Agroforestry systems: Meta‐analysis of soil carbon stocks, sequestration processes, and future potentials
Agroforestry (AF) has the potential to restore degraded lands, provide a broader range of ecosystem goods and services such as carbon (C) sequestration and high biodiversity, and increase soil fertility and ecosystem stability through additional C input from trees, erosion prevention, and microclima...
Saved in:
Published in | Land degradation & development Vol. 29; no. 11; pp. 3886 - 3897 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Chichester
Wiley Subscription Services, Inc
01.11.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Agroforestry (AF) has the potential to restore degraded lands, provide a broader range of ecosystem goods and services such as carbon (C) sequestration and high biodiversity, and increase soil fertility and ecosystem stability through additional C input from trees, erosion prevention, and microclimate improvement. Advantages and processes for global C sequestration in AF are unknown. We used a meta‐analysis of 427 soil C stock data pairs grouped into four main AF systems—alley cropping, windbreaks, silvopastures, and homegardens—and evaluated changes in AF and adjacent control cropland or pasture. Mean soil C stocks in AF (1‐m depth) were 126 Mg C·ha−1, which is 19% more than that in cropland or pasture. The highest C stocks in soil were in subtropical homegardens, AF with younger trees, and topsoil (0–20 cm). Increased soil C stocks in AF were lower than aboveground C stocks in most AF systems, except alley cropping. Homegardens stored the highest C in both aboveground and belowground, especially in the subsoil (20–100 cm). Advantages of AF ecosystem services focusing on mechanisms of belowground C sequestration were analyzed. AF could store 5.3 × 109 Mg additional C in soil on 944 Mha globally, with most in the tropics and subtropics. AF systems could greatly contribute to global soil C sequestration if used in larger areas. Future investigations of AF should include (a) mechanistic‐ and process‐based studies (instead of common monitoring and inventories), (b) models linking forest and crop growth with soil water and C and nutrient cycling, and (c) accurate assessments of the AF area worldwide based on the remote sensing approaches. |
---|---|
AbstractList | Agroforestry (AF) has the potential to restore degraded lands, provide a broader range of ecosystem goods and services such as carbon (C) sequestration and high biodiversity, and increase soil fertility and ecosystem stability through additional C input from trees, erosion prevention, and microclimate improvement. Advantages and processes for global C sequestration in AF are unknown. We used a meta‐analysis of 427 soil C stock data pairs grouped into four main AF systems—alley cropping, windbreaks, silvopastures, and homegardens—and evaluated changes in AF and adjacent control cropland or pasture. Mean soil C stocks in AF (1‐m depth) were 126 Mg C·ha−1, which is 19% more than that in cropland or pasture. The highest C stocks in soil were in subtropical homegardens, AF with younger trees, and topsoil (0–20 cm). Increased soil C stocks in AF were lower than aboveground C stocks in most AF systems, except alley cropping. Homegardens stored the highest C in both aboveground and belowground, especially in the subsoil (20–100 cm). Advantages of AF ecosystem services focusing on mechanisms of belowground C sequestration were analyzed. AF could store 5.3 × 109 Mg additional C in soil on 944 Mha globally, with most in the tropics and subtropics. AF systems could greatly contribute to global soil C sequestration if used in larger areas. Future investigations of AF should include (a) mechanistic‐ and process‐based studies (instead of common monitoring and inventories), (b) models linking forest and crop growth with soil water and C and nutrient cycling, and (c) accurate assessments of the AF area worldwide based on the remote sensing approaches. Agroforestry (AF) has the potential to restore degraded lands, provide a broader range of ecosystem goods and services such as carbon (C) sequestration and high biodiversity, and increase soil fertility and ecosystem stability through additional C input from trees, erosion prevention, and microclimate improvement. Advantages and processes for global C sequestration in AF are unknown. We used a meta‐analysis of 427 soil C stock data pairs grouped into four main AF systems—alley cropping, windbreaks, silvopastures, and homegardens—and evaluated changes in AF and adjacent control cropland or pasture. Mean soil C stocks in AF (1‐m depth) were 126 Mg C·ha −1 , which is 19% more than that in cropland or pasture. The highest C stocks in soil were in subtropical homegardens, AF with younger trees, and topsoil (0–20 cm). Increased soil C stocks in AF were lower than aboveground C stocks in most AF systems, except alley cropping. Homegardens stored the highest C in both aboveground and belowground, especially in the subsoil (20–100 cm). Advantages of AF ecosystem services focusing on mechanisms of belowground C sequestration were analyzed. AF could store 5.3 × 10 9 Mg additional C in soil on 944 Mha globally, with most in the tropics and subtropics. AF systems could greatly contribute to global soil C sequestration if used in larger areas. Future investigations of AF should include (a) mechanistic‐ and process‐based studies (instead of common monitoring and inventories), (b) models linking forest and crop growth with soil water and C and nutrient cycling, and (c) accurate assessments of the AF area worldwide based on the remote sensing approaches. Agroforestry (AF) has the potential to restore degraded lands, provide a broader range of ecosystem goods and services such as carbon (C) sequestration and high biodiversity, and increase soil fertility and ecosystem stability through additional C input from trees, erosion prevention, and microclimate improvement. Advantages and processes for global C sequestration in AF are unknown. We used a meta‐analysis of 427 soil C stock data pairs grouped into four main AF systems—alley cropping, windbreaks, silvopastures, and homegardens—and evaluated changes in AF and adjacent control cropland or pasture. Mean soil C stocks in AF (1‐m depth) were 126 Mg C·ha−1, which is 19% more than that in cropland or pasture. The highest C stocks in soil were in subtropical homegardens, AF with younger trees, and topsoil (0–20 cm). Increased soil C stocks in AF were lower than aboveground C stocks in most AF systems, except alley cropping. Homegardens stored the highest C in both aboveground and belowground, especially in the subsoil (20–100 cm). Advantages of AF ecosystem services focusing on mechanisms of belowground C sequestration were analyzed. AF could store 5.3 × 109 Mg additional C in soil on 944 Mha globally, with most in the tropics and subtropics. AF systems could greatly contribute to global soil C sequestration if used in larger areas. Future investigations of AF should include (a) mechanistic‐ and process‐based studies (instead of common monitoring and inventories), (b) models linking forest and crop growth with soil water and C and nutrient cycling, and (c) accurate assessments of the AF area worldwide based on the remote sensing approaches. Agroforestry (AF) has the potential to restore degraded lands, provide a broader range of ecosystem goods and services such as carbon (C) sequestration and high biodiversity, and increase soil fertility and ecosystem stability through additional C input from trees, erosion prevention, and microclimate improvement. Advantages and processes for global C sequestration in AF are unknown. We used a meta‐analysis of 427 soil C stock data pairs grouped into four main AF systems—alley cropping, windbreaks, silvopastures, and homegardens—and evaluated changes in AF and adjacent control cropland or pasture. Mean soil C stocks in AF (1‐m depth) were 126 Mg C·ha⁻¹, which is 19% more than that in cropland or pasture. The highest C stocks in soil were in subtropical homegardens, AF with younger trees, and topsoil (0–20 cm). Increased soil C stocks in AF were lower than aboveground C stocks in most AF systems, except alley cropping. Homegardens stored the highest C in both aboveground and belowground, especially in the subsoil (20–100 cm). Advantages of AF ecosystem services focusing on mechanisms of belowground C sequestration were analyzed. AF could store 5.3 × 10⁹ Mg additional C in soil on 944 Mha globally, with most in the tropics and subtropics. AF systems could greatly contribute to global soil C sequestration if used in larger areas. Future investigations of AF should include (a) mechanistic‐ and process‐based studies (instead of common monitoring and inventories), (b) models linking forest and crop growth with soil water and C and nutrient cycling, and (c) accurate assessments of the AF area worldwide based on the remote sensing approaches. |
Author | Xu, Jianchu Feng, Wenting Kuzyakov, Yakov Shi, Lingling |
Author_xml | – sequence: 1 givenname: Lingling orcidid: 0000-0001-8213-689X surname: Shi fullname: Shi, Lingling organization: University of Göttingen – sequence: 2 givenname: Wenting orcidid: 0000-0002-3189-3687 surname: Feng fullname: Feng, Wenting organization: Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences – sequence: 3 givenname: Jianchu surname: Xu fullname: Xu, Jianchu organization: World Agroforestry Centre – sequence: 4 givenname: Yakov orcidid: 0000-0002-9863-8461 surname: Kuzyakov fullname: Kuzyakov, Yakov email: kuzyakov@gwdg.de organization: Soil Science Consulting |
BookMark | eNp1kM1q3DAUhUVIofmDPIKgmy7qiWSNLau7kKZNYEKhZNGduSNfFSUea6orU7zLI_QZ8ySVZ0oKpV1dcfWdyznnmB0OYUDGzqVYSCHKi76LCyVVfcCOpDCmkMvq6-H8bqpClbp5zY6JHoQQUi_1EXu8_BaDCxEpxYnTRAk39J7fYYLnp58wQD-RJx4cp-B7biGuw8ApBftI7zjh93FWQvJ5u43BIhHmDxg67sY0RuTbkHBIHno6Za9cHnj2e56w-4_X91c3xerzp9ury1VhVVnXBTQAugIwUJquFpVCXUPVlQ6tNeuqhGVpjHaodb221dpZFE50DRidFc6qE_Z2fzb72dlrN54s9j0MGEZqS6lrpRojTUbf_IU-hDHm0DOldKOE0ipTiz1lYyCK6Frr0y5yTu77Vop2rr7N1bdz9X8cvAi20W8gTv9Ciz36w_c4_ZdrVx--7Phfe_6YMQ |
CitedBy_id | crossref_primary_10_1007_s10457_019_00450_z crossref_primary_10_3389_fsufs_2023_1158459 crossref_primary_10_1016_j_ccst_2022_100065 crossref_primary_10_1016_j_ecolind_2023_111162 crossref_primary_10_1016_j_jrurstud_2021_01_016 crossref_primary_10_1016_j_apsoil_2023_105009 crossref_primary_10_1080_21683565_2023_2270449 crossref_primary_10_1016_j_still_2020_104733 crossref_primary_10_1016_j_agee_2020_107174 crossref_primary_10_1016_j_agee_2022_108024 crossref_primary_10_1016_j_agsy_2024_103973 crossref_primary_10_1016_j_geoderma_2020_114333 crossref_primary_10_1016_j_agee_2021_107689 crossref_primary_10_1007_s13399_023_04994_0 crossref_primary_10_1007_s13593_023_00927_3 crossref_primary_10_1016_j_gecco_2021_e01923 crossref_primary_10_1016_j_tfp_2025_100793 crossref_primary_10_1007_s10457_021_00593_y crossref_primary_10_1016_j_scitotenv_2023_169197 crossref_primary_10_1111_sum_12928 crossref_primary_10_1002_ppp3_10520 crossref_primary_10_3390_agriculture11030189 crossref_primary_10_1038_s41598_023_45960_0 crossref_primary_10_1007_s10457_023_00927_y crossref_primary_10_1038_s41598_022_22937_z crossref_primary_10_1016_j_agsy_2022_103460 crossref_primary_10_1007_s11104_025_07216_w crossref_primary_10_1016_j_soilbio_2021_108422 crossref_primary_10_1111_sum_12932 crossref_primary_10_1111_geb_13145 crossref_primary_10_1016_j_scitotenv_2022_157438 crossref_primary_10_1093_ee_nvac003 crossref_primary_10_2139_ssrn_4089133 crossref_primary_10_3390_cli8110124 crossref_primary_10_1016_j_agee_2021_107555 crossref_primary_10_1016_j_tfp_2025_100818 crossref_primary_10_5194_soil_9_89_2023 crossref_primary_10_1016_j_scitotenv_2021_146821 crossref_primary_10_1111_sum_70002 crossref_primary_10_1002_agj2_20099 crossref_primary_10_1029_2024JG008323 crossref_primary_10_3390_land11050639 crossref_primary_10_5194_hess_28_3963_2024 crossref_primary_10_1002_ldr_3959 crossref_primary_10_1016_j_heliyon_2025_e42127 crossref_primary_10_3390_land11101873 crossref_primary_10_3390_su14031296 crossref_primary_10_3390_agronomy15020488 crossref_primary_10_1016_j_chemosphere_2023_138319 crossref_primary_10_1111_gcbb_12934 crossref_primary_10_1007_s10113_021_01863_2 crossref_primary_10_1016_j_geodrs_2024_e00796 crossref_primary_10_1016_j_scitotenv_2023_166238 crossref_primary_10_1016_j_spc_2022_12_015 crossref_primary_10_3390_land10101028 crossref_primary_10_1016_j_scitotenv_2021_150999 crossref_primary_10_1111_gcb_16322 crossref_primary_10_1016_j_apsoil_2021_104045 crossref_primary_10_1016_j_ecoser_2023_101537 crossref_primary_10_1016_j_jclepro_2022_135423 crossref_primary_10_1007_s44297_023_00016_7 crossref_primary_10_3390_agronomy11050882 crossref_primary_10_1016_j_agrformet_2021_108756 crossref_primary_10_1016_j_iswcr_2021_08_001 crossref_primary_10_1111_gcb_15747 crossref_primary_10_1007_s11842_020_09439_4 crossref_primary_10_3390_f12030303 crossref_primary_10_1038_s41597_020_0356_3 crossref_primary_10_1016_j_catena_2025_108807 crossref_primary_10_1007_s10661_024_12652_9 crossref_primary_10_1016_j_soilbio_2020_107735 crossref_primary_10_1111_gcbb_12916 crossref_primary_10_1016_j_agee_2023_108450 crossref_primary_10_1016_j_forpol_2020_102217 crossref_primary_10_1002_agj2_20948 crossref_primary_10_1038_s41598_020_68973_5 crossref_primary_10_1007_s10457_020_00491_9 crossref_primary_10_3390_f13081193 crossref_primary_10_1016_j_forpol_2023_103136 crossref_primary_10_1016_j_agee_2021_107437 crossref_primary_10_1038_s41598_025_91268_6 crossref_primary_10_1038_s43247_024_01405_8 crossref_primary_10_1007_s10457_022_00754_7 crossref_primary_10_1016_j_geoderma_2023_116726 crossref_primary_10_3390_w16233415 crossref_primary_10_3390_app12094623 crossref_primary_10_1016_j_jclepro_2020_124831 crossref_primary_10_3390_land13101630 crossref_primary_10_1016_j_heliyon_2023_e19243 crossref_primary_10_1016_j_cosust_2023_101275 crossref_primary_10_3390_d13110567 crossref_primary_10_1016_j_geodrs_2024_e00806 crossref_primary_10_47280_RevFacAgron_LUZ__v40_supl_02 crossref_primary_10_1016_j_agsy_2024_104224 crossref_primary_10_1007_s10457_023_00898_0 crossref_primary_10_1016_j_catena_2022_106089 crossref_primary_10_1002_ldr_4744 crossref_primary_10_3390_c9040120 crossref_primary_10_1016_j_geoderma_2022_116160 crossref_primary_10_3390_su12229752 crossref_primary_10_1007_s11027_021_09954_5 crossref_primary_10_1016_j_agee_2022_108213 crossref_primary_10_1016_j_still_2023_105863 crossref_primary_10_3390_soilsystems8020044 crossref_primary_10_1002_agj2_21532 crossref_primary_10_1007_s10457_024_00998_5 crossref_primary_10_1007_s10457_020_00505_6 crossref_primary_10_1016_j_geodrs_2024_e00782 crossref_primary_10_1002_ldr_3761 crossref_primary_10_4236_as_2023_149077 crossref_primary_10_1016_j_scitotenv_2021_150428 crossref_primary_10_1007_s10668_024_05433_4 crossref_primary_10_1007_s00374_018_1332_3 crossref_primary_10_1016_j_agee_2025_109539 crossref_primary_10_36783_18069657rbcs20220055 crossref_primary_10_1007_s10457_020_00587_2 crossref_primary_10_1088_1748_9326_aaeb5f crossref_primary_10_1007_s00374_022_01659_4 crossref_primary_10_1016_j_rhisph_2022_100485 crossref_primary_10_1038_s41598_023_40580_0 crossref_primary_10_1016_j_geoderma_2020_114230 crossref_primary_10_1073_pnas_2026733119 crossref_primary_10_1088_1748_9326_ad13b6 crossref_primary_10_1016_j_agee_2022_107945 crossref_primary_10_3390_f14091869 crossref_primary_10_1016_j_ufug_2022_127671 crossref_primary_10_1016_j_geodrs_2021_e00398 crossref_primary_10_1016_j_soisec_2024_100164 crossref_primary_10_4236_ajcc_2024_132008 crossref_primary_10_1016_j_catena_2024_108685 crossref_primary_10_3390_earth5040034 crossref_primary_10_1007_s10457_024_00990_z crossref_primary_10_3390_agronomy11122474 crossref_primary_10_1002_saj2_20534 crossref_primary_10_1007_s11104_020_04633_x crossref_primary_10_1002_ldr_3625 crossref_primary_10_1016_j_geodrs_2024_e00759 crossref_primary_10_1016_j_tplants_2023_09_015 crossref_primary_10_1007_s10457_021_00634_6 crossref_primary_10_1007_s10457_023_00904_5 crossref_primary_10_1002_ldr_3463 crossref_primary_10_3390_f13122125 crossref_primary_10_1002_ldr_4038 crossref_primary_10_1038_s41558_023_01810_5 crossref_primary_10_3390_f13081274 crossref_primary_10_3390_land12020513 crossref_primary_10_1016_j_jenvman_2021_111978 |
Cites_doi | 10.1007/s13593-012-0081-1 10.1002/ldr.2261 10.1111/ejss.12267 10.1016/S0167-8809(03)00138-5 10.1186/1179-5395-44-S1-S11 10.1016/j.agee.2016.12.011 10.1007/s10457-008-9179-5 10.1007/s11104-008-9759-1 10.1023/B:AGFO.0000028995.13227.ca 10.1007/s10457-014-9780-8 10.1016/j.soilbio.2012.04.002 10.1002/ldr.2902 10.1016/j.agee.2016.06.002 10.1007/BF01098474 10.1016/0378-1127(91)90203-8 10.1016/j.agee.2007.12.010 10.1111/j.1365-2028.2006.00679.x 10.4141/S04-003 10.1023/A:1006389828259 10.1016/j.apsoil.2016.07.021 10.1007/s10457-006-0003-9 10.1007/s13280-013-0390-x 10.1002/ldr.2151 10.1007/978-94-007-1630-8_2 10.1016/j.jenvman.2017.07.037 10.1016/j.agee.2004.04.001 10.1007/s10457-015-9821-y 10.1007/s10457-012-9549-x 10.1007/s00374-010-0466-8 10.1002/jpln.200800030 10.1007/s10457-010-9317-8 10.1007/s11104-015-2422-8 10.1016/j.soilbio.2014.01.011 10.3906/tar-1307-94 10.1007/978-94-011-1608-4 10.1002/jpln.200625111 10.5558/tfc2017-024 10.1002/ldr.2406 10.5716/WP16263.PDF 10.1007/s11842-014-9275-5 10.1007/978-94-017-2424-1_5 10.1007/s13593-011-0026-0 10.1016/j.agee.2016.04.011 10.1097/00010694-198611000-00006 10.3763/cpol.2002.0240 10.1590/S0100-06832014000100028 10.1007/s10457-013-9657-2 10.1016/j.agsy.2015.12.008 10.18637/jss.v036.i03 10.1046/j.1365-2486.2000.00308.x 10.1016/j.envsci.2009.01.010 10.1016/j.biocon.2005.03.018 10.1002/jpln.201500384 10.1111/j.1469-8137.2010.03321.x 10.1016/j.agee.2011.01.006 10.1007/s11104-017-3423-6 10.1111/gcb.13850 10.1007/s11104-013-1733-x 10.1007/s11027-007-9105-6 10.1007/s10457-016-9949-4 10.1002/ldr.1016 10.1023/B:AGFO.0000029004.03475.1d 10.5194/bg-12-5635-2015 10.2134/jeq2011.0076 10.1016/B978-0-12-409548-9.05088-0 10.1016/j.ejsobi.2014.02.015 10.1007/s10457-009-9228-8 10.1007/s10457-012-9494-8 10.1007/s10457-011-9434-z 10.1111/gcbb.12485 10.1016/S0065-2504(01)32013-5 10.1016/j.agee.2012.01.003 10.1007/s13593-014-0212-y 10.1038/ngeo844 10.1016/j.geoderma.2016.07.002 |
ContentType | Journal Article |
Copyright | 2018 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2018 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7ST 8FD C1K FR3 KR7 SOI 7S9 L.6 |
DOI | 10.1002/ldr.3136 |
DatabaseName | CrossRef Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Civil Engineering Abstracts Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Environment Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Civil Engineering Abstracts CrossRef AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1099-145X |
EndPage | 3897 |
ExternalDocumentID | 10_1002_ldr_3136 LDR3136 |
Genre | article |
GrantInformation_xml | – fundername: Sino‐German (CSC‐DAAD) Postdoc Scholarship Program – fundername: Key Project from the Ministry of Sciences and Technology of China funderid: 2017YFC0505100 |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABOGM ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AGHSJ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS ECGQY EDH EJD F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HF~ HGLYW HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M62 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 SAMSI SUPJJ UB1 W8V W99 WBKPD WIB WIH WIK WOHZO WQJ WRC WUPDE WXSBR WYISQ XG1 XPP XV2 Y6R ZZTAW ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION 7ST 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 KR7 SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c3266-a8aa75aa9a29d6053e76a5d2fecc9b52a42997fe776bc5bfce0f0d8a979a2fc3 |
IEDL.DBID | DR2 |
ISSN | 1085-3278 |
IngestDate | Fri Jul 11 18:25:37 EDT 2025 Sun Jul 13 04:22:47 EDT 2025 Tue Jul 01 02:57:00 EDT 2025 Thu Apr 24 22:54:14 EDT 2025 Wed Jan 22 16:49:17 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3266-a8aa75aa9a29d6053e76a5d2fecc9b52a42997fe776bc5bfce0f0d8a979a2fc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3189-3687 0000-0002-9863-8461 0000-0001-8213-689X |
PQID | 2137830373 |
PQPubID | 1016359 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2176338919 proquest_journals_2137830373 crossref_citationtrail_10_1002_ldr_3136 crossref_primary_10_1002_ldr_3136 wiley_primary_10_1002_ldr_3136_LDR3136 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2018 2018-11-00 20181101 |
PublicationDateYYYYMMDD | 2018-11-01 |
PublicationDate_xml | – month: 11 year: 2018 text: November 2018 |
PublicationDecade | 2010 |
PublicationPlace | Chichester |
PublicationPlace_xml | – name: Chichester |
PublicationTitle | Land degradation & development |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2004; 61 2004; 62 2000; 49 2000; 6 2016; 108 2010; 187 2014; 25 2016; 143 1994; 27 2016; 226 2009; 316 2014; 62 2017; 236 2016; 142 2003; 99 2012; 52 2015; 89 2009b; 12 1991; 45 2006; 68 1986; 142 2007; 170 2011; 22 2010; 3 2017; 203 2016; 230 2015; 12 2018; 29 2015; 14 2004; 104 2004; 84 2010; 36 2017; 2017 2011 2013; 42 2011; 40 2009a; 172 2009 2008 2002; 2 2004 1993 2003 2008; 125 2010; 80 2007; 12 2012; 32 2014; 44 2014; 88 2016; 283 2018; 24 1999 2012; 150 2015; 26 2016; 6 2015; 391 2017; 91 2017; 93 2009; 76 2010; 46 2013; 33 2006; 44 2005; 125 2015; 66 2014; 38 2016; 179 2014; 35 2014 2013 2013; 373 2011; 140 2016; 27 2018; 10 2014; 71 2014; 34 2017; 424 2012; 86 2012; 85 2001; 32 e_1_2_6_51_1 e_1_2_6_74_1 e_1_2_6_53_1 e_1_2_6_76_1 Sharrow S. H. (e_1_2_6_64_1) 1999 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_30_1 e_1_2_6_72_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_78_1 e_1_2_6_15_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_81_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 Singh B. (e_1_2_6_65_1) 2014; 35 e_1_2_6_9_1 e_1_2_6_7_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 Nair P. R. (e_1_2_6_52_1) 2003 Zomer R. J. (e_1_2_6_83_1) 2016; 6 e_1_2_6_66_1 e_1_2_6_28_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_68_1 e_1_2_6_73_1 e_1_2_6_54_1 e_1_2_6_75_1 Nair P. K. (e_1_2_6_45_1) 1993 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_71_1 Atangana A (e_1_2_6_5_1) 2014 Luo Z. (e_1_2_6_38_1) 2017; 2017 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_77_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_79_1 e_1_2_6_63_1 e_1_2_6_84_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_80_1 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_82_1 e_1_2_6_8_1 e_1_2_6_4_1 Hemp C (e_1_2_6_24_1) 2008 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 Mganga K. Z. (e_1_2_6_43_1) 2016; 142 |
References_xml | – volume: 6 issue: 29987 year: 2016 article-title: Global tree cover and biomass carbon on agricultural land: The contribution of agroforestry to global and national carbon budgets publication-title: Scientific Reports – volume: 66 start-page: 780 year: 2015 end-page: 791 article-title: Landscape‐scale modelling of erosion processes and soil carbon dynamics under land‐use and climate change in agroecosystems publication-title: European Journal of Soil Science – year: 2009 – volume: 14 start-page: 91 year: 2015 end-page: 101 article-title: Effect of tree diversity on soil organic carbon content in the homegarden agroforestry system of north‐eastern Bangladesh publication-title: Small‐Scale Forestry – volume: 27 start-page: 71 year: 1994 end-page: 92 article-title: Integrated land‐use systems: Assessment of promising agroforest and alternative land‐use practices to enhance carbon conservation and sequestration publication-title: Climatic Change – volume: 26 start-page: 690 year: 2015 end-page: 700 article-title: Organic carbon and nitrogen associated with soil aggregates and particle sizes under different land uses in tigray, northern Ethiopia publication-title: Land Degradation & Development – year: 2004 article-title: Windbreaks in North American agricultural systems publication-title: New Vistas in Agroforestry. Springer Netherlands. – volume: 35 start-page: 107 year: 2014 end-page: 114 article-title: Carbon sequestration and nutrient removal by some tree species in an agrisilviculture system in Punjab, India publication-title: Range Management and Agroforestry – volume: 12 start-page: 1099 year: 2009b end-page: 1111 article-title: Soil carbon sequestration in tropical agroforestry systems: A feasibility appraisal publication-title: Environmental Science and Policy – volume: 230 start-page: 150 year: 2016 end-page: 161 article-title: Do European agroforestry systems enhance biodiversity and ecosystem services? A meta‐analysis publication-title: Agriculture Ecosystems and Environment – volume: 68 start-page: 53 year: 2006 end-page: 67 article-title: Personal preferences and intensification of land use: Their impact on southern Cameroonian slash‐and‐burn agroforestry systems publication-title: Agroforestry Systems – volume: 61 start-page: 269 year: 2004 end-page: 279 article-title: Agroforestry as an approach to minimizing nutrient loss from heavily fertilized soils: The Florida experience publication-title: Agroforestry Systems – volume: 125 start-page: 203 year: 2005 end-page: 209 article-title: The Chagga home gardens—Relict areas for endemic species (Insecta: ) on Mount Kilimanjaro publication-title: Biological Conservation – volume: 44 start-page: 305 year: 2006 end-page: 328 article-title: Vegetation of Kilimanjaro: Hidden endemics and missing bamboo publication-title: African Journal of Ecology – volume: 89 start-page: 869 year: 2015 end-page: 883 article-title: Coarse root biomass, carbon, and nutrient stock dynamics of different stem and crown classes of silver oak ( , A. Cunn. ex R. Br.) plantation in central Kerala, India publication-title: Agroforestry Systems – volume: 88 start-page: 75 year: 2014 end-page: 85 article-title: Establishment and early productivity of perennial biomass alley cropping systems in Minnesota, USA publication-title: Agroforestry Systems – volume: 226 start-page: 65 year: 2016 end-page: 78 article-title: Carbon sequestration and net emissions of CH and N O under agroforestry: Synthesizing available data and suggestions for future studies publication-title: Agriculture Ecosystems and Environment – volume: 12 start-page: 5635 year: 2015 end-page: 5646 article-title: Annual litterfall dynamics and nutrient deposition depending on elevation and land use at Mt. Kilimanjaro publication-title: Biogeosciences – volume: 172 start-page: 10 year: 2009a end-page: 23 article-title: Agroforestry as a strategy for carbon sequestration publication-title: Journal of Plant Nutrition and Soil Science – volume: 391 start-page: 219 year: 2015 end-page: 235 article-title: Competition with winter crops induces deeper rooting of walnut trees in a Mediterranean alley cropping agroforestry system publication-title: Plant and Soil – volume: 25 start-page: 407 year: 2014 end-page: 416 article-title: Soil organic carbon stock and fractions in relation to land use and soil depth in the degraded Shiwaliks hills of lower Himalayas publication-title: Land Degradation & Development – volume: 42 start-page: 892 year: 2013 end-page: 902 article-title: Homegardens as a multi‐functional land‐use strategy in Sri Lanka with focus on carbon sequestration publication-title: Ambio – volume: 85 start-page: 133 year: 2012 end-page: 152 article-title: Ecological benefits provided by alley cropping systems for production of woody biomass in the temperate region: a review publication-title: Agroforestry Systems – volume: 86 start-page: 243 year: 2012 end-page: 253 article-title: Carbon sequestration studies in agroforestry systems: A reality‐check publication-title: Agroforestry Systems – volume: 32 start-page: 215 year: 2012 end-page: 226 article-title: Microbiological process in agroforestry systems. A review publication-title: Agronomy for Sustainable Development – volume: 203 start-page: 522 year: 2017 end-page: 532 article-title: Reduction of soil erosion and mercury losses in agroforestry systems compared to forests and cultivated fields in the Brazilian Amazon publication-title: Journal of Environmental Management – start-page: 203 year: 2014 end-page: 216 – volume: 62 start-page: 135 year: 2004 end-page: 152 article-title: The enigma of tropical homegardens publication-title: Agroforestry Systems – volume: 93 start-page: 180 year: 2017 end-page: 189 article-title: The potential of agroforestry to reduce atmospheric greenhouse gases in Canada: Insight from pairwise comparisons with traditional agriculture, data gaps and future research publication-title: Forestry Chronicle – volume: 10 start-page: 262 year: 2018 end-page: 271 article-title: Carbon sequestration and turnover in soil under the energy crop : Repeated C natural abundance approach and literature synthesis publication-title: Global Change Biology. Bioenergy – volume: 33 start-page: 81 year: 2013 end-page: 96 article-title: Agroforestry and biochar to offset climate change: A review publication-title: Agronomy for Sustainable Development – volume: 29 start-page: 875 year: 2018 end-page: 883 article-title: Rebuilding soil carbon in degraded steppe soils of Eastern Europe: The importance of windbreaks and improved cropland management publication-title: Land Degradation & Development – volume: 32 start-page: 199 year: 2001 end-page: 247 article-title: Meta‐analysis in ecology publication-title: Advances in Ecological Research – volume: 71 start-page: 95 year: 2014 end-page: 104 article-title: Pathways of litter C by formation of aggregates and SOM density fractions: Implications from C natural abundance publication-title: Soil Biology and Biochemistry – volume: 34 start-page: 443 year: 2014 end-page: 454 article-title: Soil organic carbon sequestration in agroforestry systems. A review publication-title: Agronomy for Sustainable Development – volume: 22 start-page: 395 year: 2011 end-page: 409 article-title: Potential for greenhouse gas emissions from soil carbon stock following biofuel cultivation on degraded lands publication-title: Land Degradation & Development – volume: 52 start-page: 29 year: 2012 end-page: 32 article-title: Cycling downwards—Dissolved organic matter in soils publication-title: Soil Biology and Biochemistry – volume: 2017 start-page: 1 year: 2017 end-page: 2 article-title: The importance and requirement of belowground carbon inputs for robust estimation of soil organic carbon dynamics: Reply to Keel et al. (2017) publication-title: Global Change Biology – volume: 89 start-page: 435 year: 2015 end-page: 445 article-title: Quantification of carbon stock and tree diversity of homegardens in a dry zone area of Moneragala District, Sri Lanka publication-title: Agroforestry Systems – volume: 84 start-page: 355 year: 2004 end-page: 363 article-title: Arbuscular mycorrhizae, glomalin, and soil aggregation publication-title: Canadian Journal of Soil Science – volume: 142 start-page: 279 year: 2016 end-page: 288 article-title: Land use affects soil biochemical properties in Mann LK. 1986. Changes in soil carbon storage after cultivation publication-title: Soil Science – year: 1993 – volume: 108 start-page: 47 year: 2016 end-page: 53 article-title: N fertilization decreases soil organic matter decomposition in the rhizosphere publication-title: Applied Soil Ecology – volume: 80 start-page: 399 year: 2010 end-page: 409 article-title: Using agroforestry to improve soil fertility: effects of intercropping on (yerba mate) plantations with publication-title: Agroforestry Systems – volume: 179 start-page: 376 year: 2016 end-page: 387 article-title: Allocation and dynamics of C and N within plant–soil system of ash and beech publication-title: Journal of Plant Nutrition and Soil Science – volume: 2 start-page: 367 year: 2002 end-page: 377 article-title: Carbon sequestration in agroforestry systems publication-title: Climate Policy – volume: 373 start-page: 43 year: 2013 end-page: 58 article-title: Soil organic carbon and root distribution in a temperate arable agroforestry system publication-title: Plant and Soil – start-page: 333 year: 2003 end-page: 346 – volume: 125 start-page: 159 year: 2008 end-page: 166 article-title: Carbon stock and sequestration potential of traditional and improved agroforestry systems in the West African Sahel publication-title: Agriculture Ecosystems and Environment – volume: 38 start-page: 278 year: 2014 end-page: 287 article-title: Soil aggregation and organic carbon of Oxisols under coffee in agroforestry systems publication-title: Revista Brasileira De Ciencia Do Solo – volume: 143 start-page: 49 year: 2016 end-page: 60 article-title: Assessment of the effects of shelterbelts on crop yields at the regional scale in northeast China publication-title: Agricultural Systems – volume: 170 start-page: 538 year: 2007 end-page: 542 article-title: Carbon sequestration under in sandy and loamy soils estimated by natural C abundance publication-title: Journal of Plant Nutrition and Soil Science – volume: 44 start-page: 1 year: 2014 end-page: 10 article-title: Agroforestry, climate change mitigation and livelihood security in India publication-title: New Zealand Journal of Forestry Science – volume: 38 start-page: 550 year: 2014 end-page: 560 article-title: Growth, biomass, carbon stocks, and sequestration in age series of plantations in Tarai region of central Himalaya publication-title: Turkish Journal of Agriculture and Forestry – volume: 76 start-page: 53 year: 2009 end-page: 65 article-title: Soil carbon stock in relation to plant diversity of homegardens in Kerala, India publication-title: Agroforestry Systems – volume: 99 start-page: 15 year: 2003 end-page: 27 article-title: Carbon sequestration in tropical agroforestry systems publication-title: Agriculture Ecosystems and Environment – volume: 91 start-page: 487 year: 2017 end-page: 493 article-title: Influence of alley copping system on am fungi, microbial biomass C and yield of finger millet, peanut and pigeon pea publication-title: Agroforestry Systems – volume: 49 start-page: 153 year: 2000 end-page: 175 article-title: Field‐scale influence of karite ( ) on sorghum production in the Sudan zone of Burkina Faso publication-title: Agroforestry Systems – volume: 27 start-page: 592 year: 2016 end-page: 602 article-title: Land use and precipitation affect organic and microbial carbon stocks and the specific metabolic quotient in soils of eleven ecosystems of Mt. Kilimanjaro, Tanzania publication-title: Land Degradation & Development – volume: 283 start-page: 10 year: 2016 end-page: 20 article-title: Soil carbon changes after establishing woodland and agroforestry trees in a grazed pasture publication-title: Geoderma – volume: 3 start-page: 315 year: 2010 end-page: 322 article-title: Reduction of forest soil respiration in response to nitrogen deposition publication-title: Nature Geoscience – volume: 424 start-page: 303 year: 2017 end-page: 317 article-title: Soil aggregate stability in Mediterranean and tropical agro‐ecosystems: Effect of plant roots and soil characteristics publication-title: Plant and Soil – volume: 104 start-page: 359 year: 2004 end-page: 377 article-title: Carbon sequestration in tropical and temperate agroforestry systems: A review with examples from Costa Rica and southern Canada publication-title: Agriculture Ecosystems and Environment – volume: 24 start-page: 1 year: 2018 end-page: 12 article-title: Carbon input by roots into the soil: Quantification of rhizodeposition from root to ecosystem scale publication-title: Global Change Biology – volume: 36 start-page: 1 year: 2010 end-page: 48 article-title: Conducting meta‐analyses in R with the metafor package publication-title: Journal of Statistical Software – volume: 187 start-page: 843 year: 2010 end-page: 858 article-title: Belowground carbon allocation by trees drives seasonal patterns of extracellular enzyme activities by altering microbial community composition in a beech forest soil publication-title: New Phytologist – volume: 46 start-page: 577 year: 2010 end-page: 587 article-title: Soil enzymatic activities and microbial biomass in an integrated agroforestry chronosequence compared to monoculture and a native forest of Colombia publication-title: Biology and Fertility of Soils – volume: 40 start-page: 784 year: 2011 end-page: 790 article-title: Agroforestry systems and environmental quality: Introduction publication-title: Journal of Environmental Quality – volume: 6 start-page: 317 year: 2000 end-page: 327 article-title: Soil carbon sequestration and land‐use change: Processes and potential publication-title: Global Change Biology – volume: 12 start-page: 901 year: 2007 end-page: 918 article-title: Climate change: Linking adaptation and mitigation through agroforestry publication-title: Mitigation and Adaptation Strategies for Global Change – start-page: 17 year: 2011 end-page: 42 – volume: 62 start-page: 74 year: 2014 end-page: 82 article-title: Glucose decomposition and its incorporation into soil microbial biomass depending on land use in Mt. Kilimanjaro ecosystems publication-title: European Journal of Soil Biology – volume: 45 start-page: 5 year: 1991 end-page: 29 article-title: State‐of‐the‐art of agroforestry systems publication-title: Forest Ecology and Management – volume: 76 start-page: 11 year: 2009 end-page: 25 article-title: Contribution of trees to soil carbon sequestration under agroforestry systems in the West African Sahel publication-title: Agroforestry Systems – volume: 140 start-page: 430 year: 2011 end-page: 440 article-title: Species richness and aboveground carbon stocks in the homegardens of central Kerala, India publication-title: Agriculture, Ecosystems and Environment – volume: 150 start-page: 54 year: 2012 end-page: 62 article-title: Soil aggregation, carbon build up and root zone soil moisture in degraded sloping lands under selected agroforestry based rehabilitation systems in eastern India publication-title: Agriculture Ecosystems and Environment – volume: 142 start-page: 279 year: 1986 end-page: 288 article-title: Changes in soil carbon storage after cultivation publication-title: Soil Science – volume: 316 start-page: 71 year: 2009 end-page: 80 article-title: Plant available phosphorus in homegarden and native forest soils under high rainfall in an equatorial humid tropics publication-title: Plant and Soil – volume: 86 start-page: 141 year: 2012 end-page: 157 article-title: Carbon stocks in coffee agroforests and mixed dry tropical forests in the western highlands of Guatemala publication-title: Agroforestry Systems – volume: 236 start-page: 243 year: 2017 end-page: 255 article-title: Increased soil organic carbon stocks under agroforestry: A survey of six different sites in France publication-title: Agriculture, Ecosystems and Environment – start-page: 12 year: 2008 end-page: 17 article-title: The chagga homegardens on Kilimanjaro publication-title: Magazine of the International Human Dimensions Programme on Global Environmental Change – year: 2013 – year: 1999 – ident: e_1_2_6_67_1 doi: 10.1007/s13593-012-0081-1 – ident: e_1_2_6_18_1 doi: 10.1002/ldr.2261 – ident: e_1_2_6_34_1 doi: 10.1111/ejss.12267 – ident: e_1_2_6_2_1 doi: 10.1016/S0167-8809(03)00138-5 – ident: e_1_2_6_8_1 doi: 10.1186/1179-5395-44-S1-S11 – ident: e_1_2_6_14_1 doi: 10.1016/j.agee.2016.12.011 – ident: e_1_2_6_69_1 doi: 10.1007/s10457-008-9179-5 – ident: e_1_2_6_56_1 doi: 10.1007/s11104-008-9759-1 – ident: e_1_2_6_33_1 doi: 10.1023/B:AGFO.0000028995.13227.ca – ident: e_1_2_6_41_1 doi: 10.1007/s10457-014-9780-8 – ident: e_1_2_6_29_1 doi: 10.1016/j.soilbio.2012.04.002 – ident: e_1_2_6_79_1 doi: 10.1002/ldr.2902 – ident: e_1_2_6_71_1 doi: 10.1016/j.agee.2016.06.002 – ident: e_1_2_6_16_1 doi: 10.1007/BF01098474 – ident: e_1_2_6_44_1 doi: 10.1016/0378-1127(91)90203-8 – volume: 142 start-page: 279 year: 2016 ident: e_1_2_6_43_1 article-title: Land use affects soil biochemical properties in Mann LK. 1986. Changes in soil carbon storage after cultivation publication-title: Soil Science – ident: e_1_2_6_68_1 doi: 10.1016/j.agee.2007.12.010 – ident: e_1_2_6_23_1 doi: 10.1111/j.1365-2028.2006.00679.x – ident: e_1_2_6_60_1 doi: 10.4141/S04-003 – start-page: 203 volume-title: Agroforestry for soil conservation. Tropical agroforestry year: 2014 ident: e_1_2_6_5_1 – ident: e_1_2_6_11_1 doi: 10.1023/A:1006389828259 – ident: e_1_2_6_81_1 doi: 10.1016/j.apsoil.2016.07.021 – ident: e_1_2_6_13_1 doi: 10.1007/s10457-006-0003-9 – ident: e_1_2_6_40_1 doi: 10.1007/s13280-013-0390-x – ident: e_1_2_6_31_1 doi: 10.1002/ldr.2151 – ident: e_1_2_6_73_1 doi: 10.1007/978-94-007-1630-8_2 – volume: 6 issue: 29987 year: 2016 ident: e_1_2_6_83_1 article-title: Global tree cover and biomass carbon on agricultural land: The contribution of agroforestry to global and national carbon budgets publication-title: Scientific Reports – ident: e_1_2_6_10_1 doi: 10.1016/j.jenvman.2017.07.037 – ident: e_1_2_6_54_1 doi: 10.1016/j.agee.2004.04.001 – ident: e_1_2_6_70_1 doi: 10.1007/s10457-015-9821-y – volume: 2017 start-page: 1 year: 2017 ident: e_1_2_6_38_1 article-title: The importance and requirement of belowground carbon inputs for robust estimation of soil organic carbon dynamics: Reply to Keel et al. (2017) publication-title: Global Change Biology – ident: e_1_2_6_62_1 doi: 10.1007/s10457-012-9549-x – ident: e_1_2_6_76_1 doi: 10.1007/s00374-010-0466-8 – ident: e_1_2_6_49_1 doi: 10.1002/jpln.200800030 – ident: e_1_2_6_25_1 doi: 10.1007/s10457-010-9317-8 – ident: e_1_2_6_15_1 doi: 10.1007/s11104-015-2422-8 – ident: e_1_2_6_20_1 doi: 10.1016/j.soilbio.2014.01.011 – ident: e_1_2_6_4_1 doi: 10.3906/tar-1307-94 – volume-title: An introduction to agroforestry year: 1993 ident: e_1_2_6_45_1 doi: 10.1007/978-94-011-1608-4 – ident: e_1_2_6_63_1 doi: 10.1002/jpln.200625111 – ident: e_1_2_6_6_1 doi: 10.5558/tfc2017-024 – ident: e_1_2_6_55_1 doi: 10.1002/ldr.2406 – ident: e_1_2_6_84_1 doi: 10.5716/WP16263.PDF – ident: e_1_2_6_26_1 doi: 10.1007/s11842-014-9275-5 – ident: e_1_2_6_12_1 doi: 10.1007/978-94-017-2424-1_5 – ident: e_1_2_6_3_1 doi: 10.1007/s13593-011-0026-0 – ident: e_1_2_6_30_1 doi: 10.1016/j.agee.2016.04.011 – ident: e_1_2_6_39_1 doi: 10.1097/00010694-198611000-00006 – ident: e_1_2_6_57_1 doi: 10.3763/cpol.2002.0240 – ident: e_1_2_6_19_1 doi: 10.1590/S0100-06832014000100028 – ident: e_1_2_6_17_1 doi: 10.1007/s10457-013-9657-2 – ident: e_1_2_6_82_1 doi: 10.1016/j.agsy.2015.12.008 – ident: e_1_2_6_78_1 doi: 10.18637/jss.v036.i03 – ident: e_1_2_6_59_1 doi: 10.1046/j.1365-2486.2000.00308.x – volume-title: Agroforestry in Sustainable Agricultural Systems year: 1999 ident: e_1_2_6_64_1 – ident: e_1_2_6_50_1 doi: 10.1016/j.envsci.2009.01.010 – ident: e_1_2_6_22_1 doi: 10.1016/j.biocon.2005.03.018 – ident: e_1_2_6_66_1 doi: 10.1002/jpln.201500384 – ident: e_1_2_6_28_1 doi: 10.1111/j.1469-8137.2010.03321.x – ident: e_1_2_6_32_1 doi: 10.1016/j.agee.2011.01.006 – ident: e_1_2_6_35_1 doi: 10.1007/s11104-017-3423-6 – ident: e_1_2_6_58_1 doi: 10.1111/gcb.13850 – ident: e_1_2_6_74_1 doi: 10.1007/s11104-013-1733-x – ident: e_1_2_6_77_1 doi: 10.1007/s11027-007-9105-6 – ident: e_1_2_6_7_1 doi: 10.1007/s10457-016-9949-4 – ident: e_1_2_6_51_1 doi: 10.1002/ldr.1016 – ident: e_1_2_6_53_1 doi: 10.1023/B:AGFO.0000029004.03475.1d – volume: 35 start-page: 107 year: 2014 ident: e_1_2_6_65_1 article-title: Carbon sequestration and nutrient removal by some tree species in an agrisilviculture system in Punjab, India publication-title: Range Management and Agroforestry – ident: e_1_2_6_9_1 doi: 10.5194/bg-12-5635-2015 – ident: e_1_2_6_46_1 doi: 10.2134/jeq2011.0076 – ident: e_1_2_6_48_1 doi: 10.1016/B978-0-12-409548-9.05088-0 – start-page: 333 volume-title: The potential of US forest soils to sequester carbon and mitigate the greenhouse effect year: 2003 ident: e_1_2_6_52_1 – ident: e_1_2_6_42_1 doi: 10.1016/j.ejsobi.2014.02.015 – start-page: 12 year: 2008 ident: e_1_2_6_24_1 article-title: The chagga homegardens on Kilimanjaro publication-title: Magazine of the International Human Dimensions Programme on Global Environmental Change – ident: e_1_2_6_61_1 doi: 10.1007/s10457-009-9228-8 – ident: e_1_2_6_72_1 doi: 10.1007/s10457-012-9494-8 – ident: e_1_2_6_47_1 doi: 10.1007/s10457-011-9434-z – ident: e_1_2_6_80_1 doi: 10.1111/gcbb.12485 – ident: e_1_2_6_21_1 doi: 10.1016/S0065-2504(01)32013-5 – ident: e_1_2_6_36_1 doi: 10.1016/j.agee.2012.01.003 – ident: e_1_2_6_37_1 doi: 10.1007/s13593-014-0212-y – ident: e_1_2_6_27_1 doi: 10.1038/ngeo844 – ident: e_1_2_6_75_1 doi: 10.1016/j.geoderma.2016.07.002 |
SSID | ssj0001747 |
Score | 2.5666625 |
Snippet | Agroforestry (AF) has the potential to restore degraded lands, provide a broader range of ecosystem goods and services such as carbon (C) sequestration and... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3886 |
SubjectTerms | Agricultural land Agroforestry agroforestry management Alley cropping Biodiversity Carbon carbon sequestration carbon sinks Crop growth cropland Ecosystem services Ecosystem stability Ecosystems Erosion control forests home gardens homegardens inventories Land degradation magnesium Meta-analysis Microclimate Moisture content monitoring Nutrient cycles Pasture pastures Remote sensing Service restoration silvopastoral systems Soil analysis soil carbon Soil erosion Soil fertility Soil investigations Soil stability Soil water Soil water storage Subsoils subtropics sustainable land use Topsoil Trees Tropical environments tropics Windbreaks |
Title | Agroforestry systems: Meta‐analysis of soil carbon stocks, sequestration processes, and future potentials |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fldr.3136 https://www.proquest.com/docview/2137830373 https://www.proquest.com/docview/2176338919 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYqTnBoeVXdQpErVeVCYOM8nHBbQRGquj0gkJA4RONXVe0qWW2yF078hP7G_pLOxMkuICpVPUVRxnnYM_Y38cw3jH1ykBonTBpYKgQYqzAOIIldkBH5uEnDUMWU4Dz-nl7exF9vk9suqpJyYTw_xPKHG1lGO1-TgYOqT1akoVMzR4czIrZtCtUiPHS1Yo5CoC372PpIyKznnR2Kk77h05VoBS8fg9R2lbl4w-769_PBJZPjRaOO9f0z6sb_-4BN9roDn3zktWWLvbLlNtsY_Zh3BBx2h03wrEIga6kIHPc8z_UpH9sGfj_8go7ChFeO19XPKdcwV1XJEUHqSX3E28DsnomXz3wSgsULUBru6Uv4rGooQgnVfpddX3y5PrsMuoIMgUaUlwaQAcgEIAeRG_SDIitTSIxwqAe5SgTQ4iadlTJVOlFO26EbmgxyiS2cjt6ytbIq7TvGnYnzTBkBgJARklCJREOGzjJ6RCoNYcAO-7EpdEdWTjUzpoWnWRYF9l5BvTdgH5eSM0_Q8YLMfj-8RWeidSHCSGa4gMsIb7G8jMZFOyZQ2mpBMjj90k5uPmCf27H86zOKb-dXdHz_r4J7bB3BV-bzGvfZWjNf2A8IcBp10KryHzhz-_c |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcgAO_FcsFDASPxfSbpzETipxqFiqLd3toVqk3qJxbCO0q2S1yQrBqY_Q5-BVeAuepOP87AICiUsPnKIoEye2Z-zP9sw3AM8tCm25Fp5xiQBD5YceRqH1Ykc-roXvq9AFOI-PxfBD-P40Ot2Ab10sTMMPsdpwc5ZRj9fOwN2G9O6aNXSmF7TiDETrUXlkvnym9Vr55nBAnfuC84N3k7dDr00p4GWEU4SHMaKMEBPkiSYkHxgpMNLcUk0SFXF0w7O0RkqhskjZzPRtX8eYSHrDZgEVewWuuvzhjqd_cLKmqiJkLztn_oDLuCO67fPd7kd_nfrWePZnVFxPawe34HvXII03y3RnWamd7OtvXJH_R4vdhpstumb7jTncgQ2T34Ub-x8XLcOIuQdTuisIqRuX5Y41RNblHhubCn-cnWPL0cIKy8ri04xluFBFzggiZ9PyNas9zzuqYTZvoiwMPcBcs4afhc2LyrlgkV3fh8llVHYLNvMiNw-AWR0msdIckTAxRr7iUYZxHEha8inhYw9edbqQZi0bu0sKMksbHmmeUmelrrN68GwlOW8YSP4gs92pU9qOQWXK_UDGhFBkQEWsHtPo4Y6EMDfF0snQ_OKOqpMevKx156_fSEeDE3d9-K-CT-HacDIepaPD46NHcJ2QZtwEcW7DZrVYmseE5ir1pDYjBuklK-EFcsxcOg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIiE48I_YUsBI_FxIu3ESO0HiULGsWvojVBWpt2gc26jaVbLaZIXgxCPwGrwKj8GTMI6TXUAgcemBUxR54sT2jP05nvkG4LFFoS3XIjAuEWCswjjAJLZB6sjHtQhDFbsA58MjsfsufnOanK7B1z4WxvNDLH-4Octo52tn4DNtt1ekoVM9pw1nJDqHyn3z8QNt1-qXeyMa2yecj1-fvNoNuowCQUEwRQSYIsoEMUOeaQLykZECE80tNSRTCUc3O0trpBSqSJQtzNAOdYqZpCdsEVG1F-BiLIaZyxIxOl4xVRGwl70vf8Rl2vPcDvl2_6G_rnwrOPszKG5XtfE1-Nb3h3dmmWwtGrVVfPqNKvK_6LDrcLXD1mzHG8MNWDPlTbiy837e8YuYWzChu4pwunE57pinsa5fsEPT4PfPX7BjaGGVZXV1NmUFzlVVMgLIxaR-zlq_855omM18jIWhAiw18-wsbFY1zgGLrPo2nJxHY-_AelmV5i4wq-MsVZojEiLGJFQ8KTBNI0kbPiVCHMCzXhXyouNidylBprlnkeY5DVbuBmsAj5aSM88_8geZzV6b8m4GqnMeRjIlfCIjqmJZTHOHOxDC0lQLJ0OrizuozgbwtFWdv74jPxgdu-vGvwo-hEtvR-P8YO9o_x5cJpiZ-gjOTVhv5gtzn6Bcox60RsQgP2cd_AECU1rp |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Agroforestry+systems%3A+Meta%E2%80%90analysis+of+soil+carbon+stocks%2C+sequestration+processes%2C+and+future+potentials&rft.jtitle=Land+degradation+%26+development&rft.au=Shi%2C+Lingling&rft.au=Feng%2C+Wenting&rft.au=Xu%2C+Jianchu&rft.au=Kuzyakov%2C+Yakov&rft.date=2018-11-01&rft.issn=1085-3278&rft.eissn=1099-145X&rft.volume=29&rft.issue=11&rft.spage=3886&rft.epage=3897&rft_id=info:doi/10.1002%2Fldr.3136&rft.externalDBID=10.1002%252Fldr.3136&rft.externalDocID=LDR3136 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1085-3278&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1085-3278&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1085-3278&client=summon |