Nuclear factor‐κB signalling and transcriptional regulation in skeletal muscle atrophy
New findings • What is the topic for this review? An up‐to‐date analysis on the role of nuclear factor‐κB signaling and transcriptional control in adult skeletal muscle atrophy. • What advances does it highlight? Our analysis of the literature and research in our laboratory has allowed us to propo...
Saved in:
Published in | Experimental physiology Vol. 98; no. 1; pp. 19 - 24 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.01.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | New findings
•
What is the topic for this review?
An up‐to‐date analysis on the role of nuclear factor‐κB signaling and transcriptional control in adult skeletal muscle atrophy.
•
What advances does it highlight?
Our analysis of the literature and research in our laboratory has allowed us to propose interpretations that have not previously been published. We believe these interpretations will be of interest to scientists studying the cellular control of adult skeletal muscle atrophy.
The nuclear factor‐κB (NF‐κB) signalling pathway is a necessary component of adult skeletal muscle atrophy resulting from systemic illnesses or disuse. Studies showing a role for the NF‐κB pathway in muscle disuse include unloading, denervation and immobilization, and studies showing a role for NF‐κB in systemic illnesses include cancer, chronic heart failure and acute septic lung injury. Muscle atrophy due to most of these triggers is associated with activation of NF‐κB transcriptional activity. With the exception of muscle unloading, however, there is a paucity of data on the NF‐κB transcription factors that regulate muscle atrophy, and little is known about which genes are targeted by NF‐κB transcription factors during atrophy. Interestingly, in some cases it appears that the amelioration of muscle atrophy by genetic inhibition of NF‐κB signalling proteins is due to effects that are independent of the downstream NF‐κB transcription factors. These questions are prime areas for investigation if we are to understand a key component of muscle wasting in adult skeletal muscle. |
---|---|
AbstractList | The nuclear factor-κB (NF-κB) signalling pathway is a necessary component of adult skeletal muscle atrophy resulting from systemic illnesses or disuse. Studies showing a role for the NF-κB pathway in muscle disuse include unloading, denervation and immobilization, and studies showing a role for NF-κB in systemic illnesses include cancer, chronic heart failure and acute septic lung injury. Muscle atrophy due to most of these triggers is associated with activation of NF-κB transcriptional activity. With the exception of muscle unloading, however, there is a paucity of data on the NF-κB transcription factors that regulate muscle atrophy, and little is known about which genes are targeted by NF-κB transcription factors during atrophy. Interestingly, in some cases it appears that the amelioration of muscle atrophy by genetic inhibition of NF-κB signalling proteins is due to effects that are independent of the downstream NF-κB transcription factors. These questions are prime areas for investigation if we are to understand a key component of muscle wasting in adult skeletal muscle.The nuclear factor-κB (NF-κB) signalling pathway is a necessary component of adult skeletal muscle atrophy resulting from systemic illnesses or disuse. Studies showing a role for the NF-κB pathway in muscle disuse include unloading, denervation and immobilization, and studies showing a role for NF-κB in systemic illnesses include cancer, chronic heart failure and acute septic lung injury. Muscle atrophy due to most of these triggers is associated with activation of NF-κB transcriptional activity. With the exception of muscle unloading, however, there is a paucity of data on the NF-κB transcription factors that regulate muscle atrophy, and little is known about which genes are targeted by NF-κB transcription factors during atrophy. Interestingly, in some cases it appears that the amelioration of muscle atrophy by genetic inhibition of NF-κB signalling proteins is due to effects that are independent of the downstream NF-κB transcription factors. These questions are prime areas for investigation if we are to understand a key component of muscle wasting in adult skeletal muscle. What is the topic for this review? An up‐to‐date analysis on the role of nuclear factor‐κB signaling and transcriptional control in adult skeletal muscle atrophy. What advances does it highlight? Our analysis of the literature and research in our laboratory has allowed us to propose interpretations that have not previously been published. We believe these interpretations will be of interest to scientists studying the cellular control of adult skeletal muscle atrophy. The nuclear factor‐κB (NF‐κB) signalling pathway is a necessary component of adult skeletal muscle atrophy resulting from systemic illnesses or disuse. Studies showing a role for the NF‐κB pathway in muscle disuse include unloading, denervation and immobilization, and studies showing a role for NF‐κB in systemic illnesses include cancer, chronic heart failure and acute septic lung injury. Muscle atrophy due to most of these triggers is associated with activation of NF‐κB transcriptional activity. With the exception of muscle unloading, however, there is a paucity of data on the NF‐κB transcription factors that regulate muscle atrophy, and little is known about which genes are targeted by NF‐κB transcription factors during atrophy. Interestingly, in some cases it appears that the amelioration of muscle atrophy by genetic inhibition of NF‐κB signalling proteins is due to effects that are independent of the downstream NF‐κB transcription factors. These questions are prime areas for investigation if we are to understand a key component of muscle wasting in adult skeletal muscle. New findings • What is the topic for this review? An up‐to‐date analysis on the role of nuclear factor‐κB signaling and transcriptional control in adult skeletal muscle atrophy. • What advances does it highlight? Our analysis of the literature and research in our laboratory has allowed us to propose interpretations that have not previously been published. We believe these interpretations will be of interest to scientists studying the cellular control of adult skeletal muscle atrophy. The nuclear factor‐κB (NF‐κB) signalling pathway is a necessary component of adult skeletal muscle atrophy resulting from systemic illnesses or disuse. Studies showing a role for the NF‐κB pathway in muscle disuse include unloading, denervation and immobilization, and studies showing a role for NF‐κB in systemic illnesses include cancer, chronic heart failure and acute septic lung injury. Muscle atrophy due to most of these triggers is associated with activation of NF‐κB transcriptional activity. With the exception of muscle unloading, however, there is a paucity of data on the NF‐κB transcription factors that regulate muscle atrophy, and little is known about which genes are targeted by NF‐κB transcription factors during atrophy. Interestingly, in some cases it appears that the amelioration of muscle atrophy by genetic inhibition of NF‐κB signalling proteins is due to effects that are independent of the downstream NF‐κB transcription factors. These questions are prime areas for investigation if we are to understand a key component of muscle wasting in adult skeletal muscle. The nuclear factor-κB (NF-κB) signalling pathway is a necessary component of adult skeletal muscle atrophy resulting from systemic illnesses or disuse. Studies showing a role for the NF-κB pathway in muscle disuse include unloading, denervation and immobilization, and studies showing a role for NF-κB in systemic illnesses include cancer, chronic heart failure and acute septic lung injury. Muscle atrophy due to most of these triggers is associated with activation of NF-κB transcriptional activity. With the exception of muscle unloading, however, there is a paucity of data on the NF-κB transcription factors that regulate muscle atrophy, and little is known about which genes are targeted by NF-κB transcription factors during atrophy. Interestingly, in some cases it appears that the amelioration of muscle atrophy by genetic inhibition of NF-κB signalling proteins is due to effects that are independent of the downstream NF-κB transcription factors. These questions are prime areas for investigation if we are to understand a key component of muscle wasting in adult skeletal muscle. |
Author | Cornwell, Evangeline W. Kandarian, Susan C. Jackman, Robert W. Wu, Chia‐Ling |
Author_xml | – sequence: 1 givenname: Robert W. surname: Jackman fullname: Jackman, Robert W. – sequence: 2 givenname: Evangeline W. surname: Cornwell fullname: Cornwell, Evangeline W. – sequence: 3 givenname: Chia‐Ling surname: Wu fullname: Wu, Chia‐Ling – sequence: 4 givenname: Susan C. surname: Kandarian fullname: Kandarian, Susan C. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22848079$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkMFuEzEQhi2UiiaFV6j22MsGj732rtVeoAq0UkQ5gAQny_HOBoOzu9i7gtx4BJ6Hh-AheJI6JBFSL3AaefR_M-NvRiZt1yIh50DnAMCf4be-_7iNrvNzRgHmVHLO4BGZQiFVXhTi_YRMqRJVTmVJT8ksxk-UAqdV8ZicMlYVFS3VlHx4PVqPJmSNsUMXfn__8evniyy6dWu8d-06M22dDcG00QbXD65L_SzgevRm98hcm8XP6HFI7c0Y06zMDKFLtz0hJ43xEZ8e6hl593Lx9vomX969ur1-vswtZ7LMBa5KhlYIrABlqRQK5LVayaKx0DCgNcdKgTBVwYVVoKpGFtLUZcqirVf8jFzs5_ah-zJiHPTGRYvemxa7MWpgJecAlIkUPT9Ex9UGa90HtzFhq486UuBqH7ChizFgo60b_nw0KXBeA9U7-_qvfb2zr_f2Ey4f4McN_wQv9-BX53H7n5RevLkBECW_B47Eo14 |
CitedBy_id | crossref_primary_10_1016_j_lfs_2023_122125 crossref_primary_10_2147_COPD_S313439 crossref_primary_10_7554_eLife_82016 crossref_primary_10_14814_phy2_13291 crossref_primary_10_1152_ajpendo_00204_2014 crossref_primary_10_1016_j_abb_2024_109961 crossref_primary_10_1172_jci_insight_125543 crossref_primary_10_1038_s41572_024_00492_3 crossref_primary_10_1186_s13395_023_00332_0 crossref_primary_10_1371_journal_pone_0160594 crossref_primary_10_1016_j_biocel_2013_06_011 crossref_primary_10_1186_s13395_024_00338_2 crossref_primary_10_1038_s41419_020_2332_4 crossref_primary_10_3390_jcm14030876 crossref_primary_10_3389_fnut_2022_865402 crossref_primary_10_1016_j_jshs_2024_05_001 crossref_primary_10_1152_japplphysiol_00830_2016 crossref_primary_10_1007_s11357_020_00272_3 crossref_primary_10_1186_s12974_016_0736_y crossref_primary_10_1002_wsbm_1462 crossref_primary_10_1016_j_ajpath_2017_08_009 crossref_primary_10_1371_journal_pone_0166189 crossref_primary_10_1089_neu_2015_4058 crossref_primary_10_1007_s00424_020_02353_w crossref_primary_10_1007_s11010_022_04610_1 crossref_primary_10_1016_j_bbrc_2015_06_118 crossref_primary_10_1002_mnfr_202300033 crossref_primary_10_1016_j_kint_2017_03_046 crossref_primary_10_1371_journal_pone_0087776 crossref_primary_10_12998_wjcc_v9_i33_10064 crossref_primary_10_3389_fphys_2019_01252 crossref_primary_10_1016_j_jbc_2021_100376 crossref_primary_10_1177_15593258221148015 crossref_primary_10_1097_MCO_0000000000000165 crossref_primary_10_1186_s13287_019_1480_x crossref_primary_10_3390_nu14010052 crossref_primary_10_1152_ajpendo_00576_2014 crossref_primary_10_3389_fncel_2014_00405 crossref_primary_10_1152_ajpregu_00198_2015 crossref_primary_10_1002_jcsm_12434 crossref_primary_10_1155_2016_3957958 crossref_primary_10_1113_JP280652 crossref_primary_10_5527_wjn_v5_i3_274 crossref_primary_10_1038_s41598_017_13105_9 crossref_primary_10_1002_rmv_2355 crossref_primary_10_1016_j_smhs_2020_11_004 crossref_primary_10_1080_87559129_2022_2087669 crossref_primary_10_3390_antiox12010137 crossref_primary_10_1016_j_expneurol_2013_06_003 crossref_primary_10_1096_fj_202100777RR crossref_primary_10_1113_jphysiol_2014_279034 crossref_primary_10_1002_wjo2_70007 crossref_primary_10_3390_antiox11091686 crossref_primary_10_1007_s11914_018_0468_2 crossref_primary_10_1007_s00223_014_9925_9 crossref_primary_10_3109_02656736_2014_1002019 crossref_primary_10_1039_D4FO04341C crossref_primary_10_1097_SHK_0000000000000729 |
Cites_doi | 10.1152/physrev.00040.2009 10.1096/fj.08-110163 10.1038/nrm2083 10.1371/journal.pone.0016171 10.1093/emboj/18.17.4766 10.1016/j.cellsig.2011.07.013 10.1080/08830180802302389 10.1152/ajplung.00084.2011 10.1080/01635581.2011.563032 10.1007/s00109-008-0373-8 10.1074/jbc.M102949200 10.1038/ni.2065 10.1096/fj.08-114249 10.1016/S0002-9440(10)65081-X 10.1152/ajpcell.00293.2006 10.1165/rcmb.2011-0119OC 10.1016/j.cell.2004.09.027 10.1172/JCI28721 10.1038/onc.2010.553 10.1152/ajpendo.00039.2012 10.1096/fj.01-0866com 10.1152/ajpcell.00111.2012 10.1016/0092-8674(93)90401-B 10.1074/jbc.M207129200 10.1038/emboj.2009.364 10.1101/gad.7.7b.1354 10.1172/JCI200421696 10.1172/JCI200420174 10.1016/j.bbrc.2011.01.059 10.1101/gad.183434.111 10.1097/CCM.0b013e3182374a84 10.1016/j.ccr.2005.10.004 10.1097/00149831-200308000-00009 10.1016/j.tcb.2009.05.006 10.1016/B978-0-12-385940-2.00004-8 10.1097/MCO.0b013e328352b4c2 |
ContentType | Journal Article |
Copyright | 2012 The Authors. Experimental Physiology © 2012 The Physiological Society |
Copyright_xml | – notice: 2012 The Authors. Experimental Physiology © 2012 The Physiological Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1113/expphysiol.2011.063321 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1469-445X |
EndPage | 24 |
ExternalDocumentID | 22848079 10_1113_expphysiol_2011_063321 EPH1157 |
Genre | reviewArticle Journal Article Review Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAMS NIH HHS grantid: R01 AR060217 – fundername: NIAMS NIH HHS grantid: R01 AR041705 – fundername: NIAMS NIH HHS grantid: AR041705 – fundername: NIAMS NIH HHS grantid: AR060217 |
GroupedDBID | --- -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 18M 1OB 1OC 24P 29G 2WC 31~ 33P 36B 3O- 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAFWJ AAHHS AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABGDZ ABITZ ABPVW ABUWG ABVKB ABXGK ACAHQ ACCFJ ACCMX ACCZN ACGFO ACGFS ACMXC ACPOU ACPRK ACQPF ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADPDF ADXAS ADZMN ADZOD AEEZP AEGXH AEIMD AENEX AEQDE AEUQT AFBPY AFEBI AFGKR AFKRA AFPWT AFZJQ AIACR AIAGR AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AVUZU AZBYB AZVAB BAFTC BAWUL BBNVY BENPR BFHJK BHBCM BHPHI BMXJE BROTX BRXPI BY8 C1A C45 CAG CCPQU CHEAL COF CS3 D-6 D-7 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM DU5 E3Z EBD EBS EJD EMB EMOBN EX3 F00 F01 F04 F5P FIJ FUBAC G-S G.N GODZA GROUPED_DOAJ GX1 H.X H13 HCIFZ HF~ HGLYW HZI HZ~ IHE IPNFZ IX1 J0M K48 KBYEO L98 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M7P MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MVM MXFUL MXMAN MXSTM N04 N05 NF~ NQS O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P2Z P4B P4D PGMZT PQQKQ Q.N Q11 QB0 R.K RCA RIG ROL RPM RX1 SAMSI SUPJJ SV3 TEORI TLM TR2 UB1 V8K W8F W8V W99 WBKPD WIH WIJ WIK WIN WNSPC WOHZO WOQ WOW WQJ WRC WXI WXSBR WYISQ X7M XG1 ZXP ZZTAW ~IA ~WT AAYXX CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7X8 AAMMB AEFGJ AGXDD AIDQK AIDYY |
ID | FETCH-LOGICAL-c3267-5eb72ec55e81e6799e5e3d9b64fc1f210d3e8915a8435c9198f646ad7679ecdb3 |
IEDL.DBID | DR2 |
ISSN | 0958-0670 1469-445X |
IngestDate | Fri Jul 11 09:48:44 EDT 2025 Thu Apr 03 06:56:51 EDT 2025 Tue Jul 01 02:03:56 EDT 2025 Thu Apr 24 22:50:24 EDT 2025 Wed Jan 22 16:23:23 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3267-5eb72ec55e81e6799e5e3d9b64fc1f210d3e8915a8435c9198f646ad7679ecdb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1113/expphysiol.2011.063321 |
PMID | 22848079 |
PQID | 1273311025 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1273311025 pubmed_primary_22848079 crossref_citationtrail_10_1113_expphysiol_2011_063321 crossref_primary_10_1113_expphysiol_2011_063321 wiley_primary_10_1113_expphysiol_2011_063321_EPH1157 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2013 2013-01-00 2013-Jan 20130101 |
PublicationDateYYYYMMDD | 2013-01-01 |
PublicationDate_xml | – month: 01 year: 2013 text: January 2013 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: England |
PublicationTitle | Experimental physiology |
PublicationTitleAlternate | Exp Physiol |
PublicationYear | 2013 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 1993; 7 2002; 16 2009; 23 2012 2011; 30 2011; 96 2011; 12 2000; 156 2012; 15 2006; 116 2012; 302 2012; 303 2003; 278 2011; 6 2003; 10 2001; 276 2011; 405 2004; 114 1993; 72 2010; 29 1999; 18 2007; 292 2005; 8 2008; 27 2007; 8 2011; 63 2011; 23 2008; 22 2012; 26 2008; 86 2004; 119 2009; 19 2010; 90 2012; 40 e_1_2_10_23_1 e_1_2_10_24_1 e_1_2_10_21_1 e_1_2_10_22_1 e_1_2_10_20_1 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_31_1 e_1_2_10_30_1 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_28_1 e_1_2_10_25_1 e_1_2_10_26_1 15479644 - Cell. 2004 Oct 15;119(2):285-98 21151171 - Oncogene. 2011 Apr 7;30(14):1727-32 17080195 - J Clin Invest. 2006 Nov;116(11):2945-54 15286803 - J Clin Invest. 2004 Aug;114(3):370-8 21256828 - Biochem Biophys Res Commun. 2011 Feb 18;405(3):491-6 21821120 - Cell Signal. 2011 Dec;23(12):1896-906 22003096 - Am J Physiol Lung Cell Mol Physiol. 2012 Jan 1;302(1):L103-10 22538866 - Am J Respir Cell Mol Biol. 2012 Sep;47(3):288-97 18853344 - Int Rev Immunol. 2008;27(5):375-87 10854231 - Am J Pathol. 2000 Jun;156(6):2103-10 11919155 - FASEB J. 2002 Apr;16(6):529-38 21249144 - PLoS One. 2011;6(1):e16171 12431991 - J Biol Chem. 2003 Jan 24;278(4):2294-303 8330739 - Genes Dev. 1993 Jul;7(7B):1354-63 22669242 - Am J Physiol Endocrinol Metab. 2012 Aug 1;303(3):E410-21 22466926 - Curr Opin Clin Nutr Metab Care. 2012 May;15(3):240-5 17183360 - Nat Rev Mol Cell Biol. 2007 Jan;8(1):49-62 20393192 - Physiol Rev. 2010 Apr;90(2):495-511 21621068 - Curr Top Dev Biol. 2011;96:85-119 18644837 - FASEB J. 2008 Nov;22(11):3836-45 8453667 - Cell. 1993 Mar 12;72(5):729-39 18574572 - J Mol Med (Berl). 2008 Oct;86(10):1113-26 19648011 - Trends Cell Biol. 2009 Aug;19(8):404-13 18827022 - FASEB J. 2009 Feb;23(2):362-70 21772278 - Nat Immunol. 2011 Aug;12(8):695-708 11387332 - J Biol Chem. 2001 Aug 24;276(34):32080-93 16286249 - Cancer Cell. 2005 Nov;8(5):421-32 14555882 - Eur J Cardiovasc Prev Rehabil. 2003 Aug;10(4):273-7 22080641 - Crit Care Med. 2012 Mar;40(3):927-34 10469655 - EMBO J. 1999 Sep 1;18(17):4766-78 21660860 - Nutr Cancer. 2011;63(5):749-62 19959994 - EMBO J. 2010 Feb 3;29(3):619-31 15546001 - J Clin Invest. 2004 Nov;114(10):1504-11 16928772 - Am J Physiol Cell Physiol. 2007 Jan;292(1):C372-82 22592403 - Am J Physiol Cell Physiol. 2012 Jul 15;303(2):C135-42 22302935 - Genes Dev. 2012 Feb 1;26(3):203-34 |
References_xml | – volume: 8 start-page: 49 year: 2007 end-page: 62 article-title: Integrating cell‐signalling pathways with NF‐κB and IKK function publication-title: Nat Rev Mol Cell Biol – volume: 72 start-page: 729 year: 1993 end-page: 739 article-title: The oncoprotein Bcl‐3 directly transactivates through κB motifs via association with DNA‐binding p50B homodimers publication-title: Cell – volume: 30 start-page: 1727 year: 2011 end-page: 1732 article-title: IKK‐dependent, NF‐κB‐independent control of autophagic gene expression publication-title: Oncogene – volume: 27 start-page: 375 year: 2008 end-page: 387 article-title: Skeletal muscle diseases, inflammation, and NF‐κB signaling: insights and opportunities for therapeutic intervention publication-title: Int Rev Immunol – volume: 86 start-page: 1113 year: 2008 end-page: 1126 article-title: Nuclear factor‐kappa B signaling in skeletal muscle atrophy publication-title: J Mol Med – volume: 15 start-page: 240 year: 2012 end-page: 245 article-title: Oxidative stress and disuse muscle atrophy: cause or consequence publication-title: Curr Opin Clin Nutr Metab Care – volume: 22 start-page: 3836 year: 2008 end-page: 3845 article-title: Hsp70 overexpression inhibits NF‐κB and Foxo3a transcriptional activities and prevents skeletal muscle atrophy publication-title: FASEB J – volume: 29 start-page: 619 year: 2010 end-page: 631 article-title: The IKK complex contributes to the induction of autophagy publication-title: EMBO J – volume: 40 start-page: 927 year: 2012 end-page: 934 article-title: Nuclear factor‐κB signaling contributes to mechanical ventilation‐induced diaphragm weakness publication-title: Crit Care Med – volume: 156 start-page: 2103 year: 2000 end-page: 2110 article-title: Complement activation promotes muscle inflammation during modified muscle use publication-title: Am J Pathol – volume: 19 start-page: 404 year: 2009 end-page: 413 article-title: The NF‐κB‐independent functions of IKK subunits in immunity and cancer publication-title: Trends Cell Biol – volume: 8 start-page: 421 year: 2005 end-page: 432 article-title: Dystrophin glycoprotein complex dysfunction: a regulatory link between muscular dystrophy and cancer cachexia publication-title: Cancer Cell – volume: 276 start-page: 32080 year: 2001 end-page: 32093 article-title: NF‐κB‐inducible Bcl‐3 expression is an autoregulatory loop controlling nuclear p50/NF‐κB1 residence publication-title: J Biol Chem – volume: 6 start-page: e16171 year: 2011 article-title: Identification of genes that elicit disuse muscle atrophy via the transcription factors p50 and Bcl‐3 publication-title: PLoS One – volume: 292 start-page: C372 year: 2007 end-page: C382 article-title: Role for IκBα, but not c‐Rel, in skeletal muscle atrophy publication-title: Am J Physiol Cell Physiol – volume: 302 start-page: L103 year: 2012 end-page: L110 article-title: NF‐κB activation and polyubiquitin conjugation are required for pulmonary inflammation‐induced diaphragm atrophy publication-title: Am J Physiol Lung Cell Mol Physiol – volume: 119 start-page: 285 year: 2004 end-page: 298 article-title: IKKβ/NF‐κB activation causes severe muscle wasting in mice publication-title: Cell – volume: 63 start-page: 749 year: 2011 end-page: 762 article-title: Oral resveratrol therapy inhibits cancer‐induced skeletal muscle and cardiac atrophy in vivo publication-title: Nutr Cancer – volume: 23 start-page: 362 year: 2009 end-page: 370 article-title: The IκB kinases IKKα and IKKβ are necessary and sufficient for skeletal muscle atrophy publication-title: FASEB J – volume: 10 start-page: 273 year: 2003 end-page: 277 article-title: Nuclear factor‐kappa B activation in skeletal muscle of patients with chronic heart failure: correlation with the expression of inducible nitric oxide synthase publication-title: Eur J Cardiovasc Prev Rehabil – volume: 12 start-page: 695 year: 2011 end-page: 708 article-title: Crosstalk in NF‐κB signaling pathways publication-title: Nat Immunol – volume: 18 start-page: 4766 year: 1999 end-page: 4778 article-title: NF‐κB p105 is a target of IκB kinases and controls signal induction of Bcl‐3–p50 complexes publication-title: EMBO J – volume: 23 start-page: 1896 year: 2011 end-page: 1906 article-title: Recent progress toward understanding the molecular mechanisms that regulate skeletal muscle mass publication-title: Cell Signal – volume: 16 start-page: 529 year: 2002 end-page: 538 article-title: Activation of an alternative NF‐κB pathway in skeletal muscle during disuse atrophy publication-title: FASEB J – year: 2012 article-title: NF‐kappa B activation is required for the transition of pulmonary inflammation to muscle atrophy publication-title: Am J Respir Cell Mol Biol – volume: 96 start-page: 85 year: 2011 end-page: 119 article-title: NF‐κB signaling in skeletal muscle health and disease publication-title: Curr Top Dev Biol – volume: 116 start-page: 2945 year: 2006 end-page: 2954 article-title: Targeted ablation of IKK2 improves skeletal muscle strength, maintains mass, and promotes regeneration publication-title: J Clin Invest – volume: 90 start-page: 495 year: 2010 end-page: 511 article-title: NF‐κB signaling: a tale of two pathways in skeletal myogenesis publication-title: Physiol Rev – volume: 303 start-page: E410 year: 2012 end-page: E421 article-title: JAK/STAT3 pathway inhibition blocks skeletal muscle wasting downstream of IL‐6 and in experimental cancer cachexia publication-title: Am J Physiol Endocrinol Metab – volume: 7 start-page: 1354 year: 1993 end-page: 1363 article-title: The candidate proto‐oncogene encodes a transcriptional coactivator that activates through NF‐κB p50 homodimers publication-title: Genes Dev – volume: 303 start-page: C135 year: 2012 end-page: C142 article-title: Rel A/p65 is required for cytokine induced myotube atrophy publication-title: Am J Physiol Cell Physiol – volume: 114 start-page: 1504 year: 2004 end-page: 1511 article-title: Disruption of either the or the gene inhibits skeletal muscle atrophy publication-title: J Clin Invest – volume: 26 start-page: 203 year: 2012 end-page: 234 article-title: NF‐κB, the first quarter‐century: remarkable progress and outstanding questions publication-title: Genes Dev – volume: 114 start-page: 370 year: 2004 end-page: 378 article-title: Cancer cachexia is regulated by selective targeting of skeletal muscle gene products publication-title: J Clin Invest – volume: 278 start-page: 2294 year: 2003 end-page: 2303 article-title: Tumor necrosis factor‐regulated biphasic activation of NF‐κB is required for cytokine‐induced loss of skeletal muscle gene products publication-title: J Biol Chem – volume: 405 start-page: 491 year: 2011 end-page: 496 article-title: Inhibition of IkappaB kinase alpha (IKKα) or IKKbeta (IKKβ) plus forkhead box O (Foxo) abolishes skeletal muscle atrophy publication-title: Biochem Biophys Res Commun – ident: e_1_2_10_5_1 doi: 10.1152/physrev.00040.2009 – ident: e_1_2_10_32_1 doi: 10.1096/fj.08-110163 – ident: e_1_2_10_27_1 doi: 10.1038/nrm2083 – ident: e_1_2_10_36_1 doi: 10.1371/journal.pone.0016171 – ident: e_1_2_10_18_1 doi: 10.1093/emboj/18.17.4766 – ident: e_1_2_10_15_1 doi: 10.1016/j.cellsig.2011.07.013 – ident: e_1_2_10_29_1 doi: 10.1080/08830180802302389 – ident: e_1_2_10_16_1 doi: 10.1152/ajplung.00084.2011 – ident: e_1_2_10_33_1 doi: 10.1080/01635581.2011.563032 – ident: e_1_2_10_24_1 doi: 10.1007/s00109-008-0373-8 – ident: e_1_2_10_8_1 doi: 10.1074/jbc.M102949200 – ident: e_1_2_10_26_1 doi: 10.1038/ni.2065 – ident: e_1_2_10_35_1 doi: 10.1096/fj.08-114249 – ident: e_1_2_10_13_1 doi: 10.1016/S0002-9440(10)65081-X – ident: e_1_2_10_21_1 doi: 10.1152/ajpcell.00293.2006 – ident: e_1_2_10_23_1 doi: 10.1165/rcmb.2011-0119OC – ident: e_1_2_10_9_1 doi: 10.1016/j.cell.2004.09.027 – ident: e_1_2_10_25_1 doi: 10.1172/JCI28721 – ident: e_1_2_10_11_1 doi: 10.1038/onc.2010.553 – ident: e_1_2_10_6_1 doi: 10.1152/ajpendo.00039.2012 – ident: e_1_2_10_20_1 doi: 10.1096/fj.01-0866com – ident: e_1_2_10_37_1 doi: 10.1152/ajpcell.00111.2012 – ident: e_1_2_10_7_1 doi: 10.1016/0092-8674(93)90401-B – ident: e_1_2_10_22_1 doi: 10.1074/jbc.M207129200 – ident: e_1_2_10_12_1 doi: 10.1038/emboj.2009.364 – ident: e_1_2_10_14_1 doi: 10.1101/gad.7.7b.1354 – ident: e_1_2_10_19_1 doi: 10.1172/JCI200421696 – ident: e_1_2_10_3_1 doi: 10.1172/JCI200420174 – ident: e_1_2_10_31_1 doi: 10.1016/j.bbrc.2011.01.059 – ident: e_1_2_10_17_1 doi: 10.1101/gad.183434.111 – ident: e_1_2_10_34_1 doi: 10.1097/CCM.0b013e3182374a84 – ident: e_1_2_10_2_1 doi: 10.1016/j.ccr.2005.10.004 – ident: e_1_2_10_4_1 doi: 10.1097/00149831-200308000-00009 – ident: e_1_2_10_10_1 doi: 10.1016/j.tcb.2009.05.006 – ident: e_1_2_10_28_1 doi: 10.1016/B978-0-12-385940-2.00004-8 – ident: e_1_2_10_30_1 doi: 10.1097/MCO.0b013e328352b4c2 – reference: 11919155 - FASEB J. 2002 Apr;16(6):529-38 – reference: 17080195 - J Clin Invest. 2006 Nov;116(11):2945-54 – reference: 10469655 - EMBO J. 1999 Sep 1;18(17):4766-78 – reference: 22302935 - Genes Dev. 2012 Feb 1;26(3):203-34 – reference: 19959994 - EMBO J. 2010 Feb 3;29(3):619-31 – reference: 21256828 - Biochem Biophys Res Commun. 2011 Feb 18;405(3):491-6 – reference: 16928772 - Am J Physiol Cell Physiol. 2007 Jan;292(1):C372-82 – reference: 21821120 - Cell Signal. 2011 Dec;23(12):1896-906 – reference: 22592403 - Am J Physiol Cell Physiol. 2012 Jul 15;303(2):C135-42 – reference: 18853344 - Int Rev Immunol. 2008;27(5):375-87 – reference: 21772278 - Nat Immunol. 2011 Aug;12(8):695-708 – reference: 8453667 - Cell. 1993 Mar 12;72(5):729-39 – reference: 22003096 - Am J Physiol Lung Cell Mol Physiol. 2012 Jan 1;302(1):L103-10 – reference: 21249144 - PLoS One. 2011;6(1):e16171 – reference: 11387332 - J Biol Chem. 2001 Aug 24;276(34):32080-93 – reference: 22080641 - Crit Care Med. 2012 Mar;40(3):927-34 – reference: 18574572 - J Mol Med (Berl). 2008 Oct;86(10):1113-26 – reference: 22669242 - Am J Physiol Endocrinol Metab. 2012 Aug 1;303(3):E410-21 – reference: 18827022 - FASEB J. 2009 Feb;23(2):362-70 – reference: 15286803 - J Clin Invest. 2004 Aug;114(3):370-8 – reference: 14555882 - Eur J Cardiovasc Prev Rehabil. 2003 Aug;10(4):273-7 – reference: 18644837 - FASEB J. 2008 Nov;22(11):3836-45 – reference: 12431991 - J Biol Chem. 2003 Jan 24;278(4):2294-303 – reference: 15546001 - J Clin Invest. 2004 Nov;114(10):1504-11 – reference: 10854231 - Am J Pathol. 2000 Jun;156(6):2103-10 – reference: 21151171 - Oncogene. 2011 Apr 7;30(14):1727-32 – reference: 8330739 - Genes Dev. 1993 Jul;7(7B):1354-63 – reference: 16286249 - Cancer Cell. 2005 Nov;8(5):421-32 – reference: 19648011 - Trends Cell Biol. 2009 Aug;19(8):404-13 – reference: 22466926 - Curr Opin Clin Nutr Metab Care. 2012 May;15(3):240-5 – reference: 15479644 - Cell. 2004 Oct 15;119(2):285-98 – reference: 20393192 - Physiol Rev. 2010 Apr;90(2):495-511 – reference: 21660860 - Nutr Cancer. 2011;63(5):749-62 – reference: 22538866 - Am J Respir Cell Mol Biol. 2012 Sep;47(3):288-97 – reference: 17183360 - Nat Rev Mol Cell Biol. 2007 Jan;8(1):49-62 – reference: 21621068 - Curr Top Dev Biol. 2011;96:85-119 |
SSID | ssj0013084 |
Score | 2.2753 |
SecondaryResourceType | review_article |
Snippet | New findings
•
What is the topic for this review?
An up‐to‐date analysis on the role of nuclear factor‐κB signaling and transcriptional control in adult... What is the topic for this review? An up‐to‐date analysis on the role of nuclear factor‐κB signaling and transcriptional control in adult skeletal muscle... The nuclear factor-κB (NF-κB) signalling pathway is a necessary component of adult skeletal muscle atrophy resulting from systemic illnesses or disuse. Studies... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 19 |
SubjectTerms | Adult Animals Gene Expression Regulation Humans Mice Muscle, Skeletal - pathology Muscular Atrophy - metabolism Muscular Atrophy - pathology NF-kappa B - physiology Signal Transduction - drug effects Signal Transduction - physiology Transcription Factors - physiology Transcriptional Activation - physiology |
Title | Nuclear factor‐κB signalling and transcriptional regulation in skeletal muscle atrophy |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1113%2Fexpphysiol.2011.063321 https://www.ncbi.nlm.nih.gov/pubmed/22848079 https://www.proquest.com/docview/1273311025 |
Volume | 98 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dTtVAEJ4gV94oisoBJGtCvCt02922e4kGcmIiOTGQ4FWz204JAXrI-UnEKx7B5_EheAifxJnd9hDUREO8bnfa_Zndb3Z3vg9gu9YubkyMkXLWRpwrGblGphHWuXJJIa31WgQfD7Phsfpwok-WYNjnwgR-iMWGG3uGn6_Zwa3rVEgkkw3glysf_I8vOiLOLE19Rjlf3GJ09Cm5O06IvfQwwYki4sSULlWYDO3-2cz9Veo36Hkfyfql6OApnPWVCDdQznfmM7dTff2F3_F_1HIFnnR4VeyFAfYMlrB9Dqt7LcXql9firRiFYuPT61X4fMjkyHYigojPj5tvt9_fCb4hYj3zt7BtLWa8OPZTFVme4GmnICbOWjE9p2WQ4gFxOZ-SLcE79fRnL-D4YP_o_TDqpBuiivBgHml0eYKV1lhIzHJjUGNaG5epppINhZl1ioWR2hYE1yojTdFkKrN1Tu9iVbv0JSy34xbXQGhb0xObNJjGqrFYEGh0iEhYUxml5QB031Vl1fGas7zGRRnim7S8a8OS27AMbTiA3UW5q8Ds8dcSb_qRUJIT8smKbXE8n5YyYelLwmp6AK_CEFnYTAgAFHFuBqB8R__jx8r90ZCJkNYfVmwDHideuIM3izZheTaZ42uCTzO3BY8SNdryDvITgokZ7g |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtUwEB2hsoANtBTopTyMhNilzcNO4mWBVhdoryrUSmVl2cmkgra51X1ItKt-At_DR_ARfEln7NxbFZBAiHXiSfwY-4ztOQfgRa1c3OgYI-msjThXMnJNkkVYF9KlZWKt1yLYGeT9ffnuQB10lEKcCxP4IeYbbuwZfr5mB-cN6c7LmW0Av5z66H943DFx5lnGKeU3Wd6bafTffEivDhRiLz5MgKKMODWlSxYmS-u_t3N9nfoFfF7Hsn4x2roLn2fVCHdQjtamE7dWnf_E8Phf6rkIdzrIKjbCGFuCG9jeg-WNlsL1kzPxUuyGYsPDs2X4OGB-ZDsSQcfnx8XX799eCb4kYj35t7BtLSa8Ps5mK7I8wsNOREx8asX4iFZCCgnEyXRMtgRv1tOf3Yf9rc291_2oU2-IKoKERaTQFSlWSmGZYF5ojQqzWrtcNlXSUKRZZ1jqRNmSEFulE102ucxtXdC7WNUuewAL7bDFFRDK1vTEpg1msWwsloQbHSIS3JRaqqQHatZXpuqozVlh49iEECczV21ouA1NaMMerM_LnQZyjz-WeD4bCob8kA9XbIvD6dgkKatfElxTPXgYxsjcZkoYoIwL3QPpe_ovP2Y2d_vMhfTo34o9g1v9vZ1ts_128H4Vbqdex4P3jh7DwmQ0xSeEpibuqfeTS1v7HTM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB5VuxLigugf3fJTV6q4Rc2PncTHBXa1BbraA1sVLpYdTxBqm13tj0RvfQSeh4fgIXgSxnF2q6pIVByjxGNlJuP5xs7MB3BkhQlLGWLAjdaBq5UMTBklAdqMmziPtK65CE6H6WDM35-L8w0YrGphfH-I9Yab84x6vXYOPrVl4-Su2QB-n9bJ_-SyacSZJomrKG8LClFhC9rds_GX8e2JQlizDxOiyANXm9JUC5Os479Luhuo7qHPu2C2jkb9p_CkgZGs6-2-CRtYbcF2t6IU-uqavWYjP9Pk6_U2fB66nsV6xjy3zu-bH79-vmHuxw1dN-RmurJs4WLWagUhyTPPUU8X7FvF5hcUnQims6vlnGQxt4FOL7MD437v09tB0DAqBAXBtCwQaLIYCyEwjzDNpESBiZUm5WURlZT92QRzGQmdE4oqZCTzMuWpthk9i4U1yS60qkmFe8CEtnRHxyUmIS815oTlDCISBOSSi6gDYqU-VTTtxh3rxaXyaUeibtWunNqVV3sHjtfjpr7hxj9HHK6so8g33IGHrnCynKsodoyUBKFEB555s61lxhSX8zCTHeC1HR84meqNBq4_0f7_DTuAR6N3ffXxZPjhOTyOa2oNt53zAlqL2RJfEsBZmFfNt_sHjuv5GQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nuclear+factor%E2%80%90%CE%BAB+signalling+and+transcriptional+regulation+in+skeletal+muscle+atrophy&rft.jtitle=Experimental+physiology&rft.au=Jackman%2C+Robert+W.&rft.au=Cornwell%2C+Evangeline+W.&rft.au=Wu%2C+Chia%E2%80%90Ling&rft.au=Kandarian%2C+Susan+C.&rft.date=2013-01-01&rft.issn=0958-0670&rft.eissn=1469-445X&rft.volume=98&rft.issue=1&rft.spage=19&rft.epage=24&rft_id=info:doi/10.1113%2Fexpphysiol.2011.063321&rft.externalDBID=n%2Fa&rft.externalDocID=10_1113_expphysiol_2011_063321 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0958-0670&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0958-0670&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0958-0670&client=summon |