Multifunctional Hydrogels Based on γ-Polyglutamic Acid/Polyethyleneimine for Hemostasis and Wound Healing

Current hemostatic materials have many shortcomings, such as biotoxicity or poor degradability, and do not effectively promote wound healing after hemostasis. To address these limitations, a hemostasis-promoting wound-healing hydrogel, polyglutamic acid/polyethyleneimine/montmorillonite (PPM), compr...

Full description

Saved in:
Bibliographic Details
Published inBiomaterials research Vol. 28; pp. 0063 - 882
Main Authors Li, Xiuyun, Han, Wenli, Zhang, Yilin, Tan, Dongmei, Cui, Min, Wang, Shige, Shi, Wenna
Format Journal Article
LanguageEnglish
Published United States AAAS 2024
한국생체재료학회
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Current hemostatic materials have many shortcomings, such as biotoxicity or poor degradability, and do not effectively promote wound healing after hemostasis. To address these limitations, a hemostasis-promoting wound-healing hydrogel, polyglutamic acid/polyethyleneimine/montmorillonite (PPM), comprising polyglutamic acid, 3,4-dihydroxybenzaldehyde-modified polyethyleneimine, and amino-modified montmorillonite (montmorillonite-NH 2 ) was constructed in this study. Due to the excellent water absorption abilities of γ-polyglutamic acid, the PPM and polyglutamic acid/polyethyleneimine hydrogels could rapidly absorb the blood and tissue fluid exuded from the wound to keep the wound clean and accelerate the blood coagulation. The homogeneous distribution of montmorillonite-NH 2 enhanced not only the mechanical properties of the hydrogel but also its hemostatic properties. In addition, the modification of polyethylenimine with 3,4-dihydroxybenzaldehyde provided anti-inflammatory effects and endorsed the wound healing. Cellular and blood safety experiments demonstrated the biocompatibility of the PPM hydrogel, and animal studies demonstrated that the PPM hydrogel effectively stopped bleeding and promoted wound healing. The concept design of clay-based hydrogel may create diverse opportunities for constructing hemostasis and wound-healing dressings.
AbstractList Current hemostatic materials have many shortcomings, such as biotoxicity or poor degradability, and do not effectively promote wound healing after hemostasis. To address these limitations, a hemostasis-promoting wound-healing hydrogel, polyglutamic acid/polyethyleneimine/montmorillonite (PPM), comprising polyglutamic acid, 3,4-dihydroxybenzaldehyde-modified polyethyleneimine, and amino-modified montmorillonite (montmorillonite-NH2) was constructed in this study. Due to the excellent water absorption abilities of γ-polyglutamic acid, the PPM and polyglutamic acid/polyethyleneimine hydrogels could rapidly absorb the blood and tissue fluid exuded from the wound to keep the wound clean and accelerate the blood coagulation. The homogeneous distribution of montmorillonite-NH2 enhanced not only the mechanical properties of the hydrogel but also its hemostatic properties. In addition, the modification of polyethylenimine with 3,4-dihydroxybenzaldehyde provided anti-inflammatory effects and endorsed the wound healing. Cellular and blood safety experiments demonstrated the biocompatibility of the PPM hydrogel, and animal studies demonstrated that the PPM hydrogel effectively stopped bleeding and promoted wound healing. The concept design of clay-based hydrogel may create diverse opportunities for constructing hemostasis and wound-healing dressings.Current hemostatic materials have many shortcomings, such as biotoxicity or poor degradability, and do not effectively promote wound healing after hemostasis. To address these limitations, a hemostasis-promoting wound-healing hydrogel, polyglutamic acid/polyethyleneimine/montmorillonite (PPM), comprising polyglutamic acid, 3,4-dihydroxybenzaldehyde-modified polyethyleneimine, and amino-modified montmorillonite (montmorillonite-NH2) was constructed in this study. Due to the excellent water absorption abilities of γ-polyglutamic acid, the PPM and polyglutamic acid/polyethyleneimine hydrogels could rapidly absorb the blood and tissue fluid exuded from the wound to keep the wound clean and accelerate the blood coagulation. The homogeneous distribution of montmorillonite-NH2 enhanced not only the mechanical properties of the hydrogel but also its hemostatic properties. In addition, the modification of polyethylenimine with 3,4-dihydroxybenzaldehyde provided anti-inflammatory effects and endorsed the wound healing. Cellular and blood safety experiments demonstrated the biocompatibility of the PPM hydrogel, and animal studies demonstrated that the PPM hydrogel effectively stopped bleeding and promoted wound healing. The concept design of clay-based hydrogel may create diverse opportunities for constructing hemostasis and wound-healing dressings.
