Nuclear factor‐κB signalling and transcriptional regulation in skeletal muscle atrophy

New findings •  What is the topic for this review? An up‐to‐date analysis on the role of nuclear factor‐κB signaling and transcriptional control in adult skeletal muscle atrophy. •  What advances does it highlight? Our analysis of the literature and research in our laboratory has allowed us to propo...

Full description

Saved in:
Bibliographic Details
Published inExperimental physiology Vol. 98; no. 1; pp. 19 - 24
Main Authors Jackman, Robert W., Cornwell, Evangeline W., Wu, Chia‐Ling, Kandarian, Susan C.
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.01.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract New findings •  What is the topic for this review? An up‐to‐date analysis on the role of nuclear factor‐κB signaling and transcriptional control in adult skeletal muscle atrophy. •  What advances does it highlight? Our analysis of the literature and research in our laboratory has allowed us to propose interpretations that have not previously been published. We believe these interpretations will be of interest to scientists studying the cellular control of adult skeletal muscle atrophy. The nuclear factor‐κB (NF‐κB) signalling pathway is a necessary component of adult skeletal muscle atrophy resulting from systemic illnesses or disuse. Studies showing a role for the NF‐κB pathway in muscle disuse include unloading, denervation and immobilization, and studies showing a role for NF‐κB in systemic illnesses include cancer, chronic heart failure and acute septic lung injury. Muscle atrophy due to most of these triggers is associated with activation of NF‐κB transcriptional activity. With the exception of muscle unloading, however, there is a paucity of data on the NF‐κB transcription factors that regulate muscle atrophy, and little is known about which genes are targeted by NF‐κB transcription factors during atrophy. Interestingly, in some cases it appears that the amelioration of muscle atrophy by genetic inhibition of NF‐κB signalling proteins is due to effects that are independent of the downstream NF‐κB transcription factors. These questions are prime areas for investigation if we are to understand a key component of muscle wasting in adult skeletal muscle.
AbstractList The nuclear factor-κB (NF-κB) signalling pathway is a necessary component of adult skeletal muscle atrophy resulting from systemic illnesses or disuse. Studies showing a role for the NF-κB pathway in muscle disuse include unloading, denervation and immobilization, and studies showing a role for NF-κB in systemic illnesses include cancer, chronic heart failure and acute septic lung injury. Muscle atrophy due to most of these triggers is associated with activation of NF-κB transcriptional activity. With the exception of muscle unloading, however, there is a paucity of data on the NF-κB transcription factors that regulate muscle atrophy, and little is known about which genes are targeted by NF-κB transcription factors during atrophy. Interestingly, in some cases it appears that the amelioration of muscle atrophy by genetic inhibition of NF-κB signalling proteins is due to effects that are independent of the downstream NF-κB transcription factors. These questions are prime areas for investigation if we are to understand a key component of muscle wasting in adult skeletal muscle.The nuclear factor-κB (NF-κB) signalling pathway is a necessary component of adult skeletal muscle atrophy resulting from systemic illnesses or disuse. Studies showing a role for the NF-κB pathway in muscle disuse include unloading, denervation and immobilization, and studies showing a role for NF-κB in systemic illnesses include cancer, chronic heart failure and acute septic lung injury. Muscle atrophy due to most of these triggers is associated with activation of NF-κB transcriptional activity. With the exception of muscle unloading, however, there is a paucity of data on the NF-κB transcription factors that regulate muscle atrophy, and little is known about which genes are targeted by NF-κB transcription factors during atrophy. Interestingly, in some cases it appears that the amelioration of muscle atrophy by genetic inhibition of NF-κB signalling proteins is due to effects that are independent of the downstream NF-κB transcription factors. These questions are prime areas for investigation if we are to understand a key component of muscle wasting in adult skeletal muscle.
What is the topic for this review? An up‐to‐date analysis on the role of nuclear factor‐κB signaling and transcriptional control in adult skeletal muscle atrophy. What advances does it highlight? Our analysis of the literature and research in our laboratory has allowed us to propose interpretations that have not previously been published. We believe these interpretations will be of interest to scientists studying the cellular control of adult skeletal muscle atrophy. The nuclear factor‐κB (NF‐κB) signalling pathway is a necessary component of adult skeletal muscle atrophy resulting from systemic illnesses or disuse. Studies showing a role for the NF‐κB pathway in muscle disuse include unloading, denervation and immobilization, and studies showing a role for NF‐κB in systemic illnesses include cancer, chronic heart failure and acute septic lung injury. Muscle atrophy due to most of these triggers is associated with activation of NF‐κB transcriptional activity. With the exception of muscle unloading, however, there is a paucity of data on the NF‐κB transcription factors that regulate muscle atrophy, and little is known about which genes are targeted by NF‐κB transcription factors during atrophy. Interestingly, in some cases it appears that the amelioration of muscle atrophy by genetic inhibition of NF‐κB signalling proteins is due to effects that are independent of the downstream NF‐κB transcription factors. These questions are prime areas for investigation if we are to understand a key component of muscle wasting in adult skeletal muscle.
