Low-loss contacts on textured substrates for inverted perovskite solar cells

Inverted perovskite solar cells (PSCs) promise enhanced operating stability compared to their normal-structure counterparts 1 – 3 . To improve efficiency further, it is crucial to combine effective light management with low interfacial losses 4 , 5 . Here we develop a conformal self-assembled monola...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 624; no. 7991; pp. 289 - 294
Main Authors Park, So Min, Wei, Mingyang, Lempesis, Nikolaos, Yu, Wenjin, Hossain, Tareq, Agosta, Lorenzo, Carnevali, Virginia, Atapattu, Harindi R., Serles, Peter, Eickemeyer, Felix T., Shin, Heejong, Vafaie, Maral, Choi, Deokjae, Darabi, Kasra, Jung, Eui Dae, Yang, Yi, Kim, Da Bin, Zakeeruddin, Shaik M., Chen, Bin, Amassian, Aram, Filleter, Tobin, Kanatzidis, Mercouri G., Graham, Kenneth R., Xiao, Lixin, Rothlisberger, Ursula, Grätzel, Michael, Sargent, Edward H.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 14.12.2023
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Inverted perovskite solar cells (PSCs) promise enhanced operating stability compared to their normal-structure counterparts 1 – 3 . To improve efficiency further, it is crucial to combine effective light management with low interfacial losses 4 , 5 . Here we develop a conformal self-assembled monolayer (SAM) as the hole-selective contact on light-managing textured substrates. Molecular dynamics simulations indicate that cluster formation during phosphonic acid adsorption leads to incomplete SAM coverage. We devise a co-adsorbent strategy that disassembles high-order clusters, thus homogenizing the distribution of phosphonic acid molecules, and thereby minimizing interfacial recombination and improving electronic structures. We report a laboratory-measured power conversion efficiency (PCE) of 25.3% and a certified quasi-steady-state PCE of 24.8% for inverted PSCs, with a photocurrent approaching 95% of the Shockley–Queisser maximum. An encapsulated device having a PCE of 24.6% at room temperature retains 95% of its peak performance when stressed at 65 °C and 50% relative humidity following more than 1,000 h of maximum power point tracking under 1 sun illumination. This represents one of the most stable PSCs subjected to accelerated ageing: achieved with a PCE surpassing 24%. The engineering of phosphonic acid adsorption on textured substrates offers a promising avenue for efficient and stable PSCs. It is also anticipated to benefit other optoelectronic devices that require light management. A co-adsorbent is used to achieve a uniform self-assembled phosphonic acid monolayer on a textured substrate, leading to more efficient inverted perovskite solar cells.
AbstractList Inverted perovskite solar cells (PSCs) promise enhanced operating stability compared to their normal-structure counterparts 1 – 3 . To improve efficiency further, it is crucial to combine effective light management with low interfacial losses 4 , 5 . Here we develop a conformal self-assembled monolayer (SAM) as the hole-selective contact on light-managing textured substrates. Molecular dynamics simulations indicate that cluster formation during phosphonic acid adsorption leads to incomplete SAM coverage. We devise a co-adsorbent strategy that disassembles high-order clusters, thus homogenizing the distribution of phosphonic acid molecules, and thereby minimizing interfacial recombination and improving electronic structures. We report a laboratory-measured power conversion efficiency (PCE) of 25.3% and a certified quasi-steady-state PCE of 24.8% for inverted PSCs, with a photocurrent approaching 95% of the Shockley–Queisser maximum. An encapsulated device having a PCE of 24.6% at room temperature retains 95% of its peak performance when stressed at 65 °C and 50% relative humidity following more than 1,000 h of maximum power point tracking under 1 sun illumination. This represents one of the most stable PSCs subjected to accelerated ageing: achieved with a PCE surpassing 24%. The engineering of phosphonic acid adsorption on textured substrates offers a promising avenue for efficient and stable PSCs. It is also anticipated to benefit other optoelectronic devices that require light management. A co-adsorbent is used to achieve a uniform self-assembled phosphonic acid monolayer on a textured substrate, leading to more efficient inverted perovskite solar cells.
Inverted perovskite solar cells (PSCs) promise enhanced operating stability compared to their normal-structure counterparts1-3. To improve efficiency further, it is crucial to combine effective light management with low interfacial losses4,5. Here we develop a conformal self-assembled monolayer (SAM) as the hole-selective contact on light-managing textured substrates. Molecular dynamics simulations indicate that cluster formation during phosphonic acid adsorption leads to incomplete SAM coverage. We devise a co-adsorbent strategy that disassembles high-order clusters, thus homogenizing the distribution of phosphonic acid molecules, and thereby minimizing interfacial recombination and improving electronic structures. We report a laboratory-measured power conversion efficiency (PCE) of 25.3% and a certified quasi-steady-state PCE of 24.8% for inverted PSCs, with a photocurrent approaching 95% of the Shockley-Queisser maximum. An encapsulated device having a PCE of 24.6% at room temperature retains 95% of its peak performance when stressed at 65 °C and 50% relative humidity following more than 1,000 h of maximum power point tracking under 1 sun illumination. This represents one of the most stable PSCs subjected to accelerated ageing: achieved with a PCE surpassing 24%. The engineering of phosphonic acid adsorption on textured substrates offers a promising avenue for efficient and stable PSCs. It is also anticipated to benefit other optoelectronic devices that require light management.
Inverted perovskite solar cells (PSCs) promise enhanced operating stability compared to their normal-structure counterparts13. To improve efficiency further, it is crucial to combine effective light management with low interfacial losses4 5. Here we develop a conformal self-assembled monolayer (SAM) as the hole-selective contact on lightmanaging textured substrates. Molecular dynamics simulations indicate that cluster formation during phosphonic acid adsorption leadsto incomplete SAM coverage. We devise a co-adsorbent strategy that disassembles high-order clusters, thus homogenizing the distribution of phosphonic acid molecules, and thereby minimizing interfacial recombination and improving electronic structures. We report a laboratorymeasured power conversion efficiency (PCE) of 25.3% and a certified quasi-steady-state PCE of 24.8% for inverted PSCs, with a photocurrent approaching 95% ofthe ShockleyQueisser maximum. An encapsulated device having a PCE of 24.6% at room temperature retains 95% of its peak performance when stressed at 65 °C and 50% relative humidity following more than 1,000 h of maximum power point tracking underl sun illumination. This represents one ofthe most stable PSCs subjected to accelerated ageing: achieved with a PCE surpassing 24%. The engineering of phosphonic acid adsorption on textured substrates offers a promising avenue for efficient and stable PSCs. It is also anticipated to benefit other optoelectronic devices that require light management.
Inverted perovskite solar cells (PSCs) promise enhanced operating stability compared to their normal-structure counterparts . To improve efficiency further, it is crucial to combine effective light management with low interfacial losses . Here we develop a conformal self-assembled monolayer (SAM) as the hole-selective contact on light-managing textured substrates. Molecular dynamics simulations indicate that cluster formation during phosphonic acid adsorption leads to incomplete SAM coverage. We devise a co-adsorbent strategy that disassembles high-order clusters, thus homogenizing the distribution of phosphonic acid molecules, and thereby minimizing interfacial recombination and improving electronic structures. We report a laboratory-measured power conversion efficiency (PCE) of 25.3% and a certified quasi-steady-state PCE of 24.8% for inverted PSCs, with a photocurrent approaching 95% of the Shockley-Queisser maximum. An encapsulated device having a PCE of 24.6% at room temperature retains 95% of its peak performance when stressed at 65 °C and 50% relative humidity following more than 1,000 h of maximum power point tracking under 1 sun illumination. This represents one of the most stable PSCs subjected to accelerated ageing: achieved with a PCE surpassing 24%. The engineering of phosphonic acid adsorption on textured substrates offers a promising avenue for efficient and stable PSCs. It is also anticipated to benefit other optoelectronic devices that require light management.