Current hemostatic materials have many shortcomings, such as biotoxicity or poor degradability, and do not effectively promote wound healing after hemostasis. To address these limitations, a hemostasis-promoting wound-healing hydrogel, polyglutamic acid/polyethyleneimine/montmorillonite (PPM), comprising polyglutamic acid, 3,4-dihydroxybenzaldehyde-modified polyethyleneimine, and amino-modified montmorillonite (montmorillonite-NH ) was constructed in this study. Due to the excellent water absorption abilities of γ-polyglutamic acid, the PPM and polyglutamic acid/polyethyleneimine hydrogels could rapidly absorb the blood and tissue fluid exuded from the wound to keep the wound clean and accelerate the blood coagulation. The homogeneous distribution of montmorillonite-NH enhanced not only the mechanical properties of the hydrogel but also its hemostatic properties. In addition, the modification of polyethylenimine with 3,4-dihydroxybenzaldehyde provided anti-inflammatory effects and endorsed the wound healing. Cellular and blood safety experiments demonstrated the biocompatibility of the PPM hydrogel, and animal studies demonstrated that the PPM hydrogel effectively stopped bleeding and promoted wound healing. The concept design of clay-based hydrogel may create diverse opportunities for constructing hemostasis and wound-healing dressings.
Current hemostatic materials have many shortcomings, such as biotoxicity or poor degradability, and do not effectively promote wound healing after hemostasis. To address these limitations, a hemostasis-promoting wound-healing hydrogel, polyglutamic acid/polyethyleneimine/montmorillonite (PPM), comprising polyglutamic acid, 3,4-dihydroxybenzaldehyde-modified polyethyleneimine, and amino-modified montmorillonite (montmorillonite-NH 2 ) was constructed in this study. Due to the excellent water absorption abilities of γ-polyglutamic acid, the PPM and polyglutamic acid/polyethyleneimine hydrogels could rapidly absorb the blood and tissue fluid exuded from the wound to keep the wound clean and accelerate the blood coagulation. The homogeneous distribution of montmorillonite-NH 2 enhanced not only the mechanical properties of the hydrogel but also its hemostatic properties. In addition, the modification of polyethylenimine with 3,4-dihydroxybenzaldehyde provided anti-inflammatory effects and endorsed the wound healing. Cellular and blood safety experiments demonstrated the biocompatibility of the PPM hydrogel, and animal studies demonstrated that the PPM hydrogel effectively stopped bleeding and promoted wound healing. The concept design of clay-based hydrogel may create diverse opportunities for constructing hemostasis and wound-healing dressings.
Current hemostatic materials have many shortcomings, such as biotoxicity or poor degradability, and do not effectively promote wound healing after hemostasis. To address these limitations, a hemostasis-promoting wound-healing hydrogel, polyglutamic acid/polyethyleneimine/montmorillonite (PPM), comprising polyglutamic acid, 3,4-dihydroxybenzaldehyde-modified polyethyleneimine, and amino-modified montmorillonite (montmorillonite-NH2) was constructed in this study. Due to the excellent water absorption abilities of γ-polyglutamic acid, the PPM and polyglutamic acid/polyethyleneimine hydrogels could rapidly absorb the blood and tissue fluid exuded from the wound to keep the wound clean and accelerate the blood coagulation. The homogeneous distribution of montmorillonite-NH2 enhanced not only the mechanical properties of the hydrogel but also its hemostatic properties. In addition, the modification of polyethylenimine with 3,4-dihydroxybenzaldehyde provided anti-inflammatory effects and endorsed the wound healing. Cellular and blood safety experiments demonstrated the biocompatibility of the PPM hydrogel, and animal studies demonstrated that the PPM hydrogel effectively stopped bleeding and promoted wound healing. The concept design of clay-based hydrogel may create diverse opportunities for constructing hemostasis and wound-healing dressings. KCI Citation Count: 6
Author Tan, Dongmei
Shi, Wenna
Wang, Shige
Zhang, Yilin
Cui, Min
Han, Wenli
Li, Xiuyun
AuthorAffiliation 3 Shandong Cancer Hospital and Institute , Shandong First Medical University and Shandong Academy of Medical Sciences , Jinan 250117, Shandong Province, P. R. China
1 Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University , Jinan 250014, Shandong Province, P. R. China
2 School of Materials and Chemistry , University of Shanghai for Science and Technology , Shanghai 200093, P. R. China
AuthorAffiliation_xml – name: 2 School of Materials and Chemistry , University of Shanghai for Science and Technology , Shanghai 200093, P. R. China
– name: 1 Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University , Jinan 250014, Shandong Province, P. R. China
– name: 3 Shandong Cancer Hospital and Institute , Shandong First Medical University and Shandong Academy of Medical Sciences , Jinan 250117, Shandong Province, P. R. China
Author_xml – sequence: 1
  givenname: Xiuyun
  surname: Li
  fullname: Li, Xiuyun
  organization: Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, Shandong Province, P. R. China
– sequence: 2
  givenname: Wenli
  surname: Han
  fullname: Han, Wenli
  organization: School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China., Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong Province, P. R. China
– sequence: 3
  givenname: Yilin
  surname: Zhang
  fullname: Zhang, Yilin
  organization: Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, Shandong Province, P. R. China
– sequence: 4
  givenname: Dongmei
  surname: Tan
  fullname: Tan, Dongmei
  organization: Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, Shandong Province, P. R. China
– sequence: 5
  givenname: Min
  surname: Cui
  fullname: Cui, Min
  organization: Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, Shandong Province, P. R. China
– sequence: 6
  givenname: Shige
  orcidid: 0000-0002-7639-6035
  surname: Wang
  fullname: Wang, Shige
  organization: School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
– sequence: 7
  givenname: Wenna
  surname: Shi
  fullname: Shi, Wenna
  organization: Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong Province, P. R. China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39104745$$D View this record in MEDLINE/PubMed
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003125490$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNplkd9qFDEUxoO02Lr2wheQXKow3fybmc2VrEW7hYoiC16GbHJmmzaTtMmMsM_le_hMZnfbUiuBc0Ly-74T8r1CByEGQOgNJadcUM6nqz6dEtLwF-iYkbquWsrEwZP9ETrJ-ZoQQgWVopYv0RGXlIhW1Mfo-uvoB9eNwQwuBu3xYmNTXIPP-JPOYHEM-M_v6nv0m7UfB907g-fG2en2BIarjYcArncBcBcTXkAf86Czy1gHi3_GsdQFaO_C-jU67LTPcHLfJ2j55fPybFFdfju_OJtfVoazhlfWaEutlozSjkHLbcvalWY1Z2a7pORtJ2UDbTMzzEqruWArypumlbwu2AR92NuG1Kkb41TUbtfXUd0kNf-xvFC0fJdgpUzQxz18O656sAbCkLRXt8n1Om120n9vgrsqRr8UpUzOWE2Lw7t7hxTvRsiD6l024L0OEMesOJnJgnEhCvr26bDHKQ9pFGC6B0yKOSfolHGD3gZTZjtfnq12kasSudpGXhTvnykeTP9n_wIk3q0p
CitedBy_id crossref_primary_10_1016_j_ijbiomac_2025_140613
crossref_primary_10_3390_gels11040226
Cites_doi 10.1016/j.carbpol.2021.119000
10.1016/j.ccr.2022.214823
10.1021/cm0110627
10.1073/pnas.75.4.1998
10.1016/j.carbpol.2021.117707
10.1146/annurev-bioeng-012521-101942
10.1016/j.actbio.2015.11.017
10.1002/adhm.202000981
10.1021/acsami.2c18664
10.1016/j.colsurfb.2016.03.080
10.1016/j.compositesb.2022.110451
10.1016/j.nantod.2021.101290
10.2174/1389201021999201118161155
10.1016/j.carbpol.2019.115302
10.1016/j.cej.2019.01.028
10.1021/acsapm.9b01016
10.1002/adfm.202202825
10.1016/j.actbio.2013.10.029
10.3390/gels8020109
10.1016/j.ijbiomac.2023.124641
10.1002/adhm.201901502
10.1021/acsami.1c12538
10.1080/21691401.2020.1725535
10.1002/ptr.6919
10.1021/acsami.5b12141
10.1038/s41570-021-00323-z
10.1016/j.ijbiomac.2022.01.057
10.1016/j.tifs.2021.11.009
10.1002/adhm.201900123
10.1002/jcb.27287
10.1021/cm071457b
10.1016/j.carbpol.2021.118692
ContentType Journal Article
Copyright Copyright © 2024 Xiuyun Li et al.
Copyright © 2024 Xiuyun Li et al.
Copyright © 2024 Xiuyun Li et al. 2024 Xiuyun Li et al.
Copyright_xml – notice: Copyright © 2024 Xiuyun Li et al.
– notice: Copyright © 2024 Xiuyun Li et al.
– notice: Copyright © 2024 Xiuyun Li et al. 2024 Xiuyun Li et al.
DBID AAYXX
CITATION
NPM
7X8
5PM
ACYCR
DOI 10.34133/bmr.0063
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Korean Citation Index
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed


CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2055-7124
EndPage 882
ExternalDocumentID oai_kci_go_kr_ARTI_10634206
PMC11298251
39104745
10_34133_bmr_0063
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: M-2023184
– fundername: ;
  grantid: 202113010434
– fundername: ;
  grantid: ZR2020QH365
GroupedDBID 0R~
4.4
5VS
7X7
8FE
8FH
8FI
8FJ
9ZL
AAFWJ
AAYXX
ABUWG
ACGFS
ACPRK
ADBBV
ADFRT
ADRAZ
ADUKV
AFKRA
AFPKN
AHBYD
AHMBA
AHSBF
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ASPBG
AVWKF
BAPOH
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
EBS
EJD
EMOBN
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IHR
ISR
ITC
KQ8
LK8
M48
M7P
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RBZ
ROL
RPM
RSV
SOJ
UKHRP
NPM
PQGLB
7X8
5PM
ACYCR
ID FETCH-LOGICAL-c3263-dcad1da9211f2e73d727ba2532c2c2c9937f996e768c2d9da342b13667935253
IEDL.DBID M48
ISSN 2055-7124
1226-4601
IngestDate Wed Jul 23 03:12:44 EDT 2025
Thu Aug 21 18:32:00 EDT 2025
Fri Jul 11 16:39:59 EDT 2025
Mon Jul 21 06:05:17 EDT 2025
Tue Jul 01 01:12:30 EDT 2025
Thu Apr 24 22:57:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License Copyright © 2024 Xiuyun Li et al.
Exclusive licensee Korean Society for Biomaterials, Republic of Korea. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY 4.0).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3263-dcad1da9211f2e73d727ba2532c2c2c9937f996e768c2d9da342b13667935253
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
https://spj.science.org/doi/pdf/10.34133/bmr.0063
ORCID 0000-0002-7639-6035
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.34133/bmr.0063
PMID 39104745
PQID 3089513344
PQPubID 23479
PageCount 14
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10634206
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11298251
proquest_miscellaneous_3089513344
pubmed_primary_39104745
crossref_citationtrail_10_34133_bmr_0063
crossref_primary_10_34133_bmr_0063
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-00-00
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024-00-00
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Biomaterials research
PublicationTitleAlternate Biomater Res
PublicationYear 2024
Publisher AAAS
한국생체재료학회
Publisher_xml – name: AAAS
– name: 한국생체재료학회
References Xu Z (e_1_3_5_39_2) 2020; 9
Xie X (e_1_3_5_3_2) 2022; 8
Xu T (e_1_3_5_15_2) 2019; 8
Hangge P (e_1_3_5_4_2) 2018; 7
Li X (e_1_3_5_6_2) 2022; 475
Liu N (e_1_3_5_37_2) 2022; 24
Baker SE (e_1_3_5_21_2) 2007; 19
Yang K (e_1_3_5_26_2) 2021; 13
e_1_3_5_2_2
Yang J (e_1_3_5_25_2) 2020; 35
Shen C (e_1_3_5_18_2) 2020; 2
Zhou C (e_1_3_5_28_2) 2022; 250
Kheirabadi BS (e_1_3_5_23_2) 2010; 68
Simpson A (e_1_3_5_8_2) 2022; 6
e_1_3_5_7_2
Zhao P (e_1_3_5_36_2) 2022; 20
Moura BS (e_1_3_5_9_2) 2022; 32
e_1_3_5_5_2
Zhong Z (e_1_3_5_27_2) 2020; 48
Wang L (e_1_3_5_13_2) 2021; 119
Manias E (e_1_3_5_19_2) 2001; 13
Xue H (e_1_3_5_31_2) 2019; 226
Flegeau K (e_1_3_5_35_2) 2020; 9
e_1_3_5_10_2
e_1_3_5_11_2
Wang G (e_1_3_5_14_2) 2021; 22
Hosseinzadeh S (e_1_3_5_16_2) 2018; 120
Chen B (e_1_3_5_34_2) 2021; 259
Zhu J (e_1_3_5_32_2) 2022; 14
Suneetha M (e_1_3_5_33_2) 2023; 241
Qu J (e_1_3_5_30_2) 2019; 362
Luo R (e_1_3_5_17_2) 2016; 1
Wei Q (e_1_3_5_29_2) 2021; 278
Kheirabadi BS (e_1_3_5_22_2) 2009; 66
Wang P (e_1_3_5_12_2) 2022; 275
Ruonan D (e_1_3_5_38_2) 2021; 41
Griffin JH (e_1_3_5_20_2) 1978; 75
Bowman PD (e_1_3_5_24_2) 2011; 71
References_xml – volume: 278
  year: 2021
  ident: e_1_3_5_29_2
  article-title: Photo-induced adhesive carboxymethyl chitosan-based hydrogels with antibacterial and antioxidant properties for accelerating wound healing
  publication-title: Carbohydr Polym
  doi: 10.1016/j.carbpol.2021.119000
– volume: 475
  year: 2022
  ident: e_1_3_5_6_2
  article-title: Emerging materials for hemostasis
  publication-title: Coord Chem Rev
  doi: 10.1016/j.ccr.2022.214823
– volume: 13
  start-page: 3516
  issue: 10
  year: 2001
  ident: e_1_3_5_19_2
  article-title: Polypropylene/montmorillonite nanocomposites. Review of the synthetic routes and materials properties
  publication-title: Chem Mater
  doi: 10.1021/cm0110627
– volume: 75
  start-page: 1998
  issue: 4
  year: 1978
  ident: e_1_3_5_20_2
  article-title: Role of surface in surface-dependent activation of Hageman factor (blood coagulation factor XII)
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.75.4.1998
– volume: 259
  year: 2021
  ident: e_1_3_5_34_2
  article-title: Fabrication and characterization of biodegradable KH560 crosslinked chitin hydrogels with high toughness and good biocompatibility
  publication-title: Carbohydr Polym
  doi: 10.1016/j.carbpol.2021.117707
– volume: 24
  start-page: 69
  year: 2022
  ident: e_1_3_5_37_2
  article-title: Construction of multifunctional hydrogel with metal-polyphenol capsules for infected full-thickness skin wound healing
  publication-title: Bioact Mater
– volume: 6
  start-page: 111
  year: 2022
  ident: e_1_3_5_8_2
  article-title: Biomaterials for hemostasis
  publication-title: Annu Rev Biomed Eng
  doi: 10.1146/annurev-bioeng-012521-101942
– ident: e_1_3_5_5_2
  doi: 10.1016/j.actbio.2015.11.017
– volume: 9
  issue: 19
  year: 2020
  ident: e_1_3_5_35_2
  article-title: In situ forming, silanized hyaluronic acid hydrogels with fine control over mechanical properties and in vivo degradation for tissue engineering applications
  publication-title: Adv Healthc Mater
  doi: 10.1002/adhm.202000981
– volume: 14
  start-page: 53575
  issue: 48
  year: 2022
  ident: e_1_3_5_32_2
  article-title: Low-swelling adhesive hydrogel with rapid hemostasis and potent anti-inflammatory capability for full-thickness oral mucosal defect repair
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.2c18664
– volume: 1
  start-page: 90
  year: 2016
  ident: e_1_3_5_17_2
  article-title: Dopamine-assisted deposition of poly (ethylene imine) for efficient heparinization
  publication-title: Colloids Surf B Biointerfaces
  doi: 10.1016/j.colsurfb.2016.03.080
– volume: 250
  year: 2022
  ident: e_1_3_5_28_2
  article-title: Protocatechuic acid-mediated injectable antioxidant hydrogels facilitate wound healing
  publication-title: Compos Part B
  doi: 10.1016/j.compositesb.2022.110451
– volume: 68
  start-page: 269
  issue: 2
  year: 2010
  ident: e_1_3_5_23_2
  article-title: Safety evaluation of new hemostatic agents, smectite granules, and kaolin-coated gauze in a vascular injury wound model in swine
  publication-title: J Trauma
– volume: 41
  year: 2021
  ident: e_1_3_5_38_2
  article-title: Smart wound dressings for wound healing
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2021.101290
– volume: 71
  start-page: 727
  issue: 3
  year: 2011
  ident: e_1_3_5_24_2
  article-title: Toxicity of aluminum silicates used in hemostatic dressings toward human umbilical veins endothelial cells, HeLa cells, and RAW267.4 mouse macrophages
  publication-title: J Trauma
– volume: 22
  start-page: 1404
  issue: 11
  year: 2021
  ident: e_1_3_5_14_2
  article-title: Applications and functions of γ-poly-glutamic acid and its derivatives in medicine
  publication-title: Curr Pharm Biotechnol
  doi: 10.2174/1389201021999201118161155
– volume: 226
  year: 2019
  ident: e_1_3_5_31_2
  article-title: Quaternized chitosan-Matrigel-polyacrylamide hydrogels as wound dressing for wound repair and regeneration
  publication-title: Carbohydr Polym
  doi: 10.1016/j.carbpol.2019.115302
– volume: 362
  start-page: 548
  year: 2019
  ident: e_1_3_5_30_2
  article-title: Degradable conductive injectable hydrogels as novel antibacterial, anti-oxidant wound dressings for wound healing
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2019.01.028
– volume: 2
  start-page: 1438
  issue: 4
  year: 2020
  ident: e_1_3_5_18_2
  article-title: Intrinsic adjuvanticity of branched polyethylenimine in vitro and subcutaneously
  publication-title: ACS Appl Polym Mater
  doi: 10.1021/acsapm.9b01016
– volume: 32
  start-page: 2202825
  year: 2022
  ident: e_1_3_5_9_2
  article-title: Advancing tissue decellularized hydrogels for engineering human organoids
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.202202825
– volume: 20
  start-page: 355
  year: 2022
  ident: e_1_3_5_36_2
  article-title: Gold@Halloysite nanotubes-chitin composite hydrogel with antibacterial and hemostatic activity for wound healing
  publication-title: Bioact Mater
– ident: e_1_3_5_2_2
  doi: 10.1016/j.actbio.2013.10.029
– volume: 8
  issue: 2
  year: 2022
  ident: e_1_3_5_3_2
  article-title: Application of alginate-based hydrogels in hemostasis
  publication-title: Gels
  doi: 10.3390/gels8020109
– volume: 241
  year: 2023
  ident: e_1_3_5_33_2
  article-title: Antibacterial, biocompatible, hemostatic, and tissue adhesive hydrogels based on fungal-derived carboxymethyl chitosan-reduced graphene oxide-polydopamine for wound healing applications
  publication-title: Int J Biol Macromol
  doi: 10.1016/j.ijbiomac.2023.124641
– volume: 9
  year: 2020
  ident: e_1_3_5_39_2
  article-title: Advances and impact of antioxidant hydrogel in chronic wound healing
  publication-title: Adv Healthc Mater
  doi: 10.1002/adhm.201901502
– volume: 13
  start-page: 39957
  issue: 33
  year: 2021
  ident: e_1_3_5_26_2
  article-title: Poly(γ-glutamic acid) nanocoating to enhance the viability of Pseudomonas stutzeri NRCB010 through cell surface engineering
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.1c12538
– volume: 48
  start-page: 602
  issue: 1
  year: 2020
  ident: e_1_3_5_27_2
  article-title: Protocatechuic aldehyde mitigates hydrogen peroxide-triggered PC12 cell damage by down-regulating MEG3
  publication-title: Artif Cells Nanomed Biotechnol
  doi: 10.1080/21691401.2020.1725535
– volume: 35
  start-page: 1521
  issue: 3
  year: 2020
  ident: e_1_3_5_25_2
  article-title: Protocatechualdehyde attenuates obstructive nephropathy through inhibiting lncRNA9884 induced inflammation
  publication-title: Phytother Res
  doi: 10.1002/ptr.6919
– ident: e_1_3_5_10_2
  doi: 10.1021/acsami.5b12141
– ident: e_1_3_5_7_2
  doi: 10.1038/s41570-021-00323-z
– ident: e_1_3_5_11_2
  doi: 10.1016/j.ijbiomac.2022.01.057
– volume: 66
  start-page: 316
  issue: 2
  year: 2009
  ident: e_1_3_5_22_2
  article-title: Comparison of new hemostatic granules/powders with currently deployed hemostatic products in a lethal model of extremity arterial hemorrhage in swine
  publication-title: J Trauma
– volume: 119
  start-page: 1
  year: 2021
  ident: e_1_3_5_13_2
  article-title: Poly-γ-glutamic acid: Recent achievements, diverse applications and future perspectives
  publication-title: Trends Food Sci Technol
  doi: 10.1016/j.tifs.2021.11.009
– volume: 8
  issue: 13
  year: 2019
  ident: e_1_3_5_15_2
  article-title: Bionic poly(γ-glutamic acid) electrospun fibrous scaffolds for preventing hypertrophic scars
  publication-title: Adv Healthc Mater
  doi: 10.1002/adhm.201900123
– volume: 7
  start-page: S267
  issue: 3
  year: 2018
  ident: e_1_3_5_4_2
  article-title: Hemostasis and nanotechnology
  publication-title: Cardiovasc Diagn Ther
– volume: 120
  start-page: 1511
  issue: 2
  year: 2018
  ident: e_1_3_5_16_2
  article-title: Polyethylenimine: A new differentiation factor to endothelial/cardiac tissue
  publication-title: J Cell Biochem
  doi: 10.1002/jcb.27287
– volume: 19
  start-page: 4390
  issue: 18
  year: 2007
  ident: e_1_3_5_21_2
  article-title: Controlling bioprocesses with inorganic surfaces: Layered clay hemostatic agents
  publication-title: Chem Mater
  doi: 10.1021/cm071457b
– volume: 275
  year: 2022
  ident: e_1_3_5_12_2
  article-title: Dynamic regulable sodium alginate/poly(γ-glutamic acid) hybrid hydrogels promoted chondrogenic differentiation of stem cells
  publication-title: Carbohydr Polym
  doi: 10.1016/j.carbpol.2021.118692
SSID ssj0001419459
Score 2.2836194
Snippet Current hemostatic materials have many shortcomings, such as biotoxicity or poor degradability, and do not effectively promote wound healing after hemostasis....
SourceID nrf
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 0063
SubjectTerms 의공학
Title Multifunctional Hydrogels Based on γ-Polyglutamic Acid/Polyethyleneimine for Hemostasis and Wound Healing
URI https://www.ncbi.nlm.nih.gov/pubmed/39104745
https://www.proquest.com/docview/3089513344
https://pubmed.ncbi.nlm.nih.gov/PMC11298251
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003125490
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 생체재료학회지, 2024, 28(0), , pp.869-882
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1Lb9NAEMdHTXuBAyrPhkK0PA5cDI734fhQoRa1CkitKtSK3Fb7cghN7dZpJfK5-B58ps7YTtSgHFAOkZKNdjWzm_nNenf-AO8z4xyXykYGaT8SVsaRoWNiKeKDNMgHaa11eHyihufi20iONmChsdkacLY2tSM9qfNq-vH39fwzLvg9yjjxP5h_spcVnc_iHdjCgJSSkMFxS_n1VovATL2WTesjbEQCR9XUGFr99Upk6hRVvg46_z07eS8YHW3Do5Yi2X7j9sewEYon8PBebcGn8Ku-Wkthq9ntY8O5r8oxhkJ2gJHLs7Jgf_9Ep-V0PsbZR7L0bN_h1KRPAroPw1Egya_AkGvZMFyWCJKzyYyZwrMfpMbE6A4TdvYMzo4Oz74Mo1ZYIXJIazzyzvi-Nxkmf3kSUu4RYqxJJE8cvQhZcsyDAqYiLvGZN1wkts-VwsUssdlz2CzKIuwAcwg4Mo-F94NY5DbPlE2dslwFN_BSiS58WNhUu7boOGlfTDUmH7X5NZpfk_m78HbZ9KqptLGu0Tt0jL5wE011sel9XOqLSiP9f8XmCkcaqy68WThO42qhRyCmCOXtTPN4kJGijcCRvWgcueyMZ1S2QsguDFZcvGxAPa5-U0x-1hW5CVrpDvDL_xreLjxIEI2ajZxXsHlT3YbXiDY3tgeddJT2YOvg8OT0e6-exncPWvuJ
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multifunctional+Hydrogels+Based+on+%CE%B3-Polyglutamic+Acid%2FPolyethyleneimine+for+Hemostasis+and+Wound+Healing&rft.jtitle=Biomaterials+research&rft.au=Xiuyun+Li&rft.au=Wenli+Han&rft.au=Yilin+Zhang&rft.au=Dongmei+Tan&rft.date=2024&rft.pub=%ED%95%9C%EA%B5%AD%EC%83%9D%EC%B2%B4%EC%9E%AC%EB%A3%8C%ED%95%99%ED%9A%8C&rft.issn=1226-4601&rft.eissn=2055-7124&rft.spage=869&rft.epage=882&rft_id=info:doi/10.34133%2Fbmr.0063&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_10634206
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2055-7124&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2055-7124&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2055-7124&client=summon