Effects of environmental factors on soil organic carbon under natural or managed vegetation restoration

To expand the scientific understanding of soil organic carbon (SOC) accumulation in restored ecosystems, we used 246 soil samples from a rocky catchment (10.24 km2) in an ecologically fragile karst area of southwest China and measured the effects of environmental factors under different vegetation r...

Full description

Saved in:
Bibliographic Details
Published inLand degradation & development Vol. 29; no. 3; pp. 387 - 397
Main Authors Hu, Pei‐Lei, Liu, Shu‐Juan, Ye, Ying‐Ying, Zhang, Wei, Wang, Ke‐Lin, Su, Yi‐Rong
Format Journal Article
LanguageEnglish
Published Chichester Wiley Subscription Services, Inc 01.03.2018
Subjects
Online AccessGet full text
ISSN1085-3278
1099-145X
DOI10.1002/ldr.2876

Cover

Loading…
Abstract To expand the scientific understanding of soil organic carbon (SOC) accumulation in restored ecosystems, we used 246 soil samples from a rocky catchment (10.24 km2) in an ecologically fragile karst area of southwest China and measured the effects of environmental factors under different vegetation restoration types (managed, including forage grassland and plantation forest, or natural, including grassland, shrubland, and secondary forest) on soil organic carbon content (SOCC) and soil organic carbon density (SOCD). Significantly higher SOCC and SOCD were found in natural vegetation than in managed vegetation and tillage land but no differences in SOCC or SOCD were detected between managed vegetation and tillage land. The environmental factors include rock outcrop ratio (ROR), bulk density, altitude, soil depth, slope gradient, and pH, all showing significant effect on SOC. The proportion of variations in SOCC and SOCD explained by environmental factors was higher in natural vegetation restoration than in managed vegetation restoration, and this proportion increased along the successional gradient. However, the environmental factors driving variations in SOCC and SOCD differed according to vegetation type. Soil bulk density had the strongest effect on SOCC variation in all vegetation types, except for forage grassland, in which the variation was instead controlled by ROR. The variation of SOCD was mainly driven by ROR in most vegetation types, except for tillage land and forage grassland, in which the driving factor was altitude. This results indicated that natural vegetation restoration is more beneficial to SOC sequestration than managed vegetation restoration and thus for mitigating global climate change. Accordingly, future studies should take these different environmental drivers under different vegetation restoration types into consideration when modeling SOC and guiding restoration management.
AbstractList To expand the scientific understanding of soil organic carbon (SOC) accumulation in restored ecosystems, we used 246 soil samples from a rocky catchment (10.24 km²) in an ecologically fragile karst area of southwest China and measured the effects of environmental factors under different vegetation restoration types (managed, including forage grassland and plantation forest, or natural, including grassland, shrubland, and secondary forest) on soil organic carbon content (SOCC) and soil organic carbon density (SOCD). Significantly higher SOCC and SOCD were found in natural vegetation than in managed vegetation and tillage land but no differences in SOCC or SOCD were detected between managed vegetation and tillage land. The environmental factors include rock outcrop ratio (ROR), bulk density, altitude, soil depth, slope gradient, and pH, all showing significant effect on SOC. The proportion of variations in SOCC and SOCD explained by environmental factors was higher in natural vegetation restoration than in managed vegetation restoration, and this proportion increased along the successional gradient. However, the environmental factors driving variations in SOCC and SOCD differed according to vegetation type. Soil bulk density had the strongest effect on SOCC variation in all vegetation types, except for forage grassland, in which the variation was instead controlled by ROR. The variation of SOCD was mainly driven by ROR in most vegetation types, except for tillage land and forage grassland, in which the driving factor was altitude. This results indicated that natural vegetation restoration is more beneficial to SOC sequestration than managed vegetation restoration and thus for mitigating global climate change. Accordingly, future studies should take these different environmental drivers under different vegetation restoration types into consideration when modeling SOC and guiding restoration management.
To expand the scientific understanding of soil organic carbon (SOC) accumulation in restored ecosystems, we used 246 soil samples from a rocky catchment (10.24 km 2 ) in an ecologically fragile karst area of southwest China and measured the effects of environmental factors under different vegetation restoration types (managed, including forage grassland and plantation forest, or natural, including grassland, shrubland, and secondary forest) on soil organic carbon content (SOCC) and soil organic carbon density (SOCD). Significantly higher SOCC and SOCD were found in natural vegetation than in managed vegetation and tillage land but no differences in SOCC or SOCD were detected between managed vegetation and tillage land. The environmental factors include rock outcrop ratio (ROR), bulk density, altitude, soil depth, slope gradient, and pH, all showing significant effect on SOC. The proportion of variations in SOCC and SOCD explained by environmental factors was higher in natural vegetation restoration than in managed vegetation restoration, and this proportion increased along the successional gradient. However, the environmental factors driving variations in SOCC and SOCD differed according to vegetation type. Soil bulk density had the strongest effect on SOCC variation in all vegetation types, except for forage grassland, in which the variation was instead controlled by ROR. The variation of SOCD was mainly driven by ROR in most vegetation types, except for tillage land and forage grassland, in which the driving factor was altitude. This results indicated that natural vegetation restoration is more beneficial to SOC sequestration than managed vegetation restoration and thus for mitigating global climate change. Accordingly, future studies should take these different environmental drivers under different vegetation restoration types into consideration when modeling SOC and guiding restoration management.
To expand the scientific understanding of soil organic carbon (SOC) accumulation in restored ecosystems, we used 246 soil samples from a rocky catchment (10.24 km2) in an ecologically fragile karst area of southwest China and measured the effects of environmental factors under different vegetation restoration types (managed, including forage grassland and plantation forest, or natural, including grassland, shrubland, and secondary forest) on soil organic carbon content (SOCC) and soil organic carbon density (SOCD). Significantly higher SOCC and SOCD were found in natural vegetation than in managed vegetation and tillage land but no differences in SOCC or SOCD were detected between managed vegetation and tillage land. The environmental factors include rock outcrop ratio (ROR), bulk density, altitude, soil depth, slope gradient, and pH, all showing significant effect on SOC. The proportion of variations in SOCC and SOCD explained by environmental factors was higher in natural vegetation restoration than in managed vegetation restoration, and this proportion increased along the successional gradient. However, the environmental factors driving variations in SOCC and SOCD differed according to vegetation type. Soil bulk density had the strongest effect on SOCC variation in all vegetation types, except for forage grassland, in which the variation was instead controlled by ROR. The variation of SOCD was mainly driven by ROR in most vegetation types, except for tillage land and forage grassland, in which the driving factor was altitude. This results indicated that natural vegetation restoration is more beneficial to SOC sequestration than managed vegetation restoration and thus for mitigating global climate change. Accordingly, future studies should take these different environmental drivers under different vegetation restoration types into consideration when modeling SOC and guiding restoration management.
To expand the scientific understanding of soil organic carbon (SOC) accumulation in restored ecosystems, we used 246 soil samples from a rocky catchment (10.24 km2) in an ecologically fragile karst area of southwest China and measured the effects of environmental factors under different vegetation restoration types (managed, including forage grassland and plantation forest, or natural, including grassland, shrubland, and secondary forest) on soil organic carbon content (SOCC) and soil organic carbon density (SOCD). Significantly higher SOCC and SOCD were found in natural vegetation than in managed vegetation and tillage land but no differences in SOCC or SOCD were detected between managed vegetation and tillage land. The environmental factors include rock outcrop ratio (ROR), bulk density, altitude, soil depth, slope gradient, and pH, all showing significant effect on SOC. The proportion of variations in SOCC and SOCD explained by environmental factors was higher in natural vegetation restoration than in managed vegetation restoration, and this proportion increased along the successional gradient. However, the environmental factors driving variations in SOCC and SOCD differed according to vegetation type. Soil bulk density had the strongest effect on SOCC variation in all vegetation types, except for forage grassland, in which the variation was instead controlled by ROR. The variation of SOCD was mainly driven by ROR in most vegetation types, except for tillage land and forage grassland, in which the driving factor was altitude. This results indicated that natural vegetation restoration is more beneficial to SOC sequestration than managed vegetation restoration and thus for mitigating global climate change. Accordingly, future studies should take these different environmental drivers under different vegetation restoration types into consideration when modeling SOC and guiding restoration management.
Author Hu, Pei‐Lei
Ye, Ying‐Ying
Wang, Ke‐Lin
Zhang, Wei
Liu, Shu‐Juan
Su, Yi‐Rong
Author_xml – sequence: 1
  givenname: Pei‐Lei
  surname: Hu
  fullname: Hu, Pei‐Lei
  organization: University of Chinese Academy of Science
– sequence: 2
  givenname: Shu‐Juan
  surname: Liu
  fullname: Liu, Shu‐Juan
  organization: School of Environment and Chemical Engineering, Foshan University
– sequence: 3
  givenname: Ying‐Ying
  surname: Ye
  fullname: Ye, Ying‐Ying
  organization: University of Chinese Academy of Science
– sequence: 4
  givenname: Wei
  orcidid: 0000-0003-4718-6386
  surname: Zhang
  fullname: Zhang, Wei
  email: zhangw@isa.ac.cn
  organization: Huanjiang Observation and Research Station for Karst Ecosystems
– sequence: 5
  givenname: Ke‐Lin
  surname: Wang
  fullname: Wang, Ke‐Lin
  email: kelin@isa.ac.cn
  organization: Huanjiang Observation and Research Station for Karst Ecosystems
– sequence: 6
  givenname: Yi‐Rong
  surname: Su
  fullname: Su, Yi‐Rong
  organization: Huanjiang Observation and Research Station for Karst Ecosystems
BookMark eNp1kFtLAzEQhYNUsK2CPyHgiy9bk-wl6aPUeoGCIAq-LWkyKSnbpCa7lf57s60giD7NMPPNmcMZoYHzDhC6pGRCCWE3jQ4TJnh1goaUTKcZLcr3Qd-LMssZF2doFOOaEEJ5wYdoNTcGVBuxNxjczgbvNuBa2WAjVetDWjgcvW2wDyvprMJKhmWadU5DwE62XZD9Em-kkyvQeAcraGVrExMgJolDf45OjWwiXHzXMXq7n7_OHrPF88PT7HaRqZxVVSYkJ2o5ZYUWikKu8wKgkqZk0nCWDC9FURFYcs0rIwRRRDNKK6V1SY0uqjIfo-uj7jb4jy79rzc2Kmga6cB3sWakzIXIaU4SevULXfsuuOQuUZTz5IeQH0EVfIwBTL0NdiPDvqak7hOvU-J1n3hCJ79QZY9JtEHa5q-D7HjwaRvY_ytcL-5eDvwXPB2Uxg
CitedBy_id crossref_primary_10_3390_f14030539
crossref_primary_10_1111_ejss_70000
crossref_primary_10_1002_ldr_3977
crossref_primary_10_1016_j_agee_2021_107572
crossref_primary_10_3390_f13101606
crossref_primary_10_3390_su162411255
crossref_primary_10_3390_su11061732
crossref_primary_10_1002_ldr_3175
crossref_primary_10_1002_ldr_4385
crossref_primary_10_3390_rs13040566
crossref_primary_10_1016_j_catena_2022_106721
crossref_primary_10_3390_su141912283
crossref_primary_10_3390_agronomy10020290
crossref_primary_10_1016_j_scitotenv_2021_145160
crossref_primary_10_3390_rs14030718
crossref_primary_10_1002_ldr_5223
crossref_primary_10_1002_ldr_4018
crossref_primary_10_1002_ldr_5503
crossref_primary_10_1002_ldr_3204
crossref_primary_10_1007_s42729_025_02372_5
crossref_primary_10_1016_j_foreco_2019_03_037
crossref_primary_10_4236_ojss_2022_129017
crossref_primary_10_1016_j_scitotenv_2021_145298
crossref_primary_10_3390_f15091520
crossref_primary_10_1007_s10980_020_01026_4
crossref_primary_10_1071_SR23198
crossref_primary_10_1016_j_catena_2022_106660
crossref_primary_10_1007_s11356_022_21690_0
crossref_primary_10_1007_s11368_020_02840_8
crossref_primary_10_11922_11_6035_csd_2023_0063_zh
crossref_primary_10_1007_s11368_020_02863_1
crossref_primary_10_1016_j_apsoil_2018_09_003
crossref_primary_10_3390_f11121304
crossref_primary_10_1007_s11707_022_0978_1
crossref_primary_10_1016_j_catena_2021_105415
crossref_primary_10_1016_j_catena_2022_106769
crossref_primary_10_1016_j_watres_2024_121664
crossref_primary_10_1002_jpln_202000312
crossref_primary_10_7717_peerj_14912
crossref_primary_10_1016_j_iswcr_2022_11_004
crossref_primary_10_3389_fenvs_2023_1099942
crossref_primary_10_1016_j_agee_2020_107267
crossref_primary_10_1016_j_scitotenv_2022_159470
crossref_primary_10_1016_j_envpol_2021_118069
crossref_primary_10_1007_s11368_021_02906_1
crossref_primary_10_1016_j_catena_2018_12_040
crossref_primary_10_3390_agriculture10040099
crossref_primary_10_1016_j_still_2023_105847
crossref_primary_10_2139_ssrn_3969609
crossref_primary_10_1016_j_jhydrol_2020_125246
crossref_primary_10_1016_j_ecoleng_2019_05_022
crossref_primary_10_1016_j_catena_2020_104950
crossref_primary_10_3389_fcosc_2022_873659
crossref_primary_10_3390_rs15071847
crossref_primary_10_3390_f14101980
crossref_primary_10_1007_s12665_023_11153_1
crossref_primary_10_3390_d14080638
crossref_primary_10_1016_j_scitotenv_2019_134560
crossref_primary_10_1051_bioconf_202414802024
crossref_primary_10_1177_03091333221083111
crossref_primary_10_3390_ijgi10060366
crossref_primary_10_1016_j_catena_2022_106483
crossref_primary_10_1155_2021_3827991
crossref_primary_10_3390_agriculture13010043
crossref_primary_10_34133_ehs_0031
crossref_primary_10_1016_j_catena_2022_106868
crossref_primary_10_3389_fpls_2022_1062691
crossref_primary_10_1016_j_catena_2020_104849
crossref_primary_10_1007_s10457_024_00976_x
crossref_primary_10_1007_s10661_021_09502_3
crossref_primary_10_1016_j_still_2023_105740
crossref_primary_10_1007_s10980_019_00912_w
crossref_primary_10_3390_f13101701
crossref_primary_10_1002_ldr_3882
crossref_primary_10_1016_j_agee_2021_107418
crossref_primary_10_1016_j_catena_2022_106078
crossref_primary_10_1002_ldr_3487
crossref_primary_10_1016_j_scitotenv_2022_158322
crossref_primary_10_1016_j_soilbio_2022_108600
crossref_primary_10_1002_ldr_4972
crossref_primary_10_1002_ldr_4450
crossref_primary_10_1016_j_apsoil_2024_105387
crossref_primary_10_1016_j_jenvman_2024_122966
crossref_primary_10_3390_d15080900
crossref_primary_10_3390_f14020355
crossref_primary_10_1016_j_ecolind_2022_109224
crossref_primary_10_1007_s11629_022_7753_3
crossref_primary_10_1016_j_ecolind_2022_109624
crossref_primary_10_1080_02626667_2024_2387813
crossref_primary_10_3390_f16010091
crossref_primary_10_1016_j_jenvman_2023_118186
crossref_primary_10_1016_j_still_2019_104544
crossref_primary_10_3390_f14101964
crossref_primary_10_1016_j_ecoleng_2020_105782
crossref_primary_10_1016_j_catena_2024_108328
crossref_primary_10_1016_j_foreco_2019_117817
crossref_primary_10_1016_j_scitotenv_2021_150557
crossref_primary_10_1016_j_geoderma_2019_05_047
crossref_primary_10_1016_j_jhydrol_2023_130578
crossref_primary_10_1016_j_scitotenv_2021_149588
crossref_primary_10_3390_f14020365
crossref_primary_10_1002_ece3_71174
crossref_primary_10_1016_j_catena_2019_104395
crossref_primary_10_3390_agronomy13030897
crossref_primary_10_1016_j_geoderma_2019_06_005
crossref_primary_10_1016_j_ecoleng_2023_106900
crossref_primary_10_3390_agronomy15010001
crossref_primary_10_1016_j_ecoleng_2022_106845
crossref_primary_10_1016_j_heliyon_2024_e31528
crossref_primary_10_1002_imt2_66
crossref_primary_10_1007_s00374_021_01549_1
crossref_primary_10_1016_j_jclepro_2022_135512
crossref_primary_10_1016_j_catena_2024_108278
crossref_primary_10_1177_11786221221114777
crossref_primary_10_1016_j_catena_2021_105984
crossref_primary_10_1016_j_scitotenv_2021_150723
Cites_doi 10.1111/j.1365-2389.2009.01157.x
10.1016/j.soilbio.2013.10.047
10.1046/j.1354-1013.2002.00486.x
10.1016/j.scitotenv.2014.03.105
10.1007/s11442-006-0107-1
10.1007/s11104-015-2735-7
10.1016/j.scitotenv.2015.12.022
10.5194/bg-8-1193-2011
10.1007/s11104-012-1175-x
10.1007/s11104-014-2114-9
10.1002/jsfa.4591
10.1007/s10533-009-9350-8
10.1016/j.geoderma.2016.06.017
10.1016/j.agee.2014.06.020
10.1016/j.agee.2012.10.001
10.2136/sssaj2004.2630
10.1007/s11258-014-0369-0
10.1016/j.earscirev.2014.01.005
10.1016/j.geoderma.2017.02.010
10.1111/j.1469-8137.2012.04150.x
10.1007/s11104-016-2951-9
10.1111/gcb.13234
10.1890/1051-0761(2003)013[0299:FECANA]2.0.CO;2
10.1111/gcb.12508
10.1371/journal.pone.0160773
10.2136/sssaj2010.0114
10.3126/hjs.v1i2.207
10.1002/ldr.2239
10.1111/j.1461-0248.2008.01219.x
10.1007/s10533-014-0031-x
10.1590/0100-67622016000200002
10.1590/S0103-90162007000100013
10.1016/j.ecoleng.2016.01.086
10.1002/2014GB004924
10.1007/s11104-015-2406-8
10.1007/s00468-015-1170-y
10.1038/srep07039
10.1016/S0921-8181(02)00069-3
10.1002/ldr.2537
10.1111/j.1365-2745.2011.01907.x
10.1007/s12665-012-1618-y
10.1007/s11368-012-0617-7
10.1111/j.1365-2486.2010.02336.x
10.1016/j.geoderma.2014.05.011
10.1002/ldr.2199
10.1016/j.agee.2016.01.048
ContentType Journal Article
Copyright Copyright © 2018 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2018 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7ST
8FD
C1K
FR3
KR7
SOI
7S9
L.6
DOI 10.1002/ldr.2876
DatabaseName CrossRef
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Civil Engineering Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Environment Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
CrossRef

Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1099-145X
EndPage 397
ExternalDocumentID 10_1002_ldr_2876
LDR2876
Genre article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: Youth Innovation Team Project of ISA, CAS
  funderid: 2017QNCXTD_ZJ
– fundername: The National Key Research and Development Program of China
  funderid: 2016YFC0502400
– fundername: the National Key Basic Research Program of China
  funderid: 2015CB452703
– fundername: the National Natural Science Foundation of China
  funderid: 31670529
– fundername: Guangxi Natural Science Foundation Program
  funderid: 2017GXNSFAA198028
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABOGM
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AGHSJ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
ECGQY
EDH
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M62
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
UB1
W8V
W99
WBKPD
WIB
WIH
WIK
WOHZO
WQJ
WRC
WUPDE
WXSBR
WYISQ
XG1
XPP
XV2
Y6R
ZZTAW
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7ST
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
KR7
SOI
7S9
L.6
ID FETCH-LOGICAL-c3266-8a70cb924d8c1e3d34ee6af52af72747b8460eb7d76f880c0d2116cdd51fd4653
IEDL.DBID DR2
ISSN 1085-3278
IngestDate Fri Jul 11 18:37:19 EDT 2025
Fri Jul 25 10:39:54 EDT 2025
Tue Jul 01 00:36:43 EDT 2025
Thu Apr 24 23:09:59 EDT 2025
Wed Jan 22 16:29:50 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3266-8a70cb924d8c1e3d34ee6af52af72747b8460eb7d76f880c0d2116cdd51fd4653
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4718-6386
PQID 2017726600
PQPubID 1016359
PageCount 11
ParticipantIDs proquest_miscellaneous_2053883130
proquest_journals_2017726600
crossref_primary_10_1002_ldr_2876
crossref_citationtrail_10_1002_ldr_2876
wiley_primary_10_1002_ldr_2876_LDR2876
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2018
2018-03-00
20180301
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 03
  year: 2018
  text: March 2018
PublicationDecade 2010
PublicationPlace Chichester
PublicationPlace_xml – name: Chichester
PublicationTitle Land degradation & development
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2014; 215
2017; 7
2013; 24
2004; 68
2003; 13
2014; 69
2016; 544
2013; 362
2014; 28
2013; 164
2011; 17
2014; 132
2014; 20
2009; 96
2014; 4
2013; 13
2006; 440
2016; 40
2003; 1
2007; 64
2014; 121
2014; 485
2012; 67
2016a; 90
2012; 100
2017; 28
2009; 60
2006; 16
2016; 409
2002; 33
2002; 8
2011; 75
1998
1996
2006
2016; 403
2003
2017; 296
2016; 281
2014; 232
2014; 197
2011; 8
2016; 11
2012; 195
2012; 92
2016; 6
2015; 26
2015; 391
2015; 29
2016b; 221
1974; 1: Legend
2014; 381
2015
2016; 22
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_19_1
Song X. Z. (e_1_2_7_43_1) 2014; 4
e_1_2_7_17_1
e_1_2_7_15_1
Paudel S. (e_1_2_7_38_1) 2003; 1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_11_1
e_1_2_7_45_1
Xiao S. S. (e_1_2_7_50_1) 2017; 7
e_1_2_7_47_1
e_1_2_7_49_1
e_1_2_7_28_1
Liu S. J. (e_1_2_7_33_1) 2015
Carter M. R. (e_1_2_7_7_1) 2006
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
ISO (e_1_2_7_26_1) 1998
e_1_2_7_23_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
Šmilauer P. (e_1_2_7_42_1) 2003
e_1_2_7_39_1
Yang L. Q. (e_1_2_7_51_1) 2016; 6
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
Thomas G. W. (e_1_2_7_46_1) 1996
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
Anon (e_1_2_7_5_1) 1974
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
References_xml – volume: 20
  start-page: 3544
  year: 2014
  end-page: 3556
  article-title: Land‐use conversion and changing soil carbon stocks in China's ‘grain‐for‐green’ program: A synthesis
  publication-title: Global Change Biology
– volume: 381
  start-page: 225
  year: 2014
  end-page: 234
  article-title: Relation of fine root distribution to soil C in a plantation in subtropical China
  publication-title: Plant and Soil
– volume: 4
  year: 2014
  article-title: Chinese grain for green program led to highly increased soil organic carbon levels: A meta‐analysis
  publication-title: Scientific Reports
– volume: 281
  start-page: 1
  year: 2016
  end-page: 10
  article-title: Environmental factors controlling soil organic carbon storage in loess soils of a subhumid region, Northern Iran
  publication-title: Geoderma
– volume: 40
  start-page: 197
  year: 2016
  end-page: 208
  article-title: Soil organic carbon, carbon stock and their relationships to physical attributes under forest soils in central Amazonia
  publication-title: Revista Arvore
– volume: 440
  start-page: 165
  year: 2006
  end-page: 173
  article-title: Temperature sensitivity of soil carbon decomposition and feedbacks to climate change
  publication-title: Nature
– volume: 8
  start-page: 1193
  year: 2011
  end-page: 1212
  article-title: How accurately can soil organic carbon stocks and stock changes be quantified by soil inventories?
  publication-title: Biogeosciences
– volume: 195
  start-page: 172
  year: 2012
  end-page: 181
  article-title: Global patterns of the dynamics of soil carbon and nitrogen stocks following afforestation: A meta‐analysis
  publication-title: New Phytologist
– volume: 221
  start-page: 235
  year: 2016b
  end-page: 244
  article-title: Soil organic carbon dynamics following natural vegetation restoration: Evidence from stable carbon isotopes (δ C)
  publication-title: Agriculture, Ecosystems & Environment
– volume: 1: Legend
  year: 1974
– volume: 403
  start-page: 7
  year: 2016
  end-page: 20
  article-title: Diversity and plant trait‐soil relationships among rock outcrops in the Brazilian Atlantic rainforest
  publication-title: Plant and Soil
– volume: 67
  start-page: 1743
  year: 2012
  end-page: 1755
  article-title: Modified method for estimating the organic carbon density of discontinuous soils in peak‐karst regions in Southwest China
  publication-title: Environmental Earth Sciences
– volume: 75
  start-page: 216
  year: 2011
  end-page: 225
  article-title: Carbon sources and dynamics in afforested and cultivated corn belt soils
  publication-title: Soil Science Society of America Journal
– volume: 96
  start-page: 149
  year: 2009
  end-page: 162
  article-title: Distribution of soil organic C, N and P in three adjacent land use patterns in the northern Loess Plateau, China
  publication-title: Biogeochemistry
– year: 1998
– volume: 121
  start-page: 329
  year: 2014
  end-page: 338
  article-title: Rocks create nitrogen hotspots and N: P heterogeneity by funnelling rain
  publication-title: Biogeochemistry
– volume: 197
  start-page: 41
  year: 2014
  end-page: 52
  article-title: The relationships between land uses, soil management practices, and soil carbon fractions in south eastern Australia
  publication-title: Agriculture, Ecosystems & Environment
– volume: 100
  start-page: 16
  year: 2012
  end-page: 30
  article-title: Linking vegetation change, carbon sequestration and biodiversity: Insights from island ecosystems in a long‐term natural experiment
  publication-title: Journal of Ecology
– volume: 17
  start-page: 1658
  year: 2011
  end-page: 1670
  article-title: Impact of tropical land‐use change on soil organic carbon stocks—A meta‐analysis
  publication-title: Global Change Biology
– volume: 13
  start-page: 265
  year: 2013
  end-page: 277
  article-title: Land use and climate change impacts on soil organic carbon stocks in semi‐arid Spain
  publication-title: Journal of Soils and Sediments
– volume: 22
  start-page: 2255
  year: 2016
  end-page: 2268
  article-title: Soil carbon and nitrogen stocks in forests along an altitudinal gradient in the eastern Himalayas and a meta‐analysis of global data
  publication-title: Global Change Biology
– volume: 132
  start-page: 1
  year: 2014
  end-page: 12
  article-title: Rocky desertification in Southwest China: Impacts, causes, and restoration
  publication-title: Earth‐Science Reviews
– volume: 544
  start-page: 963
  year: 2016
  end-page: 970
  article-title: Impact of topographic aspect and vegetation (native and reforested areas) on soil organic carbon and nitrogen budgets in Mediterranean natural areas
  publication-title: Science of the Total Environment
– volume: 409
  start-page: 99
  year: 2016
  end-page: 116
  article-title: Stabilization of new carbon inputs rather than old carbon decomposition determines soil organic carbon shifts following woody or herbaceous vegetation transitions
  publication-title: Plant and Soil
– volume: 28
  start-page: 1279
  year: 2014
  end-page: 1294
  article-title: Estimating the soil carbon sequestration potential of China's Grain for Green Project
  publication-title: Global Biogeochemical Cycles
– volume: 26
  start-page: 54
  year: 2015
  end-page: 61
  article-title: Soil quality indicators in relation to land use and topography in a small catchment on the Loess Plateau of China
  publication-title: Land Degradation & Development
– volume: 232
  start-page: 352
  year: 2014
  end-page: 362
  article-title: Linkages among land use, macronutrient levels, and soil erosion in northern Vietnam: A plot‐scale study
  publication-title: Geoderma
– volume: 391
  start-page: 77
  year: 2015
  end-page: 91
  article-title: Changes in nitrogen and phosphorus limitation during secondary succession in a karst region in southwest China
  publication-title: Plant and Soil
– volume: 7
  year: 2017
  article-title: Soil aggregate mediates the impacts of land uses on organic carbon, total nitrogen, and microbial activity in a karst ecosystem
  publication-title: Scientific Reports
– volume: 69
  start-page: 147
  year: 2014
  end-page: 156
  article-title: Differential priming of soil carbon driven by soil depth and root impacts on carbon availability
  publication-title: Soil Biology & Biochemistry
– year: 2003
– volume: 24
  start-page: 582
  year: 2013
  end-page: 590
  article-title: Effect of rainfall intensity, slope, land use and antecedent soil moisture on soil erosion in an arid environment
  publication-title: Land Degradation & Development
– volume: 33
  start-page: 177
  year: 2002
  end-page: 184
  article-title: Role of karstic dissolution in global carbon cycle
  publication-title: Global and Planetary Change
– start-page: 475
  year: 1996
  end-page: 490
– volume: 296
  start-page: 10
  year: 2017
  end-page: 17
  article-title: Spatial distribution of soil organic carbon and its influencing factors under the condition of ecological construction in a hilly‐gully watershed of the Loess Plateau, China
  publication-title: Geoderma
– volume: 13
  start-page: 299
  year: 2003
  end-page: 313
  article-title: Forest ecosystem carbon and nitrogen accumulation during the first century after agricultural abandonment
  publication-title: Ecological Applications
– volume: 164
  start-page: 80
  year: 2013
  end-page: 89
  article-title: The knowns, known unknowns and unknowns of sequestration of soil organic carbon
  publication-title: Agriculture Ecosystems & Environment
– volume: 215
  start-page: 1099
  year: 2014
  end-page: 1109
  article-title: Rooting characteristics of two widely distributed woody plant species growing in different karst habitats of Southwest China
  publication-title: Plant Ecology
– volume: 1
  start-page: 107
  year: 2003
  end-page: 110
  article-title: Physiochemical characteristics of soil in tropical sal (Shorea robusta Gaertn.) forests in eastern Nepal
  publication-title: Himalayan Journal of Sciences
– volume: 362
  start-page: 37
  year: 2013
  end-page: 50
  article-title: The importance of limestone bedrock and dissolution karst features on tree root distribution in northern Yucatán, México
  publication-title: Plant and Soil
– volume: 11
  year: 2016
  article-title: Rock outcrops redistribute organic carbon and nutrients to nearby soil patches in three karst ecosystems in SW China
  publication-title: PLoS One
– start-page: 521: 52
  year: 2015
  end-page: 521: 58
  article-title: Factors controlling accumulation of soil organic carbon along vegetation succession in a typical karst region in Southwest China
  publication-title: Science of the Total Environment
– volume: 16
  start-page: 69
  year: 2006
  end-page: 77
  article-title: The impact of land use on soil properties in a karst agricultural region of Southwest China: A case study of Xiaojiang watershed, Yunnan
  publication-title: Journal of Geographical Sciences
– volume: 28
  start-page: 151
  year: 2017
  end-page: 165
  article-title: Afforestation drives soil carbon and nitrogen changes in China
  publication-title: Land Degradation & Development
– year: 2006
– volume: 64
  start-page: 83
  year: 2007
  end-page: 99
  article-title: Tropical agriculture and global warming: Impacts and mitigation options
  publication-title: Scientia Agricola
– volume: 29
  start-page: 883
  year: 2015
  end-page: 892
  article-title: Leaf N: P stoichiometry across plant functional groups in the karst region of southwestern China
  publication-title: Trees‐Structure and Function
– volume: 90
  start-page: 105
  year: 2016a
  end-page: 112
  article-title: Effect of age and land‐use changes on soil carbon and nitrogen sequestrations following cropland abandonment on the Loess Plateau, China
  publication-title: Ecological Engineering
– volume: 60
  start-page: 723
  year: 2009
  end-page: 739
  article-title: Magnitude and sources of uncertainties in soil organic carbon (SOC) stock assessments at various scales
  publication-title: European Journal of Soil Science
– volume: 6
  year: 2016
  article-title: Soil organic carbon accumulation during post‐agricultural succession in a karst area, Southwest China
  publication-title: Scientific Reports
– volume: 68
  start-page: 263
  year: 2004
  end-page: 271
  article-title: Role of vegetation in mitigating soil quality impacted by forest harvesting
  publication-title: Soil Science Society of America Journal
– volume: 485
  start-page: 615
  year: 2014
  end-page: 623
  article-title: Natural vegetation restoration is more beneficial to soil surface organic and inorganic carbon sequestration than tree plantation on the Loess Plateau of China
  publication-title: Science of the Total Environment
– volume: 92
  start-page: 1086
  year: 2012
  end-page: 1093
  article-title: Soil organic carbon and total nitrogen as affected by land use types in karst and non‐karst areas of northwest Guangxi, China
  publication-title: Journal of the Science of Food and Agriculture
– volume: 4
  start-page: 7039
  year: 2014
  article-title: “Grain for Green” driven land use change and carbon sequestration on the Loess Plateau, China
  publication-title: Scientific Reports
– volume: 8
  start-page: 345
  year: 2002
  end-page: 360
  article-title: Soil carbon stocks and land use change: A meta analysis
  publication-title: Global Change Biology
– ident: e_1_2_7_19_1
  doi: 10.1111/j.1365-2389.2009.01157.x
– volume-title: Multivariate analysis of ecological data using Canoco 5
  year: 2003
  ident: e_1_2_7_42_1
– ident: e_1_2_7_22_1
  doi: 10.1016/j.soilbio.2013.10.047
– ident: e_1_2_7_23_1
  doi: 10.1046/j.1354-1013.2002.00486.x
– ident: e_1_2_7_29_1
  doi: 10.1016/j.scitotenv.2014.03.105
– ident: e_1_2_7_27_1
  doi: 10.1007/s11442-006-0107-1
– ident: e_1_2_7_6_1
  doi: 10.1007/s11104-015-2735-7
– ident: e_1_2_7_34_1
  doi: 10.1016/j.scitotenv.2015.12.022
– ident: e_1_2_7_40_1
  doi: 10.5194/bg-8-1193-2011
– ident: e_1_2_7_18_1
  doi: 10.1007/s11104-012-1175-x
– ident: e_1_2_7_31_1
  doi: 10.1007/s11104-014-2114-9
– ident: e_1_2_7_9_1
  doi: 10.1002/jsfa.4591
– volume: 7
  year: 2017
  ident: e_1_2_7_50_1
  article-title: Soil aggregate mediates the impacts of land uses on organic carbon, total nitrogen, and microbial activity in a karst ecosystem
  publication-title: Scientific Reports
– ident: e_1_2_7_49_1
  doi: 10.1007/s10533-009-9350-8
– volume-title: Soil map of the world 1:5000 000
  year: 1974
  ident: e_1_2_7_5_1
– ident: e_1_2_7_2_1
  doi: 10.1016/j.geoderma.2016.06.017
– ident: e_1_2_7_39_1
  doi: 10.1016/j.agee.2014.06.020
– ident: e_1_2_7_44_1
  doi: 10.1016/j.agee.2012.10.001
– ident: e_1_2_7_32_1
  doi: 10.2136/sssaj2004.2630
– ident: e_1_2_7_36_1
  doi: 10.1007/s11258-014-0369-0
– ident: e_1_2_7_28_1
  doi: 10.1016/j.earscirev.2014.01.005
– ident: e_1_2_7_53_1
  doi: 10.1016/j.geoderma.2017.02.010
– ident: e_1_2_7_30_1
  doi: 10.1111/j.1469-8137.2012.04150.x
– ident: e_1_2_7_17_1
  doi: 10.1007/s11104-016-2951-9
– ident: e_1_2_7_45_1
  doi: 10.1111/gcb.13234
– ident: e_1_2_7_25_1
  doi: 10.1890/1051-0761(2003)013[0299:FECANA]2.0.CO;2
– ident: e_1_2_7_11_1
  doi: 10.1111/gcb.12508
– ident: e_1_2_7_47_1
  doi: 10.1371/journal.pone.0160773
– volume-title: Soil sampling and methods of analysis (second edition)
  year: 2006
  ident: e_1_2_7_7_1
– volume: 4
  year: 2014
  ident: e_1_2_7_43_1
  article-title: Chinese grain for green program led to highly increased soil organic carbon levels: A meta‐analysis
  publication-title: Scientific Reports
– ident: e_1_2_7_24_1
  doi: 10.2136/sssaj2010.0114
– volume: 1
  start-page: 107
  year: 2003
  ident: e_1_2_7_38_1
  article-title: Physiochemical characteristics of soil in tropical sal (Shorea robusta Gaertn.) forests in eastern Nepal
  publication-title: Himalayan Journal of Sciences
  doi: 10.3126/hjs.v1i2.207
– ident: e_1_2_7_56_1
  doi: 10.1002/ldr.2239
– ident: e_1_2_7_10_1
  doi: 10.1111/j.1461-0248.2008.01219.x
– ident: e_1_2_7_21_1
  doi: 10.1007/s10533-014-0031-x
– start-page: 475
  volume-title: Methods of soil analysis, Part 3. Chemical methods
  year: 1996
  ident: e_1_2_7_46_1
– ident: e_1_2_7_35_1
  doi: 10.1590/0100-67622016000200002
– ident: e_1_2_7_8_1
  doi: 10.1590/S0103-90162007000100013
– ident: e_1_2_7_14_1
  doi: 10.1016/j.ecoleng.2016.01.086
– ident: e_1_2_7_41_1
  doi: 10.1002/2014GB004924
– ident: e_1_2_7_52_1
  doi: 10.1007/s11104-015-2406-8
– ident: e_1_2_7_37_1
  doi: 10.1007/s00468-015-1170-y
– start-page: 521: 52
  year: 2015
  ident: e_1_2_7_33_1
  article-title: Factors controlling accumulation of soil organic carbon along vegetation succession in a typical karst region in Southwest China
  publication-title: Science of the Total Environment
– ident: e_1_2_7_13_1
  doi: 10.1038/srep07039
– ident: e_1_2_7_20_1
  doi: 10.1016/S0921-8181(02)00069-3
– ident: e_1_2_7_12_1
  doi: 10.1002/ldr.2537
– ident: e_1_2_7_48_1
  doi: 10.1111/j.1365-2745.2011.01907.x
– volume-title: ISO 11272: Soil quality—Determination of dry bulk density
  year: 1998
  ident: e_1_2_7_26_1
– ident: e_1_2_7_55_1
  doi: 10.1007/s12665-012-1618-y
– ident: e_1_2_7_3_1
  doi: 10.1007/s11368-012-0617-7
– ident: e_1_2_7_16_1
  doi: 10.1111/j.1365-2486.2010.02336.x
– ident: e_1_2_7_4_1
  doi: 10.1016/j.geoderma.2014.05.011
– volume: 6
  year: 2016
  ident: e_1_2_7_51_1
  article-title: Soil organic carbon accumulation during post‐agricultural succession in a karst area, Southwest China
  publication-title: Scientific Reports
– ident: e_1_2_7_54_1
  doi: 10.1002/ldr.2199
– ident: e_1_2_7_15_1
  doi: 10.1016/j.agee.2016.01.048
SSID ssj0001747
Score 2.507212
Snippet To expand the scientific understanding of soil organic carbon (SOC) accumulation in restored ecosystems, we used 246 soil samples from a rocky catchment...
To expand the scientific understanding of soil organic carbon (SOC) accumulation in restored ecosystems, we used 246 soil samples from a rocky catchment (10.24...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 387
SubjectTerms Altitude
Bulk density
Carbon
Carbon content
carbon sequestration
China
Climate change
Ecological effects
Ecological monitoring
ecological restoration
Ecosystem restoration
ecosystems
Environmental effects
Environmental factors
Forage
forest plantations
Global climate
Grasslands
Karst
karst area
karsts
land use
Natural vegetation
Organic carbon
Organic soils
Plantations
rock outcrop ratio
secondary forests
shrublands
Soil density
Soil depth
soil organic carbon
soil sampling
Tillage
Variation
Vegetation
Vegetation type
watersheds
Title Effects of environmental factors on soil organic carbon under natural or managed vegetation restoration
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fldr.2876
https://www.proquest.com/docview/2017726600
https://www.proquest.com/docview/2053883130
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA-ykx78FqdTIoieurXp0nTHIQ4R9SAOBh5KPoc4Wuk2D_71viTtNkVBPLU0L22avNf8XvryewidE2GiWNJuoBjlbrUqSI2MAsqZ0oZI1uvZjcL3D8nNsHs7oqMqqtLuhfH8EIsFN2sZ7nttDZyLaWdJGjpRZRvgvmXbtqFaFg89LpmjAGizOrY-JiyteWdD0qkrfp2JlvByFaS6WWawhZ7r9vngktf2fCba8uMbdeP_XmAbbVbgE_e9tuygNZ3voo3-uKwIOPQeGns64ykuDF7ZBAe1qsw8uMjxtHiZYJ8PSmLJSwHX7Ga0EjueUG4LsY-LVfhdj6uQRly6NDbufB8NB9dPVzdBlYwhkIDwkiDlLJQCvDWVykjHKu5qnXBDCTfMerYCgEyoBVMsMfBNkKEC1zKRStHIKEvidoAaeZHrQ4RJrO1qEwkloB_TI6BGJmKKSoBuVJGkiS7rgclkxVRuE2ZMMs-xTDLousx2XROdLSTfPDvHDzKtemyzyj6nGcAecCsSQHtwi0UxWJb9XcJzXcytDEwGaQyTfBNduIH89RnZHegeHI_-KniM1qEJqQ9ma6HGrJzrE0A3M3Hq9PgT2TP4pQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB58HNSDb7E-VxA9pU02TTbFUxGlautBFDwIIdlHEUsiaevBX-_sbtKqKIinhOxsstmdzXyzmf0G4JimyvN50HQECxKzWuVEintOkDAhFeWs1dIbhXu3Yeehef0YPM7AWbUXxvJDTBbc9Mww32s9wfWCdGPKGjoQRR3xfjgL8zqht_Gn7qbcUQi1WRVd71MWVcyzLm1UNb_aoinA_AxTjZ25XIGnqoU2vOSlPh6ldf7-jbzxn6-wCssl_iRtqzBrMCOzdVhq94uSg0NuQN8yGg9JrsinfXBYq0zOQ_KMDPPnAbEpoTjhSZHiNb0frSCGKjTRhcSGxgryJvtlVCMpTCYbc74JD5cX9-cdp8zH4HAEeaETJczlKTpsIuKe9IXflDJMVEATxbRzmyKWcWXKBAsVfha4K9C7DLkQgaeE5nHbgrksz-Q2EOpLveBEXY4ASLUoapLymAg4ordA0LAGp9XIxLwkK9c5MwaxpVmmMXZdrLuuBkcTyVdL0PGDzF41uHE5RYcxIh_0LEIEfHiLSTFOLv3HJMlkPtYyaA8iH-18DU7MSP76jLiLyofHnb8KHsJC577XjbtXtze7sIjNiWxs2x7MjYqx3EewM0oPjFJ_AFQK_MA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED_8ANEHv8Xp1AiiT93adE26x6EOvxFREHwobT6GOFrpNh_867007aaiID61NEmbJne936WX3wEc0ER7vghajuRBXKxWOaEWnhPEXCpNBW-3zUbh6xt29tC6eAwey6hKsxfG8kOMF9yMZhTfa6Pgr1I3J6ShfZk3EO6zaZhtMTc0En1yN6GOQqTNq-B6n_KwIp51abNq-dUUTfDlZ5RamJnuEjxVHbTRJS-N0TBpiPdv3I3_e4NlWCzRJ-lYcVmBKZWuwkKnl5cMHGoNepbPeEAyTT7tgsNWZWoekqVkkD33iU0IJYiI8wSvmd1oOSmIQmNTSGxgrCRvqlfGNJK8yGNTnK_DQ_f0_vjMKbMxOAIhHnPCmLsiQXdNhsJTvvRbSrFYBzTW3Li2CSIZVyVccqbxoyBcib4lE1IGnpaGxW0DZtIsVZtAqK_MchN1BcIf3aYoR9rjMhCI3QJJWQ2OqomJRElVbjJm9CNLskwjHLrIDF0N9sc1Xy09xw916tXcRqWCDiLEPehXMIR7eItxMaqW-V8SpyobmTpoDUIfrXwNDouJ_PUZ0RXKHh63_lpxD-ZuT7rR1fnN5TbMY29CG9hWh5lhPlI7iHSGyW4h0h-GOvt4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+environmental+factors+on+soil+organic+carbon+under+natural+or+managed+vegetation+restoration&rft.jtitle=Land+degradation+%26+development&rft.au=Hu%2C+Pei%E2%80%90Lei&rft.au=Liu%2C+Shu%E2%80%90Juan&rft.au=Ye%2C+Ying%E2%80%90Ying&rft.au=Zhang%2C+Wei&rft.date=2018-03-01&rft.issn=1085-3278&rft.volume=29&rft.issue=3+p.387-397&rft.spage=387&rft.epage=397&rft_id=info:doi/10.1002%2Fldr.2876&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1085-3278&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1085-3278&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1085-3278&client=summon