Localizing gradient damage model with decreasing interactions
Summary Nonlocal integral and/or gradient enhancements are widely used to resolve the mesh dependency issue with standard continuum damage models. However, it is reported that whereas the structural response is mesh independent, a spurious damage growth is observed. Accordingly, a class of modified...
Saved in:
Published in | International journal for numerical methods in engineering Vol. 110; no. 6; pp. 503 - 522 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
11.05.2017
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
Nonlocal integral and/or gradient enhancements are widely used to resolve the mesh dependency issue with standard continuum damage models. However, it is reported that whereas the structural response is mesh independent, a spurious damage growth is observed. Accordingly, a class of modified nonlocal enhancements is developed in literature, where the interaction domain increases with damage. In this contribution, we adopt a contrary view that the interaction domain decreases with damage. This is motivated by the fact that the fracture of quasi‐brittle materials typically starts as a diffuse network of microcracks, before localizing into a macroscopic crack. To ensure thermodynamics consistency, the micromorphic theory is adopted in the model development. The ensuing microforce balance resembles closely the Helmholtz expression in a conventional gradient damage model. The superior performance of the localizing gradient damage model is demonstrated through a one‐dimensional problem, as well as mode I and II failure in plane deformation. For all three cases, a localized deformation band at material failure is obtained. Copyright © 2016 John Wiley & Sons, Ltd. |
---|---|
AbstractList | Nonlocal integral and/or gradient enhancements are widely used to resolve the mesh dependency issue with standard continuum damage models. However, it is reported that whereas the structural response is mesh independent, a spurious damage growth is observed. Accordingly, a class of modified nonlocal enhancements is developed in literature, where the interaction domain increases with damage. In this contribution, we adopt a contrary view that the interaction domain
decreases
with damage. This is motivated by the fact that the fracture of quasi‐brittle materials typically starts as a diffuse network of microcracks, before localizing into a macroscopic crack. To ensure thermodynamics consistency, the micromorphic theory is adopted in the model development. The ensuing microforce balance resembles closely the Helmholtz expression in a conventional gradient damage model. The superior performance of the localizing gradient damage model is demonstrated through a one‐dimensional problem, as well as mode I and II failure in plane deformation. For all three cases, a localized deformation band at material failure is obtained. Copyright © 2016 John Wiley & Sons, Ltd. Summary Nonlocal integral and/or gradient enhancements are widely used to resolve the mesh dependency issue with standard continuum damage models. However, it is reported that whereas the structural response is mesh independent, a spurious damage growth is observed. Accordingly, a class of modified nonlocal enhancements is developed in literature, where the interaction domain increases with damage. In this contribution, we adopt a contrary view that the interaction domain decreases with damage. This is motivated by the fact that the fracture of quasi-brittle materials typically starts as a diffuse network of microcracks, before localizing into a macroscopic crack. To ensure thermodynamics consistency, the micromorphic theory is adopted in the model development. The ensuing microforce balance resembles closely the Helmholtz expression in a conventional gradient damage model. The superior performance of the localizing gradient damage model is demonstrated through a one-dimensional problem, as well as mode I and II failure in plane deformation. For all three cases, a localized deformation band at material failure is obtained. Copyright © 2016 John Wiley & Sons, Ltd. Summary Nonlocal integral and/or