Author Agosta, Lorenzo
Kanatzidis, Mercouri G.
Grätzel, Michael
Choi, Deokjae
Carnevali, Virginia
Filleter, Tobin
Park, So Min
Serles, Peter
Vafaie, Maral
Xiao, Lixin
Darabi, Kasra
Eickemeyer, Felix T.
Sargent, Edward H.
Graham, Kenneth R.
Shin, Heejong
Amassian, Aram
Lempesis, Nikolaos
Jung, Eui Dae
Hossain, Tareq
Atapattu, Harindi R.
Kim, Da Bin
Chen, Bin
Rothlisberger, Ursula
Zakeeruddin, Shaik M.
Wei, Mingyang
Yu, Wenjin
Yang, Yi
Author_xml – sequence: 1
  givenname: So Min
  orcidid: 0000-0001-7677-5564
  surname: Park
  fullname: Park, So Min
  organization: Department of Chemistry, Northwestern University, Department of Electrical and Computer Engineering, University of Toronto
– sequence: 2
  givenname: Mingyang
  surname: Wei
  fullname: Wei, Mingyang
  organization: Laboratory of Photonics and Interfaces, Ecole Polytechnique Fédérale de Lausanne
– sequence: 3
  givenname: Nikolaos
  orcidid: 0000-0002-4104-9666
  surname: Lempesis
  fullname: Lempesis, Nikolaos
  organization: Laboratory of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale de Lausanne
– sequence: 4
  givenname: Wenjin
  surname: Yu
  fullname: Yu, Wenjin
  organization: State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University
– sequence: 5
  givenname: Tareq
  orcidid: 0000-0001-5559-1168
  surname: Hossain
  fullname: Hossain, Tareq
  organization: Department of Chemistry, University of Kentucky
– sequence: 6
  givenname: Lorenzo
  surname: Agosta
  fullname: Agosta, Lorenzo
  organization: Laboratory of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale de Lausanne
– sequence: 7
  givenname: Virginia
  orcidid: 0000-0002-8905-2928
  surname: Carnevali
  fullname: Carnevali, Virginia
  organization: Laboratory of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale de Lausanne
– sequence: 8
  givenname: Harindi R.
  surname: Atapattu
  fullname: Atapattu, Harindi R.
  organization: Department of Chemistry, University of Kentucky
– sequence: 9
  givenname: Peter
  orcidid: 0000-0002-3105-4672
  surname: Serles
  fullname: Serles, Peter
  organization: Department of Mechanical and Industrial Engineering, University of Toronto
– sequence: 10
  givenname: Felix T.
  orcidid: 0000-0003-0855-9944
  surname: Eickemeyer
  fullname: Eickemeyer, Felix T.
  organization: Laboratory of Photonics and Interfaces, Ecole Polytechnique Fédérale de Lausanne
– sequence: 11
  givenname: Heejong
  surname: Shin
  fullname: Shin, Heejong
  organization: Department of Chemistry, Northwestern University
– sequence: 12
  givenname: Maral
  orcidid: 0000-0001-9119-6499
  surname: Vafaie
  fullname: Vafaie, Maral
  organization: Department of Electrical and Computer Engineering, University of Toronto
– sequence: 13
  givenname: Deokjae
  surname: Choi
  fullname: Choi, Deokjae
  organization: Department of Chemistry, Northwestern University
– sequence: 14
  givenname: Kasra
  surname: Darabi
  fullname: Darabi, Kasra
  organization: Department of Materials Science and Engineering, and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University
– sequence: 15
  givenname: Eui Dae
  orcidid: 0000-0003-4848-0931
  surname: Jung
  fullname: Jung, Eui Dae
  organization: Department of Electrical and Computer Engineering, University of Toronto
– sequence: 16
  givenname: Yi
  surname: Yang
  fullname: Yang, Yi
  organization: Department of Chemistry, Northwestern University
– sequence: 17
  givenname: Da Bin
  surname: Kim
  fullname: Kim, Da Bin
  organization: Department of Electrical and Computer Engineering, University of Toronto
– sequence: 18
  givenname: Shaik M.
  orcidid: 0000-0003-0655-4744
  surname: Zakeeruddin
  fullname: Zakeeruddin, Shaik M.
  organization: Laboratory of Photonics and Interfaces, Ecole Polytechnique Fédérale de Lausanne
– sequence: 19
  givenname: Bin
  orcidid: 0000-0002-2106-7664
  surname: Chen
  fullname: Chen, Bin
  organization: Department of Chemistry, Northwestern University
– sequence: 20
  givenname: Aram
  orcidid: 0000-0002-5734-1194
  surname: Amassian
  fullname: Amassian, Aram
  organization: Department of Materials Science and Engineering, and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University
– sequence: 21
  givenname: Tobin
  orcidid: 0000-0003-2609-4773
  surname: Filleter
  fullname: Filleter, Tobin
  organization: Department of Mechanical and Industrial Engineering, University of Toronto
– sequence: 22
  givenname: Mercouri G.
  orcidid: 0000-0003-2037-4168
  surname: Kanatzidis
  fullname: Kanatzidis, Mercouri G.
  organization: Department of Chemistry, Northwestern University
– sequence: 23
  givenname: Kenneth R.
  orcidid: 0000-0002-6387-3998
  surname: Graham
  fullname: Graham, Kenneth R.
  organization: Department of Chemistry, University of Kentucky
– sequence: 24
  givenname: Lixin
  orcidid: 0000-0002-1190-6962
  surname: Xiao
  fullname: Xiao, Lixin
  organization: State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University
– sequence: 25
  givenname: Ursula
  orcidid: 0000-0002-1704-8591
  surname: Rothlisberger
  fullname: Rothlisberger, Ursula
  organization: Laboratory of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale de Lausanne
– sequence: 26
  givenname: Michael
  orcidid: 0000-0002-0068-0195
  surname: Grätzel
  fullname: Grätzel, Michael
  email: michael.graetzel@epfl.ch
  organization: Laboratory of Photonics and Interfaces, Ecole Polytechnique Fédérale de Lausanne
– sequence: 27
  givenname: Edward H.
  orcidid: 0000-0003-0396-6495
  surname: Sargent
  fullname: Sargent, Edward H.
