Assessing conditional causal effect via characteristic score

Observational studies usually include participants representing the wide heterogeneous population. The conditional causal effect, treatment effect conditional on baseline characteristics, is of practical importance. Its estimation is subject to two challenges. First, the causal effect is not observa...

Full description

Saved in:
Bibliographic Details
Published inStatistics in medicine Vol. 40; no. 24; pp. 5188 - 5198
Main Author Hu, Zonghui
Format Journal Article
LanguageEnglish
Published New York Wiley Subscription Services, Inc 30.10.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Observational studies usually include participants representing the wide heterogeneous population. The conditional causal effect, treatment effect conditional on baseline characteristics, is of practical importance. Its estimation is subject to two challenges. First, the causal effect is not observable in any individual due to counterfactuality. Second, high‐dimensional baseline variables are involved to satisfy the ignorable treatment selection assumption and to attain better estimation efficiency. In this work, a nonparametric estimation procedure, along with a pseudo‐response, is proposed to estimate the conditional treatment effect through “characteristic score”—a parsimonious representation of baseline variable influence on treatment benefit. Adopting sparse dimension reduction with variable prescreening in the proposed estimation, we aim to identify the key baseline variables that impact the conditional treatment effect and to uncover the characteristic score that best predicts the treatment effect. This approach is applied to an HIV study for assessing the benefit of antiretroviral regimens and identifying the beneficiary subpopulation.
AbstractList Observational studies usually include participants representing the wide heterogeneous population. The conditional causal effect, treatment effect conditional on baseline characteristics, is of practical importance. Its estimation is subject to two challenges. First, the causal effect is not observable in any individual due to counterfactuality. Second, high‐dimensional baseline variables are involved to satisfy the ignorable treatment selection assumption and to attain better estimation efficiency. In this work, a nonparametric estimation procedure, along with a pseudo‐response, is proposed to estimate the conditional treatment effect through “characteristic score”—a parsimonious representation of baseline variable influence on treatment benefit. Adopting sparse dimension reduction with variable prescreening in the proposed estimation, we aim to identify the key baseline variables that impact the conditional treatment effect and to uncover the characteristic score that best predicts the treatment effect. This approach is applied to an HIV study for assessing the benefit of antiretroviral regimens and identifying the beneficiary subpopulation.
Observational studies usually include participants representing the wide heterogeneous population. The conditional causal effect, treatment effect conditional on baseline characteristics, is of practical importance. Its estimation is subject to two challenges. First, the causal effect is not observable in any individual due to counterfactuality. Second, high-dimensional baseline variables are involved to satisfy the ignorable treatment selection assumption and to attain better estimation efficiency. In this work, a nonparametric estimation procedure, along with a pseudo-response, is proposed to estimate the conditional treatment effect through "characteristic score"-a parsimonious representation of baseline variable influence on treatment benefit. Adopting sparse dimension reduction with variable prescreening in the proposed estimation, we aim to identify the key baseline variables that impact the conditional treatment effect and to uncover the characteristic score that best predicts the treatment effect. This approach is applied to an HIV study for assessing the benefit of antiretroviral regimens and identifying the beneficiary subpopulation.Observational studies usually include participants representing the wide heterogeneous population. The conditional causal effect, treatment effect conditional on baseline characteristics, is of practical importance. Its estimation is subject to two challenges. First, the causal effect is not observable in any individual due to counterfactuality. Second, high-dimensional baseline variables are involved to satisfy the ignorable treatment selection assumption and to attain better estimation efficiency. In this work, a nonparametric estimation procedure, along with a pseudo-response, is proposed to estimate the conditional treatment effect through "characteristic score"-a parsimonious representation of baseline variable influence on treatment benefit. Adopting sparse dimension reduction with variable prescreening in the proposed estimation, we aim to identify the key baseline variables that impact the conditional treatment effect and to uncover the characteristic score that best predicts the treatment effect. This approach is applied to an HIV study for assessing the benefit of antiretroviral regimens and identifying the beneficiary subpopulation.
Author Hu, Zonghui
Author_xml – sequence: 1
  givenname: Zonghui
  orcidid: 0000-0001-5496-0611
  surname: Hu
  fullname: Hu, Zonghui
  email: huzo@niaid.nih.gov
  organization: National Institutes of Health
BookMark eNp1kF1LwzAYhYNMcJuCP6HgjTedSbo0DXgzhh-DiRfqdcjevtGMrplJq-zf2zpBGHp1bp5z4DwjMqh9jYScMzphlPKr6DYTxZg6IkNGlUwpF8WADCmXMs0lEydkFOOaUsYEl0NyPYsRY3T1awK-Ll3jfG2qBEwbu0BrEZrkw5kE3kww0GBwsXGQRPABT8mxNVXEs58ck5fbm-f5fbp8vFvMZ8sUMp6rdFUwWypbFoXFKfJMlcxKgNxKIfPpCmVmlURRlhQlBZAcVrZEmxWGAldcZmNyud_dBv_eYmz0xkXAqjI1-jZqLqZCqUxkRYdeHKBr34buUk8VvLMxzdnvIAQfY0Crt8FtTNhpRnWvUXcada-xQycHKLjG9JqaYFz1VyHdFz5dhbt_h_XT4uGb_wILbYV7
CitedBy_id crossref_primary_10_1093_jrsssc_qlad108
Cites_doi 10.1080/03610929408831393
10.1073/pnas.1815563117
10.1201/9781315119427
10.1111/0034-6527.00321
10.1111/j.1467-9868.2008.00674.x
10.1093/biomet/88.2.381
10.1093/biomet/asn004
10.1111/rssb.12027
10.1093/biomet/asx028
10.1080/01621459.2012.656009
10.1097/QAI.0000000000001660
10.1111/j.0006-341X.2005.031010.x
10.1111/1467-9868.03411
10.1097/QAD.0b013e328349bbf3
10.1080/24754269.2018.1466100
10.1016/j.jspi.2016.08.007
10.1093/biomet/asm044
10.1017/CBO9781139025751
10.1201/9780203748725
10.1111/biom.12679
10.1214/11-AOS962
10.1093/biomet/asu022
10.1080/01621459.1991.10475035
10.1080/01621459.1987.10478441
10.1080/01621459.2018.1520115
10.1214/17-AOS1561
ContentType Journal Article
Copyright Published 2021. This article is a U.S. Government work and is in the public domain in the USA.
2021 John Wiley & Sons, Ltd.
Copyright_xml – notice: Published 2021. This article is a U.S. Government work and is in the public domain in the USA.
– notice: 2021 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
K9.
7X8
DOI 10.1002/sim.9119
DatabaseName CrossRef
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
CrossRef

MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
Public Health
EISSN 1097-0258
EndPage 5198
ExternalDocumentID 10_1002_sim_9119
SIM9119
Genre article
GroupedDBID ---
.3N
.GA
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5RE
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABOCM
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
SV3
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WUP
WWH
WXSBR
WYISQ
XBAML
XG1
XV2
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
AMVHM
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
K9.
7X8
ID FETCH-LOGICAL-c3269-b81fd9fd88fe4e239d1f7cc6f75764be73f97e5dd0e70cc72cbfdef38a0c29273
IEDL.DBID DR2
ISSN 0277-6715
1097-0258
IngestDate Fri Jul 11 09:39:13 EDT 2025
Sun Jul 20 04:40:37 EDT 2025
Tue Jul 01 03:28:17 EDT 2025
Thu Apr 24 23:03:53 EDT 2025
Wed Jan 22 16:27:41 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3269-b81fd9fd88fe4e239d1f7cc6f75764be73f97e5dd0e70cc72cbfdef38a0c29273
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5496-0611
PQID 2582025461
PQPubID 48361
PageCount 11
ParticipantIDs proquest_miscellaneous_2545993538
proquest_journals_2582025461
crossref_primary_10_1002_sim_9119
crossref_citationtrail_10_1002_sim_9119
wiley_primary_10_1002_sim_9119_SIM9119
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 30 October 2021
PublicationDateYYYYMMDD 2021-10-30
PublicationDate_xml – month: 10
  year: 2021
  text: 30 October 2021
  day: 30
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Statistics in medicine
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1994; 23
2007; 94
2005; 61
2001; 88
2008; 95
2008; 70
2012; 107
2018; 46
2017; 73
2018; 2
1987; 82
2002; 64
2020
1991; 86
2017; 181
2018
2020; 117
2019; 114
2015
2009; 482
2011; 25
2005; 72
2013
2018; 78
2017; 104
2014; 76
2014; 101
2012; 40
e_1_2_7_6_1
Cook RD (e_1_2_7_22_1) 2009
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Wang T (e_1_2_7_18_1) 2013
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_23_1
e_1_2_7_21_1
e_1_2_7_20_1
References_xml – volume: 104
  start-page: 583
  year: 2017
  end-page: 596
  article-title: Joint sufficient dimension reduction and estimation of conditional and average treatment effects
  publication-title: Biometrika
– volume: 61
  start-page: 74
  year: 2005
  end-page: 85
  article-title: Multiple imputation for model checking: completed‐data plots with missing and latent data
  publication-title: Biometrics
– volume: 78
  start-page: 125
  year: 2018
  end-page: 135
  article-title: Twenty‐five years of lamivudine: current and future use for the treatment of HIV‐1 infection
  publication-title: J Acquir Immune Defic Syndr
– volume: 76
  start-page: 243
  year: 2014
  end-page: 263
  article-title: Covariate balancing propensity score
  publication-title: J R Stat Soc Ser B (Stat Methodol)
– volume: 70
  start-page: 849
  year: 2008
  end-page: 911
  article-title: Sure independence screening for ultrahigh dimensional feature space
  publication-title: J R Stat Soc Ser B (Stat Methodol)
– volume: 46
  start-page: 580
  year: 2018
  end-page: 610
  article-title: On consistency and sparsity for sliced inverse regression in high dimensions
  publication-title: Ann Stat
– start-page: 543
  year: 2013
  end-page: 569
  article-title: Penalized minimum average variance estimation
  publication-title: Stat Sin
– volume: 72
  start-page: 1
  year: 2005
  end-page: 19
  article-title: Semiparametric difference‐in‐differences estimators
  publication-title: Rev Econ Stud
– volume: 101
  start-page: 613
  year: 2014
  end-page: 624
  article-title: Estimation of mean response via the effective balancing score
  publication-title: Biometrika
– volume: 181
  start-page: 11
  year: 2017
  end-page: 29
  article-title: Dimension reduction estimation for probability density with data missing at random when covariables are present
  publication-title: J Stat Plan Infer
– year: 2018
– volume: 117
  start-page: 19045
  year: 2020
  end-page: 19053
  article-title: Nonstandard conditionally specified models for nonignorable missing data
  publication-title: Proc Natl Acad Sci
– volume: 94
  start-page: 603
  year: 2007
  end-page: 613
  article-title: Sparse sufficient dimension reduction
  publication-title: Biometrika
– volume: 73
  start-page: 1111
  year: 2017
  end-page: 1122
  article-title: Outcome‐adaptive lasso: variable selection for causal inference
  publication-title: Biometrics
– volume: 482
  year: 2009
– volume: 114
  start-page: 1726
  year: 2019
  end-page: 1739
  article-title: Sparse sliced inverse regression via lasso
  publication-title: J Am Stat Assoc
– volume: 40
  start-page: 353
  year: 2012
  end-page: 384
  article-title: Estimating sufficient reductions of the predictors in abundant high‐dimensional regressions
  publication-title: Ann Stat
– volume: 95
  start-page: 481
  year: 2008
  end-page: 488
  article-title: The prognostic analogue of the propensity score
  publication-title: Biometrika
– volume: 107
  start-page: 247
  year: 2012
  end-page: 257
  article-title: Semiparametric double balancing score estimation for incomplete data with ignorable missingness
  publication-title: J Am Stat Assoc
– year: 2020
– volume: 86
  start-page: 316
  year: 1991
  end-page: 327
  article-title: Sliced inverse regression for dimension reduction
  publication-title: J Am Stat Assoc
– volume: 82
  start-page: 387
  year: 1987
  end-page: 394
  article-title: Model‐based direct adjustment
  publication-title: J Am Stat Assoc
– volume: 64
  start-page: 363
  year: 2002
  end-page: 410
  article-title: An adaptive estimation of dimension reduction space
  publication-title: J R Stat Soc Ser B (Stat Methodol)
– volume: 88
  start-page: 381
  year: 2001
  end-page: 390
  article-title: A simple resampling method by perturbing the minimand
  publication-title: Biometrika
– volume: 2
  start-page: 89
  year: 2018
  end-page: 95
  article-title: Impact of sufficient dimension reduction in nonparametric estimation of causal effect
  publication-title: Stat Theory Related Fields
– volume: 25
  start-page: 1727
  issue: 14
  year: 2011
  end-page: 1735
  article-title: Impact of lamivudine on HIV and hepatitis B virus‐related outcomes in HIV/hepatitis B virus individuals in a randomized clinical trial of antiretroviral therapy in Southern Africa
  publication-title: Aids
– volume: 23
  start-page: 2379
  year: 1994
  end-page: 2412
  article-title: Correcting for non‐compliance in randomized trials using structural nested mean models
  publication-title: Commun Stat Theory Methods
– year: 2015
– ident: e_1_2_7_10_1
  doi: 10.1080/03610929408831393
– ident: e_1_2_7_30_1
  doi: 10.1073/pnas.1815563117
– ident: e_1_2_7_23_1
  doi: 10.1201/9781315119427
– ident: e_1_2_7_8_1
  doi: 10.1111/0034-6527.00321
– ident: e_1_2_7_26_1
  doi: 10.1111/j.1467-9868.2008.00674.x
– ident: e_1_2_7_27_1
  doi: 10.1093/biomet/88.2.381
– ident: e_1_2_7_7_1
  doi: 10.1093/biomet/asn004
– ident: e_1_2_7_11_1
  doi: 10.1111/rssb.12027
– ident: e_1_2_7_25_1
– start-page: 543
  year: 2013
  ident: e_1_2_7_18_1
  article-title: Penalized minimum average variance estimation
  publication-title: Stat Sin
– ident: e_1_2_7_13_1
  doi: 10.1093/biomet/asx028
– ident: e_1_2_7_28_1
  doi: 10.1080/01621459.2012.656009
– ident: e_1_2_7_3_1
  doi: 10.1097/QAI.0000000000001660
– ident: e_1_2_7_29_1
  doi: 10.1111/j.0006-341X.2005.031010.x
– ident: e_1_2_7_21_1
  doi: 10.1111/1467-9868.03411
– ident: e_1_2_7_2_1
  doi: 10.1097/QAD.0b013e328349bbf3
– ident: e_1_2_7_16_1
  doi: 10.1080/24754269.2018.1466100
– ident: e_1_2_7_15_1
  doi: 10.1016/j.jspi.2016.08.007
– ident: e_1_2_7_17_1
  doi: 10.1093/biomet/asm044
– ident: e_1_2_7_4_1
  doi: 10.1017/CBO9781139025751
– ident: e_1_2_7_24_1
  doi: 10.1201/9780203748725
– ident: e_1_2_7_14_1
  doi: 10.1111/biom.12679
– ident: e_1_2_7_5_1
  doi: 10.1214/11-AOS962
– ident: e_1_2_7_12_1
  doi: 10.1093/biomet/asu022
– ident: e_1_2_7_20_1
  doi: 10.1080/01621459.1991.10475035
– ident: e_1_2_7_9_1
  doi: 10.1080/01621459.1987.10478441
– ident: e_1_2_7_19_1
  doi: 10.1080/01621459.2018.1520115
– ident: e_1_2_7_6_1
  doi: 10.1214/17-AOS1561
– ident: e_1_2_7_31_1
– volume-title: Regression Graphics: Ideas for Studying Regressions Through Graphics
  year: 2009
  ident: e_1_2_7_22_1
SSID ssj0011527
Score 2.363969
Snippet Observational studies usually include participants representing the wide heterogeneous population. The conditional causal effect, treatment effect conditional...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5188
SubjectTerms Antiretroviral drugs
causal inference
conditional causal effect
dimension reduction
high dimensionality
nonparametric regression
Nonparametric statistics
sparse dimension reduction
Title Assessing conditional causal effect via characteristic score
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.9119
https://www.proquest.com/docview/2582025461
https://www.proquest.com/docview/2545993538
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6kBymIj6pYrRJB9JQ2r-0m4EXEUoV6UAsFDyHZBxS1FdN48Nc7k01aKwriaQ-ZvHZ3dr6dmf0G4CSIXJ9Jrm1PKdyg-K62I0WU-76QfsADxYqI6eC22x8GNyM2KrMq6SyM4YeYO9xIM4r1mhQ8SbPOgjQ0G7-0UVPp7B6lahEeupszR7lVtVaKUHa5yyreWcfrVDcuW6IFvPwKUgsr09uAx-r7THLJUzufpW3x8Y268X8_sAnrJfi0Lsxs2YIVNWnA6qAMrzdgzTjxLHM2qQF1gqKGyXkbzk18GE2dhXtoOTZOREskeYaNyQux3seJJZY4oK2MiDJ3YNi7erjs22XtBVsgoIvsNHS1jLQMQ60C5fmRdDUXoqs5blCCVHFfR1wxKR3FHSG4J1ItlfbDxBFehJhoF2qT6UTtgcUjqRiKOt3ExRXCT7gKE0YFKTROB8macFaNQyxKYnKqj_EcG0plL8aeiqmnmnA8l3w1ZBw_yLSqoYxLdcxijyHQIeZ_Fx8xv4yKRNGRZKKmOckEDMEaGoAmnBbj9us74vvrAbX7fxU8gLpHuTBk85wW1GZvuTpEMDNLj4pp-wnpj_DL
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZSwMxEB60ggriURWrVVcQfdp2rzQb9EVEqUd98AAfhGU3BxS1im198Nc7s9mtBwriUx529koymW9mkm8AtiPhh0xx4wZao4MS-sYVmij3Q6nCiEea5RnTzkWrfROd3rLbMdgrz8JYfohRwI00I1-vScEpIN38YA3tdx8bqKpiHCaooHfuT12OuKP8sl4r5Shb3Gcl86wXNMs7v9qiD4D5GabmduZ4Du7KL7TbS-4bw0HWkG_fyBv_-QvzMFvgT-fATpgFGNO9Kkx2igx7FWZsHM-xx5OqME1o1JI5L8K-TRGjtXPQjVZdG0d0ZDrsY2O3hjiv3dSRX2ignT5xZS7BzfHR9WHbLcovuBIxnXCz2DdKGBXHRkc6CIXyDZeyZTj6KFGmeWgE10wpT3NPSh7IzChtwjj1ZCAQFi1DpffU0yvgcKE0Q1Gvlfq4SIQp13HKqCaFwRmhWA12y4FIZMFNTiUyHhLLqhwk2FMJ9VQNtkaSz5aP4weZejmWSaGR_SRgiHWI_N_HR4wuoy5RgiTt6achyUQM8RragBrs5AP36zuSq5MOtat_FdyEqfZ15zw5P7k4W4PpgLbGkAn06lAZvAz1OmKbQbaRz-F37-r05g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB48QATxWBXXs4LoU3d7pWnAF1EXrxXxAMGH0uaARV3F3fXBX-9M064HCuJTHjq9kpnMl8zkG4CtSPghU9y4gda4QAl94wpNlPuhVGHEI82KiGn7PD66iU5u2W2ZVUlnYSw_xHDDjSyjmK_JwJ-VaX6QhvY6jw20VDEK41HsJaTRB5dD6ii_KtdKIcqY-6winvWCZnXnV1f0gS8_o9TCzbRm4K76QJtdct8Y9POGfPvG3fi_P5iF6RJ9OntWXeZgRHdrMNEu4-s1mLK7eI49nFSDScKilsp5HnZtgBh9nYOLaNWxu4iOzAY9bGxiiPPayRz5hQTa6RFT5gLctA6v94_csviCKxHRCTdPfKOEUUlidKSDUCjfcCljw3GFEuWah0ZwzZTyNPek5IHMjdImTDJPBgJB0SKMdZ-6egkcLpRmKOrFmY9TRJhxnWSMKlIY1AfF6rBTjUMqS2ZyKpDxkFpO5SDFnkqpp-qwOZR8tmwcP8isVkOZlvbYSwOGSIeo_318xPAyWhKFR7KufhqQTMQQraEHqMN2MW6_viO9Om5Tu_xXwQ2YuDhopWfH56crMBlQXgz5P28VxvovA72GwKafrxca_A47J_Oe
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessing+conditional+causal+effect+via+characteristic+score&rft.jtitle=Statistics+in+medicine&rft.au=Hu%2C+Zonghui&rft.date=2021-10-30&rft.issn=0277-6715&rft.eissn=1097-0258&rft.volume=40&rft.issue=24&rft.spage=5188&rft.epage=5198&rft_id=info:doi/10.1002%2Fsim.9119&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_sim_9119
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon