Agroforestry systems: Meta‐analysis of soil carbon stocks, sequestration processes, and future potentials

Agroforestry (AF) has the potential to restore degraded lands, provide a broader range of ecosystem goods and services such as carbon (C) sequestration and high biodiversity, and increase soil fertility and ecosystem stability through additional C input from trees, erosion prevention, and microclima...

Full description

Saved in:
Bibliographic Details
Published inLand degradation & development Vol. 29; no. 11; pp. 3886 - 3897
Main Authors Shi, Lingling, Feng, Wenting, Xu, Jianchu, Kuzyakov, Yakov
Format Journal Article
LanguageEnglish
Published Chichester Wiley Subscription Services, Inc 01.11.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Agroforestry (AF) has the potential to restore degraded lands, provide a broader range of ecosystem goods and services such as carbon (C) sequestration and high biodiversity, and increase soil fertility and ecosystem stability through additional C input from trees, erosion prevention, and microclimate improvement. Advantages and processes for global C sequestration in AF are unknown. We used a meta‐analysis of 427 soil C stock data pairs grouped into four main AF systems—alley cropping, windbreaks, silvopastures, and homegardens—and evaluated changes in AF and adjacent control cropland or pasture. Mean soil C stocks in AF (1‐m depth) were 126 Mg C·ha−1, which is 19% more than that in cropland or pasture. The highest C stocks in soil were in subtropical homegardens, AF with younger trees, and topsoil (0–20 cm). Increased soil C stocks in AF were lower than aboveground C stocks in most AF systems, except alley cropping. Homegardens stored the highest C in both aboveground and belowground, especially in the subsoil (20–100 cm). Advantages of AF ecosystem services focusing on mechanisms of belowground C sequestration were analyzed. AF could store 5.3 × 109 Mg additional C in soil on 944 Mha globally, with most in the tropics and subtropics. AF systems could greatly contribute to global soil C sequestration if used in larger areas. Future investigations of AF should include (a) mechanistic‐ and process‐based studies (instead of common monitoring and inventories), (b) models linking forest and crop growth with soil water and C and nutrient cycling, and (c) accurate assessments of the AF area worldwide based on the remote sensing approaches.
AbstractList Agroforestry (AF) has the potential to restore degraded lands, provide a broader range of ecosystem goods and services such as carbon (C) sequestration and high biodiversity, and increase soil fertility and ecosystem stability through additional C input from trees, erosion prevention, and microclimate improvement. Advantages and processes for global C sequestration in AF are unknown. We used a meta‐analysis of 427 soil C stock data pairs grouped into four main AF systems—alley cropping, windbreaks, silvopastures, and homegardens—and evaluated changes in AF and adjacent control cropland or pasture. Mean soil C stocks in AF (1‐m depth) were 126 Mg C·ha−1, which is 19% more than that in cropland or pasture. The highest C stocks in soil were in subtropical homegardens, AF with younger trees, and topsoil (0–20 cm). Increased soil C stocks in AF were lower than aboveground C stocks in most AF systems, except alley cropping. Homegardens stored the highest C in both aboveground and belowground, especially in the subsoil (20–100 cm). Advantages of AF ecosystem services focusing on mechanisms of belowground C sequestration were analyzed. AF could store 5.3 × 109 Mg additional C in soil on 944 Mha globally, with most in the tropics and subtropics. AF systems could greatly contribute to global soil C sequestration if used in larger areas. Future investigations of AF should include (a) mechanistic‐ and process‐based studies (instead of common monitoring and inventories), (b) models linking forest and crop growth with soil water and C and nutrient cycling, and (c) accurate assessments of the AF area worldwide based on the remote sensing approaches.
Agroforestry (AF) has the potential to restore degraded lands, provide a broader range of ecosystem goods and services such as carbon (C) sequestration and high biodiversity, and increase soil fertility and ecosystem stability through additional C input from trees, erosion prevention, and microclimate improvement. Advantages and processes for global C sequestration in AF are unknown. We used a meta‐analysis of 427 soil C stock data pairs grouped into four main AF systems—alley cropping, windbreaks, silvopastures, and homegardens—and evaluated changes in AF and adjacent control cropland or pasture. Mean soil C stocks in AF (1‐m depth) were 126 Mg C·ha −1 , which is 19% more than that in cropland or pasture. The highest C stocks in soil were in subtropical homegardens, AF with younger trees, and topsoil (0–20 cm). Increased soil C stocks in AF were lower than aboveground C stocks in most AF systems, except alley cropping. Homegardens stored the highest C in both aboveground and belowground, especially in the subsoil (20–100 cm). Advantages of AF ecosystem services focusing on mechanisms of belowground C sequestration were analyzed. AF could store 5.3 × 10 9  Mg additional C in soil on 944 Mha globally, with most in the tropics and subtropics. AF systems could greatly contribute to global soil C sequestration if used in larger areas. Future investigations of AF should include (a) mechanistic‐ and process‐based studies (instead of common monitoring and inventories), (b) models linking forest and crop growth with soil water and C and nutrient cycling, and (c) accurate assessments of the AF area worldwide based on the remote sensing approaches.
Agroforestry (AF) has the potential to restore degraded lands, provide a broader range of ecosystem goods and services such as carbon (C) sequestration and high biodiversity, and increase soil fertility and ecosystem stability through additional C input from trees, erosion prevention, and microclimate improvement. Advantages and processes for global C sequestration in AF are unknown. We used a meta‐analysis of 427 soil C stock data pairs grouped into four main AF systems—alley cropping, windbreaks, silvopastures, and homegardens—and evaluated changes in AF and adjacent control cropland or pasture. Mean soil C stocks in AF (1‐m depth) were 126 Mg C·ha−1, which is 19% more than that in cropland or pasture. The highest C stocks in soil were in subtropical homegardens, AF with younger trees, and topsoil (0–20 cm). Increased soil C stocks in AF were lower than aboveground C stocks in most AF systems, except alley cropping. Homegardens stored the highest C in both aboveground and belowground, especially in the subsoil (20–100 cm). Advantages of AF ecosystem services focusing on mechanisms of belowground C sequestration were analyzed. AF could store 5.3 × 109 Mg additional C in soil on 944 Mha globally, with most in the tropics and subtropics. AF systems could greatly contribute to global soil C sequestration if used in larger areas. Future investigations of AF should include (a) mechanistic‐ and process‐based studies (instead of common monitoring and inventories), (b) models linking forest and crop growth with soil water and C and nutrient cycling, and (c) accurate assessments of the AF area worldwide based on the remote sensing approaches.
Agroforestry (AF) has the potential to restore degraded lands, provide a broader range of ecosystem goods and services such as carbon (C) sequestration and high biodiversity, and increase soil fertility and ecosystem stability through additional C input from trees, erosion prevention, and microclimate improvement. Advantages and processes for global C sequestration in AF are unknown. We used a meta‐analysis of 427 soil C stock data pairs grouped into four main AF systems—alley cropping, windbreaks, silvopastures, and homegardens—and evaluated changes in AF and adjacent control cropland or pasture. Mean soil C stocks in AF (1‐m depth) were 126 Mg C·ha⁻¹, which is 19% more than that in cropland or pasture. The highest C stocks in soil were in subtropical homegardens, AF with younger trees, and topsoil (0–20 cm). Increased soil C stocks in AF were lower than aboveground C stocks in most AF systems, except alley cropping. Homegardens stored the highest C in both aboveground and belowground, especially in the subsoil (20–100 cm). Advantages of AF ecosystem services focusing on mechanisms of belowground C sequestration were analyzed. AF could store 5.3 × 10⁹ Mg additional C in soil on 944 Mha globally, with most in the tropics and subtropics. AF systems could greatly contribute to global soil C sequestration if used in larger areas. Future investigations of AF should include (a) mechanistic‐ and process‐based studies (instead of common monitoring and inventories), (b) models linking forest and crop growth with soil water and C and nutrient cycling, and (c) accurate assessments of the AF area worldwide based on the remote sensing approaches.
Author Xu, Jianchu
Feng, Wenting
Kuzyakov, Yakov
Shi, Lingling
Author_xml – sequence: 1
  givenname: Lingling
  orcidid: 0000-0001-8213-689X
  surname: Shi
  fullname: Shi, Lingling
  organization: University of Göttingen
– sequence: 2
  givenname: Wenting
  orcidid: 0000-0002-3189-3687
  surname: Feng
  fullname: Feng, Wenting
  organization: Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences
– sequence: 3
  givenname: Jianchu
  surname: Xu
  fullname: Xu, Jianchu
  organization: World Agroforestry Centre
– sequence: 4
  givenname: Yakov
  orcidid: 0000-0002-9863-8461
  surname: Kuzyakov
  fullname: Kuzyakov, Yakov
  email: kuzyakov@gwdg.de
  organization: Soil Science Consulting
BookMark eNp1kM1q3DAUhUVIofmDPIKgmy7qiWSNLau7kKZNYEKhZNGduSNfFSUea6orU7zLI_QZ8ySVZ0oKpV1dcfWdyznnmB0OYUDGzqVYSCHKi76LCyVVfcCOpDCmkMvq6-H8bqpClbp5zY6JHoQQUi_1EXu8_BaDCxEpxYnTRAk39J7fYYLnp58wQD-RJx4cp-B7biGuw8ApBftI7zjh93FWQvJ5u43BIhHmDxg67sY0RuTbkHBIHno6Za9cHnj2e56w-4_X91c3xerzp9ury1VhVVnXBTQAugIwUJquFpVCXUPVlQ6tNeuqhGVpjHaodb221dpZFE50DRidFc6qE_Z2fzb72dlrN54s9j0MGEZqS6lrpRojTUbf_IU-hDHm0DOldKOE0ipTiz1lYyCK6Frr0y5yTu77Vop2rr7N1bdz9X8cvAi20W8gTv9Ciz36w_c4_ZdrVx--7Phfe_6YMQ
CitedBy_id crossref_primary_10_1007_s10457_019_00450_z
crossref_primary_10_3389_fsufs_2023_1158459
crossref_primary_10_1016_j_ccst_2022_100065
crossref_primary_10_1016_j_ecolind_2023_111162
crossref_primary_10_1016_j_jrurstud_2021_01_016
crossref_primary_10_1016_j_apsoil_2023_105009
crossref_primary_10_1080_21683565_2023_2270449
crossref_primary_10_1016_j_still_2020_104733
crossref_primary_10_1016_j_agee_2020_107174
crossref_primary_10_1016_j_agee_2022_108024
crossref_primary_10_1016_j_agsy_2024_103973
crossref_primary_10_1016_j_geoderma_2020_114333
crossref_primary_10_1016_j_agee_2021_107689
crossref_primary_10_1007_s13399_023_04994_0
crossref_primary_10_1007_s13593_023_00927_3
crossref_primary_10_1016_j_gecco_2021_e01923
crossref_primary_10_1016_j_tfp_2025_100793
crossref_primary_10_1007_s10457_021_00593_y
crossref_primary_10_1016_j_scitotenv_2023_169197
crossref_primary_10_1111_sum_12928
crossref_primary_10_1002_ppp3_10520
crossref_primary_10_3390_agriculture11030189
crossref_primary_10_1038_s41598_023_45960_0
crossref_primary_10_1007_s10457_023_00927_y
crossref_primary_10_1038_s41598_022_22937_z
crossref_primary_10_1016_j_agsy_2022_103460
crossref_primary_10_1007_s11104_025_07216_w
crossref_primary_10_1016_j_soilbio_2021_108422
crossref_primary_10_1111_sum_12932
crossref_primary_10_1111_geb_13145
crossref_primary_10_1016_j_scitotenv_2022_157438
crossref_primary_10_1093_ee_nvac003
crossref_primary_10_2139_ssrn_4089133
crossref_primary_10_3390_cli8110124
crossref_primary_10_1016_j_agee_2021_107555
crossref_primary_10_1016_j_tfp_2025_100818
crossref_primary_10_5194_soil_9_89_2023
crossref_primary_10_1016_j_scitotenv_2021_146821
crossref_primary_10_1111_sum_70002
crossref_primary_10_1002_agj2_20099
crossref_primary_10_1029_2024JG008323
crossref_primary_10_3390_land11050639
crossref_primary_10_5194_hess_28_3963_2024
crossref_primary_10_1002_ldr_3959
crossref_primary_10_1016_j_heliyon_2025_e42127
crossref_primary_10_3390_land11101873
crossref_primary_10_3390_su14031296
crossref_primary_10_3390_agronomy15020488
crossref_primary_10_1016_j_chemosphere_2023_138319
crossref_primary_10_1111_gcbb_12934
crossref_primary_10_1007_s10113_021_01863_2
crossref_primary_10_1016_j_geodrs_2024_e00796
crossref_primary_10_1016_j_scitotenv_2023_166238
crossref_primary_10_1016_j_spc_2022_12_015
crossref_primary_10_3390_land10101028
crossref_primary_10_1016_j_scitotenv_2021_150999
crossref_primary_10_1111_gcb_16322
crossref_primary_10_1016_j_apsoil_2021_104045
crossref_primary_10_1016_j_ecoser_2023_101537
crossref_primary_10_1016_j_jclepro_2022_135423
crossref_primary_10_1007_s44297_023_00016_7
crossref_primary_10_3390_agronomy11050882
crossref_primary_10_1016_j_agrformet_2021_108756
crossref_primary_10_1016_j_iswcr_2021_08_001
crossref_primary_10_1111_gcb_15747
crossref_primary_10_1007_s11842_020_09439_4
crossref_primary_10_3390_f12030303
crossref_primary_10_1038_s41597_020_0356_3
crossref_primary_10_1016_j_catena_2025_108807
crossref_primary_10_1007_s10661_024_12652_9
crossref_primary_10_1016_j_soilbio_2020_107735
crossref_primary_10_1111_gcbb_12916
crossref_primary_10_1016_j_agee_2023_108450
crossref_primary_10_1016_j_forpol_2020_102217
crossref_primary_10_1002_agj2_20948
crossref_primary_10_1038_s41598_020_68973_5
crossref_primary_10_1007_s10457_020_00491_9
crossref_primary_10_3390_f13081193
crossref_primary_10_1016_j_forpol_2023_103136
crossref_primary_10_1016_j_agee_2021_107437
crossref_primary_10_1038_s41598_025_91268_6
crossref_primary_10_1038_s43247_024_01405_8
crossref_primary_10_1007_s10457_022_00754_7
crossref_primary_10_1016_j_geoderma_2023_116726
crossref_primary_10_3390_w16233415
crossref_primary_10_3390_app12094623
crossref_primary_10_1016_j_jclepro_2020_124831
crossref_primary_10_3390_land13101630
crossref_primary_10_1016_j_heliyon_2023_e19243
crossref_primary_10_1016_j_cosust_2023_101275
crossref_primary_10_3390_d13110567
crossref_primary_10_1016_j_geodrs_2024_e00806
crossref_primary_10_47280_RevFacAgron_LUZ__v40_supl_02
crossref_primary_10_1016_j_agsy_2024_104224
crossref_primary_10_1007_s10457_023_00898_0
crossref_primary_10_1016_j_catena_2022_106089
crossref_primary_10_1002_ldr_4744
crossref_primary_10_3390_c9040120
crossref_primary_10_1016_j_geoderma_2022_116160
crossref_primary_10_3390_su12229752
crossref_primary_10_1007_s11027_021_09954_5
crossref_primary_10_1016_j_agee_2022_108213
crossref_primary_10_1016_j_still_2023_105863
crossref_primary_10_3390_soilsystems8020044
crossref_primary_10_1002_agj2_21532
crossref_primary_10_1007_s10457_024_00998_5
crossref_primary_10_1007_s10457_020_00505_6
crossref_primary_10_1016_j_geodrs_2024_e00782
crossref_primary_10_1002_ldr_3761
crossref_primary_10_4236_as_2023_149077
crossref_primary_10_1016_j_scitotenv_2021_150428
crossref_primary_10_1007_s10668_024_05433_4
crossref_primary_10_1007_s00374_018_1332_3
crossref_primary_10_1016_j_agee_2025_109539
crossref_primary_10_36783_18069657rbcs20220055
crossref_primary_10_1007_s10457_020_00587_2
crossref_primary_10_1088_1748_9326_aaeb5f
crossref_primary_10_1007_s00374_022_01659_4
crossref_primary_10_1016_j_rhisph_2022_100485
crossref_primary_10_1038_s41598_023_40580_0
crossref_primary_10_1016_j_geoderma_2020_114230
crossref_primary_10_1073_pnas_2026733119
crossref_primary_10_1088_1748_9326_ad13b6
crossref_primary_10_1016_j_agee_2022_107945
crossref_primary_10_3390_f14091869
crossref_primary_10_1016_j_ufug_2022_127671
crossref_primary_10_1016_j_geodrs_2021_e00398
crossref_primary_10_1016_j_soisec_2024_100164
crossref_primary_10_4236_ajcc_2024_132008
crossref_primary_10_1016_j_catena_2024_108685
crossref_primary_10_3390_earth5040034
crossref_primary_10_1007_s10457_024_00990_z
crossref_primary_10_3390_agronomy11122474
crossref_primary_10_1002_saj2_20534
crossref_primary_10_1007_s11104_020_04633_x
crossref_primary_10_1002_ldr_3625
crossref_primary_10_1016_j_geodrs_2024_e00759
crossref_primary_10_1016_j_tplants_2023_09_015
crossref_primary_10_1007_s10457_021_00634_6
crossref_primary_10_1007_s10457_023_00904_5
crossref_primary_10_1002_ldr_3463
crossref_primary_10_3390_f13122125
crossref_primary_10_1002_ldr_4038
crossref_primary_10_1038_s41558_023_01810_5
crossref_primary_10_3390_f13081274
crossref_primary_10_3390_land12020513
crossref_primary_10_1016_j_jenvman_2021_111978
Cites_doi 10.1007/s13593-012-0081-1
10.1002/ldr.2261
10.1111/ejss.12267
10.1016/S0167-8809(03)00138-5
10.1186/1179-5395-44-S1-S11
10.1016/j.agee.2016.12.011
10.1007/s10457-008-9179-5
10.1007/s11104-008-9759-1
10.1023/B:AGFO.0000028995.13227.ca
10.1007/s10457-014-9780-8
10.1016/j.soilbio.2012.04.002
10.1002/ldr.2902
10.1016/j.agee.2016.06.002
10.1007/BF01098474
10.1016/0378-1127(91)90203-8
10.1016/j.agee.2007.12.010
10.1111/j.1365-2028.2006.00679.x
10.4141/S04-003
10.1023/A:1006389828259
10.1016/j.apsoil.2016.07.021
10.1007/s10457-006-0003-9
10.1007/s13280-013-0390-x
10.1002/ldr.2151
10.1007/978-94-007-1630-8_2
10.1016/j.jenvman.2017.07.037
10.1016/j.agee.2004.04.001
10.1007/s10457-015-9821-y
10.1007/s10457-012-9549-x
10.1007/s00374-010-0466-8
10.1002/jpln.200800030
10.1007/s10457-010-9317-8
10.1007/s11104-015-2422-8
10.1016/j.soilbio.2014.01.011
10.3906/tar-1307-94
10.1007/978-94-011-1608-4
10.1002/jpln.200625111
10.5558/tfc2017-024
10.1002/ldr.2406
10.5716/WP16263.PDF
10.1007/s11842-014-9275-5
10.1007/978-94-017-2424-1_5
10.1007/s13593-011-0026-0
10.1016/j.agee.2016.04.011
10.1097/00010694-198611000-00006
10.3763/cpol.2002.0240
10.1590/S0100-06832014000100028
10.1007/s10457-013-9657-2
10.1016/j.agsy.2015.12.008
10.18637/jss.v036.i03
10.1046/j.1365-2486.2000.00308.x
10.1016/j.envsci.2009.01.010
10.1016/j.biocon.2005.03.018
10.1002/jpln.201500384
10.1111/j.1469-8137.2010.03321.x
10.1016/j.agee.2011.01.006
10.1007/s11104-017-3423-6
10.1111/gcb.13850
10.1007/s11104-013-1733-x
10.1007/s11027-007-9105-6
10.1007/s10457-016-9949-4
10.1002/ldr.1016
10.1023/B:AGFO.0000029004.03475.1d
10.5194/bg-12-5635-2015
10.2134/jeq2011.0076
10.1016/B978-0-12-409548-9.05088-0
10.1016/j.ejsobi.2014.02.015
10.1007/s10457-009-9228-8
10.1007/s10457-012-9494-8
10.1007/s10457-011-9434-z
10.1111/gcbb.12485
10.1016/S0065-2504(01)32013-5
10.1016/j.agee.2012.01.003
10.1007/s13593-014-0212-y
10.1038/ngeo844
10.1016/j.geoderma.2016.07.002
ContentType Journal Article
Copyright 2018 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2018 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7ST
8FD
C1K
FR3
KR7
SOI
7S9
L.6
DOI 10.1002/ldr.3136
DatabaseName CrossRef
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Civil Engineering Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Environment Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Civil Engineering Abstracts
CrossRef

AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1099-145X
EndPage 3897
ExternalDocumentID 10_1002_ldr_3136
LDR3136
Genre article
GrantInformation_xml – fundername: Sino‐German (CSC‐DAAD) Postdoc Scholarship Program
– fundername: Key Project from the Ministry of Sciences and Technology of China
  funderid: 2017YFC0505100
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABOGM
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AGHSJ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
ECGQY
EDH
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M62
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
UB1
W8V
W99
WBKPD
WIB
WIH
WIK
WOHZO
WQJ
WRC
WUPDE
WXSBR
WYISQ
XG1
XPP
XV2
Y6R
ZZTAW
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7ST
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
KR7
SOI
7S9
L.6
ID FETCH-LOGICAL-c3266-a8aa75aa9a29d6053e76a5d2fecc9b52a42997fe776bc5bfce0f0d8a979a2fc3
IEDL.DBID DR2
ISSN 1085-3278
IngestDate Fri Jul 11 18:25:37 EDT 2025
Sun Jul 13 04:22:47 EDT 2025
Tue Jul 01 02:57:00 EDT 2025
Thu Apr 24 22:54:14 EDT 2025
Wed Jan 22 16:49:17 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3266-a8aa75aa9a29d6053e76a5d2fecc9b52a42997fe776bc5bfce0f0d8a979a2fc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3189-3687
0000-0002-9863-8461
0000-0001-8213-689X
PQID 2137830373
PQPubID 1016359
PageCount 12
ParticipantIDs proquest_miscellaneous_2176338919
proquest_journals_2137830373
crossref_citationtrail_10_1002_ldr_3136
crossref_primary_10_1002_ldr_3136
wiley_primary_10_1002_ldr_3136_LDR3136
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2018
2018-11-00
20181101
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: November 2018
PublicationDecade 2010
PublicationPlace Chichester
PublicationPlace_xml – name: Chichester
PublicationTitle Land degradation & development
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2004; 61
2004; 62
2000; 49
2000; 6
2016; 108
2010; 187
2014; 25
2016; 143
1994; 27
2016; 226
2009; 316
2014; 62
2017; 236
2016; 142
2003; 99
2012; 52
2015; 89
2009b; 12
1991; 45
2006; 68
1986; 142
2007; 170
2011; 22
2010; 3
2017; 203
2016; 230
2015; 12
2018; 29
2015; 14
2004; 104
2004; 84
2010; 36
2017; 2017
2011
2013; 42
2011; 40
2009a; 172
2009
2008
2002; 2
2004
1993
2003
2008; 125
2010; 80
2007; 12
2012; 32
2014; 44
2014; 88
2016; 283
2018; 24
1999
2012; 150
2015; 26
2016; 6
2015; 391
2017; 91
2017; 93
2009; 76
2010; 46
2013; 33
2006; 44
2005; 125
2015; 66
2014; 38
2016; 179
2014; 35
2014
2013
2013; 373
2011; 140
2016; 27
2018; 10
2014; 71
2014; 34
2017; 424
2012; 86
2012; 85
2001; 32
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_53_1
e_1_2_6_76_1
Sharrow S. H. (e_1_2_6_64_1) 1999
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_30_1
e_1_2_6_72_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_78_1
e_1_2_6_15_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_81_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
Singh B. (e_1_2_6_65_1) 2014; 35
e_1_2_6_9_1
e_1_2_6_7_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
Nair P. R. (e_1_2_6_52_1) 2003
Zomer R. J. (e_1_2_6_83_1) 2016; 6
e_1_2_6_66_1
e_1_2_6_28_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_68_1
e_1_2_6_73_1
e_1_2_6_54_1
e_1_2_6_75_1
Nair P. K. (e_1_2_6_45_1) 1993
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_71_1
Atangana A (e_1_2_6_5_1) 2014
Luo Z. (e_1_2_6_38_1) 2017; 2017
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_77_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_79_1
e_1_2_6_63_1
e_1_2_6_84_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_80_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_82_1
e_1_2_6_8_1
e_1_2_6_4_1
Hemp C (e_1_2_6_24_1) 2008
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
Mganga K. Z. (e_1_2_6_43_1) 2016; 142
References_xml – volume: 6
  issue: 29987
  year: 2016
  article-title: Global tree cover and biomass carbon on agricultural land: The contribution of agroforestry to global and national carbon budgets
  publication-title: Scientific Reports
– volume: 66
  start-page: 780
  year: 2015
  end-page: 791
  article-title: Landscape‐scale modelling of erosion processes and soil carbon dynamics under land‐use and climate change in agroecosystems
  publication-title: European Journal of Soil Science
– year: 2009
– volume: 14
  start-page: 91
  year: 2015
  end-page: 101
  article-title: Effect of tree diversity on soil organic carbon content in the homegarden agroforestry system of north‐eastern Bangladesh
  publication-title: Small‐Scale Forestry
– volume: 27
  start-page: 71
  year: 1994
  end-page: 92
  article-title: Integrated land‐use systems: Assessment of promising agroforest and alternative land‐use practices to enhance carbon conservation and sequestration
  publication-title: Climatic Change
– volume: 26
  start-page: 690
  year: 2015
  end-page: 700
  article-title: Organic carbon and nitrogen associated with soil aggregates and particle sizes under different land uses in tigray, northern Ethiopia
  publication-title: Land Degradation & Development
– year: 2004
  article-title: Windbreaks in North American agricultural systems
  publication-title: New Vistas in Agroforestry. Springer Netherlands.
– volume: 35
  start-page: 107
  year: 2014
  end-page: 114
  article-title: Carbon sequestration and nutrient removal by some tree species in an agrisilviculture system in Punjab, India
  publication-title: Range Management and Agroforestry
– volume: 12
  start-page: 1099
  year: 2009b
  end-page: 1111
  article-title: Soil carbon sequestration in tropical agroforestry systems: A feasibility appraisal
  publication-title: Environmental Science and Policy
– volume: 230
  start-page: 150
  year: 2016
  end-page: 161
  article-title: Do European agroforestry systems enhance biodiversity and ecosystem services? A meta‐analysis
  publication-title: Agriculture Ecosystems and Environment
– volume: 68
  start-page: 53
  year: 2006
  end-page: 67
  article-title: Personal preferences and intensification of land use: Their impact on southern Cameroonian slash‐and‐burn agroforestry systems
  publication-title: Agroforestry Systems
– volume: 61
  start-page: 269
  year: 2004
  end-page: 279
  article-title: Agroforestry as an approach to minimizing nutrient loss from heavily fertilized soils: The Florida experience
  publication-title: Agroforestry Systems
– volume: 125
  start-page: 203
  year: 2005
  end-page: 209
  article-title: The Chagga home gardens—Relict areas for endemic species (Insecta: ) on Mount Kilimanjaro
  publication-title: Biological Conservation
– volume: 44
  start-page: 305
  year: 2006
  end-page: 328
  article-title: Vegetation of Kilimanjaro: Hidden endemics and missing bamboo
  publication-title: African Journal of Ecology
– volume: 89
  start-page: 869
  year: 2015
  end-page: 883
  article-title: Coarse root biomass, carbon, and nutrient stock dynamics of different stem and crown classes of silver oak ( , A. Cunn. ex R. Br.) plantation in central Kerala, India
  publication-title: Agroforestry Systems
– volume: 88
  start-page: 75
  year: 2014
  end-page: 85
  article-title: Establishment and early productivity of perennial biomass alley cropping systems in Minnesota, USA
  publication-title: Agroforestry Systems
– volume: 226
  start-page: 65
  year: 2016
  end-page: 78
  article-title: Carbon sequestration and net emissions of CH and N O under agroforestry: Synthesizing available data and suggestions for future studies
  publication-title: Agriculture Ecosystems and Environment
– volume: 12
  start-page: 5635
  year: 2015
  end-page: 5646
  article-title: Annual litterfall dynamics and nutrient deposition depending on elevation and land use at Mt. Kilimanjaro
  publication-title: Biogeosciences
– volume: 172
  start-page: 10
  year: 2009a
  end-page: 23
  article-title: Agroforestry as a strategy for carbon sequestration
  publication-title: Journal of Plant Nutrition and Soil Science
– volume: 391
  start-page: 219
  year: 2015
  end-page: 235
  article-title: Competition with winter crops induces deeper rooting of walnut trees in a Mediterranean alley cropping agroforestry system
  publication-title: Plant and Soil
– volume: 25
  start-page: 407
  year: 2014
  end-page: 416
  article-title: Soil organic carbon stock and fractions in relation to land use and soil depth in the degraded Shiwaliks hills of lower Himalayas
  publication-title: Land Degradation & Development
– volume: 42
  start-page: 892
  year: 2013
  end-page: 902
  article-title: Homegardens as a multi‐functional land‐use strategy in Sri Lanka with focus on carbon sequestration
  publication-title: Ambio
– volume: 85
  start-page: 133
  year: 2012
  end-page: 152
  article-title: Ecological benefits provided by alley cropping systems for production of woody biomass in the temperate region: a review
  publication-title: Agroforestry Systems
– volume: 86
  start-page: 243
  year: 2012
  end-page: 253
  article-title: Carbon sequestration studies in agroforestry systems: A reality‐check
  publication-title: Agroforestry Systems
– volume: 32
  start-page: 215
  year: 2012
  end-page: 226
  article-title: Microbiological process in agroforestry systems. A review
  publication-title: Agronomy for Sustainable Development
– volume: 203
  start-page: 522
  year: 2017
  end-page: 532
  article-title: Reduction of soil erosion and mercury losses in agroforestry systems compared to forests and cultivated fields in the Brazilian Amazon
  publication-title: Journal of Environmental Management
– start-page: 203
  year: 2014
  end-page: 216
– volume: 62
  start-page: 135
  year: 2004
  end-page: 152
  article-title: The enigma of tropical homegardens
  publication-title: Agroforestry Systems
– volume: 93
  start-page: 180
  year: 2017
  end-page: 189
  article-title: The potential of agroforestry to reduce atmospheric greenhouse gases in Canada: Insight from pairwise comparisons with traditional agriculture, data gaps and future research
  publication-title: Forestry Chronicle
– volume: 10
  start-page: 262
  year: 2018
  end-page: 271
  article-title: Carbon sequestration and turnover in soil under the energy crop : Repeated C natural abundance approach and literature synthesis
  publication-title: Global Change Biology. Bioenergy
– volume: 33
  start-page: 81
  year: 2013
  end-page: 96
  article-title: Agroforestry and biochar to offset climate change: A review
  publication-title: Agronomy for Sustainable Development
– volume: 29
  start-page: 875
  year: 2018
  end-page: 883
  article-title: Rebuilding soil carbon in degraded steppe soils of Eastern Europe: The importance of windbreaks and improved cropland management
  publication-title: Land Degradation & Development
– volume: 32
  start-page: 199
  year: 2001
  end-page: 247
  article-title: Meta‐analysis in ecology
  publication-title: Advances in Ecological Research
– volume: 71
  start-page: 95
  year: 2014
  end-page: 104
  article-title: Pathways of litter C by formation of aggregates and SOM density fractions: Implications from C natural abundance
  publication-title: Soil Biology and Biochemistry
– volume: 34
  start-page: 443
  year: 2014
  end-page: 454
  article-title: Soil organic carbon sequestration in agroforestry systems. A review
  publication-title: Agronomy for Sustainable Development
– volume: 22
  start-page: 395
  year: 2011
  end-page: 409
  article-title: Potential for greenhouse gas emissions from soil carbon stock following biofuel cultivation on degraded lands
  publication-title: Land Degradation & Development
– volume: 52
  start-page: 29
  year: 2012
  end-page: 32
  article-title: Cycling downwards—Dissolved organic matter in soils
  publication-title: Soil Biology and Biochemistry
– volume: 2017
  start-page: 1
  year: 2017
  end-page: 2
  article-title: The importance and requirement of belowground carbon inputs for robust estimation of soil organic carbon dynamics: Reply to Keel et al. (2017)
  publication-title: Global Change Biology
– volume: 89
  start-page: 435
  year: 2015
  end-page: 445
  article-title: Quantification of carbon stock and tree diversity of homegardens in a dry zone area of Moneragala District, Sri Lanka
  publication-title: Agroforestry Systems
– volume: 84
  start-page: 355
  year: 2004
  end-page: 363
  article-title: Arbuscular mycorrhizae, glomalin, and soil aggregation
  publication-title: Canadian Journal of Soil Science
– volume: 142
  start-page: 279
  year: 2016
  end-page: 288
  article-title: Land use affects soil biochemical properties in Mann LK. 1986. Changes in soil carbon storage after cultivation
  publication-title: Soil Science
– year: 1993
– volume: 108
  start-page: 47
  year: 2016
  end-page: 53
  article-title: N fertilization decreases soil organic matter decomposition in the rhizosphere
  publication-title: Applied Soil Ecology
– volume: 80
  start-page: 399
  year: 2010
  end-page: 409
  article-title: Using agroforestry to improve soil fertility: effects of intercropping on (yerba mate) plantations with
  publication-title: Agroforestry Systems
– volume: 179
  start-page: 376
  year: 2016
  end-page: 387
  article-title: Allocation and dynamics of C and N within plant–soil system of ash and beech
  publication-title: Journal of Plant Nutrition and Soil Science
– volume: 2
  start-page: 367
  year: 2002
  end-page: 377
  article-title: Carbon sequestration in agroforestry systems
  publication-title: Climate Policy
– volume: 373
  start-page: 43
  year: 2013
  end-page: 58
  article-title: Soil organic carbon and root distribution in a temperate arable agroforestry system
  publication-title: Plant and Soil
– start-page: 333
  year: 2003
  end-page: 346
– volume: 125
  start-page: 159
  year: 2008
  end-page: 166
  article-title: Carbon stock and sequestration potential of traditional and improved agroforestry systems in the West African Sahel
  publication-title: Agriculture Ecosystems and Environment
– volume: 38
  start-page: 278
  year: 2014
  end-page: 287
  article-title: Soil aggregation and organic carbon of Oxisols under coffee in agroforestry systems
  publication-title: Revista Brasileira De Ciencia Do Solo
– volume: 143
  start-page: 49
  year: 2016
  end-page: 60
  article-title: Assessment of the effects of shelterbelts on crop yields at the regional scale in northeast China
  publication-title: Agricultural Systems
– volume: 170
  start-page: 538
  year: 2007
  end-page: 542
  article-title: Carbon sequestration under in sandy and loamy soils estimated by natural C abundance
  publication-title: Journal of Plant Nutrition and Soil Science
– volume: 44
  start-page: 1
  year: 2014
  end-page: 10
  article-title: Agroforestry, climate change mitigation and livelihood security in India
  publication-title: New Zealand Journal of Forestry Science
– volume: 38
  start-page: 550
  year: 2014
  end-page: 560
  article-title: Growth, biomass, carbon stocks, and sequestration in age series of plantations in Tarai region of central Himalaya
  publication-title: Turkish Journal of Agriculture and Forestry
– volume: 76
  start-page: 53
  year: 2009
  end-page: 65
  article-title: Soil carbon stock in relation to plant diversity of homegardens in Kerala, India
  publication-title: Agroforestry Systems
– volume: 99
  start-page: 15
  year: 2003
  end-page: 27
  article-title: Carbon sequestration in tropical agroforestry systems
  publication-title: Agriculture Ecosystems and Environment
– volume: 91
  start-page: 487
  year: 2017
  end-page: 493
  article-title: Influence of alley copping system on am fungi, microbial biomass C and yield of finger millet, peanut and pigeon pea
  publication-title: Agroforestry Systems
– volume: 49
  start-page: 153
  year: 2000
  end-page: 175
  article-title: Field‐scale influence of karite ( ) on sorghum production in the Sudan zone of Burkina Faso
  publication-title: Agroforestry Systems
– volume: 27
  start-page: 592
  year: 2016
  end-page: 602
  article-title: Land use and precipitation affect organic and microbial carbon stocks and the specific metabolic quotient in soils of eleven ecosystems of Mt. Kilimanjaro, Tanzania
  publication-title: Land Degradation & Development
– volume: 283
  start-page: 10
  year: 2016
  end-page: 20
  article-title: Soil carbon changes after establishing woodland and agroforestry trees in a grazed pasture
  publication-title: Geoderma
– volume: 3
  start-page: 315
  year: 2010
  end-page: 322
  article-title: Reduction of forest soil respiration in response to nitrogen deposition
  publication-title: Nature Geoscience
– volume: 424
  start-page: 303
  year: 2017
  end-page: 317
  article-title: Soil aggregate stability in Mediterranean and tropical agro‐ecosystems: Effect of plant roots and soil characteristics
  publication-title: Plant and Soil
– volume: 104
  start-page: 359
  year: 2004
  end-page: 377
  article-title: Carbon sequestration in tropical and temperate agroforestry systems: A review with examples from Costa Rica and southern Canada
  publication-title: Agriculture Ecosystems and Environment
– volume: 24
  start-page: 1
  year: 2018
  end-page: 12
  article-title: Carbon input by roots into the soil: Quantification of rhizodeposition from root to ecosystem scale
  publication-title: Global Change Biology
– volume: 36
  start-page: 1
  year: 2010
  end-page: 48
  article-title: Conducting meta‐analyses in R with the metafor package
  publication-title: Journal of Statistical Software
– volume: 187
  start-page: 843
  year: 2010
  end-page: 858
  article-title: Belowground carbon allocation by trees drives seasonal patterns of extracellular enzyme activities by altering microbial community composition in a beech forest soil
  publication-title: New Phytologist
– volume: 46
  start-page: 577
  year: 2010
  end-page: 587
  article-title: Soil enzymatic activities and microbial biomass in an integrated agroforestry chronosequence compared to monoculture and a native forest of Colombia
  publication-title: Biology and Fertility of Soils
– volume: 40
  start-page: 784
  year: 2011
  end-page: 790
  article-title: Agroforestry systems and environmental quality: Introduction
  publication-title: Journal of Environmental Quality
– volume: 6
  start-page: 317
  year: 2000
  end-page: 327
  article-title: Soil carbon sequestration and land‐use change: Processes and potential
  publication-title: Global Change Biology
– volume: 12
  start-page: 901
  year: 2007
  end-page: 918
  article-title: Climate change: Linking adaptation and mitigation through agroforestry
  publication-title: Mitigation and Adaptation Strategies for Global Change
– start-page: 17
  year: 2011
  end-page: 42
– volume: 62
  start-page: 74
  year: 2014
  end-page: 82
  article-title: Glucose decomposition and its incorporation into soil microbial biomass depending on land use in Mt. Kilimanjaro ecosystems
  publication-title: European Journal of Soil Biology
– volume: 45
  start-page: 5
  year: 1991
  end-page: 29
  article-title: State‐of‐the‐art of agroforestry systems
  publication-title: Forest Ecology and Management
– volume: 76
  start-page: 11
  year: 2009
  end-page: 25
  article-title: Contribution of trees to soil carbon sequestration under agroforestry systems in the West African Sahel
  publication-title: Agroforestry Systems
– volume: 140
  start-page: 430
  year: 2011
  end-page: 440
  article-title: Species richness and aboveground carbon stocks in the homegardens of central Kerala, India
  publication-title: Agriculture, Ecosystems and Environment
– volume: 150
  start-page: 54
  year: 2012
  end-page: 62
  article-title: Soil aggregation, carbon build up and root zone soil moisture in degraded sloping lands under selected agroforestry based rehabilitation systems in eastern India
  publication-title: Agriculture Ecosystems and Environment
– volume: 142
  start-page: 279
  year: 1986
  end-page: 288
  article-title: Changes in soil carbon storage after cultivation
  publication-title: Soil Science
– volume: 316
  start-page: 71
  year: 2009
  end-page: 80
  article-title: Plant available phosphorus in homegarden and native forest soils under high rainfall in an equatorial humid tropics
  publication-title: Plant and Soil
– volume: 86
  start-page: 141
  year: 2012
  end-page: 157
  article-title: Carbon stocks in coffee agroforests and mixed dry tropical forests in the western highlands of Guatemala
  publication-title: Agroforestry Systems
– volume: 236
  start-page: 243
  year: 2017
  end-page: 255
  article-title: Increased soil organic carbon stocks under agroforestry: A survey of six different sites in France
  publication-title: Agriculture, Ecosystems and Environment
– start-page: 12
  year: 2008
  end-page: 17
  article-title: The chagga homegardens on Kilimanjaro
  publication-title: Magazine of the International Human Dimensions Programme on Global Environmental Change
– year: 2013
– year: 1999
– ident: e_1_2_6_67_1
  doi: 10.1007/s13593-012-0081-1
– ident: e_1_2_6_18_1
  doi: 10.1002/ldr.2261
– ident: e_1_2_6_34_1
  doi: 10.1111/ejss.12267
– ident: e_1_2_6_2_1
  doi: 10.1016/S0167-8809(03)00138-5
– ident: e_1_2_6_8_1
  doi: 10.1186/1179-5395-44-S1-S11
– ident: e_1_2_6_14_1
  doi: 10.1016/j.agee.2016.12.011
– ident: e_1_2_6_69_1
  doi: 10.1007/s10457-008-9179-5
– ident: e_1_2_6_56_1
  doi: 10.1007/s11104-008-9759-1
– ident: e_1_2_6_33_1
  doi: 10.1023/B:AGFO.0000028995.13227.ca
– ident: e_1_2_6_41_1
  doi: 10.1007/s10457-014-9780-8
– ident: e_1_2_6_29_1
  doi: 10.1016/j.soilbio.2012.04.002
– ident: e_1_2_6_79_1
  doi: 10.1002/ldr.2902
– ident: e_1_2_6_71_1
  doi: 10.1016/j.agee.2016.06.002
– ident: e_1_2_6_16_1
  doi: 10.1007/BF01098474
– ident: e_1_2_6_44_1
  doi: 10.1016/0378-1127(91)90203-8
– volume: 142
  start-page: 279
  year: 2016
  ident: e_1_2_6_43_1
  article-title: Land use affects soil biochemical properties in Mann LK. 1986. Changes in soil carbon storage after cultivation
  publication-title: Soil Science
– ident: e_1_2_6_68_1
  doi: 10.1016/j.agee.2007.12.010
– ident: e_1_2_6_23_1
  doi: 10.1111/j.1365-2028.2006.00679.x
– ident: e_1_2_6_60_1
  doi: 10.4141/S04-003
– start-page: 203
  volume-title: Agroforestry for soil conservation. Tropical agroforestry
  year: 2014
  ident: e_1_2_6_5_1
– ident: e_1_2_6_11_1
  doi: 10.1023/A:1006389828259
– ident: e_1_2_6_81_1
  doi: 10.1016/j.apsoil.2016.07.021
– ident: e_1_2_6_13_1
  doi: 10.1007/s10457-006-0003-9
– ident: e_1_2_6_40_1
  doi: 10.1007/s13280-013-0390-x
– ident: e_1_2_6_31_1
  doi: 10.1002/ldr.2151
– ident: e_1_2_6_73_1
  doi: 10.1007/978-94-007-1630-8_2
– volume: 6
  issue: 29987
  year: 2016
  ident: e_1_2_6_83_1
  article-title: Global tree cover and biomass carbon on agricultural land: The contribution of agroforestry to global and national carbon budgets
  publication-title: Scientific Reports
– ident: e_1_2_6_10_1
  doi: 10.1016/j.jenvman.2017.07.037
– ident: e_1_2_6_54_1
  doi: 10.1016/j.agee.2004.04.001
– ident: e_1_2_6_70_1
  doi: 10.1007/s10457-015-9821-y
– volume: 2017
  start-page: 1
  year: 2017
  ident: e_1_2_6_38_1
  article-title: The importance and requirement of belowground carbon inputs for robust estimation of soil organic carbon dynamics: Reply to Keel et al. (2017)
  publication-title: Global Change Biology
– ident: e_1_2_6_62_1
  doi: 10.1007/s10457-012-9549-x
– ident: e_1_2_6_76_1
  doi: 10.1007/s00374-010-0466-8
– ident: e_1_2_6_49_1
  doi: 10.1002/jpln.200800030
– ident: e_1_2_6_25_1
  doi: 10.1007/s10457-010-9317-8
– ident: e_1_2_6_15_1
  doi: 10.1007/s11104-015-2422-8
– ident: e_1_2_6_20_1
  doi: 10.1016/j.soilbio.2014.01.011
– ident: e_1_2_6_4_1
  doi: 10.3906/tar-1307-94
– volume-title: An introduction to agroforestry
  year: 1993
  ident: e_1_2_6_45_1
  doi: 10.1007/978-94-011-1608-4
– ident: e_1_2_6_63_1
  doi: 10.1002/jpln.200625111
– ident: e_1_2_6_6_1
  doi: 10.5558/tfc2017-024
– ident: e_1_2_6_55_1
  doi: 10.1002/ldr.2406
– ident: e_1_2_6_84_1
  doi: 10.5716/WP16263.PDF
– ident: e_1_2_6_26_1
  doi: 10.1007/s11842-014-9275-5
– ident: e_1_2_6_12_1
  doi: 10.1007/978-94-017-2424-1_5
– ident: e_1_2_6_3_1
  doi: 10.1007/s13593-011-0026-0
– ident: e_1_2_6_30_1
  doi: 10.1016/j.agee.2016.04.011
– ident: e_1_2_6_39_1
  doi: 10.1097/00010694-198611000-00006
– ident: e_1_2_6_57_1
  doi: 10.3763/cpol.2002.0240
– ident: e_1_2_6_19_1
  doi: 10.1590/S0100-06832014000100028
– ident: e_1_2_6_17_1
  doi: 10.1007/s10457-013-9657-2
– ident: e_1_2_6_82_1
  doi: 10.1016/j.agsy.2015.12.008
– ident: e_1_2_6_78_1
  doi: 10.18637/jss.v036.i03
– ident: e_1_2_6_59_1
  doi: 10.1046/j.1365-2486.2000.00308.x
– volume-title: Agroforestry in Sustainable Agricultural Systems
  year: 1999
  ident: e_1_2_6_64_1
– ident: e_1_2_6_50_1
  doi: 10.1016/j.envsci.2009.01.010
– ident: e_1_2_6_22_1
  doi: 10.1016/j.biocon.2005.03.018
– ident: e_1_2_6_66_1
  doi: 10.1002/jpln.201500384
– ident: e_1_2_6_28_1
  doi: 10.1111/j.1469-8137.2010.03321.x
– ident: e_1_2_6_32_1
  doi: 10.1016/j.agee.2011.01.006
– ident: e_1_2_6_35_1
  doi: 10.1007/s11104-017-3423-6
– ident: e_1_2_6_58_1
  doi: 10.1111/gcb.13850
– ident: e_1_2_6_74_1
  doi: 10.1007/s11104-013-1733-x
– ident: e_1_2_6_77_1
  doi: 10.1007/s11027-007-9105-6
– ident: e_1_2_6_7_1
  doi: 10.1007/s10457-016-9949-4
– ident: e_1_2_6_51_1
  doi: 10.1002/ldr.1016
– ident: e_1_2_6_53_1
  doi: 10.1023/B:AGFO.0000029004.03475.1d
– volume: 35
  start-page: 107
  year: 2014
  ident: e_1_2_6_65_1
  article-title: Carbon sequestration and nutrient removal by some tree species in an agrisilviculture system in Punjab, India
  publication-title: Range Management and Agroforestry
– ident: e_1_2_6_9_1
  doi: 10.5194/bg-12-5635-2015
– ident: e_1_2_6_46_1
  doi: 10.2134/jeq2011.0076
– ident: e_1_2_6_48_1
  doi: 10.1016/B978-0-12-409548-9.05088-0
– start-page: 333
  volume-title: The potential of US forest soils to sequester carbon and mitigate the greenhouse effect
  year: 2003
  ident: e_1_2_6_52_1
– ident: e_1_2_6_42_1
  doi: 10.1016/j.ejsobi.2014.02.015
– start-page: 12
  year: 2008
  ident: e_1_2_6_24_1
  article-title: The chagga homegardens on Kilimanjaro
  publication-title: Magazine of the International Human Dimensions Programme on Global Environmental Change
– ident: e_1_2_6_61_1
  doi: 10.1007/s10457-009-9228-8
– ident: e_1_2_6_72_1
  doi: 10.1007/s10457-012-9494-8
– ident: e_1_2_6_47_1
  doi: 10.1007/s10457-011-9434-z
– ident: e_1_2_6_80_1
  doi: 10.1111/gcbb.12485
– ident: e_1_2_6_21_1
  doi: 10.1016/S0065-2504(01)32013-5
– ident: e_1_2_6_36_1
  doi: 10.1016/j.agee.2012.01.003
– ident: e_1_2_6_37_1
  doi: 10.1007/s13593-014-0212-y
– ident: e_1_2_6_27_1
  doi: 10.1038/ngeo844
– ident: e_1_2_6_75_1
  doi: 10.1016/j.geoderma.2016.07.002
SSID ssj0001747
Score 2.5666625
Snippet Agroforestry (AF) has the potential to restore degraded lands, provide a broader range of ecosystem goods and services such as carbon (C) sequestration and...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3886
SubjectTerms Agricultural land
Agroforestry
agroforestry management
Alley cropping
Biodiversity
Carbon
carbon sequestration
carbon sinks
Crop growth
cropland
Ecosystem services
Ecosystem stability
Ecosystems
Erosion control
forests
home gardens
homegardens
inventories
Land degradation
magnesium
Meta-analysis
Microclimate
Moisture content
monitoring
Nutrient cycles
Pasture
pastures
Remote sensing
Service restoration
silvopastoral systems
Soil analysis
soil carbon
Soil erosion
Soil fertility
Soil investigations
Soil stability
Soil water
Soil water storage
Subsoils
subtropics
sustainable land use
Topsoil
Trees
Tropical environments
tropics
Windbreaks
Title Agroforestry systems: Meta‐analysis of soil carbon stocks, sequestration processes, and future potentials
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fldr.3136
https://www.proquest.com/docview/2137830373
https://www.proquest.com/docview/2176338919
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYqTnBoeVXdQpErVeVCYOM8nHBbQRGquj0gkJA4RONXVe0qWW2yF078hP7G_pLOxMkuICpVPUVRxnnYM_Y38cw3jH1ykBonTBpYKgQYqzAOIIldkBH5uEnDUMWU4Dz-nl7exF9vk9suqpJyYTw_xPKHG1lGO1-TgYOqT1akoVMzR4czIrZtCtUiPHS1Yo5CoC372PpIyKznnR2Kk77h05VoBS8fg9R2lbl4w-769_PBJZPjRaOO9f0z6sb_-4BN9roDn3zktWWLvbLlNtsY_Zh3BBx2h03wrEIga6kIHPc8z_UpH9sGfj_8go7ChFeO19XPKdcwV1XJEUHqSX3E28DsnomXz3wSgsULUBru6Uv4rGooQgnVfpddX3y5PrsMuoIMgUaUlwaQAcgEIAeRG_SDIitTSIxwqAe5SgTQ4iadlTJVOlFO26EbmgxyiS2cjt6ytbIq7TvGnYnzTBkBgJARklCJREOGzjJ6RCoNYcAO-7EpdEdWTjUzpoWnWRYF9l5BvTdgH5eSM0_Q8YLMfj-8RWeidSHCSGa4gMsIb7G8jMZFOyZQ2mpBMjj90k5uPmCf27H86zOKb-dXdHz_r4J7bB3BV-bzGvfZWjNf2A8IcBp10KryHzhz-_c
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcgAO_FcsFDASPxfSbpzETipxqFiqLd3toVqk3qJxbCO0q2S1yQrBqY_Q5-BVeAuepOP87AICiUsPnKIoEye2Z-zP9sw3AM8tCm25Fp5xiQBD5YceRqH1Ykc-roXvq9AFOI-PxfBD-P40Ot2Ab10sTMMPsdpwc5ZRj9fOwN2G9O6aNXSmF7TiDETrUXlkvnym9Vr55nBAnfuC84N3k7dDr00p4GWEU4SHMaKMEBPkiSYkHxgpMNLcUk0SFXF0w7O0RkqhskjZzPRtX8eYSHrDZgEVewWuuvzhjqd_cLKmqiJkLztn_oDLuCO67fPd7kd_nfrWePZnVFxPawe34HvXII03y3RnWamd7OtvXJH_R4vdhpstumb7jTncgQ2T34Ub-x8XLcOIuQdTuisIqRuX5Y41RNblHhubCn-cnWPL0cIKy8ri04xluFBFzggiZ9PyNas9zzuqYTZvoiwMPcBcs4afhc2LyrlgkV3fh8llVHYLNvMiNw-AWR0msdIckTAxRr7iUYZxHEha8inhYw9edbqQZi0bu0sKMksbHmmeUmelrrN68GwlOW8YSP4gs92pU9qOQWXK_UDGhFBkQEWsHtPo4Y6EMDfF0snQ_OKOqpMevKx156_fSEeDE3d9-K-CT-HacDIepaPD46NHcJ2QZtwEcW7DZrVYmseE5ir1pDYjBuklK-EFcsxcOg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIiE48I_YUsBI_FxIu3ESO0HiULGsWvojVBWpt2gc26jaVbLaZIXgxCPwGrwKj8GTMI6TXUAgcemBUxR54sT2jP05nvkG4LFFoS3XIjAuEWCswjjAJLZB6sjHtQhDFbsA58MjsfsufnOanK7B1z4WxvNDLH-4Octo52tn4DNtt1ekoVM9pw1nJDqHyn3z8QNt1-qXeyMa2yecj1-fvNoNuowCQUEwRQSYIsoEMUOeaQLykZECE80tNSRTCUc3O0trpBSqSJQtzNAOdYqZpCdsEVG1F-BiLIaZyxIxOl4xVRGwl70vf8Rl2vPcDvl2_6G_rnwrOPszKG5XtfE1-Nb3h3dmmWwtGrVVfPqNKvK_6LDrcLXD1mzHG8MNWDPlTbiy837e8YuYWzChu4pwunE57pinsa5fsEPT4PfPX7BjaGGVZXV1NmUFzlVVMgLIxaR-zlq_855omM18jIWhAiw18-wsbFY1zgGLrPo2nJxHY-_AelmV5i4wq-MsVZojEiLGJFQ8KTBNI0kbPiVCHMCzXhXyouNidylBprlnkeY5DVbuBmsAj5aSM88_8geZzV6b8m4GqnMeRjIlfCIjqmJZTHOHOxDC0lQLJ0OrizuozgbwtFWdv74jPxgdu-vGvwo-hEtvR-P8YO9o_x5cJpiZ-gjOTVhv5gtzn6Bcox60RsQgP2cd_AECU1rp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Agroforestry+systems%3A+Meta%E2%80%90analysis+of+soil+carbon+stocks%2C+sequestration+processes%2C+and+future+potentials&rft.jtitle=Land+degradation+%26+development&rft.au=Shi%2C+Lingling&rft.au=Feng%2C+Wenting&rft.au=Xu%2C+Jianchu&rft.au=Kuzyakov%2C+Yakov&rft.date=2018-11-01&rft.issn=1085-3278&rft.eissn=1099-145X&rft.volume=29&rft.issue=11&rft.spage=3886&rft.epage=3897&rft_id=info:doi/10.1002%2Fldr.3136&rft.externalDBID=10.1002%252Fldr.3136&rft.externalDocID=LDR3136
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1085-3278&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1085-3278&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1085-3278&client=summon