  email: ted.sargent@northwestern.edu
  organization: Department of Chemistry, Northwestern University, Department of Electrical and Computer Engineering, University of Toronto, Department of Electrical and Computer Engineering, Northwestern University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37871614$$D View this record in MEDLINE/PubMed
BookMark eNp9kE1LAzEQhoNUtFb_gAdZ8OIlmo_Nxx5F_IKCFz2HbXZWqttNzWSr_nujrQoePA3MPPPO8OyRUR96IOSQs1POpD3DkiurKROSMm1KRc0WGfPSaFpqa0ZkzJiwlFmpd8ke4hNjTHFT7pBdaazhmpdjMp2GV9oFxMKHPtU-YRH6IsFbGiI0BQ4zTLFOgEUbYjHvVxBT7i8hhhU-zxMUGLo6Fh66DvfJdlt3CAebOiEPV5f3Fzd0end9e3E-pV4KLamufF2xivFWKSW4UapS0rQeBJSVZDPd-MoY2-rGVEppL7i3AFYp3ja2AS8n5GSdu4zhZQBMbjHHzw_qHsKATljLRakkVxk9_oM-hSH2-TsnKiYMV8zyTIk15WNWEaF1yzhf1PHdceY-Xbu1a5dduy_XzuSlo030MFtA87PyLTcDcg1gHvWPEH9v_xP7AWsNiuU
CitedBy_id crossref_primary_10_26599_EMD_2024_9370018
crossref_primary_10_1002_adfm_202404402
crossref_primary_10_1002_adfm_202316500
crossref_primary_10_1002_ifm2_8
crossref_primary_10_1016_j_cej_2024_153253
crossref_primary_10_6023_A24010026
crossref_primary_10_1002_adma_202311025
crossref_primary_10_1126_science_adm9474
crossref_primary_10_1002_adma_202312237
crossref_primary_10_1002_aenm_202401414
crossref_primary_10_1002_ange_202403610
crossref_primary_10_1002_adfm_202315604
crossref_primary_10_1021_acsnano_3c11642
crossref_primary_10_1002_adfm_202315843
crossref_primary_10_1038_s41560_024_01529_3
crossref_primary_10_1002_adfm_202316591
crossref_primary_10_1002_adma_202401788
crossref_primary_10_1038_s41578_024_00678_x
crossref_primary_10_1002_idm2_12145
crossref_primary_10_1038_s41586_023_06892_x
crossref_primary_10_1002_adfm_202402655
crossref_primary_10_1007_s40820_024_01408_2
crossref_primary_10_1002_adfm_202400474
crossref_primary_10_1016_j_xcrp_2024_101992
crossref_primary_10_1002_adma_202312264
crossref_primary_10_1002_anie_202403610
crossref_primary_10_1002_adma_202311970
crossref_primary_10_1016_j_mtener_2024_101593
crossref_primary_10_1021_acs_jpclett_4c01264
crossref_primary_10_1021_acsenergylett_4c00510
crossref_primary_10_1016_j_cej_2024_153404
crossref_primary_10_1039_D4EE01044B
crossref_primary_10_1126_science_ado2302
crossref_primary_10_3390_nano14050446
crossref_primary_10_1002_adfm_202402061
crossref_primary_10_1016_j_cej_2024_149035
crossref_primary_10_1016_j_ssc_2024_115556
crossref_primary_10_1002_adfm_202400467
crossref_primary_10_26599_EMD_2024_9370038
crossref_primary_10_1088_2752_5724_ad42ba
crossref_primary_10_1039_D3TA06808K
crossref_primary_10_1021_acsenergylett_4c00045
crossref_primary_10_1002_anie_202407766
crossref_primary_10_1039_D4CP00509K
crossref_primary_10_1039_D4TA00962B
crossref_primary_10_1002_aenm_202303705
crossref_primary_10_1002_adfm_202404255
crossref_primary_10_1002_adma_202407433
crossref_primary_10_1021_jacs_4c03917
crossref_primary_10_1016_j_jcis_2024_02_220
crossref_primary_10_1002_solr_202400182
crossref_primary_10_1002_adfm_202407805
crossref_primary_10_1007_s11708_024_0937_5
crossref_primary_10_1002_adma_202401537
crossref_primary_10_1002_ange_202407766
crossref_primary_10_1002_smll_202402197
crossref_primary_10_20517_jmi_2024_10
crossref_primary_10_1002_advs_202401955
crossref_primary_10_1002_aenm_202304486
crossref_primary_10_1063_5_0189968
Cites_doi 10.1021/acs.chemrev.6b00061
10.1021/jp022656f
10.1126/science.adg3755
10.1002/jcc.20035
10.1021/acsenergylett.2c02629
10.1039/C7SM02429K
10.1038/s41586-023-05825-y
10.1063/5.0007045
10.1063/1.2408420
10.1021/jp0523423
10.1038/s41560-019-0529-5
10.1038/s41467-022-29702-w
10.1002/aenm.202203982
10.1038/s41563-018-0115-4
10.1063/1.447334
10.1038/s41566-022-00985-1
10.1093/nar/gkx312
10.1002/adma.202206193
10.1103/PhysRevB.59.12301
10.1038/s41560-019-0538-4
10.1063/1.442716
10.1016/j.joule.2019.05.016
10.1016/j.joule.2019.06.018
10.1126/science.abd4016
10.1126/science.ade3126
10.1021/jacs.3c00805
10.1021/cr0300789
10.1126/science.abm8566
10.1039/C9EE02268F
10.1038/s41586-022-05268-x
10.1002/wcms.30
10.1021/acsami.1c15860
10.1063/1.2770708
10.1126/science.add8786
10.1016/j.cpc.2018.01.012
10.1002/adma.202210146
10.1038/s41578-022-00503-3
10.1039/c0jm02829k
10.1021/ja5048076
10.1126/science.abh1885
10.1021/la000502q
10.1515/zna-2009-3-406
10.1016/j.joule.2020.06.004
10.1126/science.adi4107
10.1002/anie.202203088
10.1002/aenm.201901631
10.1103/PhysRevA.31.1695
10.1038/s41586-023-05992-y
10.1002/admi.202000041
10.1021/jp0538666
10.1021/jp710893k
10.1021/acsenergylett.1c00748
10.1002/adma.202304415
10.1201/9780367806934
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2023. The Author(s), under exclusive licence to Springer Nature Limited.
Copyright Nature Publishing Group Dec 14, 2023
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2023. The Author(s), under exclusive licence to Springer Nature Limited.
– notice: Copyright Nature Publishing Group Dec 14, 2023
DBID NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
K9.
KL.
M7N
NAPCQ
P64
RC3
SOI
7X8
DOI 10.1038/s41586-023-06745-7
DatabaseName PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Meteorological & Geoastrophysical Abstracts - Academic
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Nursing & Allied Health Premium
Genetics Abstracts
Meteorological & Geoastrophysical Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Virology and AIDS Abstracts
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 294
ExternalDocumentID 10_1038_s41586_023_06745_7
37871614
Genre Journal Article
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.XZ
07C
0R~
0WA
123
186
1OL
29M
2KS
39C
53G
5RE
6TJ
70F
7RV
85S
8WZ
97F
A6W
A7Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAMNW
AASDW
AAYEP
AAZLF
ABFSI
ABIVO
ABJNI
ABLJU
ABOCM
ABPEJ
ABPPZ
ABVXF
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACWUS
ADBBV
ADFRT
ADUKH
AENEX
AFBBN
AFFNX
AFLOW
AFRAH
AFRQD
AFSHS
AGAYW
AGEZK
AGHSJ
AGHTU
AGSOS
AHMBA
AHSBF
AIDUJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
B-7
BENPR
BHPHI
BIN
BKKNO
CJ0
CS3
DU5
E.-
E.L
EAP
EBS
EE.
EPS
EXGXG
F5P
FAC
FEDTE
FQGFK
FSGXE
HCIFZ
HG6
HVGLF
HZ~
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
IOF
IPY
KOO
L7B
LGEZI
LOTEE
LSO
M0K
M2O
M7P
N9A
NADUK
NEPJS
NXXTH
O9-
OBC
OES
OHH
OMK
OVD
P2P
PV9
RND
RNS
RNT
RNTTT
RXW
SC5
SHXYY
SIXXV
SJN
SNYQT
TAE
TAOOD
TBHMF
TDRGL
TEORI
TN5
TSG
TWZ
U5U
UIG
UKR
UMD
UQL
VQA
VVN
WH7
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YJ6
YNT
YOC
YQT
YR2
YXB
YZZ
ZCA
~02
~88
~KM
.-4
.GJ
.HR
00M
08P
0B8
1CY
1VR
1VW
2XV
354
3EH
3O-
3V.
4.4
41X
41~
42X
4R4
663
79B
7X2
7X7
7XC
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
97L
9M8
A8Z
AAJYS
AAKAS
AAVBQ
AAYOK
AAYZH
ABAWZ
ABDBF
ABDPE
ABEFU
ABJCF
ABTAH
ABUWG
ACBNA
ACBTR
ACTDY
ADRHT
ADYSU
ADZCM
AFFDN
AFHKK
AFKRA
AGCDD
AGNAY
AIDAL
AIYXT
AJUXI
APEBS
ARTTT
AZQEC
B0M
BBNVY
BCR
BCU
BDKGC
BEC
BES
BGLVJ
BKEYQ
BKOMP
BKSAR
BLC
BPHCQ
BVXVI
CCPQU
D1I
D1J
D1K
DB5
DO4
DWQXO
EAD
EAS
EAZ
EBC
EBD
EBO
ECC
EJD
EMB
EMF
EMH
EMK
EMOBN
EPL
ESE
ESN
ESTFP
ESX
EX3
FA8
FYUFA
GNUQQ
GUQSH
HMCUK
I-F
INR
ISR
ITC
J5H
K6-
KB.
L-9
L6V
LK5
LK8
M0L
M1P
M2M
M2P
M7R
M7S
MVM
N4W
NAPCQ
NEJ
NPM
ODYON
OHT
P-O
P62
PATMY
PCBAR
PDBOC
PEA
PM3
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
QS-
R05
R4F
RHI
S0X
SJFOW
SKT
SV3
TH9
TUD
TUS
UAO
UBY
UHB
UKHRP
USG
VOH
WOW
X7L
XOL
YQI
YQJ
YV5
YXA
YYP
YYQ
ZCG
ZE2
ZGI
ZHY
ZKB
ZKG
ZY4
~7V
~8M
~G0
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
K9.
KL.
M7N
P64
RC3
SOI
7X8
ID FETCH-LOGICAL-c3263-69ca90901f555217559537fce2e4930b6dc9778f6d79556c21c8ee8551fd8dec3
ISSN 0028-0836
IngestDate Fri Oct 25 02:02:27 EDT 2024
Thu Nov 07 08:37:34 EST 2024
Thu Sep 12 16:33:44 EDT 2024
Sat Nov 02 12:25:22 EDT 2024
Fri Oct 11 20:46:21 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 7991
Language English
License 2023. The Author(s), under exclusive licence to Springer Nature Limited.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3263-69ca90901f555217559537fce2e4930b6dc9778f6d79556c21c8ee8551fd8dec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8905-2928
0000-0003-0855-9944
0000-0001-7677-5564
0000-0002-4104-9666
0000-0002-5734-1194
0000-0001-9119-6499
0000-0003-2609-4773
0000-0002-2106-7664
0000-0002-1190-6962
0000-0003-0655-4744
0000-0002-3105-4672
0000-0002-6387-3998
0000-0003-2037-4168
0000-0003-4848-0931
0000-0002-1704-8591
0000-0002-0068-0195
0000-0001-5559-1168
0000-0003-0396-6495
PMID 37871614
PQID 2902715081
PQPubID 40569
PageCount 6
ParticipantIDs proquest_miscellaneous_2881245315
proquest_journals_2902715081
crossref_primary_10_1038_s41586_023_06745_7
pubmed_primary_37871614
springer_journals_10_1038_s41586_023_06745_7
PublicationCentury 2000
PublicationDate 2023-12-14
PublicationDateYYYYMMDD 2023-12-14
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-14
  day: 14
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Nazeeruddin, Humphry-Baker, Liska, Grätzel (CR31) 2003; 107
Neale, Kopidakis, van de Lagemaat, Grätzel, Frank (CR24) 2005; 109
Truong (CR16) 2023; 145
Nosé (CR48) 1984; 81
Zhang (CR2) 2023; 380
Wang, Wolf, Caldwell, Kollman, Case (CR53) 2004; 25
Grimme (CR42) 2011; 1
Dang (CR33) 2019; 3
Zheng (CR8) 2020; 5
Paniagua (CR29) 2008; 112
Deng (CR25) 2022; 61
Al-Ashouri (CR35) 2020; 370
Hotchkiss, Malicki, Giordano, Armstrong, Marder (CR30) 2011; 21
Bandura, Sofo, Kubicki (CR50) 2006; 110
Isikgor (CR17) 2022; 8
CR6
Li (CR10) 2022; 376
Lim (CR55) 2009; 64
He (CR19) 2023; 618
Sandberg (CR38) 2020; 7
Park (CR1) 2023; 381
Bussi, Donadio, Parrinello (CR45) 2007; 126
Li (CR36) 2022; 13
Moot (CR39) 2021; 6
VandeVondele, Hutter (CR44) 2007; 127
Bunker (CR32) 2000; 16
Caprioglio (CR34) 2019; 9
Sahli (CR13) 2018; 17
Boyd (CR22) 2020; 4
Bengtsson (CR43) 1999; 59
Kim (CR4) 2022; 375
Peng (CR11) 2023; 379
Farag (CR21) 2023; 13
Al-Ashouri (CR26) 2023; 8
Lami (CR37) 2019; 3
Al-Ashouri (CR14) 2019; 12
CR54
Swope, Andersen, Berens, Wilson (CR47) 1982; 76
Van Setten (CR41) 2018; 226
Camaioni (CR12) 2023; 35
Park (CR5) 2023; 616
Chen (CR9) 2022; 16
Dodda, Cabeza de Vaca, Tirado-Rives, Jorgensen (CR51) 2017; 45
Jiang (CR3) 2022; 611
Paniagua (CR15) 2016; 116
CR27
Fukano (CR23) 2004; 82
Kühne (CR40) 2020; 152
Hoover (CR49) 1985; 31
Mao (CR18) 2022; 34
Meltzer (CR52) 2014; 136
Love, Estroff, Kriebel, Nuzzo, Whitesides (CR28) 2005; 105
Kryuchkov, Yurchenko, Fomin, Tsiok, Ryzhov (CR46) 2018; 14
Phung (CR20) 2022; 14
You (CR7) 2023; 379
Khenkin (CR56) 2020; 5
T Moot (6745_CR39) 2021; 6
V Lami (6745_CR37) 2019; 3
MJ Van Setten (6745_CR41) 2018; 226
MA Truong (6745_CR16) 2023; 145
N Phung (6745_CR20) 2022; 14
MK Nazeeruddin (6745_CR31) 2003; 107
J VandeVondele (6745_CR44) 2007; 127
L Bengtsson (6745_CR43) 1999; 59
S You (6745_CR7) 2023; 379
LS Dodda (6745_CR51) 2017; 45
CC Boyd (6745_CR22) 2020; 4
HX Dang (6745_CR33) 2019; 3
SM Park (6745_CR1) 2023; 381
R He (6745_CR19) 2023; 618
S Nosé (6745_CR48) 1984; 81
AV Bandura (6745_CR50) 2006; 110
6745_CR6
X Li (6745_CR36) 2022; 13
A Al-Ashouri (6745_CR26) 2023; 8
M Kim (6745_CR4) 2022; 375
X Zheng (6745_CR8) 2020; 5
JC Love (6745_CR28) 2005; 105
6745_CR54
SA Paniagua (6745_CR15) 2016; 116
A Farag (6745_CR21) 2023; 13
TD Kühne (6745_CR40) 2020; 152
MV Khenkin (6745_CR56) 2020; 5
H Chen (6745_CR9) 2022; 16
6745_CR27
OJ Sandberg (6745_CR38) 2020; 7
F Sahli (6745_CR13) 2018; 17
L Mao (6745_CR18) 2022; 34
S Grimme (6745_CR42) 2011; 1
J Wang (6745_CR53) 2004; 25
A Al-Ashouri (6745_CR14) 2019; 12
BC Bunker (6745_CR32) 2000; 16
T Fukano (6745_CR23) 2004; 82
WG Hoover (6745_CR49) 1985; 31
P Caprioglio (6745_CR34) 2019; 9
PJ Hotchkiss (6745_CR30) 2011; 21
W Peng (6745_CR11) 2023; 379
SA Paniagua (6745_CR29) 2008; 112
X Deng (6745_CR25) 2022; 61
N Camaioni (6745_CR12) 2023; 35
FH Isikgor (6745_CR17) 2022; 8
NP Kryuchkov (6745_CR46) 2018; 14
Q Jiang (6745_CR3) 2022; 611
G Bussi (6745_CR45) 2007; 126
NR Neale (6745_CR24) 2005; 109
WC Swope (6745_CR47) 1982; 76
Z Li (6745_CR10) 2022; 376
T-C Lim (6745_CR55) 2009; 64
C Meltzer (6745_CR52) 2014; 136
A Al-Ashouri (6745_CR35) 2020; 370
J Park (6745_CR5) 2023; 616
S Zhang (6745_CR2) 2023; 380
References_xml – volume: 116
  start-page: 7117
  year: 2016
  end-page: 7158
  ident: CR15
  article-title: Phosphonic acids for interfacial engineering of transparent conductive oxides
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00061
  contributor:
    fullname: Paniagua
– volume: 107
  start-page: 8981
  year: 2003
  end-page: 8987
  ident: CR31
  article-title: Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO solar cell
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp022656f
  contributor:
    fullname: Grätzel
– volume: 380