gradient enhancements are widely used to resolve the mesh dependency issue with standard continuum damage models. However, it is reported that whereas the structural response is mesh independent, a spurious damage growth is observed. Accordingly, a class of modified nonlocal enhancements is developed in literature, where the interaction domain increases with damage. In this contribution, we adopt a contrary view that the interaction domain decreases with damage. This is motivated by the fact that the fracture of quasi‐brittle materials typically starts as a diffuse network of microcracks, before localizing into a macroscopic crack. To ensure thermodynamics consistency, the micromorphic theory is adopted in the model development. The ensuing microforce balance resembles closely the Helmholtz expression in a conventional gradient damage model. The superior performance of the localizing gradient damage model is demonstrated through a one‐dimensional problem, as well as mode I and II failure in plane deformation. For all three cases, a localized deformation band at material failure is obtained. Copyright © 2016 John Wiley & Sons, Ltd. Nonlocal integral and/or gradient enhancements are widely used to resolve the mesh dependency issue with standard continuum damage models. However, it is reported that whereas the structural response is mesh independent, a spurious damage growth is observed. Accordingly, a class of modified nonlocal enhancements is developed in literature, where the interaction domain increases with damage. In this contribution, we adopt a contrary view that the interaction domain decreases with damage. This is motivated by the fact that the fracture of quasi-brittle materials typically starts as a diffuse network of microcracks, before localizing into a macroscopic crack. To ensure thermodynamics consistency, the micromorphic theory is adopted in the model development. The ensuing microforce balance resembles closely the Helmholtz expression in a conventional gradient damage model. The superior performance of the localizing gradient damage model is demonstrated through a one-dimensional problem, as well as mode I and II failure in plane deformation. For all three cases, a localized deformation band at material failure is obtained. |
Author | Poh, Leong Hien Sun, Gang |
Author_xml | – sequence: 1 givenname: Leong Hien orcidid: 0000-0002-7670-937X surname: Poh fullname: Poh, Leong Hien email: leonghien@nus.edu.sg organization: National University of Singapore – sequence: 2 givenname: Gang surname: Sun fullname: Sun, Gang organization: National University of Singapore |
BookMark | eNp1kE1Lw0AQhhepYFsFf0LAi5fU2ewm2Rw8SPELql70vEw307ol2dTdlFJ_vYkVhKKnOczzPsy8IzZwjSPGzjlMOEBy5WqapCKTR2zIochjSCAfsGG3KuK0UPyEjUJYAXCeghiy61ljsLKf1i2jpcfSkmujEmtcUlQ3JVXR1rbvUUnGE4aesq4lj6a1jQun7HiBVaCznzlmb3e3r9OHePZy_zi9mcVGJJmMESWfG5MU8wwVX4gSTCF4BokRJZpFmsh5prJCAShuMFdpSoLIqFxBCSpDMWaXe-_aNx8bCq2ubTBUVeio2QTNC5AJl1KKDr04QFfNxrvuOs2VykQuCyV_hcY3IXha6LW3Nfqd5qD7HnXXo-577NDJAWpsi_37rUdb_RWI94GtrWj3r1g_P91-818hv4RE |
CODEN | IJNMBH |
CitedBy_id | crossref_primary_10_1007_s00466_023_02313_y crossref_primary_10_1002_nme_6947 crossref_primary_10_1016_j_ijnonlinmec_2024_104755 crossref_primary_10_1016_j_cma_2024_117100 crossref_primary_10_1177_00219983221114012 crossref_primary_10_1007_s00366_022_01670_1 crossref_primary_10_1016_j_compstruct_2022_115948 crossref_primary_10_1007_s40948_022_00460_9 crossref_primary_10_1016_j_cma_2017_12_027 crossref_primary_10_1016_j_prostr_2024_06_018 crossref_primary_10_1016_j_euromechsol_2025_105643 crossref_primary_10_1016_j_ijsolstr_2021_111380 crossref_primary_10_1016_j_cma_2017_09_019 crossref_primary_10_1016_j_jobe_2022_104808 crossref_primary_10_1016_j_cma_2021_113893 crossref_primary_10_1007_s00466_020_01908_z crossref_primary_10_1016_j_cma_2019_112704 crossref_primary_10_1016_j_cma_2022_115559 crossref_primary_10_1016_j_engfracmech_2021_107716 crossref_primary_10_1002_nme_6397 crossref_primary_10_1016_j_cma_2024_117456 crossref_primary_10_1016_j_engfracmech_2022_108631 crossref_primary_10_1007_s00466_024_02473_5 crossref_primary_10_1016_j_ijsolstr_2019_05_022 crossref_primary_10_1177_10567895211028649 