New findings •  What is the topic for this review? An up‐to‐date analysis on the role of nuclear factor‐κB signaling and transcriptional control in adult skeletal muscle atrophy. •  What advances does it highlight? Our analysis of the literature and research in our laboratory has allowed us to propose interpretations that have not previously been published. We believe these interpretations will be of interest to scientists studying the cellular control of adult skeletal muscle atrophy. The nuclear factor‐κB (NF‐κB) signalling pathway is a necessary component of adult skeletal muscle atrophy resulting from systemic illnesses or disuse. Studies showing a role for the NF‐κB pathway in muscle disuse include unloading, denervation and immobilization, and studies showing a role for NF‐κB in systemic illnesses include cancer, chronic heart failure and acute septic lung injury. Muscle atrophy due to most of these triggers is associated with activation of NF‐κB transcriptional activity. With the exception of muscle unloading, however, there is a paucity of data on the NF‐κB transcription factors that regulate muscle atrophy, and little is known about which genes are targeted by NF‐κB transcription factors during atrophy. Interestingly, in some cases it appears that the amelioration of muscle atrophy by genetic inhibition of NF‐κB signalling proteins is due to effects that are independent of the downstream NF‐κB transcription factors. These questions are prime areas for investigation if we are to understand a key component of muscle wasting in adult skeletal muscle.
The nuclear factor-κB (NF-κB) signalling pathway is a necessary component of adult skeletal muscle atrophy resulting from systemic illnesses or disuse. Studies showing a role for the NF-κB pathway in muscle disuse include unloading, denervation and immobilization, and studies showing a role for NF-κB in systemic illnesses include cancer, chronic heart failure and acute septic lung injury. Muscle atrophy due to most of these triggers is associated with activation of NF-κB transcriptional activity. With the exception of muscle unloading, however, there is a paucity of data on the NF-κB transcription factors that regulate muscle atrophy, and little is known about which genes are targeted by NF-κB transcription factors during atrophy. Interestingly, in some cases it appears that the amelioration of muscle atrophy by genetic inhibition of NF-κB signalling proteins is due to effects that are independent of the downstream NF-κB transcription factors. These questions are prime areas for investigation if we are to understand a key component of muscle wasting in adult skeletal muscle.
Author Cornwell, Evangeline W.
Kandarian, Susan C.
Jackman, Robert W.
Wu, Chia‐Ling
Author_xml – sequence: 1
  givenname: Robert W.
  surname: Jackman
  fullname: Jackman, Robert W.
– sequence: 2
  givenname: Evangeline W.
  surname: Cornwell
  fullname: Cornwell, Evangeline W.
– sequence: 3
  givenname: Chia‐Ling
  surname: Wu
  fullname: Wu, Chia‐Ling
– sequence: 4
  givenname: Susan C.
  surname: Kandarian
  fullname: Kandarian, Susan C.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22848079$$D View this record in MEDLINE/PubMed
BookMark eNqNkMFuEzEQhi2UiiaFV6j22MsGj732rtVeoAq0UkQ5gAQny_HOBoOzu9i7gtx4BJ6Hh-AheJI6JBFSL3AaefR_M-NvRiZt1yIh50DnAMCf4be-_7iNrvNzRgHmVHLO4BGZQiFVXhTi_YRMqRJVTmVJT8ksxk-UAqdV8ZicMlYVFS3VlHx4PVqPJmSNsUMXfn__8evniyy6dWu8d-06M22dDcG00QbXD65L_SzgevRm98hcm8XP6HFI7c0Y06zMDKFLtz0hJ43xEZ8e6hl593Lx9vomX969ur1-vswtZ7LMBa5KhlYIrABlqRQK5LVayaKx0DCgNcdKgTBVwYVVoKpGFtLUZcqirVf8jFzs5_ah-zJiHPTGRYvemxa7MWpgJecAlIkUPT9Ex9UGa90HtzFhq486UuBqH7ChizFgo60b_nw0KXBeA9U7-_qvfb2zr_f2Ey4f4McN_wQv9-BX53H7n5RevLkBECW_B47Eo14
CitedBy_id crossref_primary_10_1016_j_lfs_2023_122125
crossref_primary_10_2147_COPD_S313439
crossref_primary_10_7554_eLife_82016
crossref_primary_10_14814_phy2_13291
crossref_primary_10_1152_ajpendo_00204_2014
crossref_primary_10_1016_j_abb_2024_109961
crossref_primary_10_1172_jci_insight_125543
crossref_primary_10_1038_s41572_024_00492_3
crossref_primary_10_1186_s13395_023_00332_0
crossref_primary_10_1371_journal_pone_0160594
crossref_primary_10_1016_j_biocel_2013_06_011
crossref_primary_10_1186_s13395_024_00338_2
crossref_primary_10_1038_s41419_020_2332_4
crossref_primary_10_3390_jcm14030876
crossref_primary_10_3389_fnut_2022_865402
crossref_primary_10_1016_j_jshs_2024_05_001
crossref_primary_10_1152_japplphysiol_00830_2016
crossref_primary_10_1007_s11357_020_00272_3
crossref_primary_10_1186_s12974_016_0736_y
crossref_primary_10_1002_wsbm_1462
crossref_primary_10_1016_j_ajpath_2017_08_009
crossref_primary_10_1371_journal_pone_0166189
crossref_primary_10_1089_neu_2015_4058
crossref_primary_10_1007_s00424_020_02353_w
crossref_primary_10_1007_s11010_022_04610_1
crossref_primary_10_1016_j_bbrc_2015_06_118
crossref_primary_10_1002_mnfr_202300033
crossref_primary_10_1016_j_kint_2017_03_046
crossref_primary_10_1371_journal_pone_0087776
crossref_primary_10_12998_wjcc_v9_i33_10064
crossref_primary_10_3389_fphys_2019_01252
crossref_primary_10_1016_j_jbc_2021_100376
crossref_primary_10_1177_15593258221148015
crossref_primary_10_1097_MCO_0000000000000165
crossref_primary_10_1186_s13287_019_1480_x
crossref_primary_10_3390_nu14010052
crossref_primary_10_1152_ajpendo_00576_2014
crossref_primary_10_3389_fncel_2014_00405
crossref_primary_10_1152_ajpregu_00198_2015
crossref_primary_10_1002_jcsm_12434
crossref_primary_10_1155_2016_3957958
crossref_primary_10_1113_JP280652
crossref_primary_10_5527_wjn_v5_i3_274
crossref_primary_10_1038_s41598_017_13105_9
crossref_primary_10_1002_rmv_2355
crossref_primary_10_1016_j_smhs_2020_11_004
crossref_primary_10_1080_87559129_2022_2087669
crossref_primary_10_3390_antiox12010137
crossref_primary_10_1016_j_expneurol_2013_06_003
crossref_primary_10_1096_fj_202100777RR
crossref_primary_10_1113_jphysiol_2014_279034
crossref_primary_10_1002_wjo2_70007
crossref_primary_10_3390_antiox11091686
crossref_primary_10_1007_s11914_018_0468_2
crossref_primary_10_1007_s00223_014_9925_9
crossref_primary_10_3109_02656736_2014_1002019
crossref_primary_10_1039_D4FO04341C
crossref_primary_10_1097_SHK_0000000000000729
Cites_doi 10.1152/physrev.00040.2009
10.1096/fj.08-110163
10.1038/nrm2083
10.1371/journal.pone.0016171
10.1093/emboj/18.17.4766
10.1016/j.cellsig.2011.07.013
10.1080/08830180802302389
10.1152/ajplung.00084.2011
10.1080/01635581.2011.563032
10.1007/s00109-008-0373-8
10.1074/jbc.M102949200
10.1038/ni.2065
10.1096/fj.08-114249
10.1016/S0002-9440(10)65081-X
10.1152/ajpcell.00293.2006
10.1165/rcmb.2011-0119OC
10.1016/j.cell.2004.09.027
10.1172/JCI28721
10.1038/onc.2010.553
10.1152/ajpendo.00039.2012
10.1096/fj.01-0866com
10.1152/ajpcell.00111.2012
10.1016/0092-8674(93)90401-B
10.1074/jbc.M207129200
10.1038/emboj.2009.364
10.1101/gad.7.7b.1354
10.1172/JCI200421696
10.1172/JCI200420174
10.1016/j.bbrc.2011.01.059
10.1101/gad.183434.111
10.1097/CCM.0b013e3182374a84
10.1016/j.ccr.2005.10.004
10.1097/00149831-200308000-00009
10.1016/j.tcb.2009.05.006
10.1016/B978-0-12-385940-2.00004-8
10.1097/MCO.0b013e328352b4c2
ContentType Journal Article
Copyright 2012 The Authors. Experimental Physiology © 2012 The Physiological Society
Copyright_xml – notice: 2012 The Authors. Experimental Physiology © 2012 The Physiological Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1113/expphysiol.2011.063321
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1469-445X
EndPage 24
ExternalDocumentID 22848079
10_1113_expphysiol_2011_063321
EPH1157
Genre reviewArticle
Journal Article
Review
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAMS NIH HHS
  grantid: R01 AR060217
– fundername: NIAMS NIH HHS
  grantid: R01 AR041705
– fundername: NIAMS NIH HHS
  grantid: AR041705
– fundername: NIAMS NIH HHS
  grantid: AR060217
GroupedDBID ---
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
18M
1OB
1OC
24P
29G
2WC
31~
33P
36B
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAFWJ
AAHHS
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABGDZ
ABITZ
ABPVW
ABUWG
ABVKB
ABXGK
ACAHQ
ACCFJ
ACCMX
ACCZN
ACGFO
ACGFS
ACMXC
ACPOU
ACPRK
ACQPF
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADPDF
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFEBI
AFGKR
AFKRA
AFPWT
AFZJQ
AIACR
AIAGR
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AVUZU
AZBYB
AZVAB
BAFTC
BAWUL
BBNVY
BENPR
BFHJK
BHBCM
BHPHI
BMXJE
BROTX
BRXPI
BY8
C1A
C45
CAG
CCPQU
CHEAL
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
E3Z
EBD
EBS
EJD
EMB
EMOBN
EX3
F00
F01
F04
F5P
FIJ
FUBAC
G-S
G.N
GODZA
GROUPED_DOAJ
GX1
H.X
H13
HCIFZ
HF~
HGLYW
HZI
HZ~
IHE
IPNFZ
IX1
J0M
K48
KBYEO
L98
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M7P
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MVM
MXFUL
MXMAN
MXSTM
N04
N05
NF~
NQS
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P2Z
P4B
P4D
PGMZT
PQQKQ
Q.N
Q11
QB0
R.K
RCA
RIG
ROL
RPM
RX1
SAMSI
SUPJJ
SV3
TEORI
TLM
TR2
UB1
V8K
W8F
W8V
W99
WBKPD
WIH
WIJ
WIK
WIN
WNSPC
WOHZO
WOQ
WOW
WQJ
WRC
WXI
WXSBR
WYISQ
X7M
XG1
ZXP
ZZTAW
~IA
~WT
AAYXX
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7X8
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
ID FETCH-LOGICAL-c3267-5eb72ec55e81e6799e5e3d9b64fc1f210d3e8915a8435c9198f646ad7679ecdb3
IEDL.DBID DR2
ISSN 0958-0670
1469-445X
IngestDate Fri Jul 11 09:48:44 EDT 2025
Thu Apr 03 06:56:51 EDT 2025
Tue Jul 01 02:03:56 EDT 2025
Thu Apr 24 22:50:24 EDT 2025
Wed Jan 22 16:23:23 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3267-5eb72ec55e81e6799e5e3d9b64fc1f210d3e8915a8435c9198f646ad7679ecdb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1113/expphysiol.2011.063321
PMID 22848079
PQID 1273311025
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_1273311025
pubmed_primary_22848079
crossref_citationtrail_10_1113_expphysiol_2011_063321
crossref_primary_10_1113_expphysiol_2011_063321
wiley_primary_10_1113_expphysiol_2011_063321_EPH1157
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2013
2013-01-00
2013-Jan
20130101
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – month: 01
  year: 2013
  text: January 2013
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
PublicationTitle Experimental physiology
PublicationTitleAlternate Exp Physiol
PublicationYear 2013
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 1993; 7
2002; 16
2009; 23
2012
2011; 30
2011; 96
2011; 12
2000; 156
2012; 15
2006; 116
2012; 302
2012; 303
2003; 278
2011; 6
2003; 10
2001; 276
2011; 405
2004; 114
1993; 72
2010; 29
1999; 18
2007; 292
2005; 8
2008; 27
2007; 8
2011; 63
2011; 23
2008; 22
2012; 26
2008; 86
2004; 119
2009; 19
2010; 90
2012; 40
e_1_2_10_23_1
e_1_2_10_24_1
e_1_2_10_21_1
e_1_2_10_22_1
e_1_2_10_20_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_31_1
e_1_2_10_30_1
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_28_1
e_1_2_10_25_1
e_1_2_10_26_1
15479644 - Cell. 2004 Oct 15;119(2):285-98
21151171 - Oncogene. 2011 Apr 7;30(14):1727-32
17080195 - J Clin Invest. 2006 Nov;116(11):2945-54
15286803 - J Clin Invest. 2004 Aug;114(3):370-8
21256828 - Biochem Biophys Res Commun. 2011 Feb 18;405(3):491-6
21821120 - Cell Signal. 2011 Dec;23(12):1896-906
22003096 - Am J Physiol Lung Cell Mol Physiol. 2012 Jan 1;302(1):L103-10
22538866 - Am J Respir Cell Mol Biol. 2012 Sep;47(3):288-97
18853344 - Int Rev Immunol. 2008;27(5):375-87
10854231 - Am J Pathol. 2000 Jun;156(6):2103-10
11919155 - FASEB J. 2002 Apr;16(6):529-38
21249144 - PLoS One. 2011;6(1):e16171
12431991 - J Biol Chem. 2003 Jan 24;278(4):2294-303
8330739 - Genes Dev. 1993 Jul;7(7B):1354-63
22669242 - Am J Physiol Endocrinol Metab. 2012 Aug 1;303(3):E410-21
22466926 - Curr Opin Clin Nutr Metab Care. 2012 May;15(3):240-5
17183360 - Nat Rev Mol Cell Biol. 2007 Jan;8(1):49-62
20393192 - Physiol Rev. 2010 Apr;90(2):495-511
21621068 - Curr Top Dev Biol. 2011;96:85-119
18644837 - FASEB J. 2008 Nov;22(11):3836-45
8453667 - Cell. 1993 Mar 12;72(5):729-39
18574572 - J Mol Med (Berl). 2008 Oct;86(10):1113-26
19648011 - Trends Cell Biol. 2009 Aug;19(8):404-13
18827022 - FASEB J. 2009 Feb;23(2):362-70
21772278 - Nat Immunol. 2011 Aug;12(8):695-708
11387332 - J Biol Chem. 2001 Aug 24;276(34):32080-93
16286249 - Cancer Cell. 2005 Nov;8(5):421-32
14555882 - Eur J Cardiovasc Prev Rehabil. 2003 Aug;10(4):273-7
22080641 - Crit Care Med. 2012 Mar;40(3):927-34
10469655 - EMBO J. 1999 Sep 1;18(17):4766-78
21660860 - Nutr Cancer. 2011;63(5):749-62
19959994 - EMBO J. 2010 Feb 3;29(3):619-31
15546001 - J Clin Invest. 2004 Nov;114(10):1504-11
16928772 - Am J Physiol Cell Physiol. 2007 Jan;292(1):C372-82
22592403 - Am J Physiol Cell Physiol. 2012 Jul 15;303(2):C135-42
22302935 - Genes Dev. 2012 Feb 1;26(3):203-34
References_xml – volume: 8
  start-page: 49
  year: 2007
  end-page: 62
  article-title: Integrating cell‐signalling pathways with NF‐κB and IKK function
  publication-title: Nat Rev Mol Cell Biol
– volume: 72
  start-page: 729
  year: 1993
  end-page: 739
  article-title: The oncoprotein Bcl‐3 directly transactivates through κB motifs via association with DNA‐binding p50B homodimers
  publication-title: Cell
– volume: 30
  start-page: 1727
  year: 2011
  end-page: 1732
  article-title: IKK‐dependent, NF‐κB‐independent control of autophagic gene expression
  publication-title: Oncogene
– volume: 27
  start-page: 375
  year: 2008
  end-page: 387
  article-title: Skeletal muscle diseases, inflammation, and NF‐κB signaling: insights and opportunities for therapeutic intervention
  publication-title: Int Rev Immunol
– volume: 86
  start-page: 1113
  year: 2008
  end-page: 1126
  article-title: Nuclear factor‐kappa B signaling in skeletal muscle atrophy
  publication-title: J Mol Med
– volume: 15
  start-page: 240
  year: 2012
  end-page: 245
  article-title: Oxidative stress and disuse muscle atrophy: cause or consequence
  publication-title: Curr Opin Clin Nutr Metab Care
– volume: 22
  start-page: 3836
  year: 2008
  end-page: 3845
  article-title: Hsp70 overexpression inhibits NF‐κB and Foxo3a transcriptional activities and prevents skeletal muscle atrophy
  publication-title: FASEB J
– volume: 29
  start-page: 619
  year: 2010
  end-page: 631
  article-title: The IKK complex contributes to the induction of autophagy
  publication-title: EMBO J
– volume: 40
  start-page: 927
  year: 2012
  end-page: 934
  article-title: Nuclear factor‐κB signaling contributes to mechanical ventilation‐induced diaphragm weakness
  publication-title: Crit Care Med
– volume: 156
  start-page: 2103
  year: 2000
  end-page: 2110
  article-title: Complement activation promotes muscle inflammation during modified muscle use
  publication-title: Am J Pathol
– volume: 19
  start-page: 404
  year: 2009
  end-page: 413
  article-title: The NF‐κB‐independent functions of IKK subunits in immunity and cancer
  publication-title: Trends Cell Biol
– volume: 8
  start-page: 421
  year: 2005
  end-page: 432
  article-title: Dystrophin glycoprotein complex dysfunction: a regulatory link between muscular dystrophy and cancer cachexia
  publication-title: Cancer Cell
– volume: 276
  start-page: 32080
  year: 2001
  end-page: 32093
  article-title: NF‐κB‐inducible Bcl‐3 expression is an autoregulatory loop controlling nuclear p50/NF‐κB1 residence
  publication-title: J Biol Chem
– volume: 6
  start-page: e16171
  year: 2011
  article-title: Identification of genes that elicit disuse muscle atrophy via the transcription factors p50 and Bcl‐3
  publication-title: PLoS One
– volume: 292
  start-page: C372
  year: 2007
  end-page: C382
  article-title: Role for IκBα, but not c‐Rel, in skeletal muscle atrophy
  publication-title: Am J Physiol Cell Physiol
– volume: 302
  start-page: L103
  year: 2012
  end-page: L110
  article-title: NF‐κB activation and polyubiquitin conjugation are required for pulmonary inflammation‐induced diaphragm atrophy
  publication-title: Am J Physiol Lung Cell Mol Physiol
– volume: 119
  start-page: 285
  year: 2004
  end-page: 298
  article-title: IKKβ/NF‐κB activation causes severe muscle wasting in mice
  publication-title: Cell
– volume: 63
  start-page: 749
  year: 2011
  end-page: 762
  article-title: Oral resveratrol therapy inhibits cancer‐induced skeletal muscle and cardiac atrophy in vivo
  publication-title: Nutr Cancer
– volume: 23
  start-page: 362
  year: 2009
  end-page: 370
  article-title: The IκB kinases IKKα and IKKβ are necessary and sufficient for skeletal muscle atrophy
  publication-title: FASEB J
– volume: 10
  start-page: 273
  year: 2003
  end-page: 277
  article-title: Nuclear factor‐kappa B activation in skeletal muscle of patients with chronic heart failure: correlation with the expression of inducible nitric oxide synthase
  publication-title: Eur J Cardiovasc Prev Rehabil
– volume: 12
  start-page: 695
  year: 2011
  end-page: 708
  article-title: Crosstalk in NF‐κB signaling pathways
  publication-title: Nat Immunol
– volume: 18
  start-page: 4766
  year: 1999
  end-page: 4778
  article-title: NF‐κB p105 is a target of IκB kinases and controls signal induction of Bcl‐3–p50 complexes
  publication-title: EMBO J
– volume: 23
  start-page: 1896
  year: 2011
  end-page: 1906
  article-title: Recent progress toward understanding the molecular mechanisms that regulate skeletal muscle mass
  publication-title: Cell Signal
– volume: 16
  start-page: 529
  year: 2002
  end-page: 538
  article-title: Activation of an alternative NF‐κB pathway in skeletal muscle during disuse atrophy
  publication-title: FASEB J
– year: 2012
  article-title: NF‐kappa B activation is required for the transition of pulmonary inflammation to muscle atrophy
  publication-title: Am J Respir Cell Mol Biol
– volume: 96
  start-page: 85
  year: 2011
  end-page: 119
  article-title: NF‐κB signaling in skeletal muscle health and disease
  publication-title: Curr Top Dev Biol
– volume: 116
  start-page: 2945
  year: 2006
  end-page: 2954
  article-title: Targeted ablation of IKK2 improves skeletal muscle strength, maintains mass, and promotes regeneration
  publication-title: J Clin Invest
– volume: 90
  start-page: 495
  year: 2010
  end-page: 511
  article-title: NF‐κB signaling: a tale of two pathways in skeletal myogenesis
  publication-title: Physiol Rev
– volume: 303
  start-page: E410
  year: 2012
  end-page: E421
  article-title: JAK/STAT3 pathway inhibition blocks skeletal muscle wasting downstream of IL‐6 and in experimental cancer cachexia
  publication-title: Am J Physiol Endocrinol Metab
– volume: 7
  start-page: 1354
  year: 1993
  end-page: 1363
  article-title: The candidate proto‐oncogene encodes a transcriptional coactivator that activates through NF‐κB p50 homodimers
  publication-title: Genes Dev
– volume: 303
  start-page: C135
  year: 2012
  end-page: C142
  article-title: Rel A/p65 is required for cytokine induced myotube atrophy
  publication-title: Am J Physiol Cell Physiol
– volume: 114
  start-page: 1504
  year: 2004
  end-page: 1511
  article-title: Disruption of either the or the gene inhibits skeletal muscle atrophy
  publication-title: J Clin Invest
– volume: 26
  start-page: 203
  year: 2012
  end-page: 234
  article-title: NF‐κB, the first quarter‐century: remarkable progress and outstanding questions
  publication-title: Genes Dev
– volume: 114
  start-page: 370
  year: 2004
  end-page: 378
  article-title: Cancer cachexia is regulated by selective targeting of skeletal muscle gene products
  publication-title: J Clin Invest
– volume: 278
  start-page: 2294
  year: 2003
  end-page: 2303
  article-title: Tumor necrosis factor‐regulated biphasic activation of NF‐κB is required for cytokine‐induced loss of skeletal muscle gene products
  publication-title: J Biol Chem
– volume: 405
  start-page: 491
  year: 2011
  end-page: 496
  article-title: Inhibition of IkappaB kinase alpha (IKKα) or IKKbeta (IKKβ) plus forkhead box O (Foxo) abolishes skeletal muscle atrophy
  publication-title: Biochem Biophys Res Commun
– ident: e_1_2_10_5_1
  doi: 10.1152/physrev.00040.2009
– ident: e_1_2_10_32_1
  doi: 10.1096/fj.08-110163
– ident: e_1_2_10_27_1
  doi: 10.1038/nrm2083
– ident: e_1_2_10_36_1
  doi: 10.1371/journal.pone.0016171
– ident: e_1_2_10_18_1
  doi: 10.1093/emboj/18.17.4766
– ident: e_1_2_10_15_1
  doi: 10.1016/j.cellsig.2011.07.013
– ident: e_1_2_10_29_1
  doi: 10.1080/08830180802302389
– ident: e_1_2_10_16_1
  doi: 10.1152/ajplung.00084.2011
– ident: e_1_2_10_33_1
  doi: 10.1080/01635581.2011.563032
– ident: e_1_2_10_24_1
  doi: 10.1007/s00109-008-0373-8
– ident: e_1_2_10_8_1
  doi: 10.1074/jbc.M102949200
– ident: e_1_2_10_26_1
  doi: 10.1038/ni.2065
– ident: e_1_2_10_35_1
  doi: 10.1096/fj.08-114249
– ident: e_1_2_10_13_1
  doi: 10.1016/S0002-9440(10)65081-X
– ident: e_1_2_10_21_1
  doi: 10.1152/ajpcell.00293.2006
– ident: e_1_2_10_23_1
  doi: 10.1165/rcmb.2011-0119OC
– ident: e_1_2_10_9_1
  doi: 10.1016/j.cell.2004.09.027
– ident: e_1_2_10_25_1
  doi: 10.1172/JCI28721
– ident: e_1_2_10_11_1
  doi: 10.1038/onc.2010.553
– ident: e_1_2_10_6_1
  doi: 10.1152/ajpendo.00039.2012
– ident: e_1_2_10_20_1
  doi: 10.1096/fj.01-0866com
– ident: e_1_2_10_37_1
  doi: 10.1152/ajpcell.00111.2012
– ident: e_1_2_10_7_1
  doi: 10.1016/0092-8674(93)90401-B
– ident: e_1_2_10_22_1
  doi: 10.1074/jbc.M207129200
– ident: e_1_2_10_12_1
  doi: 10.1038/emboj.2009.364
– ident: e_1_2_10_14_1
  doi: 10.1101/gad.7.7b.1354
– ident: e_1_2_10_19_1
  doi: 10.1172/JCI200421696
– ident: e_1_2_10_3_1
  doi: 10.1172/JCI200420174
– ident: e_1_2_10_31_1
  doi: 10.1016/j.bbrc.2011.01.059
– ident: e_1_2_10_17_1
  doi: 10.1101/gad.183434.111
– ident: e_1_2_10_34_1
  doi: 10.1097/CCM.0b013e3182374a84
– ident: e_1_2_10_2_1
  doi: 10.1016/j.ccr.2005.10.004
– ident: e_1_2_10_4_1
  doi: 10.1097/00149831-200308000-00009
– ident: e_1_2_10_10_1
  doi: 10.1016/j.tcb.2009.05.006
– ident: e_1_2_10_28_1
  doi: 10.1016/B978-0-12-385940-2.00004-8
– ident: e_1_2_10_30_1
  doi: 10.1097/MCO.0b013e328352b4c2
– reference: 11919155 - FASEB J. 2002 Apr;16(6):529-38
– reference: 17080195 - J Clin Invest. 2006 Nov;116(11):2945-54
– reference: 10469655 - EMBO J. 1999 Sep 1;18(17):4766-78
– reference: 22302935 - Genes Dev. 2012 Feb 1;26(3):203-34
– reference: 19959994 - EMBO J. 2010 Feb 3;29(3):619-31
– reference: 21256828 - Biochem Biophys Res Commun. 2011 Feb 18;405(3):491-6
– reference: 16928772 - Am J Physiol Cell Physiol. 2007 Jan;292(1):C372-82
– reference: 21821120 - Cell Signal. 2011 Dec;23(12):1896-906
– reference: 22592403 - Am J Physiol Cell Physiol. 2012 Jul 15;303(2):C135-42
– reference: 18853344 - Int Rev Immunol. 2008;27(5):375-87
– reference: 21772278 - Nat Immunol. 2011 Aug;12(8):695-708
– reference: 8453667 - Cell. 1993 Mar 12;72(5):729-39
– reference: 22003096 - Am J Physiol Lung Cell Mol Physiol. 2012 Jan 1;302(1):L103-10
– reference: 21249144 - PLoS One. 2011;6(1):e16171
– reference: 11387332 - J Biol Chem. 2001 Aug 24;276(34):32080-93
– reference: 22080641 - Crit Care Med. 2012 Mar;40(3):927-34
– reference: 18574572 - J Mol Med (Berl). 2008 Oct;86(10):1113-26
– reference: 22669242 - Am J Physiol Endocrinol Metab. 2012 Aug 1;303(3):E410-21
– reference: 18827022 - FASEB J. 2009 Feb;23(2):362-70
– reference: 15286803 - J Clin Invest. 2004 Aug;114(3):370-8
– reference: 14555882 - Eur J Cardiovasc Prev Rehabil. 2003 Aug;10(4):273-7
– reference: 18644837 - FASEB J. 2008 Nov;22(11):3836-45
– reference: 12431991 - J Biol Chem. 2003 Jan 24;278(4):2294-303
– reference: 15546001 - J Clin Invest. 2004 Nov;114(10):1504-11
– reference: 10854231 - Am J Pathol. 2000 Jun;156(6):2103-10
– reference: 21151171 - Oncogene. 2011 Apr 7;30(14):1727-32
– reference: 8330739 - Genes Dev. 1993 Jul;7(7B):1354-63
– reference: 16286249 - Cancer Cell. 2005 Nov;8(5):421-32
– reference: 19648011 - Trends Cell Biol. 2009 Aug;19(8):404-13
– reference: 22466926 - Curr Opin Clin Nutr Metab Care. 2012 May;15(3):240-5
– reference: 15479644 - Cell. 2004 Oct 15;119(2):285-98
– reference: 20393192 - Physiol Rev. 2010 Apr;90(2):495-511
– reference: 21660860 - Nutr Cancer. 2011;63(5):749-62
– reference: 22538866 - Am J Respir Cell Mol Biol. 2012 Sep;47(3):288-97
– reference: 17183360 - Nat Rev Mol Cell Biol. 2007 Jan;8(1):49-62
– reference: 21621068 - Curr Top Dev Biol. 2011;96:85-119
SSID ssj0013084
Score 2.2753
SecondaryResourceType review_article
Snippet New findings •  What is the topic for this review? An up‐to‐date analysis on the role of nuclear factor‐κB signaling and transcriptional control in adult...
What is the topic for this review? An up‐to‐date analysis on the role of nuclear factor‐κB signaling and transcriptional control in adult skeletal muscle...
The nuclear factor-κB (NF-κB) signalling pathway is a necessary component of adult skeletal muscle atrophy resulting from systemic illnesses or disuse. Studies...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 19
SubjectTerms Adult
Animals
Gene Expression Regulation
Humans
Mice
Muscle, Skeletal - pathology
Muscular Atrophy - metabolism
Muscular Atrophy - pathology
NF-kappa B - physiology
Signal Transduction - drug effects
Signal Transduction - physiology
Transcription Factors - physiology
Transcriptional Activation - physiology
Title Nuclear factor‐κB signalling and transcriptional regulation in skeletal muscle atrophy
URI https://onlinelibrary.wiley.com/doi/abs/10.1113%2Fexpphysiol.2011.063321
https://www.ncbi.nlm.nih.gov/pubmed/22848079
https://www.proquest.com/docview/1273311025
Volume 98
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dTtVAEJ4gV94oisoBJGtCvCt02922e4kGcmIiOTGQ4FWz204JAXrI-UnEKx7B5_EheAifxJnd9hDUREO8bnfa_Zndb3Z3vg9gu9YubkyMkXLWRpwrGblGphHWuXJJIa31WgQfD7Phsfpwok-WYNjnwgR-iMWGG3uGn6_Zwa3rVEgkkw3glysf_I8vOiLOLE19Rjlf3GJ09Cm5O06IvfQwwYki4sSULlWYDO3-2cz9Veo36Hkfyfql6OApnPWVCDdQznfmM7dTff2F3_F_1HIFnnR4VeyFAfYMlrB9Dqt7LcXql9firRiFYuPT61X4fMjkyHYigojPj5tvt9_fCb4hYj3zt7BtLWa8OPZTFVme4GmnICbOWjE9p2WQ4gFxOZ-SLcE79fRnL-D4YP_o_TDqpBuiivBgHml0eYKV1lhIzHJjUGNaG5epppINhZl1ioWR2hYE1yojTdFkKrN1Tu9iVbv0JSy34xbXQGhb0xObNJjGqrFYEGh0iEhYUxml5QB031Vl1fGas7zGRRnim7S8a8OS27AMbTiA3UW5q8Ds8dcSb_qRUJIT8smKbXE8n5YyYelLwmp6AK_CEFnYTAgAFHFuBqB8R__jx8r90ZCJkNYfVmwDHideuIM3izZheTaZ42uCTzO3BY8SNdryDvITgokZ7g
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtUwEB2hsoANtBTopTyMhNilzcNO4mWBVhdoryrUSmVl2cmkgra51X1ItKt-At_DR_ARfEln7NxbFZBAiHXiSfwY-4ztOQfgRa1c3OgYI-msjThXMnJNkkVYF9KlZWKt1yLYGeT9ffnuQB10lEKcCxP4IeYbbuwZfr5mB-cN6c7LmW0Av5z66H943DFx5lnGKeU3Wd6bafTffEivDhRiLz5MgKKMODWlSxYmS-u_t3N9nfoFfF7Hsn4x2roLn2fVCHdQjtamE7dWnf_E8Phf6rkIdzrIKjbCGFuCG9jeg-WNlsL1kzPxUuyGYsPDs2X4OGB-ZDsSQcfnx8XX799eCb4kYj35t7BtLSa8Ps5mK7I8wsNOREx8asX4iFZCCgnEyXRMtgRv1tOf3Yf9rc291_2oU2-IKoKERaTQFSlWSmGZYF5ojQqzWrtcNlXSUKRZZ1jqRNmSEFulE102ucxtXdC7WNUuewAL7bDFFRDK1vTEpg1msWwsloQbHSIS3JRaqqQHatZXpuqozVlh49iEECczV21ouA1NaMMerM_LnQZyjz-WeD4bCob8kA9XbIvD6dgkKatfElxTPXgYxsjcZkoYoIwL3QPpe_ovP2Y2d_vMhfTo34o9g1v9vZ1ts_128H4Vbqdex4P3jh7DwmQ0xSeEpibuqfeTS1v7HTM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB5VuxLigugf3fJTV6q4Rc2PncTHBXa1BbraA1sVLpYdTxBqm13tj0RvfQSeh4fgIXgSxnF2q6pIVByjxGNlJuP5xs7MB3BkhQlLGWLAjdaBq5UMTBklAdqMmziPtK65CE6H6WDM35-L8w0YrGphfH-I9Yab84x6vXYOPrVl4-Su2QB-n9bJ_-SyacSZJomrKG8LClFhC9rds_GX8e2JQlizDxOiyANXm9JUC5Os479Luhuo7qHPu2C2jkb9p_CkgZGs6-2-CRtYbcF2t6IU-uqavWYjP9Pk6_U2fB66nsV6xjy3zu-bH79-vmHuxw1dN-RmurJs4WLWagUhyTPPUU8X7FvF5hcUnQims6vlnGQxt4FOL7MD437v09tB0DAqBAXBtCwQaLIYCyEwjzDNpESBiZUm5WURlZT92QRzGQmdE4oqZCTzMuWpthk9i4U1yS60qkmFe8CEtnRHxyUmIS815oTlDCISBOSSi6gDYqU-VTTtxh3rxaXyaUeibtWunNqVV3sHjtfjpr7hxj9HHK6so8g33IGHrnCynKsodoyUBKFEB555s61lxhSX8zCTHeC1HR84meqNBq4_0f7_DTuAR6N3ffXxZPjhOTyOa2oNt53zAlqL2RJfEsBZmFfNt_sHjuv5GQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nuclear+factor%E2%80%90%CE%BAB+signalling+and+transcriptional+regulation+in+skeletal+muscle+atrophy&rft.jtitle=Experimental+physiology&rft.au=Jackman%2C+Robert+W.&rft.au=Cornwell%2C+Evangeline+W.&rft.au=Wu%2C+Chia%E2%80%90Ling&rft.au=Kandarian%2C+Susan+C.&rft.date=2013-01-01&rft.issn=0958-0670&rft.eissn=1469-445X&rft.volume=98&rft.issue=1&rft.spage=19&rft.epage=24&rft_id=info:doi/10.1113%2Fexpphysiol.2011.063321&rft.externalDBID=n%2Fa&rft.externalDocID=10_1113_expphysiol_2011_063321
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0958-0670&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0958-0670&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0958-0670&client=summon