Localizing gradient damage model with decreasing interactions

Summary Nonlocal integral and/or gradient enhancements are widely used to resolve the mesh dependency issue with standard continuum damage models. However, it is reported that whereas the structural response is mesh independent, a spurious damage growth is observed. Accordingly, a class of modified...

Full description

Saved in:
Bibliographic Details
Published inInternational journal for numerical methods in engineering Vol. 110; no. 6; pp. 503 - 522
Main Authors Poh, Leong Hien, Sun, Gang
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 11.05.2017
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary Nonlocal integral and/or gradient enhancements are widely used to resolve the mesh dependency issue with standard continuum damage models. However, it is reported that whereas the structural response is mesh independent, a spurious damage growth is observed. Accordingly, a class of modified nonlocal enhancements is developed in literature, where the interaction domain increases with damage. In this contribution, we adopt a contrary view that the interaction domain decreases with damage. This is motivated by the fact that the fracture of quasi‐brittle materials typically starts as a diffuse network of microcracks, before localizing into a macroscopic crack. To ensure thermodynamics consistency, the micromorphic theory is adopted in the model development. The ensuing microforce balance resembles closely the Helmholtz expression in a conventional gradient damage model. The superior performance of the localizing gradient damage model is demonstrated through a one‐dimensional problem, as well as mode I and II failure in plane deformation. For all three cases, a localized deformation band at material failure is obtained. Copyright © 2016 John Wiley & Sons, Ltd.
AbstractList Nonlocal integral and/or gradient enhancements are widely used to resolve the mesh dependency issue with standard continuum damage models. However, it is reported that whereas the structural response is mesh independent, a spurious damage growth is observed. Accordingly, a class of modified nonlocal enhancements is developed in literature, where the interaction domain increases with damage. In this contribution, we adopt a contrary view that the interaction domain decreases with damage. This is motivated by the fact that the fracture of quasi‐brittle materials typically starts as a diffuse network of microcracks, before localizing into a macroscopic crack. To ensure thermodynamics consistency, the micromorphic theory is adopted in the model development. The ensuing microforce balance resembles closely the Helmholtz expression in a conventional gradient damage model. The superior performance of the localizing gradient damage model is demonstrated through a one‐dimensional problem, as well as mode I and II failure in plane deformation. For all three cases, a localized deformation band at material failure is obtained. Copyright © 2016 John Wiley & Sons, Ltd.
Summary Nonlocal integral and/or gradient enhancements are widely used to resolve the mesh dependency issue with standard continuum damage models. However, it is reported that whereas the structural response is mesh independent, a spurious damage growth is observed. Accordingly, a class of modified nonlocal enhancements is developed in literature, where the interaction domain increases with damage. In this contribution, we adopt a contrary view that the interaction domain decreases with damage. This is motivated by the fact that the fracture of quasi-brittle materials typically starts as a diffuse network of microcracks, before localizing into a macroscopic crack. To ensure thermodynamics consistency, the micromorphic theory is adopted in the model development. The ensuing microforce balance resembles closely the Helmholtz expression in a conventional gradient damage model. The superior performance of the localizing gradient damage model is demonstrated through a one-dimensional problem, as well as mode I and II failure in plane deformation. For all three cases, a localized deformation band at material failure is obtained. Copyright © 2016 John Wiley & Sons, Ltd.
Summary Nonlocal integral and/or gradient enhancements are widely used to resolve the mesh dependency issue with standard continuum damage models. However, it is reported that whereas the structural response is mesh independent, a spurious damage growth is observed. Accordingly, a class of modified nonlocal enhancements is developed in literature, where the interaction domain increases with damage. In this contribution, we adopt a contrary view that the interaction domain decreases with damage. This is motivated by the fact that the fracture of quasi‐brittle materials typically starts as a diffuse network of microcracks, before localizing into a macroscopic crack. To ensure thermodynamics consistency, the micromorphic theory is adopted in the model development. The ensuing microforce balance resembles closely the Helmholtz expression in a conventional gradient damage model. The superior performance of the localizing gradient damage model is demonstrated through a one‐dimensional problem, as well as mode I and II failure in plane deformation. For all three cases, a localized deformation band at material failure is obtained. Copyright © 2016 John Wiley & Sons, Ltd.
Nonlocal integral and/or gradient enhancements are widely used to resolve the mesh dependency issue with standard continuum damage models. However, it is reported that whereas the structural response is mesh independent, a spurious damage growth is observed. Accordingly, a class of modified nonlocal enhancements is developed in literature, where the interaction domain increases with damage. In this contribution, we adopt a contrary view that the interaction domain decreases with damage. This is motivated by the fact that the fracture of quasi-brittle materials typically starts as a diffuse network of microcracks, before localizing into a macroscopic crack. To ensure thermodynamics consistency, the micromorphic theory is adopted in the model development. The ensuing microforce balance resembles closely the Helmholtz expression in a conventional gradient damage model. The superior performance of the localizing gradient damage model is demonstrated through a one-dimensional problem, as well as mode I and II failure in plane deformation. For all three cases, a localized deformation band at material failure is obtained.
