Upper endoscopy photodocumentation quality evaluation with novel deep learning system
Objectives Visualization and photodocumentation during endoscopy procedures are suggested to be one indicator for endoscopy performance quality. However, this indicator is difficult to measure and audit manually in clinical practice. Artificial intelligence (AI) is an emerging technology that may so...
Saved in:
Published in | Digestive endoscopy Vol. 34; no. 5; pp. 994 - 1001 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
01.07.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Objectives
Visualization and photodocumentation during endoscopy procedures are suggested to be one indicator for endoscopy performance quality. However, this indicator is difficult to measure and audit manually in clinical practice. Artificial intelligence (AI) is an emerging technology that may solve this problem.
Methods
A deep learning model with an accuracy of 96.64% was developed from 15,305 images for upper endoscopy anatomy classification in the unit. Endoscopy images for asymptomatic patients receiving screening endoscopy were evaluated with this model to assess the completeness of photodocumentation rate.
Results
A total of 15,723 images from 472 upper endoscopies performed by 12 endoscopists were enrolled. The complete photodocumentation rate from the pharynx to the duodenum was 53.8% and from the esophagus to the duodenum was 78.0% in this study. Endoscopists with a higher adenoma detection rate had a higher complete examination rate from the pharynx to duodenum (60.0% vs. 38.7%, P < 0.0001) and from esophagus to duodenum (83.0% vs. 65.7%, P < 0.0001) compared with endoscopists with lower adenoma detection rate. The pharynx, gastric angle, gastric retroflex view, gastric antrum, and the first portion of duodenum are likely to be missed by endoscopists with lower adenoma detection rates.
Conclusions
We report the use of a deep learning model to audit endoscopy photodocumentation quality in our unit. Endoscopists with better performance in colonoscopy had a better performance for this quality indicator. The use of such an AI system may help the endoscopy unit audit endoscopy performance. |
---|---|
AbstractList | Objectives
Visualization and photodocumentation during endoscopy procedures are suggested to be one indicator for endoscopy performance quality. However, this indicator is difficult to measure and audit manually in clinical practice. Artificial intelligence (AI) is an emerging technology that may solve this problem.
Methods
A deep learning model with an accuracy of 96.64% was developed from 15,305 images for upper endoscopy anatomy classification in the unit. Endoscopy images for asymptomatic patients receiving screening endoscopy were evaluated with this model to assess the completeness of photodocumentation rate.
Results
A total of 15,723 images from 472 upper endoscopies performed by 12 endoscopists were enrolled. The complete photodocumentation rate from the pharynx to the duodenum was 53.8% and from the esophagus to the duodenum was 78.0% in this study. Endoscopists with a higher adenoma detection rate had a higher complete examination rate from the pharynx to duodenum (60.0% vs. 38.7%, P < 0.0001) and from esophagus to duodenum (83.0% vs. 65.7%, P < 0.0001) compared with endoscopists with lower adenoma detection rate. The pharynx, gastric angle, gastric retroflex view, gastric antrum, and the first portion of duodenum are likely to be missed by endoscopists with lower adenoma detection rates.
Conclusions
We report the use of a deep learning model to audit endoscopy photodocumentation quality in our unit. Endoscopists with better performance in colonoscopy had a better performance for this quality indicator. The use of such an AI system may help the endoscopy unit audit endoscopy performance. Visualization and photodocumentation during endoscopy procedures are suggested to be one indicator for endoscopy performance quality. However, this indicator is difficult to measure and audit manually in clinical practice. Artificial intelligence (AI) is an emerging technology that may solve this problem.OBJECTIVESVisualization and photodocumentation during endoscopy procedures are suggested to be one indicator for endoscopy performance quality. However, this indicator is difficult to measure and audit manually in clinical practice. Artificial intelligence (AI) is an emerging technology that may solve this problem.A deep learning model with an accuracy of 96.64% was developed from 15,305 images for upper endoscopy anatomy classification in the unit. Endoscopy images for asymptomatic patients receiving screening endoscopy were evaluated with this model to assess the completeness of photodocumentation rate.METHODSA deep learning model with an accuracy of 96.64% was developed from 15,305 images for upper endoscopy anatomy classification in the unit. Endoscopy images for asymptomatic patients receiving screening endoscopy were evaluated with this model to assess the completeness of photodocumentation rate.A total of 15,723 images from 472 upper endoscopies performed by 12 endoscopists were enrolled. The complete photodocumentation rate from the pharynx to the duodenum was 53.8% and from the esophagus to the duodenum was 78.0% in this study. Endoscopists with a higher adenoma detection rate had a higher complete examination rate from the pharynx to duodenum (60.0% vs. 38.7%, P < 0.0001) and from esophagus to duodenum (83.0% vs. 65.7%, P < 0.0001) compared with endoscopists with lower adenoma detection rate. The pharynx, gastric angle, gastric retroflex view, gastric antrum, and the first portion of duodenum are likely to be missed by endoscopists with lower adenoma detection rates.RESULTSA total of 15,723 images from 472 upper endoscopies performed by 12 endoscopists were enrolled. The complete photodocumentation rate from the pharynx to the duodenum was 53.8% and from the esophagus to the duodenum was 78.0% in this study. Endoscopists with a higher adenoma detection rate had a higher complete examination rate from the pharynx to duodenum (60.0% vs. 38.7%, P < 0.0001) and from esophagus to duodenum (83.0% vs. 65.7%, P < 0.0001) compared with endoscopists with lower adenoma detection rate. The pharynx, gastric angle, gastric retroflex view, gastric antrum, and the first portion of duodenum are likely to be missed by endoscopists with lower adenoma detection rates.We report the use of a deep learning model to audit endoscopy photodocumentation quality in our unit. Endoscopists with better performance in colonoscopy had a better performance for this quality indicator. The use of such an AI system may help the endoscopy unit audit endoscopy performance.CONCLUSIONSWe report the use of a deep learning model to audit endoscopy photodocumentation quality in our unit. Endoscopists with better performance in colonoscopy had a better performance for this quality indicator. The use of such an AI system may help the endoscopy unit audit endoscopy performance. |
Author | Yen, Hsu‐Heng Chang, Wen‐Yen Chen, Yang‐Yuan Chang, Yuan‐Yen Li, Pai‐Chi Chang, Ruey‐Feng Yang, Chia Wei |
Author_xml | – sequence: 1 givenname: Yuan‐Yen surname: Chang fullname: Chang, Yuan‐Yen organization: National Taiwan University – sequence: 2 givenname: Hsu‐Heng orcidid: 0000-0002-3494-2245 surname: Yen fullname: Yen, Hsu‐Heng email: 91646@cch.org.tw organization: National Chung Hsing University – sequence: 3 givenname: Pai‐Chi surname: Li fullname: Li, Pai‐Chi organization: National Taiwan University – sequence: 4 givenname: Ruey‐Feng orcidid: 0000-0002-2086-0097 surname: Chang fullname: Chang, Ruey‐Feng email: rfchang@csie.ntu.edu.tw organization: Changhua Christian Hospital – sequence: 5 givenname: Chia Wei surname: Yang fullname: Yang, Chia Wei organization: Changhua Christian Hospital – sequence: 6 givenname: Yang‐Yuan surname: Chen fullname: Chen, Yang‐Yuan organization: Changhua Christian Hospital – sequence: 7 givenname: Wen‐Yen surname: Chang fullname: Chang, Wen‐Yen organization: National Taiwan University Hospital |
BookMark | eNp9kD1PwzAQhi1UJNrCwD_wCENaO7GdeESlfEgVLHS2XOdKjVw7jZNW-fcEwoQEt5x0et5Xp2eCRj54QOiakhntZ16Cn1FGc3mGxpSxLKFC0BEaE0l5wkXGL9Akxg9CaCoZG6P1uqqgxuDLEE2oOlztQhPKYNo9-EY3Nnh8aLWzTYfhqF07nE622WEfjuBwCVBhB7r21r_j2MUG9pfofKtdhKufPUXrh-Xb4ilZvT4-L-5WiclSIRORbTei_5oQLqHYyJIbTogQpRBAcp3yUgtDc1HoTDPGUlby3AieE5kXosjTbIpuht6qDocWYqP2NhpwTnsIbVQpl4RmouCyR28H1NQhxhq2qqrtXtedokR9qVO9OvWtrmfnv1hjBxdNra37L3GyDrq_q9X98mVIfALLu4IY |
CitedBy_id | crossref_primary_10_3390_cancers14081918 crossref_primary_10_3389_fonc_2022_972357 crossref_primary_10_1016_j_bspc_2023_105911 crossref_primary_10_1111_den_14649 crossref_primary_10_3390_diagnostics12112827 crossref_primary_10_5009_gnl210479 crossref_primary_10_1007_s00464_021_08993_y crossref_primary_10_2147_IJGM_S481127 crossref_primary_10_1097_MOG_0000000000000957 crossref_primary_10_1002_hed_27370 |
Cites_doi | 10.1016/j.gie.2014.07.052 10.1055/a-0662-5523 10.1109/TSMCB.2011.2106208 10.1177/2050640618810242 10.7326/M19-1795 10.1016/j.gie.2020.03.3865 10.1055/s-0042-113128 10.1159/000477739 10.1111/den.13530 10.1016/j.ijmedinf.2019.03.012 10.1186/s12885-020-6558-4 10.1016/j.cgh.2014.07.059 10.1136/gutjnl-2013-306503 10.1002/jgh3.12124 10.1111/jgh.15344 10.1055/s-0042-100185 10.1055/s-2001-42537 10.1007/s00464‐021‐08698‐2 10.1016/j.vgie.2020.08.013 10.1136/gutjnl-2015-310256 10.1136/flgastro-2014-100537 10.1007/s00464‐020‐08236‐6 10.1016/j.gie.2018.11.014 10.1053/j.gastro.2017.05.009 10.1177/1756284820916693 10.1038/s41598-018-25842-6 10.3390/jcm10163527 10.7717/peerj.9537 10.1136/gutjnl-2017-314109 10.1111/den.12804 10.1136/gutjnl-2020-322545 10.1007/s40846-021-00608-0 10.1097/MEG.0000000000000657 10.1055/a-1312-6389 |
ContentType | Journal Article |
Copyright | 2021 Japan Gastroenterological Endoscopy Society 2021 Japan Gastroenterological Endoscopy Society. |
Copyright_xml | – notice: 2021 Japan Gastroenterological Endoscopy Society – notice: 2021 Japan Gastroenterological Endoscopy Society. |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1111/den.14179 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1443-1661 |
EndPage | 1001 |
ExternalDocumentID | 10_1111_den_14179 DEN14179 |
Genre | article |
GrantInformation_xml | – fundername: Changhua Christian Hospital funderid: 109‐CCH‐IRP‐008 and 110‐CCH‐IRP‐020 – fundername: Ministry of Science and Technology, Taiwan funderid: 109‐2634‐F‐002‐026; 110‐2634‐F‐002‐009 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29G 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACGOF ACMXC ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHEFC AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DTERQ DU5 EAD EAP EBD EBS EJD EMK EMOBN ESX EX3 F00 F01 F04 F5P FEDTE FUBAC FZ0 G-S G.N GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ SV3 TEORI TUS UB1 W8V W99 WBKPD WHWMO WIH WIJ WIK WOHZO WOW WQJ WRC WUP WVDHM WXI WXSBR XG1 YFH ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION 7X8 AAMMB AEFGJ AGXDD AIDQK AIDYY |
ID | FETCH-LOGICAL-c3269-63fb61110059e8b9d5c50066d66e07a25da6c1768a3a44424d57c657097868723 |
IEDL.DBID | DR2 |
ISSN | 0915-5635 1443-1661 |
IngestDate | Fri Jul 11 16:34:09 EDT 2025 Tue Jul 01 00:42:24 EDT 2025 Thu Apr 24 22:57:10 EDT 2025 Wed Jan 22 16:25:30 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3269-63fb61110059e8b9d5c50066d66e07a25da6c1768a3a44424d57c657097868723 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2086-0097 0000-0002-3494-2245 |
PQID | 2590136859 |
PQPubID | 23479 |
PageCount | 1001 |
ParticipantIDs | proquest_miscellaneous_2590136859 crossref_primary_10_1111_den_14179 crossref_citationtrail_10_1111_den_14179 wiley_primary_10_1111_den_14179_DEN14179 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2022 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: July 2022 |
PublicationDecade | 2020 |
PublicationTitle | Digestive endoscopy |
PublicationYear | 2022 |
References | 2015; 13 2019; 7 2019; 3 2019; 51 2020; 20 2017; 66 2017; 24 2019; 126 2020; 13 2017; 29 2017; 153 2020; 32 2021; 70 2020; 8 2021; 36 2016; 7 2020; 5 2018; 8 2021; 10 2021; 53 2015; 81 2021 2020 2015; 64 2020; 92 2019; 89 2011; 41 2001; 33 2016; 28 2019; 171 2021; 41 2016; 48 Rutter MD (e_1_2_8_14_1) 2016; 48 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 153 start-page: 460 year: 2017 end-page: 9 article-title: Longer observation time increases proportion of neoplasms detected by esophagogastroduodenoscopy publication-title: Gastroenterology – volume: 48 start-page: 241 year: 2016 end-page: 7 article-title: Endoscopist characteristics that influence the quality of colonoscopy publication-title: Endoscopy – volume: 7 start-page: 67 year: 2016 end-page: 72 article-title: Changing trends in the UK management of upper GI bleeding: Is there evidence of reduced UK training experience? publication-title: Frontline Gastroenterol – volume: 41 start-page: 504 year: 2021 end-page: 13 article-title: Performance comparison of the deep learning and the human endoscopist for bleeding peptic ulcer disease publication-title: J Med Biol Eng – volume: 64 start-page: 121 year: 2015 end-page: 32 article-title: An updated Asia Pacific Consensus Recommendations on colorectal cancer screening publication-title: Gut – year: 2021 article-title: Deep learning‐based endoscopic anatomy classification: An accelerated approach for data preparation and model validation publication-title: Surg Endosc – volume: 10 start-page: 3527 year: 2021 article-title: Current status and future perspective of artificial intelligence in the management of peptic ulcer bleeding: A review of recent literature publication-title: J Clin Med – volume: 5 start-page: 598 year: 2020 end-page: 613 article-title: Artificial intelligence in gastrointestinal endoscopy publication-title: VideoGIE – volume: 36 start-page: 5 year: 2021 end-page: 6 article-title: Artificial intelligence in gastrointestinal endoscopy publication-title: J Gastroenterol Hepatol – volume: 13 year: 2020 article-title: Quality indicators in diagnostic upper gastrointestinal endoscopy publication-title: Therap Adv Gastroenterol – volume: 32 start-page: 168 year: 2020 end-page: 79 article-title: Principles and practice to facilitate complete photodocumentation of the upper gastrointestinal tract: World Endoscopy Organization position statement publication-title: Dig Endosc – volume: 20 start-page: 69 year: 2020 article-title: Superiority of NBI endoscopy to PET/CT scan in detecting esophageal cancer among head and neck cancer patients: A retrospective cohort analysis publication-title: BMC Cancer – volume: 48 start-page: 843 year: 2016 end-page: 64 article-title: Performance measures for upper gastrointestinal endoscopy: A European Society of Gastrointestinal Endoscopy (ESGE) Quality Improvement Initiative publication-title: Endoscopy – volume: 70 start-page: 2321 year: 2021 end-page: 9 article-title: Long‐term effectiveness of faecal immunochemical test screening for proximal and distal colorectal cancers publication-title: Gut – volume: 24 start-page: 269 year: 2017 end-page: 74 article-title: Image documentation in gastrointestinal endoscopy: Review of recommendations publication-title: GE Port J Gastroenterol – volume: 7 start-page: 21 year: 2019 end-page: 44 article-title: Performance measures for endoscopy services: A European Society of Gastrointestinal Endoscopy (ESGE) quality improvement initiative publication-title: United European Gastroenterol J – volume: 126 start-page: 65 year: 2019 end-page: 71 article-title: Improving medication safety by cloud technology: Progression and value‐added applications in Taiwan publication-title: Int J Med Inform – volume: 48 start-page: 81 year: 2016 end-page: 9 article-title: The European Society of Gastrointestinal Endoscopy Quality Improvement Initiative: Developing performance measures publication-title: Endoscopy – volume: 92 start-page: 1030 year: 2020 end-page: 40 article-title: Associations between endoscopist feedback and improvements in colonoscopy quality indicators: A systematic review and meta‐analysis publication-title: Gastrointest Endosc – volume: 66 start-page: 293 year: 2017 end-page: 300 article-title: Faecal haemoglobin concentration influences risk prediction of interval cancers resulting from inadequate colonoscopy quality: Analysis of the Taiwanese Nationwide Colorectal Cancer Screening Program publication-title: Gut – volume: 13 start-page: 480 year: 2015 end-page: 7 article-title: Longer examination time improves detection of gastric cancer during diagnostic upper gastrointestinal endoscopy publication-title: Clin Gastroenterol Hepatol – volume: 8 year: 2020 article-title: Predictive values of stool‐based tests for mucosal healing among Taiwanese patients with ulcerative colitis: A retrospective cohort analysis publication-title: PeerJ – volume: 51 start-page: 115 year: 2019 end-page: 24 article-title: The effect of photo‐documentation of the ampulla on neoplasm detection rate during esophagogastroduodenoscopy publication-title: Endoscopy – volume: 89 start-page: 607 year: 2019 end-page: 13 article-title: Adenoma detection rates in colonoscopies for positive fecal immunochemical tests versus direct screening colonoscopies publication-title: Gastrointest Endosc – year: 2021 article-title: Development of artificial intelligence system for quality control of photo documentation in esophagogastroduodenoscopy publication-title: Surg Endosc – volume: 8 start-page: 7497 year: 2018 article-title: Automatic anatomical classification of esophagogastroduodenoscopy images using deep convolutional neural networks publication-title: Sci Rep – volume: 41 start-page: 1088 year: 2011 end-page: 96 article-title: m‐SNE: Multiview stochastic neighbor embedding publication-title: IEEE Trans Syst Man Cybern B Cybern – volume: 28 start-page: 1041 year: 2016 end-page: 9 article-title: Missing rate for gastric cancer during upper gastrointestinal endoscopy: A systematic review and meta‐analysis publication-title: Eur J Gastroenterol Hepatol – volume: 3 start-page: 159 year: 2019 end-page: 62 article-title: Changing from two‐ to one‐operator colonoscopy insertion technique is feasible with similar quality outcomes publication-title: JGH Open – year: 2020 – volume: 33 start-page: 901 year: 2001 end-page: 3 article-title: ESGE recommendations for quality control in gastrointestinal endoscopy: Guidelines for image documentation in upper and lower GI endoscopy publication-title: Endoscopy – volume: 171 start-page: 805 year: 2019 end-page: 22 article-title: Management of nonvariceal upper gastrointestinal bleeding: Guideline recommendations from the international consensus group publication-title: Ann Intern Med – volume: 29 start-page: 569 year: 2017 end-page: 75 article-title: Examination time as a quality indicator of screening upper gastrointestinal endoscopy for asymptomatic examinees publication-title: Dig Endosc – volume: 81 start-page: 1 year: 2015 end-page: 2 article-title: Defining and measuring quality in endoscopy publication-title: Gastrointest Endosc – volume: 66 start-page: 1886 year: 2017 end-page: 99 article-title: Quality standards in upper gastrointestinal endoscopy: A position statement of the British Society of Gastroenterology (BSG) and Association of Upper Gastrointestinal Surgeons of Great Britain and Ireland (AUGIS) publication-title: Gut – volume: 53 start-page: 196 year: 2021 end-page: 202 article-title: Overcoming the barriers to dissemination and implementation of quality measures for gastrointestinal endoscopy: European Society of Gastrointestinal Endoscopy (ESGE) and United European Gastroenterology (UEG) position statement publication-title: Endoscopy – ident: e_1_2_8_2_1 doi: 10.1016/j.gie.2014.07.052 – ident: e_1_2_8_10_1 doi: 10.1055/a-0662-5523 – ident: e_1_2_8_20_1 doi: 10.1109/TSMCB.2011.2106208 – ident: e_1_2_8_16_1 doi: 10.1177/2050640618810242 – ident: e_1_2_8_22_1 doi: 10.7326/M19-1795 – ident: e_1_2_8_17_1 doi: 10.1016/j.gie.2020.03.3865 – ident: e_1_2_8_13_1 doi: 10.1055/s-0042-113128 – ident: e_1_2_8_12_1 doi: 10.1159/000477739 – ident: e_1_2_8_26_1 doi: 10.1111/den.13530 – ident: e_1_2_8_31_1 doi: 10.1016/j.ijmedinf.2019.03.012 – ident: e_1_2_8_36_1 doi: 10.1186/s12885-020-6558-4 – ident: e_1_2_8_32_1 doi: 10.1016/j.cgh.2014.07.059 – ident: e_1_2_8_34_1 doi: 10.1136/gutjnl-2013-306503 – ident: e_1_2_8_6_1 doi: 10.1002/jgh3.12124 – ident: e_1_2_8_28_1 doi: 10.1111/jgh.15344 – ident: e_1_2_8_35_1 doi: 10.1055/s-0042-100185 – ident: e_1_2_8_3_1 doi: 10.1055/s-2001-42537 – ident: e_1_2_8_18_1 doi: 10.1007/s00464‐021‐08698‐2 – ident: e_1_2_8_27_1 doi: 10.1016/j.vgie.2020.08.013 – ident: e_1_2_8_4_1 doi: 10.1136/gutjnl-2015-310256 – ident: e_1_2_8_23_1 doi: 10.1136/flgastro-2014-100537 – ident: e_1_2_8_30_1 doi: 10.1007/s00464‐020‐08236‐6 – ident: e_1_2_8_21_1 doi: 10.1016/j.gie.2018.11.014 – ident: e_1_2_8_9_1 doi: 10.1053/j.gastro.2017.05.009 – ident: e_1_2_8_19_1 – ident: e_1_2_8_37_1 doi: 10.1177/1756284820916693 – ident: e_1_2_8_29_1 doi: 10.1038/s41598-018-25842-6 – ident: e_1_2_8_24_1 doi: 10.3390/jcm10163527 – ident: e_1_2_8_5_1 doi: 10.7717/peerj.9537 – volume: 48 start-page: 81 year: 2016 ident: e_1_2_8_14_1 article-title: The European Society of Gastrointestinal Endoscopy Quality Improvement Initiative: Developing performance measures publication-title: Endoscopy – ident: e_1_2_8_11_1 doi: 10.1136/gutjnl-2017-314109 – ident: e_1_2_8_33_1 doi: 10.1111/den.12804 – ident: e_1_2_8_7_1 doi: 10.1136/gutjnl-2020-322545 – ident: e_1_2_8_25_1 doi: 10.1007/s40846-021-00608-0 – ident: e_1_2_8_8_1 doi: 10.1097/MEG.0000000000000657 – ident: e_1_2_8_15_1 doi: 10.1055/a-1312-6389 |
SSID | ssj0012944 |
Score | 2.351336 |
Snippet | Objectives
Visualization and photodocumentation during endoscopy procedures are suggested to be one indicator for endoscopy performance quality. However, this... Visualization and photodocumentation during endoscopy procedures are suggested to be one indicator for endoscopy performance quality. However, this indicator... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 994 |
SubjectTerms | artificial intelligence deep learning endoscopy anatomy quality in endoscopy |
Title | Upper endoscopy photodocumentation quality evaluation with novel deep learning system |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fden.14179 https://www.proquest.com/docview/2590136859 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KBfHiW6yPsoqHXlKax24SPLW2pQjtQSz0IITN7lbBmoQ-hPrrncmjraIg3nKYLMnOzs43uzPfEHLjCem4vrIBuYU2BChcG552uOGOTWEKxV1T4tFAf8B7Q-d-xEYlclvUwmT8EKsDN7SMdL9GAxfhbMPIwSzBzGE9wf6LuVoIiB5W1FHgxtJGruAOmcHAq-asQpjFs3rzqy9aA8xNmJr6me4eeSq-MEsvea0v5mFdfnwjb_znL-yT3Rx_0ma2YA5ISUeHZLuf37AfkeEwSfSU6kjFWLCypMlLPIfQVS7e8iqliGaFmEu6ZgqneJxLo_hdT6jSOqF5M4pnmjFFH5Nht_N41zPy1guGBDznG9weh9xEOjnmay_0FZMM0YniXDdcYTEluDQhVBG2cBzHchRzJWbRQFDKPdeyT0g5iiN9SqjfEHbDVxKwJaCH0BIh50jy4zEJXlPKCqkVSghkzkuO7TEmQRGfwDQF6TRVyPVKNMnIOH4Suio0GYCp4P2HiHS8mAUW1tki4T7I1FK9_D5K0O4M0oezv4uekx0LiyPSZN4LUp5PF_oSIMs8rJKtZqvd6lbTNfoJSrLnyw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8RADA6ioF58i29HUfBS2T5m2h48iKusj92DuOCtTmdGBbUtuqusv8m_4n8y6WN9oODFg7ceQmmbZPIlTb4AbARSeX6oXURusYsJijBWYDxh-Ze2tKUWvq2oNNBsiUbbOzrn5wPwUs3CFPwQ_YIbeUZ-XpODU0H6g5ejX6Kfo0GVLZXHpveECdvDzmEdtbvpOAf7Z3sNq9wpYCkEKqEl3MtY2MSTxkMTxKHmilPY1UKYmi8drqVQNmJw6UrP8xxPc19RewhmWyLwieYAD_wh2iBOTP310z5ZFQbOfHUsBmBucYzjJY8R9Q31H_Vz9HuHtB-BcR7ZDsbhtfomRUPLzXa3E2-r5y90kf_lo03AWAmx2W7hE5MwYJIpGG6WTQTT0G5nmblnJtEpzeT0WHaddjA7V927chArYcWsaY-9k6EzqlizJH00t0wbk7Fy38YVK8iwZ6D9Jy81C4NJmpg5YGFNurVQK4TPCJBiR8ZCEI9RwBUCA6XmYavSeqRK6nXaAHIbVSkYqiXK1TIP633RrOAb-U5orTKdCE8D-sUjE5N2HyKHRolppwDKbOWG8PNdovp-K79Y-L3oKow0zpon0clh63gRRh2aBcl7l5dgsHPfNcuI0DrxSu4YDC7-2qjeAJmKP1I |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8RADA6iIF58i29HUfBS2T5m2h48iOvicxFxwVudzswqqG3RXWX9S_4Vf5RJH-sDBS8evPUQynSSTL5Mky8A64FUnh9qF5Fb7GKCIowVGE9YftuWttTCtxVdDZw0xX7LO7zgFwPwUvXCFPwQ_Qs38oz8vCYHz3T7g5OjW6Kboz2VFZVHpveE-drD9kEdlbvhOI298919qxwpYCnEKaEl3HYsbKJJ46EJ4lBzxSnqaiFMzZcO11IoGyG4dKXneY6nua-oOgSTLRH4xHKA5_2QJ2ohzYmon_W5qjBu5pNjMf5yi2MYL2mMqGyov9TPwe8d0X7ExXlga4zBa7UlRT3LzVa3E2-p5y9skf9kz8ZhtATYbKfwiAkYMMkkDJ-UJQRT0GplmblnJtEpdeT0WHaddjA3V927sg0rYUWnaY-9U6Ezuq9mSfpobpk2JmPltI0rVlBhT0PrTz5qBgaTNDGzwMKadGuhVgieER7FjoyFIBajgCuEBUrNwWal9EiVxOs0_-M2qhIwVEuUq2UO1vqiWcE28p3QamU5EZ4F9INHJibtPkQONRLTRAGU2czt4Oe3RPW9Zv4w_3vRFRg-rTei44Pm0QKMONQIkhcuL8Jg575rlhCedeLl3C0YXP61Tb0BcBk-AQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Upper+endoscopy+photodocumentation+quality+evaluation+with+novel+deep+learning+system&rft.jtitle=Digestive+endoscopy&rft.au=Chang%2C+Yuan%E2%80%90Yen&rft.au=Yen%2C+Hsu%E2%80%90Heng&rft.au=Li%2C+Pai%E2%80%90Chi&rft.au=Chang%2C+Ruey%E2%80%90Feng&rft.date=2022-07-01&rft.issn=0915-5635&rft.eissn=1443-1661&rft.volume=34&rft.issue=5&rft.spage=994&rft.epage=1001&rft_id=info:doi/10.1111%2Fden.14179&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_den_14179 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0915-5635&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0915-5635&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0915-5635&client=summon |