  start-page: 404
  year: 2023
  end-page: 409
  ident: CR2
  article-title: Minimizing buried interfacial defects for efficient inverted perovskite solar cells
  publication-title: Science
  doi: 10.1126/science.adg3755
  contributor:
    fullname: Zhang
– volume: 25
  start-page: 1157
  year: 2004
  end-page: 1174
  ident: CR53
  article-title: Development and testing of a general Amber force field
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20035
  contributor:
    fullname: Case
– volume: 8
  start-page: 898
  year: 2023
  end-page: 900
  ident: CR26
  article-title: Wettability improvement of a carbazole-based hole-selective monolayer for reproducible perovskite solar cells
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.2c02629
  contributor:
    fullname: Al-Ashouri
– volume: 14
  start-page: 2152
  year: 2018
  end-page: 2162
  ident: CR46
  article-title: Complex crystalline structures in a two-dimensional core-softened system
  publication-title: Soft Matter
  doi: 10.1039/C7SM02429K
  contributor:
    fullname: Ryzhov
– volume: 616
  start-page: 724
  year: 2023
  end-page: 730
  ident: CR5
  article-title: Controlled growth of perovskite layers with volatile alkylammonium chlorides
  publication-title: Nature
  doi: 10.1038/s41586-023-05825-y
  contributor:
    fullname: Park
– volume: 152
  start-page: 194103
  year: 2020
  ident: CR40
  article-title: CP2K: an electronic structure and molecular dynamics software package—Quickstep: efficient and accurate electronic structure calculations
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0007045
  contributor:
    fullname: Kühne
– volume: 126
  start-page: 014101
  year: 2007
  ident: CR45
  article-title: Canonical sampling through velocity rescaling
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2408420
  contributor:
    fullname: Parrinello
– volume: 110
  start-page: 8386
  year: 2006
  end-page: 8397
  ident: CR50
  article-title: derivation of force field parameters for SnO –H O surface systems from plane-wave density functional theory calculations
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0523423
  contributor:
    fullname: Kubicki
– volume: 5
  start-page: 35
  year: 2020
  end-page: 49
  ident: CR56
  article-title: Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0529-5
  contributor:
    fullname: Khenkin
– ident: CR54
– volume: 13
  year: 2022
  ident: CR36
  article-title: Mapping the energy level alignment at donor/acceptor interfaces in non-fullerene organic solar cells
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29702-w
  contributor:
    fullname: Li
– volume: 13
  start-page: 2203982
  year: 2023
  ident: CR21
  article-title: Evaporated self‐assembled monolayer hole transport layers: lossless interfaces in p‐i‐n perovskite solar cells
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202203982
  contributor:
    fullname: Farag
– volume: 17
  start-page: 820
  year: 2018
  end-page: 826
  ident: CR13
  article-title: Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0115-4
  contributor:
    fullname: Sahli
– volume: 81
  start-page: 511
  year: 1984
  end-page: 519
  ident: CR48
  article-title: A unified formulation of the constant temperature molecular dynamics methods
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.447334
  contributor:
    fullname: Nosé
– volume: 16
  start-page: 352
  year: 2022
  end-page: 358
  ident: CR9
  article-title: Quantum-size-tuned heterostructures enable efficient and stable inverted perovskite solar cells
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-022-00985-1
  contributor:
    fullname: Chen
– volume: 45
  start-page: W331
  year: 2017
  end-page: W336
  ident: CR51
  article-title: LigParGen web server: an automatic OPLS-AA parameter generator for organic ligands
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx312
  contributor:
    fullname: Jorgensen
– volume: 34
  start-page: e2206193
  year: 2022
  ident: CR18
  article-title: Fully textured, production‐line compatible monolithic perovskite/silicon tandem solar cells approaching 29% efficiency
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202206193
  contributor:
    fullname: Mao
– volume: 59
  start-page: 12301
  year: 1999
  end-page: 12304
  ident: CR43
  article-title: Dipole correction for surface supercell calculations
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.12301
  contributor:
    fullname: Bengtsson
– volume: 5
  start-page: 131
  year: 2020
  end-page: 140
  ident: CR8
  article-title: Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0538-4
  contributor:
    fullname: Zheng
– volume: 76
  start-page: 637
  year: 1982
  end-page: 649
  ident: CR47
  article-title: A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: application to small water clusters
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.442716
  contributor:
    fullname: Wilson
– volume: 3
  start-page: 1746
  year: 2019
  end-page: 1764
  ident: CR33
  article-title: Multi-cation synergy suppresses phase segregation in mixed-halide perovskites
  publication-title: Joule
  doi: 10.1016/j.joule.2019.05.016
  contributor:
    fullname: Dang
– volume: 3
  start-page: 2513
  year: 2019
  end-page: 2534
  ident: CR37
  article-title: Visualizing the vertical energetic landscape in organic photovoltaics
  publication-title: Joule
  doi: 10.1016/j.joule.2019.06.018
  contributor:
    fullname: Lami
– volume: 370
  start-page: 1300
  year: 2020
  end-page: 1309
  ident: CR35
  article-title: Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction
  publication-title: Science
  doi: 10.1126/science.abd4016
  contributor:
    fullname: Al-Ashouri
– volume: 379
  start-page: 683
  year: 2023
  end-page: 690
  ident: CR11
  article-title: Reducing nonradiative recombination in perovskite solar cells with a porous insulator contact
  publication-title: Science
  doi: 10.1126/science.ade3126
  contributor:
    fullname: Peng
– volume: 145
  start-page: 7528
  year: 2023
  end-page: 7539
  ident: CR16
  article-title: Tripodal triazatruxene derivative as a face-on oriented hole-collecting monolayer for efficient and stable inverted perovskite solar cells
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c00805
  contributor:
    fullname: Truong
– volume: 105
  start-page: 1103
  year: 2005
  end-page: 1170
  ident: CR28
  article-title: Self-assembled monolayers of thiolates on metals as a form of nanotechnology
  publication-title: Chem. Rev.
  doi: 10.1021/cr0300789
  contributor:
    fullname: Whitesides
– ident: CR6
– volume: 376
  start-page: 416
  year: 2022
  end-page: 420
  ident: CR10
  article-title: Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells
  publication-title: Science
  doi: 10.1126/science.abm8566
  contributor:
    fullname: Li
– volume: 12
  start-page: 3356
  year: 2019
  end-page: 3369
  ident: CR14
  article-title: Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE02268F
  contributor:
    fullname: Al-Ashouri
– volume: 611
  start-page: 278
  year: 2022
  end-page: 283
  ident: CR3
  article-title: Surface reaction for efficient and stable inverted perovskite solar cells
  publication-title: Nature
  doi: 10.1038/s41586-022-05268-x
  contributor:
    fullname: Jiang
– volume: 1
  start-page: 211
  year: 2011
  end-page: 228
  ident: CR42
  article-title: Density functional theory with London dispersion corrections
  publication-title: WIREs Comput. Mol. Sci.
  doi: 10.1002/wcms.30
  contributor:
    fullname: Grimme
– volume: 14
  start-page: 2166
  year: 2022
  end-page: 2176
  ident: CR20
  article-title: Enhanced self-assembled monolayer surface coverage by ALD NiO in p-i-n perovskite solar cells
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c15860
  contributor:
    fullname: Phung
– ident: CR27
– volume: 127
  start-page: 114105
  year: 2007
  ident: CR44
  article-title: Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2770708
  contributor:
    fullname: Hutter
– volume: 82
  start-page: 567
  year: 2004
  end-page: 575
  ident: CR23
  article-title: Low-temperature growth of highly crystallized transparent conductive fluorine-doped tin oxide films by intermittent spray pyrolysis deposition
  publication-title: Sol. Energy Mater. Sol. Cells
  contributor:
    fullname: Fukano
– volume: 379
  start-page: 288
  year: 2023
  end-page: 294
  ident: CR7
  article-title: Radical polymeric p-doping and grain modulation for stable, efficient perovskite solar modules
  publication-title: Science
  doi: 10.1126/science.add8786
  contributor:
    fullname: You
– volume: 226
  start-page: 39
  year: 2018
  end-page: 54
  ident: CR41
  article-title: The PseudoDojo: training and grading a 85 element optimized norm-conserving pseudopotential table
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2018.01.012
  contributor:
    fullname: Van Setten
– volume: 35
  start-page: 2210146
  year: 2023
  ident: CR12
  article-title: Polymer solar cells with active layer thickness compatible with scalable fabrication processes: a meta‐analysis
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202210146
  contributor:
    fullname: Camaioni
– volume: 8
  start-page: 89
  year: 2022
  end-page: 108
  ident: CR17
  article-title: Molecular engineering of contact interfaces for high-performance perovskite solar cells
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-022-00503-3
  contributor:
    fullname: Isikgor
– volume: 21
  start-page: 3107
  year: 2011
  ident: CR30
  article-title: Characterization of phosphonic acid binding to zinc oxide
  publication-title: J. Mater. Chem.
  doi: 10.1039/c0jm02829k
  contributor:
    fullname: Marder
– volume: 136
  start-page: 10718
  year: 2014
  end-page: 10727
  ident: CR52
  article-title: indentation and self-healing mechanisms of a self-assembled monolayer—a combined experimental and modeling study
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5048076
  contributor:
    fullname: Meltzer
– volume: 375
  start-page: 302
  year: 2022
  end-page: 306
  ident: CR4
  article-title: Conformal quantum dot–SnO layers as electron transporters for efficient perovskite solar cells
  publication-title: Science
  doi: 10.1126/science.abh1885
  contributor:
    fullname: Kim
– volume: 16
  start-page: 7742
  year: 2000
  end-page: 7751
  ident: CR32
  article-title: The impact of solution agglomeration on the deposition of self-assembled monolayers
  publication-title: Langmuir
  doi: 10.1021/la000502q
  contributor:
    fullname: Bunker
– volume: 64
  start-page: 200
  year: 2009
  end-page: 204
  ident: CR55
  article-title: Alignment of Buckingham parameters to generalized Lennard-Jones potential functions
  publication-title: Z. Naturforsch. A
  doi: 10.1515/zna-2009-3-406
  contributor:
    fullname: Lim
– volume: 4
  start-page: 1759
  year: 2020
  end-page: 1775
  ident: CR22
  article-title: Overcoming redox reactions at perovskite-nickel oxide interfaces to boost voltages in perovskite solar cells
  publication-title: Joule
  doi: 10.1016/j.joule.2020.06.004
  contributor:
    fullname: Boyd
– volume: 381
  start-page: 209
  year: 2023
  end-page: 215
  ident: CR1
  article-title: Engineering ligand reactivity enables high-temperature operation of stable perovskite solar cells
  publication-title: Science
  doi: 10.1126/science.adi4107
  contributor:
    fullname: Park
– volume: 61
  start-page: e202203088
  year: 2022
  ident: CR25
  article-title: Co‐assembled monolayers as hole‐selective contact for high‐performance inverted perovskite solar cells with optimized recombination loss and long‐term stability
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.202203088
  contributor:
    fullname: Deng
– volume: 9
  start-page: 1901631
  year: 2019
  ident: CR34
  article-title: On the relation between the open‐circuit voltage and quasi‐Fermi level splitting in efficient perovskite solar cells
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201901631
  contributor:
    fullname: Caprioglio
– volume: 31
  start-page: 1695
  year: 1985
  end-page: 1697
  ident: CR49
  article-title: Canonical Dynamics: Equilibrium Phase-Space Distributions
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.31.1695
  contributor:
    fullname: Hoover
– volume: 618
  start-page: 80
  year: 2023
  end-page: 86
  ident: CR19
  article-title: Improving interface quality for 1-cm all-perovskite tandem solar cells
  publication-title: Nature
  doi: 10.1038/s41586-023-05992-y
  contributor:
    fullname: He
– volume: 7
  start-page: 2000041
  year: 2020
  ident: CR38
  article-title: On the question of the need for a built‐in potential in perovskite solar cells
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.202000041
  contributor:
    fullname: Sandberg
– volume: 109
  start-page: 23183
  year: 2005
  end-page: 23189
  ident: CR24
  article-title: Effect of a coadsorbent on the performance of dye-sensitized TiO solar cells: shielding versus band-edge movement
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0538666
  contributor:
    fullname: Frank
– volume: 112
  start-page: 7809
  year: 2008
  end-page: 7817
  ident: CR29
  article-title: Phosphonic acid modification of indium–tin oxide electrodes: combined XPS/UPS/contact angle studies
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp710893k
  contributor:
    fullname: Paniagua
– volume: 6
  start-page: 2038
  year: 2021
  end-page: 2047
  ident: CR39
  article-title: Temperature coefficients of perovskite photovoltaics for energy yield calculations
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.1c00748
  contributor:
    fullname: Moot
– volume: 8
  start-page: 898
  year: 2023
  ident: 6745_CR26
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.2c02629
  contributor:
    fullname: A Al-Ashouri
– volume: 76
  start-page: 637
  year: 1982
  ident: 6745_CR47
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.442716
  contributor:
    fullname: WC Swope
– volume: 35
  start-page: 2210146
  year: 2023
  ident: 6745_CR12
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202210146
  contributor:
    fullname: N Camaioni
– volume: 105
  start-page: 1103
  year: 2005
  ident: 6745_CR28
  publication-title: Chem. Rev.
