Upper endoscopy photodocumentation quality evaluation with novel deep learning system

Objectives Visualization and photodocumentation during endoscopy procedures are suggested to be one indicator for endoscopy performance quality. However, this indicator is difficult to measure and audit manually in clinical practice. Artificial intelligence (AI) is an emerging technology that may so...

Full description

Saved in:
Bibliographic Details
Published inDigestive endoscopy Vol. 34; no. 5; pp. 994 - 1001
Main Authors Chang, Yuan‐Yen, Yen, Hsu‐Heng, Li, Pai‐Chi, Chang, Ruey‐Feng, Yang, Chia Wei, Chen, Yang‐Yuan, Chang, Wen‐Yen
Format Journal Article
LanguageEnglish
Published 01.07.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Objectives Visualization and photodocumentation during endoscopy procedures are suggested to be one indicator for endoscopy performance quality. However, this indicator is difficult to measure and audit manually in clinical practice. Artificial intelligence (AI) is an emerging technology that may solve this problem. Methods A deep learning model with an accuracy of 96.64% was developed from 15,305 images for upper endoscopy anatomy classification in the unit. Endoscopy images for asymptomatic patients receiving screening endoscopy were evaluated with this model to assess the completeness of photodocumentation rate. Results A total of 15,723 images from 472 upper endoscopies performed by 12 endoscopists were enrolled. The complete photodocumentation rate from the pharynx to the duodenum was 53.8% and from the esophagus to the duodenum was 78.0% in this study. Endoscopists with a higher adenoma detection rate had a higher complete examination rate from the pharynx to duodenum (60.0% vs. 38.7%, P < 0.0001) and from esophagus to duodenum (83.0% vs. 65.7%, P < 0.0001) compared with endoscopists with lower adenoma detection rate. The pharynx, gastric angle, gastric retroflex view, gastric antrum, and the first portion of duodenum are likely to be missed by endoscopists with lower adenoma detection rates. Conclusions We report the use of a deep learning model to audit endoscopy photodocumentation quality in our unit. Endoscopists with better performance in colonoscopy had a better performance for this quality indicator. The use of such an AI system may help the endoscopy unit audit endoscopy performance.
AbstractList Objectives Visualization and photodocumentation during endoscopy procedures are suggested to be one indicator for endoscopy performance quality. However, this indicator is difficult to measure and audit manually in clinical practice. Artificial intelligence (AI) is an emerging technology that may solve this problem. Methods A deep learning model with an accuracy of 96.64% was developed from 15,305 images for upper endoscopy anatomy classification in the unit. Endoscopy images for asymptomatic patients receiving screening endoscopy were evaluated with this model to assess the completeness of photodocumentation rate. Results A total of 15,723 images from 472 upper endoscopies performed by 12 endoscopists were enrolled. The complete photodocumentation rate from the pharynx to the duodenum was 53.8% and from the esophagus to the duodenum was 78.0% in this study. Endoscopists with a higher adenoma detection rate had a higher complete examination rate from the pharynx to duodenum (60.0% vs. 38.7%, P < 0.0001) and from esophagus to duodenum (83.0% vs. 65.7%, P < 0.0001) compared with endoscopists with lower adenoma detection rate. The pharynx, gastric angle, gastric retroflex view, gastric antrum, and the first portion of duodenum are likely to be missed by endoscopists with lower adenoma detection rates. Conclusions We report the use of a deep learning model to audit endoscopy photodocumentation quality in our unit. Endoscopists with better performance in colonoscopy had a better performance for this quality indicator. The use of such an AI system may help the endoscopy unit audit endoscopy performance.
Visualization and photodocumentation during endoscopy procedures are suggested to be one indicator for endoscopy performance quality. However, this indicator is difficult to measure and audit manually in clinical practice. Artificial intelligence (AI) is an emerging technology that may solve this problem.OBJECTIVESVisualization and photodocumentation during endoscopy procedures are suggested to be one indicator for endoscopy performance quality. However, this indicator is difficult to measure and audit manually in clinical practice. Artificial intelligence (AI) is an emerging technology that may solve this problem.A deep learning model with an accuracy of 96.64% was developed from 15,305 images for upper endoscopy anatomy classification in the unit. Endoscopy images for asymptomatic patients receiving screening endoscopy were evaluated with this model to assess the completeness of photodocumentation rate.METHODSA deep learning model with an accuracy of 96.64% was developed from 15,305 images for upper endoscopy anatomy classification in the unit. Endoscopy images for asymptomatic patients receiving screening endoscopy were evaluated with this model to assess the completeness of photodocumentation rate.A total of 15,723 images from 472 upper endoscopies performed by 12 endoscopists were enrolled. The complete photodocumentation rate from the pharynx to the duodenum was 53.8% and from the esophagus to the duodenum was 78.0% in this study. Endoscopists with a higher adenoma detection rate had a higher complete examination rate from the pharynx to duodenum (60.0% vs. 38.7%, P < 0.0001) and from esophagus to duodenum (83.0% vs. 65.7%, P < 0.0001) compared with endoscopists with lower adenoma detection rate. The pharynx, gastric angle, gastric retroflex view, gastric antrum, and the first portion of duodenum are likely to be missed by endoscopists with lower adenoma detection rates.RESULTSA total of 15,723 images from 472 upper endoscopies performed by 12 endoscopists were enrolled. The complete photodocumentation rate from the pharynx to the duodenum was 53.8% and from the esophagus to the duodenum was 78.0% in this study. Endoscopists with a higher adenoma detection rate had a higher complete examination rate from the pharynx to duodenum (60.0% vs. 38.7%, P < 0.0001) and from esophagus to duodenum (83.0% vs. 65.7%, P < 0.0001) compared with endoscopists with lower adenoma detection rate. The pharynx, gastric angle, gastric retroflex view, gastric antrum, and the first portion of duodenum are likely to be missed by endoscopists with lower adenoma detection rates.We report the use of a deep learning model to audit endoscopy photodocumentation quality in our unit. Endoscopists with better performance in colonoscopy had a better performance for this quality indicator. The use of such an AI system may help the endoscopy unit audit endoscopy performance.CONCLUSIONSWe report the use of a deep learning model to audit endoscopy photodocumentation quality in our unit. Endoscopists with better performance in colonoscopy had a better performance for this quality indicator. The use of such an AI system may help the endoscopy unit audit endoscopy performance.
Author Yen, Hsu‐Heng
Chang, Wen‐Yen
Chen, Yang‐Yuan
Chang, Yuan‐Yen
Li, Pai‐Chi
Chang, Ruey‐Feng
Yang, Chia Wei
Author_xml – sequence: 1
  givenname: Yuan‐Yen
  surname: Chang
  fullname: Chang, Yuan‐Yen
  organization: National Taiwan University
– sequence: 2
  givenname: Hsu‐Heng
  orcidid: 0000-0002-3494-2245
  surname: Yen
  fullname: Yen, Hsu‐Heng
  email: 91646@cch.org.tw
  organization: National Chung Hsing University
– sequence: 3
  givenname: Pai‐Chi
  surname: Li
  fullname: Li, Pai‐Chi
  organization: National Taiwan University
– sequence: 4
  givenname: Ruey‐Feng
  orcidid: 0000-0002-2086-0097
  surname: Chang
  fullname: Chang, Ruey‐Feng
  email: rfchang@csie.ntu.edu.tw
  organization: Changhua Christian Hospital
– sequence: 5
  givenname: Chia Wei
  surname: Yang
  fullname: Yang, Chia Wei
  organization: Changhua Christian Hospital
– sequence: 6
  givenname: Yang‐Yuan
  surname: Chen
  fullname: Chen, Yang‐Yuan
  organization: Changhua Christian Hospital
– sequence: 7
  givenname: Wen‐Yen
  surname: Chang
  fullname: Chang, Wen‐Yen
  organization: National Taiwan University Hospital
BookMark eNp9kD1PwzAQhi1UJNrCwD_wCENaO7GdeESlfEgVLHS2XOdKjVw7jZNW-fcEwoQEt5x0et5Xp2eCRj54QOiakhntZ16Cn1FGc3mGxpSxLKFC0BEaE0l5wkXGL9Akxg9CaCoZG6P1uqqgxuDLEE2oOlztQhPKYNo9-EY3Nnh8aLWzTYfhqF07nE622WEfjuBwCVBhB7r21r_j2MUG9pfofKtdhKufPUXrh-Xb4ilZvT4-L-5WiclSIRORbTei_5oQLqHYyJIbTogQpRBAcp3yUgtDc1HoTDPGUlby3AieE5kXosjTbIpuht6qDocWYqP2NhpwTnsIbVQpl4RmouCyR28H1NQhxhq2qqrtXtedokR9qVO9OvWtrmfnv1hjBxdNra37L3GyDrq_q9X98mVIfALLu4IY
CitedBy_id crossref_primary_10_3390_cancers14081918
crossref_primary_10_3389_fonc_2022_972357
crossref_primary_10_1016_j_bspc_2023_105911
crossref_primary_10_1111_den_14649
crossref_primary_10_3390_diagnostics12112827
crossref_primary_10_5009_gnl210479
crossref_primary_10_1007_s00464_021_08993_y
crossref_primary_10_2147_IJGM_S481127
crossref_primary_10_1097_MOG_0000000000000957
crossref_primary_10_1002_hed_27370
Cites_doi 10.1016/j.gie.2014.07.052
10.1055/a-0662-5523
10.1109/TSMCB.2011.2106208
10.1177/2050640618810242
10.7326/M19-1795
10.1016/j.gie.2020.03.3865
10.1055/s-0042-113128
10.1159/000477739
10.1111/den.13530
10.1016/j.ijmedinf.2019.03.012
10.1186/s12885-020-6558-4
10.1016/j.cgh.2014.07.059
10.1136/gutjnl-2013-306503
10.1002/jgh3.12124
10.1111/jgh.15344
10.1055/s-0042-100185
10.1055/s-2001-42537
10.1007/s00464‐021‐08698‐2
10.1016/j.vgie.2020.08.013
10.1136/gutjnl-2015-310256
10.1136/flgastro-2014-100537
10.1007/s00464‐020‐08236‐6
10.1016/j.gie.2018.11.014
10.1053/j.gastro.2017.05.009
10.1177/1756284820916693
10.1038/s41598-018-25842-6
10.3390/jcm10163527
10.7717/peerj.9537
10.1136/gutjnl-2017-314109
10.1111/den.12804
10.1136/gutjnl-2020-322545
10.1007/s40846-021-00608-0
10.1097/MEG.0000000000000657
10.1055/a-1312-6389
ContentType Journal Article
Copyright 2021 Japan Gastroenterological Endoscopy Society
2021 Japan Gastroenterological Endoscopy Society.
Copyright_xml – notice: 2021 Japan Gastroenterological Endoscopy Society
– notice: 2021 Japan Gastroenterological Endoscopy Society.
DBID AAYXX
CITATION
7X8
DOI 10.1111/den.14179
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1443-1661
EndPage 1001
ExternalDocumentID 10_1111_den_14179
DEN14179
Genre article
GrantInformation_xml – fundername: Changhua Christian Hospital
  funderid: 109‐CCH‐IRP‐008 and 110‐CCH‐IRP‐020
– fundername: Ministry of Science and Technology, Taiwan
  funderid: 109‐2634‐F‐002‐026; 110‐2634‐F‐002‐009
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29G
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DTERQ
DU5
EAD
EAP
EBD
EBS
EJD
EMK
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
YFH
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7X8
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
ID FETCH-LOGICAL-c3269-63fb61110059e8b9d5c50066d66e07a25da6c1768a3a44424d57c657097868723
IEDL.DBID DR2
ISSN 0915-5635
1443-1661
IngestDate Fri Jul 11 16:34:09 EDT 2025
Tue Jul 01 00:42:24 EDT 2025
Thu Apr 24 22:57:10 EDT 2025
Wed Jan 22 16:25:30 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3269-63fb61110059e8b9d5c50066d66e07a25da6c1768a3a44424d57c657097868723
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2086-0097
0000-0002-3494-2245
PQID 2590136859
PQPubID 23479
PageCount 1001
ParticipantIDs proquest_miscellaneous_2590136859
crossref_primary_10_1111_den_14179
crossref_citationtrail_10_1111_den_14179
wiley_primary_10_1111_den_14179_DEN14179
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2022
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: July 2022
PublicationDecade 2020
PublicationTitle Digestive endoscopy
PublicationYear 2022
References 2015; 13
2019; 7
2019; 3
2019; 51
2020; 20
2017; 66
2017; 24
2019; 126
2020; 13
2017; 29
2017; 153
2020; 32
2021; 70
2020; 8
2021; 36
2016; 7
2020; 5
2018; 8
2021; 10
2021; 53
2015; 81
2021
2020
2015; 64
2020; 92
2019; 89
2011; 41
2001; 33
2016; 28
2019; 171
2021; 41
2016; 48
Rutter MD (e_1_2_8_14_1) 2016; 48
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 153
  start-page: 460
  year: 2017
  end-page: 9
  article-title: Longer observation time increases proportion of neoplasms detected by esophagogastroduodenoscopy
  publication-title: Gastroenterology
– volume: 48
  start-page: 241
  year: 2016
  end-page: 7
  article-title: Endoscopist characteristics that influence the quality of colonoscopy
  publication-title: Endoscopy
– volume: 7
  start-page: 67
  year: 2016
  end-page: 72
  article-title: Changing trends in the UK management of upper GI bleeding: Is there evidence of reduced UK training experience?
  publication-title: Frontline Gastroenterol
– volume: 41
  start-page: 504
  year: 2021
  end-page: 13
  article-title: Performance comparison of the deep learning and the human endoscopist for bleeding peptic ulcer disease
  publication-title: J Med Biol Eng
– volume: 64
  start-page: 121
  year: 2015
  end-page: 32
  article-title: An updated Asia Pacific Consensus Recommendations on colorectal cancer screening
  publication-title: Gut
– year: 2021
  article-title: Deep learning‐based endoscopic anatomy classification: An accelerated approach for data preparation and model validation
  publication-title: Surg Endosc
– volume: 10
  start-page: 3527
  year: 2021
  article-title: Current status and future perspective of artificial intelligence in the management of peptic ulcer bleeding: A review of recent literature
  publication-title: J Clin Med
– volume: 5
  start-page: 598
  year: 2020
  end-page: 613
  article-title: Artificial intelligence in gastrointestinal endoscopy
  publication-title: VideoGIE
– volume: 36
  start-page: 5
  year: 2021
  end-page: 6
  article-title: Artificial intelligence in gastrointestinal endoscopy
  publication-title: J Gastroenterol Hepatol
– volume: 13
  year: 2020
  article-title: Quality indicators in diagnostic upper gastrointestinal endoscopy
  publication-title: Therap Adv Gastroenterol
– volume: 32
  start-page: 168
  year: 2020
  end-page: 79
  article-title: Principles and practice to facilitate complete photodocumentation of the upper gastrointestinal tract: World Endoscopy Organization position statement
  publication-title: Dig Endosc
– volume: 20
  start-page: 69
  year: 2020
  article-title: Superiority of NBI endoscopy to PET/CT scan in detecting esophageal cancer among head and neck cancer patients: A retrospective cohort analysis
  publication-title: BMC Cancer
– volume: 48
  start-page: 843
  year: 2016
  end-page: 64
  article-title: Performance measures for upper gastrointestinal endoscopy: A European Society of Gastrointestinal Endoscopy (ESGE) Quality Improvement Initiative
  publication-title: Endoscopy
– volume: 70
  start-page: 2321
  year: 2021
  end-page: 9
  article-title: Long‐term effectiveness of faecal immunochemical test screening for proximal and distal colorectal cancers
  publication-title: Gut
– volume: 24
  start-page: 269
  year: 2017
  end-page: 74
  article-title: Image documentation in gastrointestinal endoscopy: Review of recommendations
  publication-title: GE Port J Gastroenterol
– volume: 7
  start-page: 21
  year: 2019
  end-page: 44
  article-title: Performance measures for endoscopy services: A European Society of Gastrointestinal Endoscopy (ESGE) quality improvement initiative
  publication-title: United European Gastroenterol J
– volume: 126
  start-page: 65
  year: 2019
  end-page: 71
  article-title: Improving medication safety by cloud technology: Progression and value‐added applications in Taiwan
  publication-title: Int J Med Inform
– volume: 48
  start-page: 81
  year: 2016
  end-page: 9
  article-title: The European Society of Gastrointestinal Endoscopy Quality Improvement Initiative: Developing performance measures
  publication-title: Endoscopy
– volume: 92
  start-page: 1030
  year: 2020
  end-page: 40
  article-title: Associations between endoscopist feedback and improvements in colonoscopy quality indicators: A systematic review and meta‐analysis
  publication-title: Gastrointest Endosc
– volume: 66
  start-page: 293
  year: 2017
  end-page: 300
  article-title: Faecal haemoglobin concentration influences risk prediction of interval cancers resulting from inadequate colonoscopy quality: Analysis of the Taiwanese Nationwide Colorectal Cancer Screening Program
  publication-title: Gut
– volume: 13
  start-page: 480
  year: 2015
  end-page: 7
  article-title: Longer examination time improves detection of gastric cancer during diagnostic upper gastrointestinal endoscopy
  publication-title: Clin Gastroenterol Hepatol
– volume: 8
  year: 2020
  article-title: Predictive values of stool‐based tests for mucosal healing among Taiwanese patients with ulcerative colitis: A retrospective cohort analysis
  publication-title: PeerJ
– volume: 51
  start-page: 115
  year: 2019
  end-page: 24
  article-title: The effect of photo‐documentation of the ampulla on neoplasm detection rate during esophagogastroduodenoscopy
  publication-title: Endoscopy
– volume: 89
  start-page: 607
  year: 2019
  end-page: 13
  article-title: Adenoma detection rates in colonoscopies for positive fecal immunochemical tests versus direct screening colonoscopies
  publication-title: Gastrointest Endosc
– year: 2021
  article-title: Development of artificial intelligence system for quality control of photo documentation in esophagogastroduodenoscopy
  publication-title: Surg Endosc
– volume: 8
  start-page: 7497
  year: 2018
  article-title: Automatic anatomical classification of esophagogastroduodenoscopy images using deep convolutional neural networks
  publication-title: Sci Rep
– volume: 41
  start-page: 1088
  year: 2011
  end-page: 96
  article-title: m‐SNE: Multiview stochastic neighbor embedding
  publication-title: IEEE Trans Syst Man Cybern B Cybern
– volume: 28
  start-page: 1041
  year: 2016
  end-page: 9
  article-title: Missing rate for gastric cancer during upper gastrointestinal endoscopy: A systematic review and meta‐analysis
  publication-title: Eur J Gastroenterol Hepatol
– volume: 3
  start-page: 159
  year: 2019
  end-page: 62
  article-title: Changing from two‐ to one‐operator colonoscopy insertion technique is feasible with similar quality outcomes
  publication-title: JGH Open
– year: 2020
– volume: 33
  start-page: 901
  year: 2001
  end-page: 3
  article-title: ESGE recommendations for quality control in gastrointestinal endoscopy: Guidelines for image documentation in upper and lower GI endoscopy
  publication-title: Endoscopy
– volume: 171
  start-page: 805
  year: 2019
  end-page: 22
  article-title: Management of nonvariceal upper gastrointestinal bleeding: Guideline recommendations from the international consensus group
  publication-title: Ann Intern Med
– volume: 29
  start-page: 569
  year: 2017
  end-page: 75
  article-title: Examination time as a quality indicator of screening upper gastrointestinal endoscopy for asymptomatic examinees
  publication-title: Dig Endosc
– volume: 81
  start-page: 1
  year: 2015
  end-page: 2
  article-title: Defining and measuring quality in endoscopy
  publication-title: Gastrointest Endosc
– volume: 66
  start-page: 1886
  year: 2017
  end-page: 99
  article-title: Quality standards in upper gastrointestinal endoscopy: A position statement of the British Society of Gastroenterology (BSG) and Association of Upper Gastrointestinal Surgeons of Great Britain and Ireland (AUGIS)
  publication-title: Gut
– volume: 53
  start-page: 196
  year: 2021
  end-page: 202
  article-title: Overcoming the barriers to dissemination and implementation of quality measures for gastrointestinal endoscopy: European Society of Gastrointestinal Endoscopy (ESGE) and United European Gastroenterology (UEG) position statement
  publication-title: Endoscopy
– ident: e_1_2_8_2_1
  doi: 10.1016/j.gie.2014.07.052
– ident: e_1_2_8_10_1
  doi: 10.1055/a-0662-5523
– ident: e_1_2_8_20_1
  doi: 10.1109/TSMCB.2011.2106208
– ident: e_1_2_8_16_1
  doi: 10.1177/2050640618810242
– ident: e_1_2_8_22_1
  doi: 10.7326/M19-1795
– ident: e_1_2_8_17_1
  doi: 10.1016/j.gie.2020.03.3865
– ident: e_1_2_8_13_1
  doi: 10.1055/s-0042-113128
– ident: e_1_2_8_12_1
  doi: 10.1159/000477739
– ident: e_1_2_8_26_1
  doi: 10.1111/den.13530
– ident: e_1_2_8_31_1
  doi: 10.1016/j.ijmedinf.2019.03.012
– ident: e_1_2_8_36_1
  doi: 10.1186/s12885-020-6558-4
– ident: e_1_2_8_32_1
  doi: 10.1016/j.cgh.2014.07.059
– ident: e_1_2_8_34_1
  doi: 10.1136/gutjnl-2013-306503
– ident: e_1_2_8_6_1
  doi: 10.1002/jgh3.12124
– ident: e_1_2_8_28_1
  doi: 10.1111/jgh.15344
– ident: e_1_2_8_35_1
  doi: 10.1055/s-0042-100185
– ident: e_1_2_8_3_1
  doi: 10.1055/s-2001-42537
– ident: e_1_2_8_18_1
  doi: 10.1007/s00464‐021‐08698‐2
– ident: e_1_2_8_27_1
  doi: 10.1016/j.vgie.2020.08.013
– ident: e_1_2_8_4_1
  doi: 10.1136/gutjnl-2015-310256
– ident: e_1_2_8_23_1
  doi: 10.1136/flgastro-2014-100537
– ident: e_1_2_8_30_1
  doi: 10.1007/s00464‐020‐08236‐6
– ident: e_1_2_8_21_1
  doi: 10.1016/j.gie.2018.11.014
– ident: e_1_2_8_9_1
  doi: 10.1053/j.gastro.2017.05.009
– ident: e_1_2_8_19_1
– ident: e_1_2_8_37_1
  doi: 10.1177/1756284820916693
– ident: e_1_2_8_29_1
  doi: 10.1038/s41598-018-25842-6
– ident: e_1_2_8_24_1
  doi: 10.3390/jcm10163527
– ident: e_1_2_8_5_1
  doi: 10.7717/peerj.9537
– volume: 48
  start-page: 81
  year: 2016
  ident: e_1_2_8_14_1
  article-title: The European Society of Gastrointestinal Endoscopy Quality Improvement Initiative: Developing performance measures
  publication-title: Endoscopy
– ident: e_1_2_8_11_1
  doi: 10.1136/gutjnl-2017-314109
– ident: e_1_2_8_33_1
  doi: 10.1111/den.12804
– ident: e_1_2_8_7_1
  doi: 10.1136/gutjnl-2020-322545
– ident: e_1_2_8_25_1
  doi: 10.1007/s40846-021-00608-0
– ident: e_1_2_8_8_1
  doi: 10.1097/MEG.0000000000000657
– ident: e_1_2_8_15_1
  doi: 10.1055/a-1312-6389
SSID ssj0012944
Score 2.351336
Snippet Objectives Visualization and photodocumentation during endoscopy procedures are suggested to be one indicator for endoscopy performance quality. However, this...
Visualization and photodocumentation during endoscopy procedures are suggested to be one indicator for endoscopy performance quality. However, this indicator...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 994
SubjectTerms artificial intelligence
deep learning
endoscopy anatomy
quality in endoscopy
Title Upper endoscopy photodocumentation quality evaluation with novel deep learning system
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fden.14179
https://www.proquest.com/docview/2590136859
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KBfHiW6yPsoqHXlKax24SPLW2pQjtQSz0IITN7lbBmoQ-hPrrncmjraIg3nKYLMnOzs43uzPfEHLjCem4vrIBuYU2BChcG552uOGOTWEKxV1T4tFAf8B7Q-d-xEYlclvUwmT8EKsDN7SMdL9GAxfhbMPIwSzBzGE9wf6LuVoIiB5W1FHgxtJGruAOmcHAq-asQpjFs3rzqy9aA8xNmJr6me4eeSq-MEsvea0v5mFdfnwjb_znL-yT3Rx_0ma2YA5ISUeHZLuf37AfkeEwSfSU6kjFWLCypMlLPIfQVS7e8iqliGaFmEu6ZgqneJxLo_hdT6jSOqF5M4pnmjFFH5Nht_N41zPy1guGBDznG9weh9xEOjnmay_0FZMM0YniXDdcYTEluDQhVBG2cBzHchRzJWbRQFDKPdeyT0g5iiN9SqjfEHbDVxKwJaCH0BIh50jy4zEJXlPKCqkVSghkzkuO7TEmQRGfwDQF6TRVyPVKNMnIOH4Suio0GYCp4P2HiHS8mAUW1tki4T7I1FK9_D5K0O4M0oezv4uekx0LiyPSZN4LUp5PF_oSIMs8rJKtZqvd6lbTNfoJSrLnyw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8RADA6ioF58i29HUfBS2T5m2h48iKusj92DuOCtTmdGBbUtuqusv8m_4n8y6WN9oODFg7ceQmmbZPIlTb4AbARSeX6oXURusYsJijBWYDxh-Ze2tKUWvq2oNNBsiUbbOzrn5wPwUs3CFPwQ_YIbeUZ-XpODU0H6g5ejX6Kfo0GVLZXHpveECdvDzmEdtbvpOAf7Z3sNq9wpYCkEKqEl3MtY2MSTxkMTxKHmilPY1UKYmi8drqVQNmJw6UrP8xxPc19RewhmWyLwieYAD_wh2iBOTP310z5ZFQbOfHUsBmBucYzjJY8R9Q31H_Vz9HuHtB-BcR7ZDsbhtfomRUPLzXa3E2-r5y90kf_lo03AWAmx2W7hE5MwYJIpGG6WTQTT0G5nmblnJtEpzeT0WHaddjA7V927chArYcWsaY-9k6EzqlizJH00t0wbk7Fy38YVK8iwZ6D9Jy81C4NJmpg5YGFNurVQK4TPCJBiR8ZCEI9RwBUCA6XmYavSeqRK6nXaAHIbVSkYqiXK1TIP633RrOAb-U5orTKdCE8D-sUjE5N2HyKHRolppwDKbOWG8PNdovp-K79Y-L3oKow0zpon0clh63gRRh2aBcl7l5dgsHPfNcuI0DrxSu4YDC7-2qjeAJmKP1I
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8RADA6iIF58i29HUfBS2T5m2h48iOvicxFxwVudzswqqG3RXWX9S_4Vf5RJH-sDBS8evPUQynSSTL5Mky8A64FUnh9qF5Fb7GKCIowVGE9YftuWttTCtxVdDZw0xX7LO7zgFwPwUvXCFPwQ_Qs38oz8vCYHz3T7g5OjW6Kboz2VFZVHpveE-drD9kEdlbvhOI298919qxwpYCnEKaEl3HYsbKJJ46EJ4lBzxSnqaiFMzZcO11IoGyG4dKXneY6nua-oOgSTLRH4xHKA5_2QJ2ohzYmon_W5qjBu5pNjMf5yi2MYL2mMqGyov9TPwe8d0X7ExXlga4zBa7UlRT3LzVa3E2-p5y9skf9kz8ZhtATYbKfwiAkYMMkkDJ-UJQRT0GplmblnJtEpdeT0WHaddjA3V927sg0rYUWnaY-9U6Ezuq9mSfpobpk2JmPltI0rVlBhT0PrTz5qBgaTNDGzwMKadGuhVgieER7FjoyFIBajgCuEBUrNwWal9EiVxOs0_-M2qhIwVEuUq2UO1vqiWcE28p3QamU5EZ4F9INHJibtPkQONRLTRAGU2czt4Oe3RPW9Zv4w_3vRFRg-rTei44Pm0QKMONQIkhcuL8Jg575rlhCedeLl3C0YXP61Tb0BcBk-AQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Upper+endoscopy+photodocumentation+quality+evaluation+with+novel+deep+learning+system&rft.jtitle=Digestive+endoscopy&rft.au=Chang%2C+Yuan%E2%80%90Yen&rft.au=Yen%2C+Hsu%E2%80%90Heng&rft.au=Li%2C+Pai%E2%80%90Chi&rft.au=Chang%2C+Ruey%E2%80%90Feng&rft.date=2022-07-01&rft.issn=0915-5635&rft.eissn=1443-1661&rft.volume=34&rft.issue=5&rft.spage=994&rft.epage=1001&rft_id=info:doi/10.1111%2Fden.14179&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_den_14179
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0915-5635&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0915-5635&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0915-5635&client=summon