Effects of environmental factors on soil organic carbon under natural or managed vegetation restoration
To expand the scientific understanding of soil organic carbon (SOC) accumulation in restored ecosystems, we used 246 soil samples from a rocky catchment (10.24 km2) in an ecologically fragile karst area of southwest China and measured the effects of environmental factors under different vegetation r...
Saved in:
Published in | Land degradation & development Vol. 29; no. 3; pp. 387 - 397 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Chichester
Wiley Subscription Services, Inc
01.03.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1085-3278 1099-145X |
DOI | 10.1002/ldr.2876 |
Cover
Loading…
Abstract | To expand the scientific understanding of soil organic carbon (SOC) accumulation in restored ecosystems, we used 246 soil samples from a rocky catchment (10.24 km2) in an ecologically fragile karst area of southwest China and measured the effects of environmental factors under different vegetation restoration types (managed, including forage grassland and plantation forest, or natural, including grassland, shrubland, and secondary forest) on soil organic carbon content (SOCC) and soil organic carbon density (SOCD). Significantly higher SOCC and SOCD were found in natural vegetation than in managed vegetation and tillage land but no differences in SOCC or SOCD were detected between managed vegetation and tillage land. The environmental factors include rock outcrop ratio (ROR), bulk density, altitude, soil depth, slope gradient, and pH, all showing significant effect on SOC. The proportion of variations in SOCC and SOCD explained by environmental factors was higher in natural vegetation restoration than in managed vegetation restoration, and this proportion increased along the successional gradient. However, the environmental factors driving variations in SOCC and SOCD differed according to vegetation type. Soil bulk density had the strongest effect on SOCC variation in all vegetation types, except for forage grassland, in which the variation was instead controlled by ROR. The variation of SOCD was mainly driven by ROR in most vegetation types, except for tillage land and forage grassland, in which the driving factor was altitude. This results indicated that natural vegetation restoration is more beneficial to SOC sequestration than managed vegetation restoration and thus for mitigating global climate change. Accordingly, future studies should take these different environmental drivers under different vegetation restoration types into consideration when modeling SOC and guiding restoration management. |
---|---|
AbstractList | To expand the scientific understanding of soil organic carbon (SOC) accumulation in restored ecosystems, we used 246 soil samples from a rocky catchment (10.24 km²) in an ecologically fragile karst area of southwest China and measured the effects of environmental factors under different vegetation restoration types (managed, including forage grassland and plantation forest, or natural, including grassland, shrubland, and secondary forest) on soil organic carbon content (SOCC) and soil organic carbon density (SOCD). Significantly higher SOCC and SOCD were found in natural vegetation than in managed vegetation and tillage land but no differences in SOCC or SOCD were detected between managed vegetation and tillage land. The environmental factors include rock outcrop ratio (ROR), bulk density, altitude, soil depth, slope gradient, and pH, all showing significant effect on SOC. The proportion of variations in SOCC and SOCD explained by environmental factors was higher in natural vegetation restoration than in managed vegetation restoration, and this proportion increased along the successional gradient. However, the environmental factors driving variations in SOCC and SOCD differed according to vegetation type. Soil bulk density had the strongest effect on SOCC variation in all vegetation types, except for forage grassland, in which the variation was instead controlled by ROR. The variation of SOCD was mainly driven by ROR in most vegetation types, except for tillage land and forage grassland, in which the driving factor was altitude. This results indicated that natural vegetation restoration is more beneficial to SOC sequestration than managed vegetation restoration and thus for mitigating global climate change. Accordingly, future studies should take these different environmental drivers under different vegetation restoration types into consideration when modeling SOC and guiding restoration management. To expand the scientific understanding of soil organic carbon (SOC) accumulation in restored ecosystems, we used 246 soil samples from a rocky catchment (10.24 km 2 ) in an ecologically fragile karst area of southwest China and measured the effects of environmental factors under different vegetation restoration types (managed, including forage grassland and plantation forest, or natural, including grassland, shrubland, and secondary forest) on soil organic carbon content (SOCC) and soil organic carbon density (SOCD). Significantly higher SOCC and SOCD were found in natural vegetation than in managed vegetation and tillage land but no differences in SOCC or SOCD were detected between managed vegetation and tillage land. The environmental factors include rock outcrop ratio (ROR), bulk density, altitude, soil depth, slope gradient, and pH, all showing significant effect on SOC. The proportion of variations in SOCC and SOCD explained by environmental factors was higher in natural vegetation restoration than in managed vegetation restoration, and this proportion increased along the successional gradient. However, the environmental factors driving variations in SOCC and SOCD differed according to vegetation type. Soil bulk density had the strongest effect on SOCC variation in all vegetation types, except for forage grassland, in which the variation was instead controlled by ROR. The variation of SOCD was mainly driven by ROR in most vegetation types, except for tillage land and forage grassland, in which the driving factor was altitude. This results indicated that natural vegetation restoration is more beneficial to SOC sequestration than managed vegetation restoration and thus for mitigating global climate change. Accordingly, future studies should take these different environmental drivers under different vegetation restoration types into consideration when modeling SOC and guiding restoration management. To expand the scientific understanding of soil organic carbon (SOC) accumulation in restored ecosystems, we used 246 soil samples from a rocky catchment (10.24 km2) in an ecologically fragile karst area of southwest China and measured the effects of environmental factors under different vegetation restoration types (managed, including forage grassland and plantation forest, or natural, including grassland, shrubland, and secondary forest) on soil organic carbon content (SOCC) and soil organic carbon density (SOCD). Significantly higher SOCC and SOCD were found in natural vegetation than in managed vegetation and tillage land but no differences in SOCC or SOCD were detected between managed vegetation and tillage land. The environmental factors include rock outcrop ratio (ROR), bulk density, altitude, soil depth, slope gradient, and pH, all showing significant effect on SOC. The proportion of variations in SOCC and SOCD explained by environmental factors was higher in natural vegetation restoration than in managed vegetation restoration, and this proportion increased along the successional gradient. However, the environmental factors driving variations in SOCC and SOCD differed according to vegetation type. Soil bulk density had the strongest effect on SOCC variation in all vegetation types, except for forage grassland, in which the variation was instead controlled by ROR. The variation of SOCD was mainly driven by ROR in most vegetation types, except for tillage land and forage grassland, in which the driving factor was altitude. This results indicated that natural vegetation restoration is more beneficial to SOC sequestration than managed vegetation restoration and thus for mitigating global climate change. Accordingly, future studies should take these different environmental drivers under different vegetation restoration types into consideration when modeling SOC and guiding restoration management. To expand the scientific understanding of soil organic carbon (SOC) accumulation in restored ecosystems, we used 246 soil samples from a rocky catchment (10.24 km2) in an ecologically fragile karst area of southwest China and measured the effects of environmental factors under different vegetation restoration types (managed, including forage grassland and plantation forest, or natural, including grassland, shrubland, and secondary forest) on soil organic carbon content (SOCC) and soil organic carbon density (SOCD). Significantly higher SOCC and SOCD were found in natural vegetation than in managed vegetation and tillage land but no differences in SOCC or SOCD were detected between managed vegetation and tillage land. The environmental factors include rock outcrop ratio (ROR), bulk density, altitude, soil depth, slope gradient, and pH, all showing significant effect on SOC. The proportion of variations in SOCC and SOCD explained by environmental factors was higher in natural vegetation restoration than in managed vegetation restoration, and this proportion increased along the successional gradient. However, the environmental factors driving variations in SOCC and SOCD differed according to vegetation type. Soil bulk density had the strongest effect on SOCC variation in all vegetation types, except for forage grassland, in which the variation was instead controlled by ROR. The variation of SOCD was mainly driven by ROR in most vegetation types, except for tillage land and forage grassland, in which the driving factor was altitude. This results indicated that natural vegetation restoration is more beneficial to SOC sequestration than managed vegetation restoration and thus for mitigating global climate change. Accordingly, future studies should take these different environmental drivers under different vegetation restoration types into consideration when modeling SOC and guiding restoration management. |