  doi: 10.1021/cr0300789
  contributor:
    fullname: JC Love
– volume: 3
  start-page: 1746
  year: 2019
  ident: 6745_CR33
  publication-title: Joule
  doi: 10.1016/j.joule.2019.05.016
  contributor:
    fullname: HX Dang
– volume: 370
  start-page: 1300
  year: 2020
  ident: 6745_CR35
  publication-title: Science
  doi: 10.1126/science.abd4016
  contributor:
    fullname: A Al-Ashouri
– volume: 107
  start-page: 8981
  year: 2003
  ident: 6745_CR31
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp022656f
  contributor:
    fullname: MK Nazeeruddin
– volume: 25
  start-page: 1157
  year: 2004
  ident: 6745_CR53
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20035
  contributor:
    fullname: J Wang
– volume: 5
  start-page: 131
  year: 2020
  ident: 6745_CR8
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0538-4
  contributor:
    fullname: X Zheng
– volume: 14
  start-page: 2166
  year: 2022
  ident: 6745_CR20
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c15860
  contributor:
    fullname: N Phung
– volume: 611
  start-page: 278
  year: 2022
  ident: 6745_CR3
  publication-title: Nature
  doi: 10.1038/s41586-022-05268-x
  contributor:
    fullname: Q Jiang
– volume: 136
  start-page: 10718
  year: 2014
  ident: 6745_CR52
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5048076
  contributor:
    fullname: C Meltzer
– volume: 376
  start-page: 416
  year: 2022
  ident: 6745_CR10
  publication-title: Science
  doi: 10.1126/science.abm8566
  contributor:
    fullname: Z Li
– volume: 13
  start-page: 2203982
  year: 2023
  ident: 6745_CR21
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202203982
  contributor:
    fullname: A Farag
– volume: 616
  start-page: 724
  year: 2023
  ident: 6745_CR5
  publication-title: Nature
  doi: 10.1038/s41586-023-05825-y
  contributor:
    fullname: J Park
– volume: 109
  start-page: 23183
  year: 2005
  ident: 6745_CR24
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0538666
  contributor:
    fullname: NR Neale
– volume: 379
  start-page: 288
  year: 2023
  ident: 6745_CR7
  publication-title: Science
  doi: 10.1126/science.add8786
  contributor:
    fullname: S You
– volume: 16
  start-page: 352
  year: 2022
  ident: 6745_CR9
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-022-00985-1
  contributor:
    fullname: H Chen
– volume: 4
  start-page: 1759
  year: 2020
  ident: 6745_CR22
  publication-title: Joule
  doi: 10.1016/j.joule.2020.06.004
  contributor:
    fullname: CC Boyd
– volume: 81
  start-page: 511
  year: 1984
  ident: 6745_CR48
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.447334
  contributor:
    fullname: S Nosé
– volume: 1
  start-page: 211
  year: 2011
  ident: 6745_CR42
  publication-title: WIREs Comput. Mol. Sci.
  doi: 10.1002/wcms.30
  contributor:
    fullname: S Grimme
– ident: 6745_CR6
– volume: 380
  start-page: 404
  year: 2023
  ident: 6745_CR2
  publication-title: Science
  doi: 10.1126/science.adg3755
  contributor:
    fullname: S Zhang
– volume: 31
  start-page: 1695
  year: 1985
  ident: 6745_CR49
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.31.1695
  contributor:
    fullname: WG Hoover
– volume: 145
  start-page: 7528
  year: 2023
  ident: 6745_CR16
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c00805
  contributor:
    fullname: MA Truong
– volume: 21
  start-page: 3107
  year: 2011
  ident: 6745_CR30
  publication-title: J. Mater. Chem.