crossref_primary_10_1016_j_jmps_2021_104606 crossref_primary_10_1016_j_cma_2022_115036 crossref_primary_10_1360_SST_2021_0326 crossref_primary_10_1016_j_ijsolstr_2017_04_039 crossref_primary_10_1016_j_engfracmech_2023_109340 crossref_primary_10_1016_j_jmps_2020_103975 crossref_primary_10_1016_j_compstruct_2022_115677 crossref_primary_10_1016_j_istruc_2020_10_042 crossref_primary_10_1016_j_euromechsol_2023_105016 crossref_primary_10_1016_j_cma_2020_113247 crossref_primary_10_1016_j_cma_2021_113821 crossref_primary_10_1016_j_ijsolstr_2021_03_014 crossref_primary_10_1016_j_compositesa_2024_108093 crossref_primary_10_1016_j_ijmecsci_2024_109370 crossref_primary_10_1016_j_probengmech_2023_103529 crossref_primary_10_1016_j_engfracmech_2021_107847 crossref_primary_10_1016_j_cma_2020_113648 crossref_primary_10_1016_j_compgeo_2023_105765 crossref_primary_10_1016_j_ijplas_2023_103829 crossref_primary_10_1016_j_compstruct_2024_118281 crossref_primary_10_1177_10567895211013081 crossref_primary_10_1016_j_cma_2023_116275 crossref_primary_10_1016_j_finel_2019_04_001 crossref_primary_10_1016_j_cma_2017_06_016 crossref_primary_10_1002_pamm_202300133 crossref_primary_10_1016_j_engfracmech_2022_109032 crossref_primary_10_1016_j_engfracmech_2023_109670 crossref_primary_10_1061_JENMDT_EMENG_7246 crossref_primary_10_1063_5_0207063 crossref_primary_10_1007_s00466_018_1591_8 crossref_primary_10_1016_j_ijplas_2021_103061 crossref_primary_10_1016_j_cma_2019_06_029 crossref_primary_10_1016_j_engfracmech_2018_11_021 crossref_primary_10_1016_j_ijsolstr_2023_112493 crossref_primary_10_1177_10567895211000089 crossref_primary_10_1016_j_cma_2021_114048 crossref_primary_10_1016_j_engfracmech_2021_107976 crossref_primary_10_1016_j_cma_2021_114205 crossref_primary_10_3389_fmats_2021_701458 crossref_primary_10_1186_s40323_018_0100_0 crossref_primary_10_1007_s00419_021_01889_2 crossref_primary_10_1016_j_cma_2018_08_018 crossref_primary_10_1177_10812865221085198 crossref_primary_10_1016_j_cmpb_2022_106820 crossref_primary_10_1016_j_mechmat_2019_103282 crossref_primary_10_1016_j_engfracmech_2019_106790 crossref_primary_10_1016_j_tafmec_2021_103190 crossref_primary_10_1016_j_apm_2024_04_053 crossref_primary_10_1016_j_tafmec_2023_104084 crossref_primary_10_1016_j_jmps_2019_03_022 crossref_primary_10_1016_j_tafmec_2019_02_002 crossref_primary_10_1002_nme_7652 crossref_primary_10_1002_nme_6323 crossref_primary_10_1016_j_cma_2020_112934 crossref_primary_10_1016_j_conbuildmat_2023_132050 crossref_primary_10_1016_j_compstruct_2020_112914 crossref_primary_10_1016_j_engfracmech_2023_109656 crossref_primary_10_1016_j_compstruct_2025_118981 crossref_primary_10_1007_s11831_021_09611_9 crossref_primary_10_1016_j_cma_2021_114154 crossref_primary_10_1177_10567895211068174 crossref_primary_10_1016_j_tafmec_2022_103283 crossref_primary_10_1061__ASCE_EM_1943_7889_0001608 crossref_primary_10_1016_j_jmps_2025_106026 crossref_primary_10_1016_j_ijplas_2019_11_010 crossref_primary_10_1016_j_engfracmech_2023_109093 crossref_primary_10_1016_j_engfracmech_2024_110368 crossref_primary_10_1016_j_ijmecsci_2022_107807 crossref_primary_10_1016_j_mechmat_2019_02_017 crossref_primary_10_1007_s10891_022_02632_6 crossref_primary_10_1016_j_jmps_2018_04_007 crossref_primary_10_1002_nme_6074 crossref_primary_10_1002_nme_6070 crossref_primary_10_1007_s11831_021_09604_8 crossref_primary_10_1016_j_engfracmech_2020_107511 crossref_primary_10_3390_ma15051875 crossref_primary_10_1016_j_engfracmech_2019_04_011 crossref_primary_10_1016_j_engfracmech_2022_108843 crossref_primary_10_1016_j_cma_2024_117416 crossref_primary_10_1016_j_prostr_2021_12_043 crossref_primary_10_1016_j_cma_2019_112629 crossref_primary_10_1016_j_engfracmech_2018_12_013 crossref_primary_10_1016_j_euromechsol_2019_04_003 crossref_primary_10_1016_j_finel_2024_104151 crossref_primary_10_1016_j_engfracmech_2022_108552 crossref_primary_10_1016_j_ijmecsci_2024_109207 crossref_primary_10_1016_j_finel_2023_104019 crossref_primary_10_1016_j_euromechsol_2025_105611 crossref_primary_10_1016_j_ijmecsci_2023_108907 crossref_primary_10_1016_j_finel_2024_104279 crossref_primary_10_1016_j_ijsolstr_2019_02_009 crossref_primary_10_1016_j_cma_2019_06_013 crossref_primary_10_1016_j_ijplas_2024_104042 crossref_primary_10_1007_s00466_024_02540_x crossref_primary_10_1016_j_cma_2021_114434 crossref_primary_10_1007_s11440_023_01873_w crossref_primary_10_1016_j_engfracmech_2023_109708 crossref_primary_10_1016_j_enganabound_2023_10_004 crossref_primary_10_1016_j_ijimpeng_2024_105209 crossref_primary_10_1007_s00466_020_01939_6 crossref_primary_10_1016_j_advengsoft_2025_103863 crossref_primary_10_1002_nme_6926 crossref_primary_10_1016_j_finel_2023_104084 crossref_primary_10_1002_zamm_202100434 crossref_primary_10_1016_j_istruc_2020_12_063 crossref_primary_10_32604_cmes_2021_014142 crossref_primary_10_1007_s10704_019_00412_7 crossref_primary_10_1016_j_engfracmech_2024_110666 crossref_primary_10_1177_1056789521998728 crossref_primary_10_1177_1081286519884695 crossref_primary_10_1142_S2424913022410077 crossref_primary_10_1080_15376494_2022_2154874 crossref_primary_10_1007_s11012_017_0695_0 crossref_primary_10_1016_j_jmps_2020_103891 crossref_primary_10_1177_10567895221109622 crossref_primary_10_1007_s00466_023_02439_z crossref_primary_10_1177_10567895211063227 crossref_primary_10_1016_j_cma_2019_112802 crossref_primary_10_1016_j_engfracmech_2022_108667 crossref_primary_10_1016_j_ijmecsci_2021_106410 crossref_primary_10_1108_EC_08_2020_0455 crossref_primary_10_1007_s00366_024_02041_8 crossref_primary_10_1016_j_cemconcomp_2023_105270 crossref_primary_10_1177_1056789520983872 crossref_primary_10_1016_j_cma_2024_117599 crossref_primary_10_1016_j_cma_2024_117514 crossref_primary_10_1016_j_ijimpeng_2024_105028 crossref_primary_10_1016_j_mechmat_2020_103713 crossref_primary_10_1016_j_ijfatigue_2020_105863 crossref_primary_10_1007_s10704_019_00409_2 crossref_primary_10_1016_j_ijsolstr_2022_111841 crossref_primary_10_1016_j_compgeo_2024_106891 crossref_primary_10_3390_en18061424 crossref_primary_10_3390_app8061004 crossref_primary_10_1016_j_cma_2024_116899 crossref_primary_10_1016_j_compgeo_2022_104834 crossref_primary_10_1016_j_advengsoft_2018_08_010 |
Cites_doi | 10.1016/j.ijsolstr.2009.08.025 10.1016/j.ijmecsci.2010.09.012 10.1016/j.ijsolstr.2003.09.020 10.1061/(ASCE)0733-9399(2009)135:3(117) 10.1016/j.cma.2013.03.010 10.1061/(ASCE)0733-9399(2002)128:11(1119) 10.1002/nme.2861 10.1061/(ASCE)0733-9399(1991)117:5(1070) 10.1002/cnm.2728 10.1016/j.ijsolstr.2010.05.003 10.1002/(SICI)1097-0207(19961015)39:19<3391::AID-NME7>3.0.CO;2-D 10.1016/j.ijsolstr.2011.02.002 10.1007/s00466-012-0769-8 10.1016/j.euromechsol.2005.11.006 10.1002/nag.649 10.1016/0045-7949(94)00501-S 10.1016/j.cma.2016.02.031 10.1016/S0045-7825(00)00176-6 10.1016/S0749-6419(01)00042-0 10.1007/s12289-010-0991-x 10.1016/S0045-7825(03)00428-6 10.1016/j.ijsolstr.2009.12.010 10.1061/(ASCE)1090-0241(2000)126:6(495) 10.1016/j.jmps.2016.05.035 10.1007/BF01181824 10.1061/(ASCE)EM.1943-7889.0000854 10.1016/j.cma.2003.10.021 10.1016/j.ijsolstr.2011.08.012 10.1016/j.cma.2014.06.031 10.1016/j.ijplas.2014.09.005 10.1016/j.ijplas.2009.01.003 10.1016/S0013-7944(99)00111-3 10.1016/S0020-7683(01)00087-7 10.1016/S0045-7825(98)80011-X 10.1016/j.ijsolstr.2005.03.038 10.1002/nme.1572 10.1016/j.cma.2015.10.019 10.1002/nag.367 10.1115/1.3173674 |
ContentType | Journal Article |
Copyright | Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: Copyright © 2016 John Wiley & Sons, Ltd. – notice: Copyright © 2017 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1002/nme.5364 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Civil Engineering Abstracts Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Mathematics |
EISSN | 1097-0207 |
EndPage | 522 |
ExternalDocumentID | 4321612727 10_1002_nme_5364 NME5364 |
Genre | article |
GrantInformation_xml | – fundername: NUS Academic Research funderid: R-302-000-146-112 |
GroupedDBID | -~X .3N .4S .DC .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ACAHQ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RX1 RYL SUPJJ TN5 TUS UB1 V2E W8V W99 WBKPD WIB WIH WIK WLBEL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c3264-aa41bcc29b6a81f3d0c931602c3dacf524b686980081ca7855e3eec8780d086a3 |
IEDL.DBID | DR2 |
ISSN | 0029-5981 |
IngestDate | Thu Jul 10 17:03:43 EDT 2025 Fri Jul 25 12:07:19 EDT 2025 Tue Jul 01 04:32:02 EDT 2025 Thu Apr 24 23:02:12 EDT 2025 Wed Aug 20 07:24:51 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3264-aa41bcc29b6a81f3d0c931602c3dacf524b686980081ca7855e3eec8780d086a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7670-937X |
PQID | 1886374984 |
PQPubID | 996376 |
PageCount | 20 |
ParticipantIDs | proquest_miscellaneous_1904214443 proquest_journals_1886374984 crossref_primary_10_1002_nme_5364 crossref_citationtrail_10_1002_nme_5364 wiley_primary_10_1002_nme_5364_NME5364 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 11 May 2017 |
PublicationDateYYYYMMDD | 2017-05-11 |
PublicationDate_xml | – month: 05 year: 2017 text: 11 May 2017 day: 11 |
PublicationDecade | 2010 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK – name: Bognor Regis |
PublicationTitle | International journal for numerical methods in engineering |
PublicationYear | 2017 |
Publisher | John Wiley & Sons, Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley Subscription Services, Inc |
References | 2015; 141 1998; 160 2004; 41 2009; 25 2009; 46 1996; 39 2004; 28 2015; 31 2000; 65 1995; 55 2002; 11 1988; 55 1997 2005; 42 2009; 135 2016; 95 2003; 192 2008; 32 1994 2016; 304 2003; 19 1991; 117 2013; 260 2014; 279 2000; 190 2010; 83 2010; 47 2000; 126 2006; 66 2013; 51 2006; 25 2004; 193 2015; 65 2016; 299 2001; 38 2011; 48 2000; 144 2010; 4 2010; 52 1981; 78 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_33_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_42_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_8_1 Carrasquillo RL (e_1_2_9_29_1) 1981; 78 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 Vermeer PA (e_1_2_9_12_1) 1994 Borst R (e_1_2_9_40_1) e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 |
References_xml | – volume: 32 start-page: 391 year: 2008 end-page: 413 article-title: A coupled damage‐plasticity model for concrete based on thermodynamic principles: Part II: non‐local regularization and numerical implementation publication-title: International Journal for Numerical and Analytical Methods in Geomechanics – volume: 48 start-page: 1544 year: 2011 end-page: 1559 article-title: A damage model with evolving nonlocal interactions publication-title: International Journal of Solids and Structures – volume: 95 start-page: 374 year: 2016 end-page: 392 article-title: Homogenization of intergranular fracture towards a transient gradient damage model publication-title: Journal of the Mechanics and Physics of Solids – volume: 144 start-page: 1 year: 2000 end-page: 15 article-title: Phenomenological nonlocal approaches based on implicit gradient‐enhanced damage publication-title: Acta Mechanica – volume: 260 start-page: 1 year: 2013 end-page: 23 article-title: Coupled body‐interface nonlocal damage model for FRP detachment publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 65 start-page: 111 year: 2000 end-page: 131 article-title: Fracture process zone in concrete tension specimen publication-title: Engineering Fracture Mechanics – volume: 83 start-page: 1273 year: 2010 end-page: 1311 article-title: Thermodynamically consistent phase‐field models of fracture: Variational principles and multi‐field FE implementations publication-title: International Journal for Numerical Engineering – article-title: Gradient damage vs phase‐field approaches for fracture: similarities and differences publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 47 start-page: 957 year: 2010 end-page: 968 article-title: Meso‐scale approach to modelling the fracture process zone of concrete subjected to uniaxial tension publication-title: International Journal of Solids and Structures – volume: 39 start-page: 3391 year: 1996 end-page: 3403 article-title: Gradient‐enhanced damage for quasi‐brittle materials publication-title: International Journal for Numerical Methods in Engineering – volume: 190 start-page: 1529 year: 2000 end-page: 1549 article-title: A finite element model for strain localization analysis of strongly discontinuous fields based on standard Galerkin approximation publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 192 start-page: 4581 year: 2003 end-page: 4607 article-title: From continuous to discontinuous failure in a gradient‐enhanced continuum damage model publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 141 year: 2015 article-title: Gradient elastodamage model for quasi‐brittle materials with an evolving internal length publication-title: Journal of Engineering Mechanics – start-page: 89 year: 1994 end-page: 100 – volume: 55 start-page: 581 year: 1995 end-page: 588 article-title: Comparison of nonlocal approaches in continuum damage mechanics publication-title: Computers and Structures – volume: 4 start-page: 271 year: 2010 end-page: 281 article-title: Continuous‐discontinuous formulation for ductile fracture publication-title: International Journal of Material Forming – volume: 47 start-page: 2425 year: 2010 end-page: 2435 article-title: Initiation of damage with implicit gradient‐enhanced damage models publication-title: International Journal of Solids and Structures – volume: 299 start-page: 57 year: 2016 end-page: 89 article-title: From diffuse damage to sharp cohesive cracks: a coupled XFEM framework for failure analysis of quasi‐brittle materials publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 19 start-page: 403 year: 2003 end-page: 433 article-title: Nonlocal implicit gradient‐enhanced elasto‐plasticity for the modelling of softening behavior publication-title: International Journal of Plasticity – volume: 42 start-page: 6071 year: 2005 end-page: 6100 article-title: Spectral analysis of localization in nonlocal and over‐nonlocal materials with softening plasticity or damage publication-title: International Journal of Solids and Structures – volume: 41 start-page: 351 year: 2004 end-page: 363 article-title: Incorrect initiation and propagation of failure in non‐local and gradient‐enhanced media publication-title: International Journal of Solids and Structures – volume: 52 start-page: 1783 year: 2010 end-page: 1800 article-title: A variationally based nonlocal damage model to predict diffuse microcracking evolution publication-title: International Journal of Mechanical Sciences – volume: 38 start-page: 7723 year: 2001 end-page: 7746 article-title: A critical comparison of nonlocal and gradient‐enhanced softening continua publication-title: International Journal of Solids and Structures – volume: 28 start-page: 633 year: 2004 end-page: 652 article-title: Non‐local damage model with evolving internal length publication-title: International Journal Numerical Analysis Geomechanics – volume: 46 start-page: 4369 year: 2009 end-page: 4378 article-title: Over‐nonlocal gradient enhanced plastic‐damage model for concrete publication-title: International Journal of Solids and Structures – volume: 55 start-page: 287 year: 1988 end-page: 293 article-title: Nonlocal continuum damage, localization instability and convergence publication-title: Journal of Applied Mechanics – volume: 193 start-page: 3403 year: 2004 end-page: 3417 article-title: A thermodynamically motivated implicit gradient damage framework and its application to brick masonry cracking. publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 25 start-page: 2094 year: 2009 end-page: 2121 article-title: Gradient enhanced softening material models publication-title: International Journal of Plasticity – volume: 279 start-page: 379 year: 2014 end-page: 409 article-title: Elastic damage to crack transition in a coupled non‐local implicit discontinuous Galerkin/extrinsic cohesive law framework publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 65 start-page: 269 year: 2015 end-page: 296 article-title: A phase‐field/gradient damage model for brittle fracture in elastic‐plastic solids publication-title: International Journal of Plasticity – volume: 160 start-page: 133 year: 1998 end-page: 153 article-title: Strain‐based transient‐gradient damage model for failure analyses publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 25 start-page: 526 year: 2006 end-page: 549 article-title: Micromorphic continuum modelling of the deformation and fracture behavior of nickel foams publication-title: European Journal of Mechanics – volume: 31 start-page: e02728 year: 2015 article-title: An over‐nonlocal implicit gradient‐enhanced damage‐plastic model for trabecular bone under large compressive strains publication-title: International Journal for Numerical Methods in Biomedical Engineering – year: 1997 – volume: 51 start-page: 899 year: 2013 end-page: 909 article-title: A simplified implementation of a gradient‐enhanced damage model with transient length scale effects publication-title: Computational Mechanics – volume: 135 start-page: 117 year: 2009 end-page: 131 article-title: Micromorphic approach for gradient elasticity, viscoplasticity and damage publication-title: Journal of Engineering Mechanics – volume: 117 start-page: 1070 year: 1991 end-page: 1087 article-title: Why continuum damage is nonlocal: Micromechanics arguments publication-title: Journal of Engineering Mechanics – volume: 66 start-page: 661 year: 2006 end-page: 688 article-title: Discrete crack modelling of ductile fracture driven by non‐local softening plasticity publication-title: International Journal for Numerical Methods in Engineering – volume: 11 start-page: 1119 year: 2002 end-page: 1149 article-title: Nonlocal integral formulations of plasticity and damage: survey of progress publication-title: Journal of Engineering Mechanics – volume: 48 start-page: 3431 year: 2011 end-page: 3443 article-title: Stress‐based nonlocal damage model publication-title: International Journal of Solids and Structures – volume: 304 start-page: 584 year: 2016 end-page: 604 article-title: A higher‐order stress‐based gradient‐enhanced damage model based on isogeometric analysis publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 78 start-page: 179 year: 1981 end-page: 186 article-title: Microcracking and behavior of high strength concrete subject to short‐term loading publication-title: ACI Journal Proceedings – volume: 126 start-page: 495 year: 2000 end-page: 503 article-title: Shear band formation in plane strain experiments of sand publication-title: Journal of Geotechnical and Geoenviromental Engineering – ident: e_1_2_9_42_1 – volume: 78 start-page: 179 year: 1981 ident: e_1_2_9_29_1 article-title: Microcracking and behavior of high strength concrete subject to short‐term loading publication-title: ACI Journal Proceedings – ident: e_1_2_9_14_1 doi: 10.1016/j.ijsolstr.2009.08.025 – ident: e_1_2_9_15_1 doi: 10.1016/j.ijmecsci.2010.09.012 – ident: e_1_2_9_10_1 doi: 10.1016/j.ijsolstr.2003.09.020 – ident: e_1_2_9_27_1 doi: 10.1061/(ASCE)0733-9399(2009)135:3(117) – ident: e_1_2_9_5_1 doi: 10.1016/j.cma.2013.03.010 – ident: e_1_2_9_3_1 doi: 10.1061/(ASCE)0733-9399(2002)128:11(1119) – start-page: 89 volume-title: Localisation and Bifurcation Theory for Soils and Rocks year: 1994 ident: e_1_2_9_12_1 – ident: e_1_2_9_39_1 doi: 10.1002/nme.2861 – ident: e_1_2_9_2_1 doi: 10.1061/(ASCE)0733-9399(1991)117:5(1070) – ident: e_1_2_9_16_1 doi: 10.1002/cnm.2728 – ident: e_1_2_9_17_1 doi: 10.1016/j.ijsolstr.2010.05.003 – ident: e_1_2_9_7_1 doi: 10.1002/(SICI)1097-0207(19961015)39:19<3391::AID-NME7>3.0.CO;2-D – ident: e_1_2_9_18_1 doi: 10.1016/j.ijsolstr.2011.02.002 – ident: e_1_2_9_19_1 doi: 10.1007/s00466-012-0769-8 – ident: e_1_2_9_26_1 doi: 10.1016/j.euromechsol.2005.11.006 – ident: e_1_2_9_6_1 doi: 10.1002/nag.649 – ident: e_1_2_9_33_1 doi: 10.1016/0045-7949(94)00501-S – ident: e_1_2_9_25_1 doi: 10.1016/j.cma.2016.02.031 – ident: e_1_2_9_43_1 doi: 10.1016/S0045-7825(00)00176-6 – ident: e_1_2_9_44_1 doi: 10.1016/S0749-6419(01)00042-0 – ident: e_1_2_9_36_1 doi: 10.1007/s12289-010-0991-x – ident: e_1_2_9_37_1 doi: 10.1016/S0045-7825(03)00428-6 – ident: e_1_2_9_24_1 – ident: e_1_2_9_31_1 doi: 10.1016/j.ijsolstr.2009.12.010 – ident: e_1_2_9_45_1 doi: 10.1061/(ASCE)1090-0241(2000)126:6(495) – ident: e_1_2_9_28_1 doi: 10.1016/j.jmps.2016.05.035 – ident: e_1_2_9_22_1 doi: 10.1007/BF01181824 – ident: e_1_2_9_21_1 doi: 10.1061/(ASCE)EM.1943-7889.0000854 – ident: e_1_2_9_32_1 doi: 10.1016/j.cma.2003.10.021 – ident: e_1_2_9_40_1 article-title: Gradient damage vs phase‐field approaches for fracture: similarities and differences publication-title: Computer Methods in Applied Mechanics and Engineering – ident: e_1_2_9_23_1 doi: 10.1016/j.ijsolstr.2011.08.012 – ident: e_1_2_9_34_1 doi: 10.1016/j.cma.2014.06.031 – ident: e_1_2_9_41_1 doi: 10.1016/j.ijplas.2014.09.005 – ident: e_1_2_9_13_1 doi: 10.1016/j.ijplas.2009.01.003 – ident: e_1_2_9_30_1 doi: 10.1016/S0013-7944(99)00111-3 – ident: e_1_2_9_8_1 doi: 10.1016/S0020-7683(01)00087-7 – ident: e_1_2_9_9_1 doi: 10.1016/S0045-7825(98)80011-X – ident: e_1_2_9_11_1 doi: 10.1016/j.ijsolstr.2005.03.038 – ident: e_1_2_9_35_1 doi: 10.1002/nme.1572 – ident: e_1_2_9_38_1 doi: 10.1016/j.cma.2015.10.019 – ident: e_1_2_9_20_1 doi: 10.1002/nag.367 – ident: e_1_2_9_4_1 doi: 10.1115/1.3173674 |
SSID | ssj0011503 |
Score | 2.5792854 |
Snippet | Summary
Nonlocal integral and/or gradient enhancements are widely used to resolve the mesh dependency issue with standard continuum damage models. However, it... Nonlocal integral and/or gradient enhancements are widely used to resolve the mesh dependency issue with standard continuum damage models. However, it is... Summary Nonlocal integral and/or gradient enhancements are widely used to resolve the mesh dependency issue with standard continuum damage models. However, it... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 503 |
SubjectTerms | Consistency Damage Damage assessment Deformation Failure Finite element method Fracture mechanics frature gradient damage localization Microcracks micromorphic continua |
Title | Localizing gradient damage model with decreasing interactions |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.5364 https://www.proquest.com/docview/1886374984 https://www.proquest.com/docview/1904214443 |
Volume | 110 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA7iSQ8-VsXVVSKInro2TZMmBw8iiojrQVxY8FDyqohule3uxV9vpi9XURBPpWT6ymRmvqSTbxA65H5SIaimgbHCBrEiJtAhl4HMXMQyQRJalukc3PKrYXw9YqM6qxL2wlT8EO2CG1hG6a_BwJUuTuZIQ8euzygHKlBI1QI8dNcyRwHOoU12B5OCNLyzYXTSXPg1En3Cy3mQWkaZy1X00LxflVzy3J9Ndd-8f6Nu_N8HrKGVGnzis2q0rKMFl3fQag1EcW3mRQctz7EU-rNBS-1abKDTG4h-T---CT9OyoSxKbZq7P0SLsvqYFjaxbaEo7AQgYGRYlLtnyg20fDy4v78KqhrMATGA7s4UCom2phIaq4EyagNjaSEh5GhVpmMRbHmgksB0MKoRDDmqHNGJCK0frak6BZazF9zt40wYzYTNkyUsVmsmVaJR3cJVUp7N0Cs7qLjRh-pqQnKoU7GS1pRK0ep77EUeqyLDlrJt4qU4weZXqPStDbLIiVCcJrEUsAt2mZvUPCXROXudeZlpPdjfpoZ0y46KvX36zPS28EFHHf-KriLliKABcD-SnpocTqZuT0PaqZ6vxy-H9478yU |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61y4FyoLRQsaVQV6rglG0cP-IIcUCo1bbs7gG1Ug9IkV9BqO222sdlfz0e58GCQEKcosiTl-0ZfzMZfwNwLINToZhhiXXKJVxTm5hUFklR-UxUiuYslukcT-Twil9ci-sNeN_uhan5IbqAG2pGtNeo4BiQPlljDb3zA8Ek34RHWNA7-lNfOu4oRDqsze8QhaIt82yanbRX_roW_QSY6zA1rjNn2_C1fcM6veRmsFyYgV39Rt74n5_wDJ42-JN8rCfMDmz46S5sN1iUNJo-34Una0SF4WzcsbvOn8OHES6A31ehiXybxZyxBXH6LpgmEivrEIzuEhcRKcYiCJJSzOotFPMXcHV2evlpmDRlGBIbsB1PtObUWJsVRmpFK-ZSWzAq08wyp20lMm6kkoVCdGF1roTwzHurcpW64DBptge96f3UvwQihKuUS3NtXcWNMDoPAC9nWptgCagzfXjXDkhpG45yLJVxW9bsylkZeqzEHuvDUSf5UPNy_EHmoB3TstHMeUmVkiznhcJbdM1Bp_BHiZ76-2WQKYIpC54mZ314Gwfwr88oJ-NTPO7_q-AhPB5ejkfl6Hzy-RVsZYgSkAyWHkBvMVv61wHjLMybOJd_AApM90A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JSxxBFH4YhRAPajTBcUsJIZ567OpauvrgQdTBRGcIIYLgoamtg6ijzHLx11uvt0xEIXhqmnq91Vvqq-pX3wP4KsOkQjHDIuuUi7imNjKxzKKs8IkoFE1ZWaazP5CnF_zHpbissypxL0zFD9EuuKFnlPEaHfzBFfszpKF3viuY5O9ggctYoUUf_2qpoxDosCa9Q2SKNsSzcbLfXPnvUPQXX86i1HKY6S3DVfOCVXbJTXc6MV37-Iy78W1fsAJLNfokh5W5fIQ5P1yF5RqJktrPx6uwOENTGM76LbfreA0OznH4u34MTeTPqMwYmxCn70JgImVdHYJru8SVeBRXIghSUoyqDRTjT3DRO_l9dBrVRRgiG5Adj7Tm1FibZEZqRQvmYpsxKuPEMqdtIRJupJKZQmxhdaqE8Mx7q1IVuzBd0uwzzA_vh34diBCuUC5OtXUFN8LoNMC7lGltQhygznRgr9FHbmuGciyUcZtX3MpJHnosxx7rwG4r-VCxcrwgs9WoNK_9cpxTpSRLeabwFm1z8Cj8TaKH_n4aZLIQyMI8k7MOfCv19-oz8kH_BI8b_yv4Bd7_PO7l598HZ5vwIUGIgEywdAvmJ6Op3w4AZ2J2Skt-Akub9fg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Localizing+gradient+damage+model+with+decreasing+interactions&rft.jtitle=International+journal+for+numerical+methods+in+engineering&rft.au=Poh%2C+Leong+Hien&rft.au=Sun%2C+Gang&rft.date=2017-05-11&rft.issn=0029-5981&rft.eissn=1097-0207&rft.volume=110&rft.issue=6&rft.spage=503&rft.epage=522&rft_id=info:doi/10.1002%2Fnme.5364&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5981&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5981&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5981&client=summon |