Author Poh, Leong Hien
Sun, Gang
Author_xml – sequence: 1
  givenname: Leong Hien
  orcidid: 0000-0002-7670-937X
  surname: Poh
  fullname: Poh, Leong Hien
  email: leonghien@nus.edu.sg
  organization: National University of Singapore
– sequence: 2
  givenname: Gang
  surname: Sun
  fullname: Sun, Gang
  organization: National University of Singapore
BookMark eNp1kE1Lw0AQhhepYFsFf0LAi5fU2ewm2Rw8SPELql70vEw307ol2dTdlFJ_vYkVhKKnOczzPsy8IzZwjSPGzjlMOEBy5WqapCKTR2zIochjSCAfsGG3KuK0UPyEjUJYAXCeghiy61ljsLKf1i2jpcfSkmujEmtcUlQ3JVXR1rbvUUnGE4aesq4lj6a1jQun7HiBVaCznzlmb3e3r9OHePZy_zi9mcVGJJmMESWfG5MU8wwVX4gSTCF4BokRJZpFmsh5prJCAShuMFdpSoLIqFxBCSpDMWaXe-_aNx8bCq2ubTBUVeio2QTNC5AJl1KKDr04QFfNxrvuOs2VykQuCyV_hcY3IXha6LW3Nfqd5qD7HnXXo-577NDJAWpsi_37rUdb_RWI94GtrWj3r1g_P91-818hv4RE
CODEN IJNMBH
CitedBy_id crossref_primary_10_1007_s00466_023_02313_y
crossref_primary_10_1002_nme_6947
crossref_primary_10_1016_j_ijnonlinmec_2024_104755
crossref_primary_10_1016_j_cma_2024_117100
crossref_primary_10_1177_00219983221114012
crossref_primary_10_1007_s00366_022_01670_1
crossref_primary_10_1016_j_compstruct_2022_115948
crossref_primary_10_1007_s40948_022_00460_9
crossref_primary_10_1016_j_cma_2017_12_027
crossref_primary_10_1016_j_prostr_2024_06_018
crossref_primary_10_1016_j_euromechsol_2025_105643
crossref_primary_10_1016_j_ijsolstr_2021_111380
crossref_primary_10_1016_j_cma_2017_09_019
crossref_primary_10_1016_j_jobe_2022_104808
crossref_primary_10_1016_j_cma_2021_113893
crossref_primary_10_1007_s00466_020_01908_z
crossref_primary_10_1016_j_cma_2019_112704
crossref_primary_10_1016_j_cma_2022_115559
crossref_primary_10_1016_j_engfracmech_2021_107716
crossref_primary_10_1002_nme_6397
crossref_primary_10_1016_j_cma_2024_117456
crossref_primary_10_1016_j_engfracmech_2022_108631
crossref_primary_10_1007_s00466_024_02473_5
crossref_primary_10_1016_j_ijsolstr_2019_05_022
crossref_primary_10_1177_10567895211028649
crossref_primary_10_1016_j_jmps_2021_104606
crossref_primary_10_1016_j_cma_2022_115036
crossref_primary_10_1360_SST_2021_0326
crossref_primary_10_1016_j_ijsolstr_2017_04_039
crossref_primary_10_1016_j_engfracmech_2023_109340
crossref_primary_10_1016_j_jmps_2020_103975
crossref_primary_10_1016_j_compstruct_2022_115677
crossref_primary_10_1016_j_istruc_2020_10_042
crossref_primary_10_1016_j_euromechsol_2023_105016
crossref_primary_10_1016_j_cma_2020_113247
crossref_primary_10_1016_j_cma_2021_113821
crossref_primary_10_1016_j_ijsolstr_2021_03_014
crossref_primary_10_1016_j_compositesa_2024_108093
crossref_primary_10_1016_j_ijmecsci_2024_109370
crossref_primary_10_1016_j_probengmech_2023_103529
crossref_primary_10_1016_j_engfracmech_2021_107847
crossref_primary_10_1016_j_cma_2020_113648
crossref_primary_10_1016_j_compgeo_2023_105765
crossref_primary_10_1016_j_ijplas_2023_103829
crossref_primary_10_1016_j_compstruct_2024_118281
crossref_primary_10_1177_10567895211013081
crossref_primary_10_1016_j_cma_2023_116275
crossref_primary_10_1016_j_finel_2019_04_001
crossref_primary_10_1016_j_cma_2017_06_016
crossref_primary_10_1002_pamm_202300133
crossref_primary_10_1016_j_engfracmech_2022_109032
crossref_primary_10_1016_j_engfracmech_2023_109670
crossref_primary_10_1061_JENMDT_EMENG_7246
crossref_primary_10_1063_5_0207063
crossref_primary_10_1007_s00466_018_1591_8
crossref_primary_10_1016_j_ijplas_2021_103061
crossref_primary_10_1016_j_cma_2019_06_029
crossref_primary_10_1016_j_engfracmech_2018_11_021
crossref_primary_10_1016_j_ijsolstr_2023_112493
crossref_primary_10_1177_10567895211000089
crossref_primary_10_1016_j_cma_2021_114048
crossref_primary_10_1016_j_engfracmech_2021_107976
crossref_primary_10_1016_j_cma_2021_114205
crossref_primary_10_3389_fmats_2021_701458
crossref_primary_10_1186_s40323_018_0100_0
crossref_primary_10_1007_s00419_021_01889_2
crossref_primary_10_1016_j_cma_2018_08_018
crossref_primary_10_1177_10812865221085198
crossref_primary_10_1016_j_cmpb_2022_106820
crossref_primary_10_1016_j_mechmat_2019_103282
crossref_primary_10_1016_j_engfracmech_2019_106790
crossref_primary_10_1016_j_tafmec_2021_103190
crossref_primary_10_1016_j_apm_2024_04_053
crossref_primary_10_1016_j_tafmec_2023_104084
crossref_primary_10_1016_j_jmps_2019_03_022
crossref_primary_10_1016_j_tafmec_2019_02_002
crossref_primary_10_1002_nme_7652
crossref_primary_10_1002_nme_6323
crossref_primary_10_1016_j_cma_2020_112934
crossref_primary_10_1016_j_conbuildmat_2023_132050
crossref_primary_10_1016_j_compstruct_2020_112914
crossref_primary_10_1016_j_engfracmech_2023_109656
crossref_primary_10_1016_j_compstruct_2025_118981
crossref_primary_10_1007_s11831_021_09611_9
crossref_primary_10_1016_j_cma_2021_114154
crossref_primary_10_1177_10567895211068174
crossref_primary_10_1016_j_tafmec_2022_103283
crossref_primary_10_1061__ASCE_EM_1943_7889_0001608
crossref_primary_10_1016_j_jmps_2025_106026
crossref_primary_10_1016_j_ijplas_2019_11_010
crossref_primary_10_1016_j_engfracmech_2023_109093
crossref_primary_10_1016_j_engfracmech_2024_110368
crossref_primary_10_1016_j_ijmecsci_2022_107807
crossref_primary_10_1016_j_mechmat_2019_02_017
crossref_primary_10_1007_s10891_022_02632_6
crossref_primary_10_1016_j_jmps_2018_04_007
crossref_primary_10_1002_nme_6074
crossref_primary_10_1002_nme_6070
crossref_primary_10_1007_s11831_021_09604_8
crossref_primary_10_1016_j_engfracmech_2020_107511
crossref_primary_10_3390_ma15051875
crossref_primary_10_1016_j_engfracmech_2019_04_011
crossref_primary_10_1016_j_engfracmech_2022_108843
crossref_primary_10_1016_j_cma_2024_117416
crossref_primary_10_1016_j_prostr_2021_12_043
crossref_primary_10_1016_j_cma_2019_112629
crossref_primary_10_1016_j_engfracmech_2018_12_013
crossref_primary_10_1016_j_euromechsol_2019_04_003
crossref_primary_10_1016_j_finel_2024_104151
crossref_primary_10_1016_j_engfracmech_2022_108552
crossref_primary_10_1016_j_ijmecsci_2024_109207
crossref_primary_10_1016_j_finel_2023_104019
crossref_primary_10_1016_j_euromechsol_2025_105611
crossref_primary_10_1016_j_ijmecsci_2023_108907
crossref_primary_10_1016_j_finel_2024_104279
crossref_primary_10_1016_j_ijsolstr_2019_02_009
crossref_primary_10_1016_j_cma_2019_06_013
crossref_primary_10_1016_j_ijplas_2024_104042
crossref_primary_10_1007_s00466_024_02540_x
crossref_primary_10_1016_j_cma_2021_114434
crossref_primary_10_1007_s11440_023_01873_w
crossref_primary_10_1016_j_engfracmech_2023_109708
crossref_primary_10_1016_j_enganabound_2023_10_004
crossref_primary_10_1016_j_ijimpeng_2024_105209
crossref_primary_10_1007_s00466_020_01939_6
crossref_primary_10_1016_j_advengsoft_2025_103863
crossref_primary_10_1002_nme_6926
crossref_primary_10_1016_j_finel_2023_104084
crossref_primary_10_1002_zamm_202100434
crossref_primary_10_1016_j_istruc_2020_12_063
crossref_primary_10_32604_cmes_2021_014142
crossref_primary_10_1007_s10704_019_00412_7
crossref_primary_10_1016_j_engfracmech_2024_110666
crossref_primary_10_1177_1056789521998728
crossref_primary_10_1177_1081286519884695
crossref_primary_10_1142_S2424913022410077
crossref_primary_10_1080_15376494_2022_2154874
crossref_primary_10_1007_s11012_017_0695_0
crossref_primary_10_1016_j_jmps_2020_103891
crossref_primary_10_1177_10567895221109622
crossref_primary_10_1007_s00466_023_02439_z
crossref_primary_10_1177_10567895211063227
crossref_primary_10_1016_j_cma_2019_112802
crossref_primary_10_1016_j_engfracmech_2022_108667
crossref_primary_10_1016_j_ijmecsci_2021_106410
crossref_primary_10_1108_EC_08_2020_0455
crossref_primary_10_1007_s00366_024_02041_8
crossref_primary_10_1016_j_cemconcomp_2023_105270
crossref_primary_10_1177_1056789520983872
crossref_primary_10_1016_j_cma_2024_117599
crossref_primary_10_1016_j_cma_2024_117514
crossref_primary_10_1016_j_ijimpeng_2024_105028
crossref_primary_10_1016_j_mechmat_2020_103713
crossref_primary_10_1016_j_ijfatigue_2020_105863
crossref_primary_10_1007_s10704_019_00409_2
crossref_primary_10_1016_j_ijsolstr_2022_111841
crossref_primary_10_1016_j_compgeo_2024_106891
crossref_primary_10_3390_en18061424
crossref_primary_10_3390_app8061004
crossref_primary_10_1016_j_cma_2024_116899
crossref_primary_10_1016_j_compgeo_2022_104834
crossref_primary_10_1016_j_advengsoft_2018_08_010
Cites_doi 10.1016/j.ijsolstr.2009.08.025
10.1016/j.ijmecsci.2010.09.012
10.1016/j.ijsolstr.2003.09.020
10.1061/(ASCE)0733-9399(2009)135:3(117)
10.1016/j.cma.2013.03.010
10.1061/(ASCE)0733-9399(2002)128:11(1119)
10.1002/nme.2861
10.1061/(ASCE)0733-9399(1991)117:5(1070)
10.1002/cnm.2728
10.1016/j.ijsolstr.2010.05.003
10.1002/(SICI)1097-0207(19961015)39:19<3391::AID-NME7>3.0.CO;2-D
10.1016/j.ijsolstr.2011.02.002
10.1007/s00466-012-0769-8
10.1016/j.euromechsol.2005.11.006
10.1002/nag.649
10.1016/0045-7949(94)00501-S
10.1016/j.cma.2016.02.031
10.1016/S0045-7825(00)00176-6
10.1016/S0749-6419(01)00042-0
10.1007/s12289-010-0991-x
10.1016/S0045-7825(03)00428-6
10.1016/j.ijsolstr.2009.12.010
10.1061/(ASCE)1090-0241(2000)126:6(495)
10.1016/j.jmps.2016.05.035
10.1007/BF01181824
10.1061/(ASCE)EM.1943-7889.0000854
10.1016/j.cma.2003.10.021
10.1016/j.ijsolstr.2011.08.012
10.1016/j.cma.2014.06.031
10.1016/j.ijplas.2014.09.005
10.1016/j.ijplas.2009.01.003
10.1016/S0013-7944(99)00111-3
10.1016/S0020-7683(01)00087-7
10.1016/S0045-7825(98)80011-X
10.1016/j.ijsolstr.2005.03.038
10.1002/nme.1572
10.1016/j.cma.2015.10.019
10.1002/nag.367
10.1115/1.3173674
ContentType Journal Article
Copyright Copyright © 2016 John Wiley & Sons, Ltd.
Copyright © 2017 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2016 John Wiley & Sons, Ltd.
– notice: Copyright © 2017 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1002/nme.5364
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Civil Engineering Abstracts

Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Mathematics
EISSN 1097-0207
EndPage 522
ExternalDocumentID 4321612727
10_1002_nme_5364
NME5364
Genre article
GrantInformation_xml – fundername: NUS Academic Research
  funderid: R-302-000-146-112
GroupedDBID -~X
.3N
.4S
.DC
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c3264-aa41bcc29b6a81f3d0c931602c3dacf524b686980081ca7855e3eec8780d086a3
IEDL.DBID DR2
ISSN 0029-5981
IngestDate Thu Jul 10 17:03:43 EDT 2025
Fri Jul 25 12:07:19 EDT 2025
Tue Jul 01 04:32:02 EDT 2025
Thu Apr 24 23:02:12 EDT 2025
Wed Aug 20 07:24:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3264-aa41bcc29b6a81f3d0c931602c3dacf524b686980081ca7855e3eec8780d086a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7670-937X
PQID 1886374984
PQPubID 996376
PageCount 20
ParticipantIDs proquest_miscellaneous_1904214443
proquest_journals_1886374984
crossref_primary_10_1002_nme_5364
crossref_citationtrail_10_1002_nme_5364
wiley_primary_10_1002_nme_5364_NME5364
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 11 May 2017
PublicationDateYYYYMMDD 2017-05-11
PublicationDate_xml – month: 05
  year: 2017
  text: 11 May 2017
  day: 11
PublicationDecade 2010
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Bognor Regis
PublicationTitle International journal for numerical methods in engineering
PublicationYear 2017
Publisher John Wiley & Sons, Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley Subscription Services, Inc
References 2015; 141
1998; 160
2004; 41
2009; 25
2009; 46
1996; 39
2004; 28
2015; 31
2000; 65
1995; 55
2002; 11
1988; 55
1997
2005; 42
2009; 135
2016; 95
2003; 192
2008; 32
1994
2016; 304
2003; 19
1991; 117
2013; 260
2014; 279
2000; 190
2010; 83
2010; 47
2000; 126
2006; 66
2013; 51
2006; 25
2004; 193
2015; 65
2016; 299
2001; 38
2011; 48
2000; 144
2010; 4
2010; 52
1981; 78
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_42_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_8_1
Carrasquillo RL (e_1_2_9_29_1) 1981; 78
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
Vermeer PA (e_1_2_9_12_1) 1994
Borst R (e_1_2_9_40_1)
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
References_xml – volume: 32
  start-page: 391
  year: 2008
  end-page: 413
  article-title: A coupled damage‐plasticity model for concrete based on thermodynamic principles: Part II: non‐local regularization and numerical implementation
  publication-title: International Journal for Numerical and Analytical Methods in Geomechanics
– volume: 48
  start-page: 1544
  year: 2011
  end-page: 1559
  article-title: A damage model with evolving nonlocal interactions
  publication-title: International Journal of Solids and Structures
– volume: 95
  start-page: 374
  year: 2016
  end-page: 392
  article-title: Homogenization of intergranular fracture towards a transient gradient damage model
  publication-title: Journal of the Mechanics and Physics of Solids
– volume: 144
  start-page: 1
  year: 2000
  end-page: 15
  article-title: Phenomenological nonlocal approaches based on implicit gradient‐enhanced damage
  publication-title: Acta Mechanica
– volume: 260
  start-page: 1
  year: 2013
  end-page: 23
  article-title: Coupled body‐interface nonlocal damage model for FRP detachment
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 65
  start-page: 111
  year: 2000
  end-page: 131
  article-title: Fracture process zone in concrete tension specimen
  publication-title: Engineering Fracture Mechanics
– volume: 83
  start-page: 1273
  year: 2010
  end-page: 1311
  article-title: Thermodynamically consistent phase‐field models of fracture: Variational principles and multi‐field FE implementations
  publication-title: International Journal for Numerical Engineering
– article-title: Gradient damage vs phase‐field approaches for fracture: similarities and differences
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 47
  start-page: 957
  year: 2010
  end-page: 968
  article-title: Meso‐scale approach to modelling the fracture process zone of concrete subjected to uniaxial tension
  publication-title: International Journal of Solids and Structures
– volume: 39
  start-page: 3391
  year: 1996
  end-page: 3403
  article-title: Gradient‐enhanced damage for quasi‐brittle materials
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 190
  start-page: 1529
  year: 2000
  end-page: 1549
  article-title: A finite element model for strain localization analysis of strongly discontinuous fields based on standard Galerkin approximation
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 192
  start-page: 4581
  year: 2003
  end-page: 4607
  article-title: From continuous to discontinuous failure in a gradient‐enhanced continuum damage model
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 141
  year: 2015
  article-title: Gradient elastodamage model for quasi‐brittle materials with an evolving internal length
  publication-title: Journal of Engineering Mechanics
– start-page: 89
  year: 1994
  end-page: 100
– volume: 55
  start-page: 581
  year: 1995
  end-page: 588
  article-title: Comparison of nonlocal approaches in continuum damage mechanics
  publication-title: Computers and Structures
– volume: 4
  start-page: 271
  year: 2010
  end-page: 281
  article-title: Continuous‐discontinuous formulation for ductile fracture
  publication-title: International Journal of Material Forming
– volume: 47
  start-page: 2425
  year: 2010
  end-page: 2435
  article-title: Initiation of damage with implicit gradient‐enhanced damage models
  publication-title: International Journal of Solids and Structures
– volume: 299
  start-page: 57
  year: 2016
  end-page: 89
  article-title: From diffuse damage to sharp cohesive cracks: a coupled XFEM framework for failure analysis of quasi‐brittle materials
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 19
  start-page: 403
  year: 2003
  end-page: 433
  article-title: Nonlocal implicit gradient‐enhanced elasto‐plasticity for the modelling of softening behavior
  publication-title: International Journal of Plasticity
– volume: 42
  start-page: 6071
  year: 2005
  end-page: 6100
  article-title: Spectral analysis of localization in nonlocal and over‐nonlocal materials with softening plasticity or damage
  publication-title: International Journal of Solids and Structures
– volume: 41
  start-page: 351
  year: 2004
  end-page: 363
  article-title: Incorrect initiation and propagation of failure in non‐local and gradient‐enhanced media
  publication-title: International Journal of Solids and Structures
– volume: 52
  start-page: 1783
  year: 2010
  end-page: 1800
  article-title: A variationally based nonlocal damage model to predict diffuse microcracking evolution
  publication-title: International Journal of Mechanical Sciences
– volume: 38
  start-page: 7723
  year: 2001
  end-page: 7746
  article-title: A critical comparison of nonlocal and gradient‐enhanced softening continua
  publication-title: International Journal of Solids and Structures
– volume: 28
  start-page: 633
  year: 2004
  end-page: 652
  article-title: Non‐local damage model with evolving internal length
  publication-title: International Journal Numerical Analysis Geomechanics
– volume: 46
  start-page: 4369
  year: 2009
  end-page: 4378
  article-title: Over‐nonlocal gradient enhanced plastic‐damage model for concrete
  publication-title: International Journal of Solids and Structures
– volume: 55
  start-page: 287
  year: 1988
  end-page: 293
  article-title: Nonlocal continuum damage, localization instability and convergence
  publication-title: Journal of Applied Mechanics
– volume: 193
  start-page: 3403
  year: 2004
  end-page: 3417
  article-title: A thermodynamically motivated implicit gradient damage framework and its application to brick masonry cracking.
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 25
  start-page: 2094
  year: 2009
  end-page: 2121
  article-title: Gradient enhanced softening material models
  publication-title: International Journal of Plasticity
– volume: 279
  start-page: 379
  year: 2014
  end-page: 409
  article-title: Elastic damage to crack transition in a coupled non‐local implicit discontinuous Galerkin/extrinsic cohesive law framework
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 65
  start-page: 269
  year: 2015
  end-page: 296
  article-title: A phase‐field/gradient damage model for brittle fracture in elastic‐plastic solids
  publication-title: International Journal of Plasticity
– volume: 160
  start-page: 133
  year: 1998
  end-page: 153
  article-title: Strain‐based transient‐gradient damage model for failure analyses
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 25
  start-page: 526
  year: 2006
  end-page: 549
  article-title: Micromorphic continuum modelling of the deformation and fracture behavior of nickel foams
  publication-title: European Journal of Mechanics
– volume: 31
  start-page: e02728
  year: 2015
  article-title: An over‐nonlocal implicit gradient‐enhanced damage‐plastic model for trabecular bone under large compressive strains
  publication-title: International Journal for Numerical Methods in Biomedical Engineering
– year: 1997
– volume: 51
  start-page: 899
  year: 2013
  end-page: 909
  article-title: A simplified implementation of a gradient‐enhanced damage model with transient length scale effects
  publication-title: Computational Mechanics
– volume: 135
  start-page: 117
  year: 2009
  end-page: 131
  article-title: Micromorphic approach for gradient elasticity, viscoplasticity and damage
  publication-title: Journal of Engineering Mechanics
– volume: 117
  start-page: 1070
  year: 1991
  end-page: 1087
  article-title: Why continuum damage is nonlocal: Micromechanics arguments
  publication-title: Journal of Engineering Mechanics
– volume: 66
  start-page: 661
  year: 2006
  end-page: 688
  article-title: Discrete crack modelling of ductile fracture driven by non‐local softening plasticity
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 11
  start-page: 1119
  year: 2002
  end-page: 1149
  article-title: Nonlocal integral formulations of plasticity and damage: survey of progress
  publication-title: Journal of Engineering Mechanics
– volume: 48
  start-page: 3431
  year: 2011
  end-page: 3443
  article-title: Stress‐based nonlocal damage model
  publication-title: International Journal of Solids and Structures
– volume: 304
  start-page: 584
  year: 2016
  end-page: 604
  article-title: A higher‐order stress‐based gradient‐enhanced damage model based on isogeometric analysis
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 78
  start-page: 179
  year: 1981
  end-page: 186
  article-title: Microcracking and behavior of high strength concrete subject to short‐term loading
  publication-title: ACI Journal Proceedings
– volume: 126
  start-page: 495
  year: 2000
  end-page: 503
  article-title: Shear band formation in plane strain experiments of sand
  publication-title: Journal of Geotechnical and Geoenviromental Engineering
– ident: e_1_2_9_42_1
– volume: 78
  start-page: 179
  year: 1981
  ident: e_1_2_9_29_1
  article-title: Microcracking and behavior of high strength concrete subject to short‐term loading
  publication-title: ACI Journal Proceedings
– ident: e_1_2_9_14_1
  doi: 10.1016/j.ijsolstr.2009.08.025
– ident: e_1_2_9_15_1
  doi: 10.1016/j.ijmecsci.2010.09.012
– ident: e_1_2_9_10_1
  doi: 10.1016/j.ijsolstr.2003.09.020
– ident: e_1_2_9_27_1
  doi: 10.1061/(ASCE)0733-9399(2009)135:3(117)
– ident: e_1_2_9_5_1
  doi: 10.1016/j.cma.2013.03.010
– ident: e_1_2_9_3_1
  doi: 10.1061/(ASCE)0733-9399(2002)128:11(1119)
– start-page: 89
  volume-title: Localisation and Bifurcation Theory for Soils and Rocks
  year: 1994
  ident: e_1_2_9_12_1
– ident: e_1_2_9_39_1
  doi: 10.1002/nme.2861
– ident: e_1_2_9_2_1
  doi: 10.1061/(ASCE)0733-9399(1991)117:5(1070)
– ident: e_1_2_9_16_1
  doi: 10.1002/cnm.2728
– ident: e_1_2_9_17_1
  doi: 10.1016/j.ijsolstr.2010.05.003
– ident: e_1_2_9_7_1
  doi: 10.1002/(SICI)1097-0207(19961015)39:19<3391::AID-NME7>3.0.CO;2-D
– ident: e_1_2_9_18_1
  doi: 10.1016/j.ijsolstr.2011.02.002
– ident: e_1_2_9_19_1
  doi: 10.1007/s00466-012-0769-8
– ident: e_1_2_9_26_1
  doi: 10.1016/j.euromechsol.2005.11.006
– ident: e_1_2_9_6_1
  doi: 10.1002/nag.649
– ident: e_1_2_9_33_1
  doi: 10.1016/0045-7949(94)00501-S
– ident: e_1_2_9_25_1
  doi: 10.1016/j.cma.2016.02.031
– ident: e_1_2_9_43_1
  doi: 10.1016/S0045-7825(00)00176-6
– ident: e_1_2_9_44_1
  doi: 10.1016/S0749-6419(01)00042-0
– ident: e_1_2_9_36_1
  doi: 10.1007/s12289-010-0991-x
– ident: e_1_2_9_37_1
  doi: 10.1016/S0045-7825(03)00428-6
– ident: e_1_2_9_24_1
– ident: e_1_2_9_31_1
  doi: 10.1016/j.ijsolstr.2009.12.010
– ident: e_1_2_9_45_1
  doi: 10.1061/(ASCE)1090-0241(2000)126:6(495)
– ident: e_1_2_9_28_1
  doi: 10.1016/j.jmps.2016.05.035
– ident: e_1_2_9_22_1
  doi: 10.1007/BF01181824
– ident: e_1_2_9_21_1
  doi: 10.1061/(ASCE)EM.1943-7889.0000854
– ident: e_1_2_9_32_1
  doi: 10.1016/j.cma.2003.10.021
– ident: e_1_2_9_40_1
  article-title: Gradient damage vs phase‐field approaches for fracture: similarities and differences
  publication-title: Computer Methods in Applied Mechanics and Engineering
– ident: e_1_2_9_23_1
  doi: 10.1016/j.ijsolstr.2011.08.012
– ident: e_1_2_9_34_1
  doi: 10.1016/j.cma.2014.06.031
– ident: e_1_2_9_41_1
  doi: 10.1016/j.ijplas.2014.09.005
– ident: e_1_2_9_13_1
  doi: 10.1016/j.ijplas.2009.01.003
– ident: e_1_2_9_30_1
  doi: 10.1016/S0013-7944(99)00111-3
– ident: e_1_2_9_8_1
  doi: 10.1016/S0020-7683(01)00087-7
– ident: e_1_2_9_9_1
  doi: 10.1016/S0045-7825(98)80011-X
– ident: e_1_2_9_11_1
  doi: 10.1016/j.ijsolstr.2005.03.038
– ident: e_1_2_9_35_1
  doi: 10.1002/nme.1572
– ident: e_1_2_9_38_1
  doi: 10.1016/j.cma.2015.10.019
– ident: e_1_2_9_20_1
  doi: 10.1002/nag.367
– ident: e_1_2_9_4_1
  doi: 10.1115/1.3173674
SSID ssj0011503
Score 2.5792854
Snippet Summary Nonlocal integral and/or gradient enhancements are widely used to resolve the mesh dependency issue with standard continuum damage models. However, it...
Nonlocal integral and/or gradient enhancements are widely used to resolve the mesh dependency issue with standard continuum damage models. However, it is...
Summary Nonlocal integral and/or gradient enhancements are widely used to resolve the mesh dependency issue with standard continuum damage models. However, it...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 503
SubjectTerms Consistency
Damage
Damage assessment
Deformation
Failure
Finite element method
Fracture mechanics
frature
gradient damage
localization
Microcracks
micromorphic continua
Title Localizing gradient damage model with decreasing interactions
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.5364
https://www.proquest.com/docview/1886374984
https://www.proquest.com/docview/1904214443
Volume 110
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA7iSQ8-VsXVVSKInro2TZMmBw8iiojrQVxY8FDyqohule3uxV9vpi9XURBPpWT6ymRmvqSTbxA65H5SIaimgbHCBrEiJtAhl4HMXMQyQRJalukc3PKrYXw9YqM6qxL2wlT8EO2CG1hG6a_BwJUuTuZIQ8euzygHKlBI1QI8dNcyRwHOoU12B5OCNLyzYXTSXPg1En3Cy3mQWkaZy1X00LxflVzy3J9Ndd-8f6Nu_N8HrKGVGnzis2q0rKMFl3fQag1EcW3mRQctz7EU-rNBS-1abKDTG4h-T---CT9OyoSxKbZq7P0SLsvqYFjaxbaEo7AQgYGRYlLtnyg20fDy4v78KqhrMATGA7s4UCom2phIaq4EyagNjaSEh5GhVpmMRbHmgksB0MKoRDDmqHNGJCK0frak6BZazF9zt40wYzYTNkyUsVmsmVaJR3cJVUp7N0Cs7qLjRh-pqQnKoU7GS1pRK0ep77EUeqyLDlrJt4qU4weZXqPStDbLIiVCcJrEUsAt2mZvUPCXROXudeZlpPdjfpoZ0y46KvX36zPS28EFHHf-KriLliKABcD-SnpocTqZuT0PaqZ6vxy-H9478yU
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61y4FyoLRQsaVQV6rglG0cP-IIcUCo1bbs7gG1Ug9IkV9BqO222sdlfz0e58GCQEKcosiTl-0ZfzMZfwNwLINToZhhiXXKJVxTm5hUFklR-UxUiuYslukcT-Twil9ci-sNeN_uhan5IbqAG2pGtNeo4BiQPlljDb3zA8Ek34RHWNA7-lNfOu4oRDqsze8QhaIt82yanbRX_roW_QSY6zA1rjNn2_C1fcM6veRmsFyYgV39Rt74n5_wDJ42-JN8rCfMDmz46S5sN1iUNJo-34Una0SF4WzcsbvOn8OHES6A31ehiXybxZyxBXH6LpgmEivrEIzuEhcRKcYiCJJSzOotFPMXcHV2evlpmDRlGBIbsB1PtObUWJsVRmpFK-ZSWzAq08wyp20lMm6kkoVCdGF1roTwzHurcpW64DBptge96f3UvwQihKuUS3NtXcWNMDoPAC9nWptgCagzfXjXDkhpG45yLJVxW9bsylkZeqzEHuvDUSf5UPNy_EHmoB3TstHMeUmVkiznhcJbdM1Bp_BHiZ76-2WQKYIpC54mZ314Gwfwr88oJ-NTPO7_q-AhPB5ejkfl6Hzy-RVsZYgSkAyWHkBvMVv61wHjLMybOJd_AApM90A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JSxxBFH4YhRAPajTBcUsJIZ567OpauvrgQdTBRGcIIYLgoamtg6ijzHLx11uvt0xEIXhqmnq91Vvqq-pX3wP4KsOkQjHDIuuUi7imNjKxzKKs8IkoFE1ZWaazP5CnF_zHpbissypxL0zFD9EuuKFnlPEaHfzBFfszpKF3viuY5O9ggctYoUUf_2qpoxDosCa9Q2SKNsSzcbLfXPnvUPQXX86i1HKY6S3DVfOCVXbJTXc6MV37-Iy78W1fsAJLNfokh5W5fIQ5P1yF5RqJktrPx6uwOENTGM76LbfreA0OznH4u34MTeTPqMwYmxCn70JgImVdHYJru8SVeBRXIghSUoyqDRTjT3DRO_l9dBrVRRgiG5Adj7Tm1FibZEZqRQvmYpsxKuPEMqdtIRJupJKZQmxhdaqE8Mx7q1IVuzBd0uwzzA_vh34diBCuUC5OtXUFN8LoNMC7lGltQhygznRgr9FHbmuGciyUcZtX3MpJHnosxx7rwG4r-VCxcrwgs9WoNK_9cpxTpSRLeabwFm1z8Cj8TaKH_n4aZLIQyMI8k7MOfCv19-oz8kH_BI8b_yv4Bd7_PO7l598HZ5vwIUGIgEywdAvmJ6Op3w4AZ2J2Skt-Akub9fg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Localizing+gradient+damage+model+with+decreasing+interactions&rft.jtitle=International+journal+for+numerical+methods+in+engineering&rft.au=Poh%2C+Leong+Hien&rft.au=Sun%2C+Gang&rft.date=2017-05-11&rft.issn=0029-5981&rft.eissn=1097-0207&rft.volume=110&rft.issue=6&rft.spage=503&rft.epage=522&rft_id=info:doi/10.1002%2Fnme.5364&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5981&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5981&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5981&client=summon