Author | Hu, Pei‐Lei Ye, Ying‐Ying Wang, Ke‐Lin Zhang, Wei Liu, Shu‐Juan Su, Yi‐Rong |
Author_xml | – sequence: 1 givenname: Pei‐Lei surname: Hu fullname: Hu, Pei‐Lei organization: University of Chinese Academy of Science – sequence: 2 givenname: Shu‐Juan surname: Liu fullname: Liu, Shu‐Juan organization: School of Environment and Chemical Engineering, Foshan University – sequence: 3 givenname: Ying‐Ying surname: Ye fullname: Ye, Ying‐Ying organization: University of Chinese Academy of Science – sequence: 4 givenname: Wei orcidid: 0000-0003-4718-6386 surname: Zhang fullname: Zhang, Wei email: zhangw@isa.ac.cn organization: Huanjiang Observation and Research Station for Karst Ecosystems – sequence: 5 givenname: Ke‐Lin surname: Wang fullname: Wang, Ke‐Lin email: kelin@isa.ac.cn organization: Huanjiang Observation and Research Station for Karst Ecosystems – sequence: 6 givenname: Yi‐Rong surname: Su fullname: Su, Yi‐Rong organization: Huanjiang Observation and Research Station for Karst Ecosystems |
BookMark | eNp1kFtLAzEQhYNUsK2CPyHgiy9bk-wl6aPUeoGCIAq-LWkyKSnbpCa7lf57s60giD7NMPPNmcMZoYHzDhC6pGRCCWE3jQ4TJnh1goaUTKcZLcr3Qd-LMssZF2doFOOaEEJ5wYdoNTcGVBuxNxjczgbvNuBa2WAjVetDWjgcvW2wDyvprMJKhmWadU5DwE62XZD9Em-kkyvQeAcraGVrExMgJolDf45OjWwiXHzXMXq7n7_OHrPF88PT7HaRqZxVVSYkJ2o5ZYUWikKu8wKgkqZk0nCWDC9FURFYcs0rIwRRRDNKK6V1SY0uqjIfo-uj7jb4jy79rzc2Kmga6cB3sWakzIXIaU4SevULXfsuuOQuUZTz5IeQH0EVfIwBTL0NdiPDvqak7hOvU-J1n3hCJ79QZY9JtEHa5q-D7HjwaRvY_ytcL-5eDvwXPB2Uxg |
CitedBy_id | crossref_primary_10_3390_f14030539 crossref_primary_10_1111_ejss_70000 crossref_primary_10_1002_ldr_3977 crossref_primary_10_1016_j_agee_2021_107572 crossref_primary_10_3390_f13101606 crossref_primary_10_3390_su162411255 crossref_primary_10_3390_su11061732 crossref_primary_10_1002_ldr_3175 crossref_primary_10_1002_ldr_4385 crossref_primary_10_3390_rs13040566 crossref_primary_10_1016_j_catena_2022_106721 crossref_primary_10_3390_su141912283 crossref_primary_10_3390_agronomy10020290 crossref_primary_10_1016_j_scitotenv_2021_145160 crossref_primary_10_3390_rs14030718 crossref_primary_10_1002_ldr_5223 crossref_primary_10_1002_ldr_4018 crossref_primary_10_1002_ldr_5503 crossref_primary_10_1002_ldr_3204 crossref_primary_10_1007_s42729_025_02372_5 crossref_primary_10_1016_j_foreco_2019_03_037 crossref_primary_10_4236_ojss_2022_129017 crossref_primary_10_1016_j_scitotenv_2021_145298 crossref_primary_10_3390_f15091520 crossref_primary_10_1007_s10980_020_01026_4 crossref_primary_10_1071_SR23198 crossref_primary_10_1016_j_catena_2022_106660 crossref_primary_10_1007_s11356_022_21690_0 crossref_primary_10_1007_s11368_020_02840_8 crossref_primary_10_11922_11_6035_csd_2023_0063_zh crossref_primary_10_1007_s11368_020_02863_1 crossref_primary_10_1016_j_apsoil_2018_09_003 crossref_primary_10_3390_f11121304 crossref_primary_10_1007_s11707_022_0978_1 crossref_primary_10_1016_j_catena_2021_105415 crossref_primary_10_1016_j_catena_2022_106769 crossref_primary_10_1016_j_watres_2024_121664 crossref_primary_10_1002_jpln_202000312 crossref_primary_10_7717_peerj_14912 crossref_primary_10_1016_j_iswcr_2022_11_004 crossref_primary_10_3389_fenvs_2023_1099942 crossref_primary_10_1016_j_agee_2020_107267 crossref_primary_10_1016_j_scitotenv_2022_159470 crossref_primary_10_1016_j_envpol_2021_118069 crossref_primary_10_1007_s11368_021_02906_1 crossref_primary_10_1016_j_catena_2018_12_040 crossref_primary_10_3390_agriculture10040099 crossref_primary_10_1016_j_still_2023_105847 crossref_primary_10_2139_ssrn_3969609 crossref_primary_10_1016_j_jhydrol_2020_125246 crossref_primary_10_1016_j_ecoleng_2019_05_022 crossref_primary_10_1016_j_catena_2020_104950 crossref_primary_10_3389_fcosc_2022_873659 crossref_primary_10_3390_rs15071847 crossref_primary_10_3390_f14101980 crossref_primary_10_1007_s12665_023_11153_1 crossref_primary_10_3390_d14080638 crossref_primary_10_1016_j_scitotenv_2019_134560 crossref_primary_10_1051_bioconf_202414802024 crossref_primary_10_1177_03091333221083111 crossref_primary_10_3390_ijgi10060366 crossref_primary_10_1016_j_catena_2022_106483 crossref_primary_10_1155_2021_3827991 crossref_primary_10_3390_agriculture13010043 crossref_primary_10_34133_ehs_0031 crossref_primary_10_1016_j_catena_2022_106868 crossref_primary_10_3389_fpls_2022_1062691 crossref_primary_10_1016_j_catena_2020_104849 crossref_primary_10_1007_s10457_024_00976_x crossref_primary_10_1007_s10661_021_09502_3 crossref_primary_10_1016_j_still_2023_105740 crossref_primary_10_1007_s10980_019_00912_w crossref_primary_10_3390_f13101701 crossref_primary_10_1002_ldr_3882 crossref_primary_10_1016_j_agee_2021_107418 crossref_primary_10_1016_j_catena_2022_106078 crossref_primary_10_1002_ldr_3487 crossref_primary_10_1016_j_scitotenv_2022_158322 crossref_primary_10_1016_j_soilbio_2022_108600 crossref_primary_10_1002_ldr_4972 crossref_primary_10_1002_ldr_4450 crossref_primary_10_1016_j_apsoil_2024_105387 crossref_primary_10_1016_j_jenvman_2024_122966 