  doi: 10.1039/c0jm02829k
  contributor:
    fullname: PJ Hotchkiss
– volume: 16
  start-page: 7742
  year: 2000
  ident: 6745_CR32
  publication-title: Langmuir
  doi: 10.1021/la000502q
  contributor:
    fullname: BC Bunker
– volume: 45
  start-page: W331
  year: 2017
  ident: 6745_CR51
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx312
  contributor:
    fullname: LS Dodda
– volume: 112
  start-page: 7809
  year: 2008
  ident: 6745_CR29
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp710893k
  contributor:
    fullname: SA Paniagua
– volume: 152
  start-page: 194103
  year: 2020
  ident: 6745_CR40
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0007045
  contributor:
    fullname: TD Kühne
– volume: 5
  start-page: 35
  year: 2020
  ident: 6745_CR56
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0529-5
  contributor:
    fullname: MV Khenkin
– volume: 7
  start-page: 2000041
  year: 2020
  ident: 6745_CR38
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.202000041
  contributor:
    fullname: OJ Sandberg
– volume: 127
  start-page: 114105
  year: 2007
  ident: 6745_CR44
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2770708
  contributor:
    fullname: J VandeVondele
– volume: 82
  start-page: 567
  year: 2004
  ident: 6745_CR23
  publication-title: Sol. Energy Mater. Sol. Cells
  contributor:
    fullname: T Fukano
– ident: 6745_CR27
  doi: 10.1002/adma.202304415
– volume: 110
  start-page: 8386
  year: 2006
  ident: 6745_CR50
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0523423
  contributor:
    fullname: AV Bandura
– volume: 12
  start-page: 3356
  year: 2019
  ident: 6745_CR14
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE02268F
  contributor:
    fullname: A Al-Ashouri
– volume: 126
  start-page: 014101
  year: 2007
  ident: 6745_CR45
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2408420
  contributor:
    fullname: G Bussi
– volume: 34
  start-page: e2206193
  year: 2022
  ident: 6745_CR18
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202206193
  contributor:
    fullname: L Mao
– volume: 64
  start-page: 200
  year: 2009
  ident: 6745_CR55
  publication-title: Z. Naturforsch. A
  doi: 10.1515/zna-2009-3-406
  contributor:
    fullname: T-C Lim
– volume: 59
  start-page: 12301
  year: 1999
  ident: 6745_CR43
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.12301
  contributor:
    fullname: L Bengtsson
– volume: 8
  start-page: 89
  year: 2022
  ident: 6745_CR17
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-022-00503-3
  contributor:
    fullname: FH Isikgor
– volume: 379
  start-page: 683
  year: 2023
  ident: 6745_CR11
  publication-title: Science
  doi: 10.1126/science.ade3126
  contributor:
    fullname: W Peng
– volume: 381
  start-page: 209
  year: 2023
  ident: 6745_CR1
  publication-title: Science
  doi: 10.1126/science.adi4107
  contributor:
    fullname: SM Park
– volume: 116
  start-page: 7117
  year: 2016
  ident: 6745_CR15
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00061
  contributor:
    fullname: SA Paniagua
– ident: 6745_CR54
  doi: 10.1201/9780367806934
– volume: 3
  start-page: 2513
  year: 2019
  ident: 6745_CR37
  publication-title: Joule
  doi: 10.1016/j.joule.2019.06.018
  contributor:
    fullname: V Lami
– volume: 17
  start-page: 820
  year: 2018
  ident: 6745_CR13
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0115-4
  contributor:
    fullname: F Sahli
– volume: 9
  start-page: 1901631
  year: 2019
  ident: 6745_CR34
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201901631
  contributor:
    fullname: P Caprioglio
– volume: 6
  start-page: 2038
  year: 2021
  ident: 6745_CR39
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.1c00748
  contributor:
    fullname: T Moot
– volume: 13
  year: 2022
  ident: 6745_CR36
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29702-w
  contributor:
    fullname: X Li
– volume: 226
  start-page: 39
  year: 2018
  ident: 6745_CR41
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2018.01.012
  contributor:
    fullname: MJ Van Setten
– volume: 14
  start-page: 2152
  year: 2018
  ident: 6745_CR46
  publication-title: Soft Matter
  doi: 10.1039/C7SM02429K
  contributor:
    fullname: NP Kryuchkov
– volume: 618
  start-page: 80
  year: 2023
  ident: 6745_CR19
  publication-title: Nature
  doi: 10.1038/s41586-023-05992-y
  contributor:
    fullname: R He
– volume: 375
  start-page: 302
  year: 2022
  ident: 6745_CR4
  publication-title: Science
  doi: 10.1126/science.abh1885
  contributor:
    fullname: M Kim
– volume: 61
  start-page: e202203088
  year: 2022
  ident: 6745_CR25
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.202203088
  contributor:
    fullname: X Deng
SSID ssj0005174
Score 2.6477168
Snippet Inverted perovskite solar cells (PSCs) promise enhanced operating stability compared to their normal-structure counterparts 1 – 3 . To improve efficiency...
Inverted perovskite solar cells (PSCs) promise enhanced operating stability compared to their normal-structure counterparts . To improve efficiency further, it...
Inverted perovskite solar cells (PSCs) promise enhanced operating stability compared to their normal-structure counterparts13. To improve efficiency further,...
Inverted perovskite solar cells (PSCs) promise enhanced operating stability compared to their normal-structure counterparts1-3. To improve efficiency further,...
SourceID proquest
crossref
pubmed
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 289
SubjectTerms 119/118
140/125
140/146
639/301/299/946
639/4077/909/4101/4096/946
Acids
Adsorbents
Adsorption
Chemical bonds
Efficiency
Energy conversion efficiency
Humanities and Social Sciences
Maximum power tracking
Molecular dynamics
multidisciplinary
Optoelectronic devices
Perovskites
Phosphonic acids
Photoelectric effect
Photovoltaic cells
Relative humidity
Room temperature
Science
Science (multidisciplinary)
Self-assembled monolayers
Self-assembly
Simulation
Solar cells
Spectrum analysis
Substrates
Title Low-loss contacts on textured substrates for inverted perovskite solar cells
URI https://link.springer.com/article/10.1038/s41586-023-06745-7
https://www.ncbi.nlm.nih.gov/pubmed/37871614
https://www.proquest.com/docview/2902715081
https://search.proquest.com/docview/2881245315
Volume 624
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFD5oi9IXsfXSaJURfFBi2s1lMpPHVixF2kWwxfoUJpOJrNakmF1Ff71nbsmWtaC-hCUJM9lzvpz5zuRcAJ4rJuNCoZOjZCyjjMciqoSiUcFxeU8mVMhaf9E9meZHZ9nbc3o-FlQw2SXzalf--mNeyf9oFc-hXnWW7D9odhgUT-Bv1C8eUcN4_CsdH3c_ootO15fu2rmQbusfze1CR5X3aBNM7VlTciGctbr1Mp7XpcG_93rXNuy1Yxvqzft-maVOTbXP5W4fw3bBOxdb_b4LT2YDsD6omY3Bbz_9FG4tNFE-SMp7W8VgOvuCk3UDhf-4MOF9qv3shnFbD0mqwzhsyueusuYyY3mU5W7JdPY0t0nRDjissN24vIG0DYNWDLct094jneA6KFp3nGAZjdjyzSj8y69GlSnTfp5_lCvlsv2lm7CeoO1Bo7e-f3hwMB3jftAHc9lTOOne6pQbcNsPcpWsrHggK1_PDSk5vQt3nDdB9i00NuGGarfglonqlf0WbDrL3ZMXrrz4y3tw7FFDPGpI1xKPGjKihiBqiEcNGVFDDGqIQc19ODt8c_r6KHI9NSKJRD2N8kKKYoIksKEUmRtDh5KmrJEqUVmRTqq8lugR8CavWUFpLpNYcqU48uqm5rWS6QNYa7tWbQNhlKla92mRDUfSLUUjG1HFVNWxKuq4CiD0wisvbemU0oQ8pLy0Ui9R6qWReskC2PHyLd0r1pdJMUmY7lgQB_BsuIwGUP9F0apugfdwzVFxKaEBPLR6GabzegzglVfUOPj1z_Lo2oEew8b4IuzA2vzbQj1BVjqvnjqc_QaMrohv
link.rule.ids 315,783,787,27936,27937
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-loss+contacts+on+textured+substrates+for+inverted+perovskite+solar+cells&rft.jtitle=Nature+%28London%29&rft.au=Park%2C+So+Min&rft.au=Wei%2C+Mingyang&rft.au=Lempesis%2C+Nikolaos&rft.au=Yu%2C+Wenjin&rft.date=2023-12-14&rft.eissn=1476-4687&rft.volume=624&rft.issue=7991&rft.spage=289&rft_id=info:doi/10.1038%2Fs41586-023-06745-7&rft_id=info%3Apmid%2F37871614&rft.externalDocID=37871614
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon