for Aeronautical & Space Sciences (KSAS) 01.07.2024
한국항공우주학회
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper addresses the problem of onboard computer application of dynamic low-orbit satellite network routing algorithms. In low-orbit satellite networks, the satellite topology changes in real time, and satellite disconnection occurs frequently. The problem of routing algorithms for low-orbit satellites can be solved by reinforcement learning algorithms. However, the inference process based on deep reinforcement learning models suffers from excessive computation due to the operation of multiple convolutional layers. In this paper, we propose a method to accelerate convolutional layer operations by parallelizing them using heterogeneous processors. This approach is compared to the traditional single-processor-based convolutional operation method, commonly used in dynamic low-orbit satellite network routing algorithms. Our evaluation, conducted on an actual heterogeneous processor-based onboard computer, demonstrates that the proposed method not only matches the accuracy of the conventional single-processor-based approach, but also significantly reduces the execution time.
AbstractList This paper addresses the problem of onboard computer application of dynamic low-orbit satellite network routing algorithms. In low-orbit satellite networks, the satellite topology changes in real time, and satellite disconnection occurs frequently. The problem of routing algorithms for low-orbit satellites can be solved by reinforcement learning algorithms. However, the inference process based on deep reinforcement learning models suffers from excessive computation due to the operation of multiple convolutional layers. In this paper, we propose a method to accelerate convolutional layer operations by parallelizing them using heterogeneous processors. This approach is compared to the traditional single-processor-based convolutional operation method, commonly used in dynamic low-orbit satellite network routing algorithms. Our evaluation, conducted on an actual heterogeneous processor-based onboard computer, demonstrates that the proposed method not only matches the accuracy of the conventional single-processor-based approach, but also significantly reduces the execution time. KCI Citation Count: 0
This paper addresses the problem of onboard computer application of dynamic low-orbit satellite network routing algorithms. In low-orbit satellite networks, the satellite topology changes in real time, and satellite disconnection occurs frequently. The problem of routing algorithms for low-orbit satellites can be solved by reinforcement learning algorithms. However, the inference process based on deep reinforcement learning models suffers from excessive computation due to the operation of multiple convolutional layers. In this paper, we propose a method to accelerate convolutional layer operations by parallelizing them using heterogeneous processors. This approach is compared to the traditional single-processor-based convolutional operation method, commonly used in dynamic low-orbit satellite network routing algorithms. Our evaluation, conducted on an actual heterogeneous processor-based onboard computer, demonstrates that the proposed method not only matches the accuracy of the conventional single-processor-based approach, but also significantly reduces the execution time.
Author Han, Myounghun
Kim, Dohyung
Lee, Heoncheol
Won, Dongshik
Author_xml – sequence: 1
  givenname: Dohyung
  surname: Kim
  fullname: Kim, Dohyung
  organization: School of Electronic Engineering, Kumoh National Institute of Technology
– sequence: 2
  givenname: Heoncheol
  orcidid: 0000-0003-2962-3474
  surname: Lee
  fullname: Lee, Heoncheol
  email: hclee@kumoh.ac.kr
  organization: Department of IT Convergence Engineering, School of Electronic Engineering, Kumoh National Institute of Technology
– sequence: 3
  givenname: Dongshik
  surname: Won
  fullname: Won, Dongshik
  organization: Future Innovation Research Team, TelePIX Corporation
– sequence: 4
  givenname: Myounghun
  surname: Han
  fullname: Han, Myounghun
  organization: Agency for Defense Development
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003097232$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kMtKAzEUQIMo-OoPuMpaGM1kkpnpstRaC8VKreAu3GZuStoxkWSk6Ncb27pxYTY3IecEcs7JsfMOCbnK2U3OWHUbBRdMZoyLLB05y7ZH5IyzfpFxUbPj330lXk9JL8Y1S0vKvGbyjOj7p_EgW0LEhk6cwYBOI32CAG2Lrf2CznpHjQ905pYeQkPn0wM-9x-ddStqHb37dPBmNZ2OZvQZOmxb2yF9xG7rwyZekhMDbcTeYV6Ql_vRYviQTWfjyXAwzXTByy7LoZRoCixlVTUNCimQ50WdLo3ExkAty7pfG1OUrA8CdAJY1cASNQcpBCsuyPX-XReM2mirPNjdXHm1CWowX0xUzpLF-j9wvYd18DEGNErbbvfbLoBtE6h-4qp9XJXiql1ctU0q_6O-B_sG4fN_qdhLMcFuhUGt_Udwqcd_1jfb_o5p
CitedBy_id crossref_primary_10_3390_aerospace11121028
Cites_doi 10.14372/IEMEK.2022.17.6.355
10.1016/j.cja.2022.06.021
10.1109/ictai50040.2020.00107
10.1109/tvt.2020.3041458
10.1109/tpds.2020.3039409
10.14801/jkiit.2021.19.12.19
10.1109/vlsi.2008.28
10.1109/ICET51757.2021.9451072
10.3390/a16020110
10.1145/3652963.3655052
10.3390/s22124512
10.1109/vtc2021-fall52928.2021.9625325
10.1109/vtc2022-spring54318.2022.9860582
10.1109/ACCESS.2023.3238873
10.1049/cmu2.12466
10.1109/isspit47144.2019.9001806
ContentType Journal Article
Copyright The Author(s), under exclusive licence to The Korean Society for Aeronautical & Space Sciences 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to The Korean Society for Aeronautical & Space Sciences 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
ACYCR
DOI 10.1007/s42405-024-00720-w
DatabaseName CrossRef
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2093-2480
EndPage 1145
ExternalDocumentID oai_kci_go_kr_ARTI_10540090
10_1007_s42405_024_00720_w
GroupedDBID -EM
.UV
0R~
406
9ZL
AACDK
AAHNG
AAJBT
AASML
AATNV
AAUYE
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABKCH
ABMQK
ABTEG
ABTKH
ABTMW
ACAOD
ACDTI
ACHSB
ACOKC
ACPIV
ACZOJ
ADKNI
ADRFC
ADURQ
ADYFF
AEFQL
AEMSY
AENEX
AESKC
AFBBN
AFQWF
AGDGC
AGJBK
AGMZJ
AGQEE
AGRTI
AIAKS
AIGIU
AILAN
AITGF
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AXYYD
BGNMA
DBRKI
DPUIP
EBLON
EBS
EJD
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
GW5
IKXTQ
IWAJR
J-C
JDI
JZLTJ
KOV
LLZTM
M4Y
M~E
NPVJJ
NQJWS
NU0
O9J
OK1
PT4
ROL
RSV
SJYHP
SNE
SNPRN
SOHCF
SOJ
SRMVM
SSLCW
STPWE
TDB
UOJIU
UTJUX
VEKWB
VFIZW
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABFGW
ABKAS
ACIPQ
ACWMK
ACYCR
AESTI
AEVTX
AIMYW
AKQUC
ID FETCH-LOGICAL-c326t-1a65ef3e6577dde454e2138c32f5edfa856898ff3609a4ac45407dabec2a54403
ISSN 2093-274X
IngestDate Wed Jul 31 05:47:21 EDT 2024
Tue Jul 01 01:15:15 EDT 2025
Thu Apr 24 23:07:53 EDT 2025
Fri Feb 21 02:39:48 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Heterogeneous processor
Deep reinforcement learning
Parallelization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c326t-1a65ef3e6577dde454e2138c32f5edfa856898ff3609a4ac45407dabec2a54403
ORCID 0000-0003-2962-3474
PageCount 11
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10540090
crossref_citationtrail_10_1007_s42405_024_00720_w
crossref_primary_10_1007_s42405_024_00720_w
springer_journals_10_1007_s42405_024_00720_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240700
2024-07-00
2024-07
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 7
  year: 2024
  text: 20240700
PublicationDecade 2020
PublicationPlace Seoul
PublicationPlace_xml – name: Seoul
PublicationTitle International journal of aeronautical and space sciences
PublicationTitleAbbrev Int. J. Aeronaut. Space Sci
PublicationYear 2024
Publisher The Korean Society for Aeronautical & Space Sciences (KSAS)
한국항공우주학회
Publisher_xml – name: The Korean Society for Aeronautical & Space Sciences (KSAS)
– name: 한국항공우주학회
References Herath HM (2021) Starlink: a solution to the digital connectivity divide in education in the global South. arXiv preprint arXiv:2110.09225
WangJTongWZhiXModel parallelism optimization for CNN FPGA acceleratorAlgorithms202316211010.3390/a16020110
ChenRWangWZhaoXZhaoGWaypoint segment routing algorithm for LEO satellite networkIET Commun202216182133214410.1049/cmu2.12466
Roh B, Han M, Kum D, Jeong K (2022) A Study on the Reinforcement Learning Routing for LEO Satellite Network.In: Korean Institute of Communication Sciences Conference, pp 537–538
Wang X, Dai Z, Xu Z (2021) LEO satellite network routing algorithm based on reinforcement learning.In: 2021 IEEE 4th International Conference on Electronics Technology(ICET), pp 1105–1109. https://doi.org/10.1109/ICET51757.2021.9451072
KimDHanYLeeHKimYKwonHKimCChoiWAccelerated particle filter with GPU for real-time ballistic target trackingIEEE Access2023112023121391214910.1109/ACCESS.2023.3238873
Zuo P, Wand C, Yao Z, Hou S, Jiang (2021) An intelligent routing algorithm for leo satellites based on deep reinforcement learning.In: 2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall), pp 1–5. https://doi.org/10.1109/vtc2021-fall52928.2021.9625325
HuandYShufanWZeyuKZhongchengMHuangHXiaofengWChengXReinforcement learning based dynamic distributed routing scheme for mega LEO satellite networksChin J Aeronaut20233628429110.1016/j.cja.2022.06.021
Qiu H, Liu F (2020) A state representation dueling network for deep reinforcement learning. In: 2020 IEEE 32nd International Conference on Tools with Artificial Intelligence (ICTAI), pp 669–674. https://doi.org/10.1109/ictai50040.2020.00107
LeeSLeeHKimYKimJChoiWGPU-accelerated PD-IPM for real-time model predictive control in integrated missile guidance and control systemsSensors20222212451210.3390/s22124512
KimDJungHPerformance analysis of target tracking AI based on unity ML-agentsJ JKIIT20211912192610.14801/jkiit.2021.19.12.19
Wang F, Agrawal V (2008) Single event upset:An embedded tutorial. In: 21st International Conference on VLSI Design (VLSID 2008), pp 429–439. https://doi.org/10.1109/vlsi.2008.28
Van Otterlo M (2009) Markov decision processes: Concepts and algorithms. Course on ‘Learning and Reasoning
Lee J, Ko Y (2021) A Study on the low-earth orbit satellite based non-terrestrial network systems via deep-reinforcement learning. In: Korean Institute of Communication Sciences Conference, pp 1306-1307
Izhikevich L, Tran M, Izhikevich K, Akiwate G, Durumeric Z (2023) Democratizing LEO Satellite Network Measurement. arXiv preprint arXiv:2306.07469
HanYLeeHKwonHChoiWJeongBParallelized particle swarm optimization with GPU for real-time ballistic target trackingIEMEK J Embedded Syst Appl202217635536510.14372/IEMEK.2022.17.6.355
Booshehri M, Malekpour A, Luksch P (2013) An improving method for loop unrolling. arXiv preprint arXiv:1308.0698
Wang Z, Schaul T, Hessel M, Hasselt H, Lanctot M, Freitas N (2016) Dueling network architectures for deep reinforcement learning. In: International conference on machine learning. PMLR, 48, pp 1995-2003
Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, Wierstra D, Riedmiller M (2013) Playing Atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602
de FineLJBestaMMeierhansSHoeflerTTransformations of high-level synthesis codes for high-performance computingIEEE Trans Parallel Distrib Syst20203251014102910.1109/tpds.2020.3039409
Lee Y, Kim K (2021) Cross-Point Based Routing Protocol in Low Earth Orbit Communication Networks.In: Proceedings of the Korea Information Processing Society Conference, 28(2), pp 72–74
Hutson J, Pellish J, Tipton A, Xaposos M, Xapsos M, Friendlich M, Campola M, Seidleck S, LaBel K, Marshall A, Deng X (2008) Analysis of Single Event Latchup Cross Section in 65nm SRAMs. In: IEEE Nuclear and Space Radiation Effects Conference (NSREC)
BanTAn autonomous transmission scheme using dueling DQN for D2D communication networksIEEE Trans Veh Technol20206912163481635210.1109/tvt.2020.3041458
Vohra M, Fasciani S (2019) PYNQ-Torch: a framework to develop PyTorch accelerators on the PYNQ platform. In: 2019 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), pp 1–6. https://doi.org/10.1109/isspit47144.2019.9001806
Zuo P, Wang C, Wei Z, Li Z, Zhao H, Jiang H (2022) Deep Reinforcement Learning Based Load Balancing Routing for LEO Satellite Network. In: 2022 IEEE 95th Vehicular Technology Conference(VTC2022-Spring), pp 1–6. https://doi.org/10.1109/vtc2022-spring54318.2022.9860582
720_CR2
720_CR1
720_CR12
720_CR11
T Ban (720_CR20) 2020; 69
720_CR3
720_CR10
720_CR6
720_CR17
720_CR5
720_CR8
720_CR7
J Wang (720_CR13) 2023; 16
S Lee (720_CR15) 2022; 22
LJ de Fine (720_CR25) 2020; 32
720_CR24
720_CR23
D Kim (720_CR14) 2023; 11
D Kim (720_CR22) 2021; 19
Y Han (720_CR16) 2022; 17
720_CR9
R Chen (720_CR4) 2022; 16
720_CR19
720_CR18
Y Huand (720_CR21) 2023; 36
References_xml – reference: Roh B, Han M, Kum D, Jeong K (2022) A Study on the Reinforcement Learning Routing for LEO Satellite Network.In: Korean Institute of Communication Sciences Conference, pp 537–538
– reference: KimDJungHPerformance analysis of target tracking AI based on unity ML-agentsJ JKIIT20211912192610.14801/jkiit.2021.19.12.19
– reference: WangJTongWZhiXModel parallelism optimization for CNN FPGA acceleratorAlgorithms202316211010.3390/a16020110
– reference: Booshehri M, Malekpour A, Luksch P (2013) An improving method for loop unrolling. arXiv preprint arXiv:1308.0698
– reference: Van Otterlo M (2009) Markov decision processes: Concepts and algorithms. Course on ‘Learning and Reasoning
– reference: ChenRWangWZhaoXZhaoGWaypoint segment routing algorithm for LEO satellite networkIET Commun202216182133214410.1049/cmu2.12466
– reference: LeeSLeeHKimYKimJChoiWGPU-accelerated PD-IPM for real-time model predictive control in integrated missile guidance and control systemsSensors20222212451210.3390/s22124512
– reference: HanYLeeHKwonHChoiWJeongBParallelized particle swarm optimization with GPU for real-time ballistic target trackingIEMEK J Embedded Syst Appl202217635536510.14372/IEMEK.2022.17.6.355
– reference: Lee Y, Kim K (2021) Cross-Point Based Routing Protocol in Low Earth Orbit Communication Networks.In: Proceedings of the Korea Information Processing Society Conference, 28(2), pp 72–74
– reference: de FineLJBestaMMeierhansSHoeflerTTransformations of high-level synthesis codes for high-performance computingIEEE Trans Parallel Distrib Syst20203251014102910.1109/tpds.2020.3039409
– reference: Izhikevich L, Tran M, Izhikevich K, Akiwate G, Durumeric Z (2023) Democratizing LEO Satellite Network Measurement. arXiv preprint arXiv:2306.07469
– reference: Wang Z, Schaul T, Hessel M, Hasselt H, Lanctot M, Freitas N (2016) Dueling network architectures for deep reinforcement learning. In: International conference on machine learning. PMLR, 48, pp 1995-2003
– reference: Wang F, Agrawal V (2008) Single event upset:An embedded tutorial. In: 21st International Conference on VLSI Design (VLSID 2008), pp 429–439. https://doi.org/10.1109/vlsi.2008.28
– reference: Zuo P, Wand C, Yao Z, Hou S, Jiang (2021) An intelligent routing algorithm for leo satellites based on deep reinforcement learning.In: 2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall), pp 1–5. https://doi.org/10.1109/vtc2021-fall52928.2021.9625325
– reference: Vohra M, Fasciani S (2019) PYNQ-Torch: a framework to develop PyTorch accelerators on the PYNQ platform. In: 2019 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), pp 1–6. https://doi.org/10.1109/isspit47144.2019.9001806
– reference: Herath HM (2021) Starlink: a solution to the digital connectivity divide in education in the global South. arXiv preprint arXiv:2110.09225
– reference: KimDHanYLeeHKimYKwonHKimCChoiWAccelerated particle filter with GPU for real-time ballistic target trackingIEEE Access2023112023121391214910.1109/ACCESS.2023.3238873
– reference: HuandYShufanWZeyuKZhongchengMHuangHXiaofengWChengXReinforcement learning based dynamic distributed routing scheme for mega LEO satellite networksChin J Aeronaut20233628429110.1016/j.cja.2022.06.021
– reference: Lee J, Ko Y (2021) A Study on the low-earth orbit satellite based non-terrestrial network systems via deep-reinforcement learning. In: Korean Institute of Communication Sciences Conference, pp 1306-1307
– reference: BanTAn autonomous transmission scheme using dueling DQN for D2D communication networksIEEE Trans Veh Technol20206912163481635210.1109/tvt.2020.3041458
– reference: Qiu H, Liu F (2020) A state representation dueling network for deep reinforcement learning. In: 2020 IEEE 32nd International Conference on Tools with Artificial Intelligence (ICTAI), pp 669–674. https://doi.org/10.1109/ictai50040.2020.00107
– reference: Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, Wierstra D, Riedmiller M (2013) Playing Atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602
– reference: Hutson J, Pellish J, Tipton A, Xaposos M, Xapsos M, Friendlich M, Campola M, Seidleck S, LaBel K, Marshall A, Deng X (2008) Analysis of Single Event Latchup Cross Section in 65nm SRAMs. In: IEEE Nuclear and Space Radiation Effects Conference (NSREC)
– reference: Zuo P, Wang C, Wei Z, Li Z, Zhao H, Jiang H (2022) Deep Reinforcement Learning Based Load Balancing Routing for LEO Satellite Network. In: 2022 IEEE 95th Vehicular Technology Conference(VTC2022-Spring), pp 1–6. https://doi.org/10.1109/vtc2022-spring54318.2022.9860582
– reference: Wang X, Dai Z, Xu Z (2021) LEO satellite network routing algorithm based on reinforcement learning.In: 2021 IEEE 4th International Conference on Electronics Technology(ICET), pp 1105–1109. https://doi.org/10.1109/ICET51757.2021.9451072
– volume: 17
  start-page: 355
  issue: 6
  year: 2022
  ident: 720_CR16
  publication-title: IEMEK J Embedded Syst Appl
  doi: 10.14372/IEMEK.2022.17.6.355
– volume: 36
  start-page: 284
  year: 2023
  ident: 720_CR21
  publication-title: Chin J Aeronaut
  doi: 10.1016/j.cja.2022.06.021
– ident: 720_CR17
– ident: 720_CR19
  doi: 10.1109/ictai50040.2020.00107
– volume: 69
  start-page: 16348
  issue: 12
  year: 2020
  ident: 720_CR20
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/tvt.2020.3041458
– volume: 32
  start-page: 1014
  issue: 5
  year: 2020
  ident: 720_CR25
  publication-title: IEEE Trans Parallel Distrib Syst
  doi: 10.1109/tpds.2020.3039409
– volume: 19
  start-page: 19
  issue: 12
  year: 2021
  ident: 720_CR22
  publication-title: J JKIIT
  doi: 10.14801/jkiit.2021.19.12.19
– ident: 720_CR11
  doi: 10.1109/vlsi.2008.28
– ident: 720_CR6
  doi: 10.1109/ICET51757.2021.9451072
– volume: 16
  start-page: 110
  issue: 2
  year: 2023
  ident: 720_CR13
  publication-title: Algorithms
  doi: 10.3390/a16020110
– ident: 720_CR2
  doi: 10.1145/3652963.3655052
– ident: 720_CR24
– volume: 22
  start-page: 4512
  issue: 12
  year: 2022
  ident: 720_CR15
  publication-title: Sensors
  doi: 10.3390/s22124512
– ident: 720_CR18
– ident: 720_CR7
  doi: 10.1109/vtc2021-fall52928.2021.9625325
– ident: 720_CR8
  doi: 10.1109/vtc2022-spring54318.2022.9860582
– ident: 720_CR9
– ident: 720_CR12
– volume: 11
  start-page: 12139
  issue: 2023
  year: 2023
  ident: 720_CR14
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3238873
– ident: 720_CR10
– volume: 16
  start-page: 2133
  issue: 18
  year: 2022
  ident: 720_CR4
  publication-title: IET Commun
  doi: 10.1049/cmu2.12466
– ident: 720_CR23
  doi: 10.1109/isspit47144.2019.9001806
– ident: 720_CR3
– ident: 720_CR5
– ident: 720_CR1
SSID ssj0000551805
Score 2.2954793
Snippet This paper addresses the problem of onboard computer application of dynamic low-orbit satellite network routing algorithms. In low-orbit satellite networks,...
SourceID nrf
crossref
springer
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 1135
SubjectTerms Aerospace Technology and Astronautics
Engineering
Fluid- and Aerodynamics
Original Paper
항공우주공학
Title FPGA-based Inference Parallelization for Onboard RL-based Routing in Dynamic LEO Satellite Networks
URI https://link.springer.com/article/10.1007/s42405-024-00720-w
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003097232
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX International Journal of Aeronautical and Space Sciences, 2024, 25(3), , pp.1135-1145
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdN-rI9jH2y7KMINj1lHv6QFOnRdpJ1o2vL1kLejCPLo7Q4I0kp7K_fSZYdpy2h24sR55Ns637y3Ym7E0IfFeWqCCIK6zvkHmWs8EAJhp6mipdaRsKnJnf4-zE_PKffZmy21zvoRC1dr-ef1Z9780r-R6pAA7maLNl_kGw7KBCgDfKFK0gYrg-S8fT0S-wZPWRCepuCsaf50pyPcuUSLG0c4Uk1X5j9gh9Hjt0EArlslnF9Jv3waHIy_JnbAp1rE_dow8NXXeN1e_ewU3Mi10sguW1xuxMPnrgeOu3aWu1kEpNEmtiKSULElAhKJmMiBakPwKxZUiLHJGnuGJaUJCGJ_S2WhMhmFCkNRQBlvGGBzozI1LDEMRHMUoBddHc5QtpGxNa47PSDN2UkHjuKaQAlMkTzeGj7phEDJW16SduAp6Wbv2voy8gDl3xWK8IOjdZHS7k_ehDU5VScdQDuI7tX89TBJisKFpJJeYcP8Efgmd9s9GwTW3BL_W4V-r5UF9mvRXa5zMCd-ZoFxqD2pd9D-yG4QWEf7cfTJDludxF9U1DPxum23-Myw2x-6J232bK-etWyvBMAYO2qs6foiXOIcFyj-xna09Vz9LhTJvMFUhuc4xbn-BbOMeAcO5zjBufY4RxfVNjhHAPOcYtz3OD8JTqfTs7SQ88dDuIp8DjWXpBzpstIczYagYqmjOowiATcLJkuylwwLqQoy4j7Mqe5spUmixx-WWHOKPWjV6hfLSr9GmExpwWPgGw2I_iomGvJ8oIGSnE-V2UwQEEzaZlylfPNAS5XWVvz2050BhOd2YnObgZo2Pb5XdeN2cn9AWRhpb8DBQP0qZFV5tb4asegbx406Fv0aLPe3qH-enmt34OdvZ4fOLD9BZHLuKo
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FPGA-based+Inference+Parallelization+for+Onboard+RL-based+Routing+in+Dynamic+LEO+Satellite+Networks&rft.jtitle=International+journal+of+aeronautical+and+space+sciences&rft.au=%EA%B9%80%EB%8F%84%ED%98%95&rft.au=%EC%9D%B4%ED%98%84%EC%B2%A0&rft.au=%EC%9B%90%EB%8F%99%EC%8B%9D&rft.au=%ED%95%9C%EB%AA%85%ED%9B%88&rft.date=2024-07-01&rft.pub=%ED%95%9C%EA%B5%AD%ED%95%AD%EA%B3%B5%EC%9A%B0%EC%A3%BC%ED%95%99%ED%9A%8C&rft.issn=2093-274X&rft.eissn=2093-2480&rft.spage=1135&rft.epage=1145&rft_id=info:doi/10.1007%2Fs42405-024-00720-w&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_10540090
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2093-274X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2093-274X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2093-274X&client=summon