crossref_primary_10_3390_d15080900 crossref_primary_10_3390_f14020355 crossref_primary_10_1016_j_ecolind_2022_109224 crossref_primary_10_1007_s11629_022_7753_3 crossref_primary_10_1016_j_ecolind_2022_109624 crossref_primary_10_1080_02626667_2024_2387813 crossref_primary_10_3390_f16010091 crossref_primary_10_1016_j_jenvman_2023_118186 crossref_primary_10_1016_j_still_2019_104544 crossref_primary_10_3390_f14101964 crossref_primary_10_1016_j_ecoleng_2020_105782 crossref_primary_10_1016_j_catena_2024_108328 crossref_primary_10_1016_j_foreco_2019_117817 crossref_primary_10_1016_j_scitotenv_2021_150557 crossref_primary_10_1016_j_geoderma_2019_05_047 crossref_primary_10_1016_j_jhydrol_2023_130578 crossref_primary_10_1016_j_scitotenv_2021_149588 crossref_primary_10_3390_f14020365 crossref_primary_10_1002_ece3_71174 crossref_primary_10_1016_j_catena_2019_104395 crossref_primary_10_3390_agronomy13030897 crossref_primary_10_1016_j_geoderma_2019_06_005 crossref_primary_10_1016_j_ecoleng_2023_106900 crossref_primary_10_3390_agronomy15010001 crossref_primary_10_1016_j_ecoleng_2022_106845 crossref_primary_10_1016_j_heliyon_2024_e31528 crossref_primary_10_1002_imt2_66 crossref_primary_10_1007_s00374_021_01549_1 crossref_primary_10_1016_j_jclepro_2022_135512 crossref_primary_10_1016_j_catena_2024_108278 crossref_primary_10_1177_11786221221114777 crossref_primary_10_1016_j_catena_2021_105984 crossref_primary_10_1016_j_scitotenv_2021_150723 |
Cites_doi | 10.1111/j.1365-2389.2009.01157.x 10.1016/j.soilbio.2013.10.047 10.1046/j.1354-1013.2002.00486.x 10.1016/j.scitotenv.2014.03.105 10.1007/s11442-006-0107-1 10.1007/s11104-015-2735-7 10.1016/j.scitotenv.2015.12.022 10.5194/bg-8-1193-2011 10.1007/s11104-012-1175-x 10.1007/s11104-014-2114-9 10.1002/jsfa.4591 10.1007/s10533-009-9350-8 10.1016/j.geoderma.2016.06.017 10.1016/j.agee.2014.06.020 10.1016/j.agee.2012.10.001 10.2136/sssaj2004.2630 10.1007/s11258-014-0369-0 10.1016/j.earscirev.2014.01.005 10.1016/j.geoderma.2017.02.010 10.1111/j.1469-8137.2012.04150.x 10.1007/s11104-016-2951-9 10.1111/gcb.13234 10.1890/1051-0761(2003)013[0299:FECANA]2.0.CO;2 10.1111/gcb.12508 10.1371/journal.pone.0160773 10.2136/sssaj2010.0114 10.3126/hjs.v1i2.207 10.1002/ldr.2239 10.1111/j.1461-0248.2008.01219.x 10.1007/s10533-014-0031-x 10.1590/0100-67622016000200002 10.1590/S0103-90162007000100013 10.1016/j.ecoleng.2016.01.086 10.1002/2014GB004924 10.1007/s11104-015-2406-8 10.1007/s00468-015-1170-y 10.1038/srep07039 10.1016/S0921-8181(02)00069-3 10.1002/ldr.2537 10.1111/j.1365-2745.2011.01907.x 10.1007/s12665-012-1618-y 10.1007/s11368-012-0617-7 10.1111/j.1365-2486.2010.02336.x 10.1016/j.geoderma.2014.05.011 10.1002/ldr.2199 10.1016/j.agee.2016.01.048 |
ContentType | Journal Article |
Copyright | Copyright © 2018 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: Copyright © 2018 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7ST 8FD C1K FR3 KR7 SOI 7S9 L.6 |
DOI | 10.1002/ldr.2876 |
DatabaseName | CrossRef Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Civil Engineering Abstracts Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Environment Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1099-145X |
EndPage | 397 |
ExternalDocumentID | 10_1002_ldr_2876 LDR2876 |
Genre | article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: Youth Innovation Team Project of ISA, CAS funderid: 2017QNCXTD_ZJ – fundername: The National Key Research and Development Program of China funderid: 2016YFC0502400 – fundername: the National Key Basic Research Program of China funderid: 2015CB452703 – fundername: the National Natural Science Foundation of China funderid: 31670529 – fundername: Guangxi Natural Science Foundation Program funderid: 2017GXNSFAA198028 |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABOGM ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AGHSJ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS ECGQY EDH EJD F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HF~ HGLYW HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M62 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 SAMSI SUPJJ UB1 W8V W99 WBKPD WIB WIH WIK WOHZO WQJ WRC WUPDE WXSBR WYISQ XG1 XPP XV2 Y6R ZZTAW ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION 7ST 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 KR7 SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c3266-8a70cb924d8c1e3d34ee6af52af72747b8460eb7d76f880c0d2116cdd51fd4653 |
IEDL.DBID | DR2 |
ISSN | 1085-3278 |
IngestDate | Fri Jul 11 18:37:19 EDT 2025 Fri Jul 25 10:39:54 EDT 2025 Tue Jul 01 00:36:43 EDT 2025 Thu Apr 24 23:09:59 EDT 2025 Wed Jan 22 16:29:50 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3266-8a70cb924d8c1e3d34ee6af52af72747b8460eb7d76f880c0d2116cdd51fd4653 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4718-6386 |
PQID | 2017726600 |
PQPubID | 1016359 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2053883130 proquest_journals_2017726600 crossref_primary_10_1002_ldr_2876 crossref_citationtrail_10_1002_ldr_2876 wiley_primary_10_1002_ldr_2876_LDR2876 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2018 2018-03-00 20180301 |
PublicationDateYYYYMMDD | 2018-03-01 |
PublicationDate_xml | – month: 03 year: 2018 text: March 2018 |
PublicationDecade | 2010 |
PublicationPlace | Chichester |
PublicationPlace_xml | – name: Chichester |
PublicationTitle | Land degradation & development |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2014; 215 2017; 7 2013; 24 2004; 68 2003; 13 2014; 69 2016; 544 2013; 362 2014; 28 2013; 164 2011; 17 2014; 132 2014; 20 2009; 96 2014; 4 2013; 13 2006; 440 2016; 40 2003; 1 2007; 64 2014; 121 2014; 485 2012; 67 2016a; 90 2012; 100 2017; 28 2009; 60 2006; 16 2016; 409 2002; 33 2002; 8 2011; 75 1998 1996 2006 2016; 403 2003 2017; 296 2016; 281 2014; 232 2014; 197 2011; 8 2016; 11 2012; 195 2012; 92 2016; 6 2015; 26 2015; 391 2015; 29 2016b; 221 1974; 1: Legend 2014; 381 2015 2016; 22 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_19_1 Song X. Z. (e_1_2_7_43_1) 2014; 4 e_1_2_7_17_1 e_1_2_7_15_1 Paudel S. (e_1_2_7_38_1) 2003; 1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_11_1 e_1_2_7_45_1 Xiao S. S. (e_1_2_7_50_1) 2017; 7 e_1_2_7_47_1 e_1_2_7_49_1 e_1_2_7_28_1 Liu S. J. (e_1_2_7_33_1) 2015 Carter M. R. (e_1_2_7_7_1) 2006 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 ISO (e_1_2_7_26_1) 1998 e_1_2_7_23_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 Šmilauer P. (e_1_2_7_42_1) 2003 e_1_2_7_39_1 Yang L. Q. (e_1_2_7_51_1) 2016; 6 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 Thomas G. W. (e_1_2_7_46_1) 1996 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 Anon (e_1_2_7_5_1) 1974 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 |
References_xml | – volume: 20 start-page: 3544 year: 2014 end-page: 3556 article-title: Land‐use conversion and changing soil carbon stocks in China's ‘grain‐for‐green’ program: A synthesis publication-title: Global Change Biology – volume: 381 start-page: 225 year: 2014 end-page: 234 article-title: Relation of fine root distribution to soil C in a plantation in subtropical China publication-title: Plant and Soil – volume: 4 year: 2014 article-title: Chinese grain for green program led to highly increased soil organic carbon levels: A meta‐analysis publication-title: Scientific Reports – volume: 281 start-page: 1 year: 2016 end-page: 10 article-title: Environmental factors controlling soil organic carbon storage in loess soils of a subhumid region, Northern Iran publication-title: Geoderma – volume: 40 start-page: 197 year: 2016 end-page: 208 article-title: Soil organic carbon, carbon stock and their relationships to physical attributes under forest soils in central Amazonia publication-title: Revista Arvore – volume: 440 start-page: 165 year: 2006 end-page: 173 article-title: Temperature sensitivity of soil carbon decomposition and feedbacks to climate change publication-title: Nature – volume: 8 start-page: 1193 year: 2011 end-page: 1212 article-title: How accurately can soil organic carbon stocks and stock changes be quantified by soil inventories? publication-title: Biogeosciences – volume: 195 start-page: 172 year: 2012 end-page: 181 article-title: Global patterns of the dynamics of soil carbon and nitrogen stocks following afforestation: A meta‐analysis publication-title: New Phytologist – volume: 221 start-page: 235 year: 2016b end-page: 244 article-title: Soil organic carbon dynamics following natural vegetation restoration: Evidence from stable carbon isotopes (δ C) publication-title: Agriculture, Ecosystems & Environment – volume: 1: Legend year: 1974 – volume: 403 start-page: 7 year: 2016 end-page: 20 article-title: Diversity and plant trait‐soil relationships among rock outcrops in the Brazilian Atlantic rainforest publication-title: Plant and Soil – volume: 67 start-page: 1743 year: 2012 end-page: 1755 article-title: Modified method for estimating the organic carbon density of discontinuous soils in peak‐karst regions in Southwest China publication-title: Environmental Earth Sciences – volume: 75 start-page: 216 year: 2011 end-page: 225 article-title: Carbon sources and dynamics in afforested and cultivated corn belt soils publication-title: Soil Science Society of America Journal – volume: 96 start-page: 149 year: 2009 end-page: 162 article-title: Distribution of soil organic C, N and P in three adjacent land use patterns in the northern Loess Plateau, China publication-title: Biogeochemistry – year: 1998 – volume: 121 start-page: 329 year: 2014 end-page: 338 article-title: Rocks create nitrogen hotspots and N: P heterogeneity by funnelling rain publication-title: Biogeochemistry – volume: 197 start-page: 41 year: 2014 end-page: 52 article-title: The relationships between land uses, soil management practices, and soil carbon fractions in south eastern Australia publication-title: Agriculture, Ecosystems & Environment – volume: 100 start-page: 16 year: 2012 end-page: 30 article-title: Linking vegetation change, carbon sequestration and biodiversity: Insights from island ecosystems in a long‐term natural experiment publication-title: Journal of Ecology – volume: 17 start-page: 1658 year: 2011 end-page: 1670 article-title: Impact of tropical land‐use change on soil organic carbon stocks—A meta‐analysis publication-title: Global Change Biology – volume: 13 start-page: 265 year: 2013 end-page: 277 article-title: Land use and climate change impacts on soil organic carbon stocks in semi‐arid Spain publication-title: Journal of Soils and Sediments – volume: 22 start-page: 2255 year: 2016 end-page: 2268 article-title: Soil carbon and nitrogen stocks in forests along an altitudinal gradient in the eastern Himalayas and a meta‐analysis of global data publication-title: Global Change Biology – volume: 132 start-page: 1 year: 2014 end-page: 12 article-title: Rocky desertification in Southwest China: Impacts, causes, and restoration publication-title: Earth‐Science Reviews – volume: 544 start-page: 963 year: 2016 end-page: 970 article-title: Impact of topographic aspect and vegetation (native and reforested areas) on soil organic carbon and nitrogen budgets in Mediterranean natural areas publication-title: Science of the Total Environment – volume: 409 start-page: 99 year: 2016 end-page: 116 article-title: Stabilization of new carbon inputs rather than old carbon decomposition determines soil organic carbon shifts following woody or herbaceous vegetation transitions publication-title: Plant and Soil – volume: 28 start-page: 1279 year: 2014 end-page: 1294 article-title: Estimating the soil carbon sequestration potential of China's Grain for Green Project publication-title: Global Biogeochemical Cycles – volume: 26 start-page: 54 year: 2015 end-page: 61 article-title: Soil quality indicators in relation to land use and topography in a small catchment on the Loess Plateau of China publication-title: Land Degradation & Development – volume: 232 start-page: 352 year: 2014 end-page: 362 article-title: Linkages among land use, macronutrient levels, and soil erosion in northern Vietnam: A plot‐scale study publication-title: Geoderma – volume: 391 start-page: 77 year: 2015 end-page: 91 article-title: Changes in nitrogen and phosphorus limitation during secondary succession in a karst region in southwest China publication-title: Plant and Soil – volume: 7 year: 2017 article-title: Soil aggregate mediates the impacts of land uses on organic carbon, total nitrogen, and microbial activity in a karst ecosystem publication-title: Scientific Reports – volume: 69 start-page: 147 year: 2014 end-page: 156 article-title: Differential priming of soil carbon driven by soil depth and root impacts on carbon availability publication-title: Soil Biology & Biochemistry – year: 2003 – volume: 24 start-page: 582 year: 2013 end-page: 590 article-title: Effect of rainfall intensity, slope, land use and antecedent soil moisture on soil erosion in an arid environment publication-title: Land Degradation & Development – volume: 33 start-page: 177 year: 2002 end-page: 184 article-title: Role of karstic dissolution in global carbon cycle publication-title: Global and Planetary Change – start-page: 475 year: 1996 end-page: 490 – volume: 296 start-page: 10 year: 2017 end-page: 17 article-title: Spatial distribution of soil organic carbon and its influencing factors under the condition of ecological construction in a hilly‐gully watershed of the Loess Plateau, China publication-title: Geoderma – volume: 13 start-page: 299 year: 2003 end-page: 313 article-title: Forest ecosystem carbon and nitrogen accumulation during the first century after agricultural abandonment publication-title: Ecological Applications – volume: 164 start-page: 80 year: 2013 end-page: 89 article-title: The knowns, known unknowns and unknowns of sequestration of soil organic carbon publication-title: Agriculture Ecosystems & Environment – volume: 215 start-page: 1099 year: 2014 end-page: 1109 article-title: Rooting characteristics of two widely distributed woody plant species growing in different karst habitats of Southwest China publication-title: Plant Ecology – volume: 1 start-page: 107 year: 2003 end-page: 110 article-title: Physiochemical characteristics of soil in tropical sal (Shorea robusta Gaertn.) forests in eastern Nepal publication-title: Himalayan Journal of Sciences – volume: 362 start-page: 37 year: 2013 end-page: 50 article-title: The importance of limestone bedrock and dissolution karst features on tree root distribution in northern Yucatán, México publication-title: Plant and Soil – volume: 11 year: 2016 article-title: Rock outcrops redistribute organic carbon and nutrients to nearby soil patches in three karst ecosystems in SW China publication-title: PLoS One – start-page: 521: 52 year: 2015 end-page: 521: 58 article-title: Factors controlling accumulation of soil organic carbon along vegetation succession in a typical karst region in Southwest China publication-title: Science of the Total Environment – volume: 16 start-page: 69 year: 2006 end-page: 77 article-title: The impact of land use on soil properties in a karst agricultural region of Southwest China: A case study of Xiaojiang watershed, Yunnan publication-title: Journal of Geographical Sciences – volume: 28 start-page: 151 year: 2017 end-page: 165 article-title: Afforestation drives soil carbon and nitrogen changes in China publication-title: Land Degradation & Development – year: 2006 – volume: 64 start-page: 83 year: 2007 end-page: 99 article-title: Tropical agriculture and global warming: Impacts and mitigation options publication-title: Scientia Agricola – volume: 29 start-page: 883 year: 2015 end-page: 892 article-title: Leaf N: P stoichiometry across plant functional groups in the karst region of southwestern China publication-title: Trees‐Structure and Function – volume: 90 start-page: 105 year: 2016a end-page: 112 article-title: Effect of age and land‐use changes on soil carbon and nitrogen sequestrations following cropland abandonment on the Loess Plateau, China publication-title: Ecological Engineering – volume: 60 start-page: 723 year: 2009 end-page: 739 article-title: Magnitude and sources of uncertainties in soil organic carbon (SOC) stock assessments at various scales publication-title: European Journal of Soil Science – volume: 6 year: 2016 article-title: Soil organic carbon accumulation during post‐agricultural succession in a karst area, Southwest China publication-title: Scientific Reports – volume: 68 start-page: 263 year: 2004 end-page: 271 article-title: Role of vegetation in mitigating soil quality impacted by forest harvesting publication-title: Soil Science Society of America Journal – volume: 485 start-page: 615 year: 2014 end-page: 623 article-title: Natural vegetation restoration is more beneficial to soil surface organic and inorganic carbon sequestration than tree plantation on the Loess Plateau of China publication-title: Science of the Total Environment – volume: 92 start-page: 1086 year: 2012 end-page: 1093 article-title: Soil organic carbon and total nitrogen as affected by land use types in karst and non‐karst areas of northwest Guangxi, China publication-title: Journal of the Science of Food and Agriculture – volume: 4 start-page: 7039 year: 2014 article-title: “Grain for Green” driven land use change and carbon sequestration on the Loess Plateau, China publication-title: Scientific Reports – volume: 8 start-page: 345 year: 2002 end-page: 360 article-title: Soil carbon stocks and land use change: A meta analysis publication-title: Global Change Biology – ident: e_1_2_7_19_1 doi: 10.1111/j.1365-2389.2009.01157.x – volume-title: Multivariate analysis of ecological data using Canoco 5 year: 2003 ident: e_1_2_7_42_1 – ident: e_1_2_7_22_1 doi: 10.1016/j.soilbio.2013.10.047 – ident: e_1_2_7_23_1 doi: 10.1046/j.1354-1013.2002.00486.x – ident: e_1_2_7_29_1 doi: 10.1016/j.scitotenv.2014.03.105 – ident: e_1_2_7_27_1 doi: 10.1007/s11442-006-0107-1 – ident: e_1_2_7_6_1 doi: 10.1007/s11104-015-2735-7 – ident: e_1_2_7_34_1 doi: 10.1016/j.scitotenv.2015.12.022 – ident: e_1_2_7_40_1 doi: 10.5194/bg-8-1193-2011 – ident: e_1_2_7_18_1 doi: 10.1007/s11104-012-1175-x – ident: e_1_2_7_31_1 doi: 10.1007/s11104-014-2114-9 – ident: e_1_2_7_9_1 doi: 10.1002/jsfa.4591 – volume: 7 year: 2017 ident: e_1_2_7_50_1 article-title: Soil aggregate mediates the impacts of land uses on organic carbon, total nitrogen, and microbial activity in a karst ecosystem publication-title: Scientific Reports – ident: e_1_2_7_49_1 doi: 10.1007/s10533-009-9350-8 – volume-title: Soil map of the world 1:5000 000 year: 1974 ident: e_1_2_7_5_1 – ident: e_1_2_7_2_1 doi: 10.1016/j.geoderma.2016.06.017 – ident: e_1_2_7_39_1 doi: 10.1016/j.agee.2014.06.020 – ident: e_1_2_7_44_1 doi: 10.1016/j.agee.2012.10.001 – ident: e_1_2_7_32_1 doi: 10.2136/sssaj2004.2630 – ident: e_1_2_7_36_1 doi: 10.1007/s11258-014-0369-0 – ident: e_1_2_7_28_1 doi: 10.1016/j.earscirev.2014.01.005 – ident: e_1_2_7_53_1 doi: 10.1016/j.geoderma.2017.02.010 – ident: e_1_2_7_30_1 doi: 10.1111/j.1469-8137.2012.04150.x – ident: e_1_2_7_17_1 doi: 10.1007/s11104-016-2951-9 – ident: e_1_2_7_45_1 doi: 10.1111/gcb.13234 – ident: e_1_2_7_25_1 doi: 10.1890/1051-0761(2003)013[0299:FECANA]2.0.CO;2 – ident: e_1_2_7_11_1 doi: 10.1111/gcb.12508 – ident: e_1_2_7_47_1 doi: 10.1371/journal.pone.0160773 – volume-title: Soil sampling and methods of analysis (second edition) year: 2006 ident: e_1_2_7_7_1 – volume: 4 year: 2014 ident: e_1_2_7_43_1 article-title: Chinese grain for green program led to highly increased soil organic carbon levels: A meta‐analysis publication-title: Scientific Reports – ident: e_1_2_7_24_1 doi: 10.2136/sssaj2010.0114 – volume: 1 start-page: 107 year: 2003 ident: e_1_2_7_38_1 article-title: Physiochemical characteristics of soil in tropical sal (Shorea robusta Gaertn.) forests in eastern Nepal publication-title: Himalayan Journal of Sciences doi: 10.3126/hjs.v1i2.207 – ident: e_1_2_7_56_1 doi: 10.1002/ldr.2239 – ident: e_1_2_7_10_1 doi: 10.1111/j.1461-0248.2008.01219.x – ident: e_1_2_7_21_1 doi: 10.1007/s10533-014-0031-x – start-page: 475 volume-title: Methods of soil analysis, Part 3. Chemical methods year: 1996 ident: e_1_2_7_46_1 – ident: e_1_2_7_35_1 doi: 10.1590/0100-67622016000200002 – ident: e_1_2_7_8_1 doi: 10.1590/S0103-90162007000100013 – ident: e_1_2_7_14_1 doi: 10.1016/j.ecoleng.2016.01.086 – ident: e_1_2_7_41_1 doi: 10.1002/2014GB004924 – ident: e_1_2_7_52_1 doi: 10.1007/s11104-015-2406-8 – ident: e_1_2_7_37_1 doi: 10.1007/s00468-015-1170-y – start-page: 521: 52 year: 2015 ident: e_1_2_7_33_1 article-title: Factors controlling accumulation of soil organic carbon along vegetation succession in a typical karst region in Southwest China publication-title: Science of the Total Environment – ident: e_1_2_7_13_1 doi: 10.1038/srep07039 – ident: e_1_2_7_20_1 doi: 10.1016/S0921-8181(02)00069-3 – ident: e_1_2_7_12_1 doi: 10.1002/ldr.2537 – ident: e_1_2_7_48_1 doi: 10.1111/j.1365-2745.2011.01907.x – volume-title: ISO 11272: Soil quality—Determination of dry bulk density year: 1998 ident: e_1_2_7_26_1 – ident: e_1_2_7_55_1 doi: 10.1007/s12665-012-1618-y – ident: e_1_2_7_3_1 doi: 10.1007/s11368-012-0617-7 – ident: e_1_2_7_16_1 doi: 10.1111/j.1365-2486.2010.02336.x – ident: e_1_2_7_4_1 doi: 10.1016/j.geoderma.2014.05.011 – volume: 6 year: 2016 ident: e_1_2_7_51_1 article-title: Soil organic carbon accumulation during post‐agricultural succession in a karst area, Southwest China publication-title: Scientific Reports – ident: e_1_2_7_54_1 doi: 10.1002/ldr.2199 – ident: e_1_2_7_15_1 doi: 10.1016/j.agee.2016.01.048 |
SSID | ssj0001747 |
Score | 2.507212 |
Snippet | To expand the scientific understanding of soil organic carbon (SOC) accumulation in restored ecosystems, we used 246 soil samples from a rocky catchment... To expand the scientific understanding of soil organic carbon (SOC) accumulation in restored ecosystems, we used 246 soil samples from a rocky catchment (10.24... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 387 |
SubjectTerms | Altitude Bulk density Carbon Carbon content carbon sequestration China Climate change Ecological effects Ecological monitoring ecological restoration Ecosystem restoration ecosystems Environmental effects Environmental factors Forage forest plantations Global climate Grasslands Karst karst area karsts land use Natural vegetation Organic carbon Organic soils Plantations rock outcrop ratio secondary forests shrublands Soil density Soil depth soil organic carbon soil sampling Tillage Variation Vegetation Vegetation type watersheds |
Title | Effects of environmental factors on soil organic carbon under natural or managed vegetation restoration |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fldr.2876 https://www.proquest.com/docview/2017726600 https://www.proquest.com/docview/2053883130 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA-ykx78FqdTIoieurXp0nTHIQ4R9SAOBh5KPoc4Wuk2D_71viTtNkVBPLU0L22avNf8XvryewidE2GiWNJuoBjlbrUqSI2MAsqZ0oZI1uvZjcL3D8nNsHs7oqMqqtLuhfH8EIsFN2sZ7nttDZyLaWdJGjpRZRvgvmXbtqFaFg89LpmjAGizOrY-JiyteWdD0qkrfp2JlvByFaS6WWawhZ7r9vngktf2fCba8uMbdeP_XmAbbVbgE_e9tuygNZ3voo3-uKwIOPQeGns64ykuDF7ZBAe1qsw8uMjxtHiZYJ8PSmLJSwHX7Ga0EjueUG4LsY-LVfhdj6uQRly6NDbufB8NB9dPVzdBlYwhkIDwkiDlLJQCvDWVykjHKu5qnXBDCTfMerYCgEyoBVMsMfBNkKEC1zKRStHIKEvidoAaeZHrQ4RJrO1qEwkloB_TI6BGJmKKSoBuVJGkiS7rgclkxVRuE2ZMMs-xTDLousx2XROdLSTfPDvHDzKtemyzyj6nGcAecCsSQHtwi0UxWJb9XcJzXcytDEwGaQyTfBNduIH89RnZHegeHI_-KniM1qEJqQ9ma6HGrJzrE0A3M3Hq9PgT2TP4pQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB58HNSDb7E-VxA9pU02TTbFUxGlautBFDwIIdlHEUsiaevBX-_sbtKqKIinhOxsstmdzXyzmf0G4JimyvN50HQECxKzWuVEintOkDAhFeWs1dIbhXu3Yeehef0YPM7AWbUXxvJDTBbc9Mww32s9wfWCdGPKGjoQRR3xfjgL8zqht_Gn7qbcUQi1WRVd71MWVcyzLm1UNb_aoinA_AxTjZ25XIGnqoU2vOSlPh6ldf7-jbzxn6-wCssl_iRtqzBrMCOzdVhq94uSg0NuQN8yGg9JrsinfXBYq0zOQ_KMDPPnAbEpoTjhSZHiNb0frSCGKjTRhcSGxgryJvtlVCMpTCYbc74JD5cX9-cdp8zH4HAEeaETJczlKTpsIuKe9IXflDJMVEATxbRzmyKWcWXKBAsVfha4K9C7DLkQgaeE5nHbgrksz-Q2EOpLveBEXY4ASLUoapLymAg4ordA0LAGp9XIxLwkK9c5MwaxpVmmMXZdrLuuBkcTyVdL0PGDzF41uHE5RYcxIh_0LEIEfHiLSTFOLv3HJMlkPtYyaA8iH-18DU7MSP76jLiLyofHnb8KHsJC577XjbtXtze7sIjNiWxs2x7MjYqx3EewM0oPjFJ_AFQK_MA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED_8ANEHv8Xp1AiiT93adE26x6EOvxFREHwobT6GOFrpNh_867007aaiID61NEmbJne936WX3wEc0ER7vghajuRBXKxWOaEWnhPEXCpNBW-3zUbh6xt29tC6eAwey6hKsxfG8kOMF9yMZhTfa6Pgr1I3J6ShfZk3EO6zaZhtMTc0En1yN6GOQqTNq-B6n_KwIp51abNq-dUUTfDlZ5RamJnuEjxVHbTRJS-N0TBpiPdv3I3_e4NlWCzRJ-lYcVmBKZWuwkKnl5cMHGoNepbPeEAyTT7tgsNWZWoekqVkkD33iU0IJYiI8wSvmd1oOSmIQmNTSGxgrCRvqlfGNJK8yGNTnK_DQ_f0_vjMKbMxOAIhHnPCmLsiQXdNhsJTvvRbSrFYBzTW3Li2CSIZVyVccqbxoyBcib4lE1IGnpaGxW0DZtIsVZtAqK_MchN1BcIf3aYoR9rjMhCI3QJJWQ2OqomJRElVbjJm9CNLskwjHLrIDF0N9sc1Xy09xw916tXcRqWCDiLEPehXMIR7eItxMaqW-V8SpyobmTpoDUIfrXwNDouJ_PUZ0RXKHh63_lpxD-ZuT7rR1fnN5TbMY29CG9hWh5lhPlI7iHSGyW4h0h-GOvt4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+environmental+factors+on+soil+organic+carbon+under+natural+or+managed+vegetation+restoration&rft.jtitle=Land+degradation+%26+development&rft.au=Hu%2C+Pei%E2%80%90Lei&rft.au=Liu%2C+Shu%E2%80%90Juan&rft.au=Ye%2C+Ying%E2%80%90Ying&rft.au=Zhang%2C+Wei&rft.date=2018-03-01&rft.issn=1085-3278&rft.volume=29&rft.issue=3+p.387-397&rft.spage=387&rft.epage=397&rft_id=info:doi/10.1002%2Fldr.2876&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1085-3278&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1085-3278&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1085-3278&client=summon |