Assessing conditional causal effect via characteristic score
Observational studies usually include participants representing the wide heterogeneous population. The conditional causal effect, treatment effect conditional on baseline characteristics, is of practical importance. Its estimation is subject to two challenges. First, the causal effect is not observa...
Saved in:
Published in | Statistics in medicine Vol. 40; no. 24; pp. 5188 - 5198 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
New York
Wiley Subscription Services, Inc
30.10.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Observational studies usually include participants representing the wide heterogeneous population. The conditional causal effect, treatment effect conditional on baseline characteristics, is of practical importance. Its estimation is subject to two challenges. First, the causal effect is not observable in any individual due to counterfactuality. Second, high‐dimensional baseline variables are involved to satisfy the ignorable treatment selection assumption and to attain better estimation efficiency. In this work, a nonparametric estimation procedure, along with a pseudo‐response, is proposed to estimate the conditional treatment effect through “characteristic score”—a parsimonious representation of baseline variable influence on treatment benefit. Adopting sparse dimension reduction with variable prescreening in the proposed estimation, we aim to identify the key baseline variables that impact the conditional treatment effect and to uncover the characteristic score that best predicts the treatment effect. This approach is applied to an HIV study for assessing the benefit of antiretroviral regimens and identifying the beneficiary subpopulation. |
---|---|
AbstractList | Observational studies usually include participants representing the wide heterogeneous population. The conditional causal effect, treatment effect conditional on baseline characteristics, is of practical importance. Its estimation is subject to two challenges. First, the causal effect is not observable in any individual due to counterfactuality. Second, high‐dimensional baseline variables are involved to satisfy the ignorable treatment selection assumption and to attain better estimation efficiency. In this work, a nonparametric estimation procedure, along with a pseudo‐response, is proposed to estimate the conditional treatment effect through “characteristic score”—a parsimonious representation of baseline variable influence on treatment benefit. Adopting sparse dimension reduction with variable prescreening in the proposed estimation, we aim to identify the key baseline variables that impact the conditional treatment effect and to uncover the characteristic score that best predicts the treatment effect. This approach is applied to an HIV study for assessing the benefit of antiretroviral regimens and identifying the beneficiary subpopulation. Observational studies usually include participants representing the wide heterogeneous population. The conditional causal effect, treatment effect conditional on baseline characteristics, is of practical importance. Its estimation is subject to two challenges. First, the causal effect is not observable in any individual due to counterfactuality. Second, high-dimensional baseline variables are involved to satisfy the ignorable treatment selection assumption and to attain better estimation efficiency. In this work, a nonparametric estimation procedure, along with a pseudo-response, is proposed to estimate the conditional treatment effect through "characteristic score"-a parsimonious representation of baseline variable influence on treatment benefit. Adopting sparse dimension reduction with variable prescreening in the proposed estimation, we aim to identify the key baseline variables that impact the conditional treatment effect and to uncover the characteristic score that best predicts the treatment effect. This approach is applied to an HIV study for assessing the benefit of antiretroviral regimens and identifying the beneficiary subpopulation.Observational studies usually include participants representing the wide heterogeneous population. The conditional causal effect, treatment effect conditional on baseline characteristics, is of practical importance. Its estimation is subject to two challenges. First, the causal effect is not observable in any individual due to counterfactuality. Second, high-dimensional baseline variables are involved to satisfy the ignorable treatment selection assumption and to attain better estimation efficiency. In this work, a nonparametric estimation procedure, along with a pseudo-response, is proposed to estimate the conditional treatment effect through "characteristic score"-a parsimonious representation of baseline variable influence on treatment benefit. Adopting sparse dimension reduction with variable prescreening in the proposed estimation, we aim to identify the key baseline variables that impact the conditional treatment effect and to uncover the characteristic score that best predicts the treatment effect. This approach is applied to an HIV study for assessing the benefit of antiretroviral regimens and identifying the beneficiary subpopulation. |
Author | Hu, Zonghui |
Author_xml | – sequence: 1 givenname: Zonghui orcidid: 0000-0001-5496-0611 surname: Hu fullname: Hu, Zonghui email: huzo@niaid.nih.gov organization: National Institutes of Health |
BookMark | eNp1kF1LwzAYhYNMcJuCP6HgjTedSbo0DXgzhh-DiRfqdcjevtGMrplJq-zf2zpBGHp1bp5z4DwjMqh9jYScMzphlPKr6DYTxZg6IkNGlUwpF8WADCmXMs0lEydkFOOaUsYEl0NyPYsRY3T1awK-Ll3jfG2qBEwbu0BrEZrkw5kE3kww0GBwsXGQRPABT8mxNVXEs58ck5fbm-f5fbp8vFvMZ8sUMp6rdFUwWypbFoXFKfJMlcxKgNxKIfPpCmVmlURRlhQlBZAcVrZEmxWGAldcZmNyud_dBv_eYmz0xkXAqjI1-jZqLqZCqUxkRYdeHKBr34buUk8VvLMxzdnvIAQfY0Crt8FtTNhpRnWvUXcada-xQycHKLjG9JqaYFz1VyHdFz5dhbt_h_XT4uGb_wILbYV7 |
CitedBy_id | crossref_primary_10_1093_jrsssc_qlad108 |
Cites_doi | 10.1080/03610929408831393 10.1073/pnas.1815563117 10.1201/9781315119427 10.1111/0034-6527.00321 10.1111/j.1467-9868.2008.00674.x 10.1093/biomet/88.2.381 10.1093/biomet/asn004 10.1111/rssb.12027 10.1093/biomet/asx028 10.1080/01621459.2012.656009 10.1097/QAI.0000000000001660 10.1111/j.0006-341X.2005.031010.x 10.1111/1467-9868.03411 10.1097/QAD.0b013e328349bbf3 10.1080/24754269.2018.1466100 10.1016/j.jspi.2016.08.007 10.1093/biomet/asm044 10.1017/CBO9781139025751 10.1201/9780203748725 10.1111/biom.12679 10.1214/11-AOS962 10.1093/biomet/asu022 10.1080/01621459.1991.10475035 10.1080/01621459.1987.10478441 10.1080/01621459.2018.1520115 10.1214/17-AOS1561 |
ContentType | Journal Article |
Copyright | Published 2021. This article is a U.S. Government work and is in the public domain in the USA. 2021 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: Published 2021. This article is a U.S. Government work and is in the public domain in the USA. – notice: 2021 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION K9. 7X8 |
DOI | 10.1002/sim.9119 |
DatabaseName | CrossRef ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) CrossRef MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Statistics Public Health |
EISSN | 1097-0258 |
EndPage | 5198 |
ExternalDocumentID | 10_1002_sim_9119 SIM9119 |
Genre | article |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5RE 5VS 66C 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABOCM ABPVW ACAHQ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ SV3 TN5 UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WUP WWH WXSBR WYISQ XBAML XG1 XV2 ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGYGG AMVHM CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY K9. 7X8 |
ID | FETCH-LOGICAL-c3269-b81fd9fd88fe4e239d1f7cc6f75764be73f97e5dd0e70cc72cbfdef38a0c29273 |
IEDL.DBID | DR2 |
ISSN | 0277-6715 1097-0258 |
IngestDate | Fri Jul 11 09:39:13 EDT 2025 Sun Jul 20 04:40:37 EDT 2025 Tue Jul 01 03:28:17 EDT 2025 Thu Apr 24 23:03:53 EDT 2025 Wed Jan 22 16:27:41 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3269-b81fd9fd88fe4e239d1f7cc6f75764be73f97e5dd0e70cc72cbfdef38a0c29273 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5496-0611 |
PQID | 2582025461 |
PQPubID | 48361 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2545993538 proquest_journals_2582025461 crossref_primary_10_1002_sim_9119 crossref_citationtrail_10_1002_sim_9119 wiley_primary_10_1002_sim_9119_SIM9119 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 30 October 2021 |
PublicationDateYYYYMMDD | 2021-10-30 |
PublicationDate_xml | – month: 10 year: 2021 text: 30 October 2021 day: 30 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Statistics in medicine |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 1994; 23 2007; 94 2005; 61 2001; 88 2008; 95 2008; 70 2012; 107 2018; 46 2017; 73 2018; 2 1987; 82 2002; 64 2020 1991; 86 2017; 181 2018 2020; 117 2019; 114 2015 2009; 482 2011; 25 2005; 72 2013 2018; 78 2017; 104 2014; 76 2014; 101 2012; 40 e_1_2_7_6_1 Cook RD (e_1_2_7_22_1) 2009 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Wang T (e_1_2_7_18_1) 2013 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_23_1 e_1_2_7_21_1 e_1_2_7_20_1 |
References_xml | – volume: 104 start-page: 583 year: 2017 end-page: 596 article-title: Joint sufficient dimension reduction and estimation of conditional and average treatment effects publication-title: Biometrika – volume: 61 start-page: 74 year: 2005 end-page: 85 article-title: Multiple imputation for model checking: completed‐data plots with missing and latent data publication-title: Biometrics – volume: 78 start-page: 125 year: 2018 end-page: 135 article-title: Twenty‐five years of lamivudine: current and future use for the treatment of HIV‐1 infection publication-title: J Acquir Immune Defic Syndr – volume: 76 start-page: 243 year: 2014 end-page: 263 article-title: Covariate balancing propensity score publication-title: J R Stat Soc Ser B (Stat Methodol) – volume: 70 start-page: 849 year: 2008 end-page: 911 article-title: Sure independence screening for ultrahigh dimensional feature space publication-title: J R Stat Soc Ser B (Stat Methodol) – volume: 46 start-page: 580 year: 2018 end-page: 610 article-title: On consistency and sparsity for sliced inverse regression in high dimensions publication-title: Ann Stat – start-page: 543 year: 2013 end-page: 569 article-title: Penalized minimum average variance estimation publication-title: Stat Sin – volume: 72 start-page: 1 year: 2005 end-page: 19 article-title: Semiparametric difference‐in‐differences estimators publication-title: Rev Econ Stud – volume: 101 start-page: 613 year: 2014 end-page: 624 article-title: Estimation of mean response via the effective balancing score publication-title: Biometrika – volume: 181 start-page: 11 year: 2017 end-page: 29 article-title: Dimension reduction estimation for probability density with data missing at random when covariables are present publication-title: J Stat Plan Infer – year: 2018 – volume: 117 start-page: 19045 year: 2020 end-page: 19053 article-title: Nonstandard conditionally specified models for nonignorable missing data publication-title: Proc Natl Acad Sci – volume: 94 start-page: 603 year: 2007 end-page: 613 article-title: Sparse sufficient dimension reduction publication-title: Biometrika – volume: 73 start-page: 1111 year: 2017 end-page: 1122 article-title: Outcome‐adaptive lasso: variable selection for causal inference publication-title: Biometrics – volume: 482 year: 2009 – volume: 114 start-page: 1726 year: 2019 end-page: 1739 article-title: Sparse sliced inverse regression via lasso publication-title: J Am Stat Assoc – volume: 40 start-page: 353 year: 2012 end-page: 384 article-title: Estimating sufficient reductions of the predictors in abundant high‐dimensional regressions publication-title: Ann Stat – volume: 95 start-page: 481 year: 2008 end-page: 488 article-title: The prognostic analogue of the propensity score publication-title: Biometrika – volume: 107 start-page: 247 year: 2012 end-page: 257 article-title: Semiparametric double balancing score estimation for incomplete data with ignorable missingness publication-title: J Am Stat Assoc – year: 2020 – volume: 86 start-page: 316 year: 1991 end-page: 327 article-title: Sliced inverse regression for dimension reduction publication-title: J Am Stat Assoc – volume: 82 start-page: 387 year: 1987 end-page: 394 article-title: Model‐based direct adjustment publication-title: J Am Stat Assoc – volume: 64 start-page: 363 year: 2002 end-page: 410 article-title: An adaptive estimation of dimension reduction space publication-title: J R Stat Soc Ser B (Stat Methodol) – volume: 88 start-page: 381 year: 2001 end-page: 390 article-title: A simple resampling method by perturbing the minimand publication-title: Biometrika – volume: 2 start-page: 89 year: 2018 end-page: 95 article-title: Impact of sufficient dimension reduction in nonparametric estimation of causal effect publication-title: Stat Theory Related Fields – volume: 25 start-page: 1727 issue: 14 year: 2011 end-page: 1735 article-title: Impact of lamivudine on HIV and hepatitis B virus‐related outcomes in HIV/hepatitis B virus individuals in a randomized clinical trial of antiretroviral therapy in Southern Africa publication-title: Aids – volume: 23 start-page: 2379 year: 1994 end-page: 2412 article-title: Correcting for non‐compliance in randomized trials using structural nested mean models publication-title: Commun Stat Theory Methods – year: 2015 – ident: e_1_2_7_10_1 doi: 10.1080/03610929408831393 – ident: e_1_2_7_30_1 doi: 10.1073/pnas.1815563117 – ident: e_1_2_7_23_1 doi: 10.1201/9781315119427 – ident: e_1_2_7_8_1 doi: 10.1111/0034-6527.00321 – ident: e_1_2_7_26_1 doi: 10.1111/j.1467-9868.2008.00674.x – ident: e_1_2_7_27_1 doi: 10.1093/biomet/88.2.381 – ident: e_1_2_7_7_1 doi: 10.1093/biomet/asn004 – ident: e_1_2_7_11_1 doi: 10.1111/rssb.12027 – ident: e_1_2_7_25_1 – start-page: 543 year: 2013 ident: e_1_2_7_18_1 article-title: Penalized minimum average variance estimation publication-title: Stat Sin – ident: e_1_2_7_13_1 doi: 10.1093/biomet/asx028 – ident: e_1_2_7_28_1 doi: 10.1080/01621459.2012.656009 – ident: e_1_2_7_3_1 doi: 10.1097/QAI.0000000000001660 – ident: e_1_2_7_29_1 doi: 10.1111/j.0006-341X.2005.031010.x – ident: e_1_2_7_21_1 doi: 10.1111/1467-9868.03411 – ident: e_1_2_7_2_1 doi: 10.1097/QAD.0b013e328349bbf3 – ident: e_1_2_7_16_1 doi: 10.1080/24754269.2018.1466100 – ident: e_1_2_7_15_1 doi: 10.1016/j.jspi.2016.08.007 – ident: e_1_2_7_17_1 doi: 10.1093/biomet/asm044 – ident: e_1_2_7_4_1 doi: 10.1017/CBO9781139025751 – ident: e_1_2_7_24_1 doi: 10.1201/9780203748725 – ident: e_1_2_7_14_1 doi: 10.1111/biom.12679 – ident: e_1_2_7_5_1 doi: 10.1214/11-AOS962 – ident: e_1_2_7_12_1 doi: 10.1093/biomet/asu022 – ident: e_1_2_7_20_1 doi: 10.1080/01621459.1991.10475035 – ident: e_1_2_7_9_1 doi: 10.1080/01621459.1987.10478441 – ident: e_1_2_7_19_1 doi: 10.1080/01621459.2018.1520115 – ident: e_1_2_7_6_1 doi: 10.1214/17-AOS1561 – ident: e_1_2_7_31_1 – volume-title: Regression Graphics: Ideas for Studying Regressions Through Graphics year: 2009 ident: e_1_2_7_22_1 |
SSID | ssj0011527 |
Score | 2.363969 |
Snippet | Observational studies usually include participants representing the wide heterogeneous population. The conditional causal effect, treatment effect conditional... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5188 |
SubjectTerms | Antiretroviral drugs causal inference conditional causal effect dimension reduction high dimensionality nonparametric regression Nonparametric statistics sparse dimension reduction |
Title | Assessing conditional causal effect via characteristic score |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.9119 https://www.proquest.com/docview/2582025461 https://www.proquest.com/docview/2545993538 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6kBymIj6pYrRJB9JQ2r-0m4EXEUoV6UAsFDyHZBxS1FdN48Nc7k01aKwriaQ-ZvHZ3dr6dmf0G4CSIXJ9Jrm1PKdyg-K62I0WU-76QfsADxYqI6eC22x8GNyM2KrMq6SyM4YeYO9xIM4r1mhQ8SbPOgjQ0G7-0UVPp7B6lahEeupszR7lVtVaKUHa5yyreWcfrVDcuW6IFvPwKUgsr09uAx-r7THLJUzufpW3x8Y268X8_sAnrJfi0Lsxs2YIVNWnA6qAMrzdgzTjxLHM2qQF1gqKGyXkbzk18GE2dhXtoOTZOREskeYaNyQux3seJJZY4oK2MiDJ3YNi7erjs22XtBVsgoIvsNHS1jLQMQ60C5fmRdDUXoqs5blCCVHFfR1wxKR3FHSG4J1ItlfbDxBFehJhoF2qT6UTtgcUjqRiKOt3ExRXCT7gKE0YFKTROB8macFaNQyxKYnKqj_EcG0plL8aeiqmnmnA8l3w1ZBw_yLSqoYxLdcxijyHQIeZ_Fx8xv4yKRNGRZKKmOckEDMEaGoAmnBbj9us74vvrAbX7fxU8gLpHuTBk85wW1GZvuTpEMDNLj4pp-wnpj_DL |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZSwMxEB60ggriURWrVVcQfdp2rzQb9EVEqUd98AAfhGU3BxS1im198Nc7s9mtBwriUx529koymW9mkm8AtiPhh0xx4wZao4MS-sYVmij3Q6nCiEea5RnTzkWrfROd3rLbMdgrz8JYfohRwI00I1-vScEpIN38YA3tdx8bqKpiHCaooHfuT12OuKP8sl4r5Shb3Gcl86wXNMs7v9qiD4D5GabmduZ4Du7KL7TbS-4bw0HWkG_fyBv_-QvzMFvgT-fATpgFGNO9Kkx2igx7FWZsHM-xx5OqME1o1JI5L8K-TRGjtXPQjVZdG0d0ZDrsY2O3hjiv3dSRX2ignT5xZS7BzfHR9WHbLcovuBIxnXCz2DdKGBXHRkc6CIXyDZeyZTj6KFGmeWgE10wpT3NPSh7IzChtwjj1ZCAQFi1DpffU0yvgcKE0Q1Gvlfq4SIQp13HKqCaFwRmhWA12y4FIZMFNTiUyHhLLqhwk2FMJ9VQNtkaSz5aP4weZejmWSaGR_SRgiHWI_N_HR4wuoy5RgiTt6achyUQM8RragBrs5AP36zuSq5MOtat_FdyEqfZ15zw5P7k4W4PpgLbGkAn06lAZvAz1OmKbQbaRz-F37-r05g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB48QATxWBXXs4LoU3d7pWnAF1EXrxXxAMGH0uaARV3F3fXBX-9M064HCuJTHjq9kpnMl8zkG4CtSPghU9y4gda4QAl94wpNlPuhVGHEI82KiGn7PD66iU5u2W2ZVUlnYSw_xHDDjSyjmK_JwJ-VaX6QhvY6jw20VDEK41HsJaTRB5dD6ii_KtdKIcqY-6winvWCZnXnV1f0gS8_o9TCzbRm4K76QJtdct8Y9POGfPvG3fi_P5iF6RJ9OntWXeZgRHdrMNEu4-s1mLK7eI49nFSDScKilsp5HnZtgBh9nYOLaNWxu4iOzAY9bGxiiPPayRz5hQTa6RFT5gLctA6v94_csviCKxHRCTdPfKOEUUlidKSDUCjfcCljw3GFEuWah0ZwzZTyNPek5IHMjdImTDJPBgJB0SKMdZ-6egkcLpRmKOrFmY9TRJhxnWSMKlIY1AfF6rBTjUMqS2ZyKpDxkFpO5SDFnkqpp-qwOZR8tmwcP8isVkOZlvbYSwOGSIeo_318xPAyWhKFR7KufhqQTMQQraEHqMN2MW6_viO9Om5Tu_xXwQ2YuDhopWfH56crMBlQXgz5P28VxvovA72GwKafrxca_A47J_Oe |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessing+conditional+causal+effect+via+characteristic+score&rft.jtitle=Statistics+in+medicine&rft.au=Hu%2C+Zonghui&rft.date=2021-10-30&rft.issn=0277-6715&rft.eissn=1097-0258&rft.volume=40&rft.issue=24&rft.spage=5188&rft.epage=5198&rft_id=info:doi/10.1002%2Fsim.9119&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_sim_9119 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon |