Low-loss contacts on textured substrates for inverted perovskite solar cells
Inverted perovskite solar cells (PSCs) promise enhanced operating stability compared to their normal-structure counterparts 1 – 3 . To improve efficiency further, it is crucial to combine effective light management with low interfacial losses 4 , 5 . Here we develop a conformal self-assembled monola...
Saved in:
Published in | Nature (London) Vol. 624; no. 7991; pp. 289 - 294 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
14.12.2023
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Inverted perovskite solar cells (PSCs) promise enhanced operating stability compared to their normal-structure counterparts
1
–
3
. To improve efficiency further, it is crucial to combine effective light management with low interfacial losses
4
,
5
. Here we develop a conformal self-assembled monolayer (SAM) as the hole-selective contact on light-managing textured substrates. Molecular dynamics simulations indicate that cluster formation during phosphonic acid adsorption leads to incomplete SAM coverage. We devise a co-adsorbent strategy that disassembles high-order clusters, thus homogenizing the distribution of phosphonic acid molecules, and thereby minimizing interfacial recombination and improving electronic structures. We report a laboratory-measured power conversion efficiency (PCE) of 25.3% and a certified quasi-steady-state PCE of 24.8% for inverted PSCs, with a photocurrent approaching 95% of the Shockley–Queisser maximum. An encapsulated device having a PCE of 24.6% at room temperature retains 95% of its peak performance when stressed at 65 °C and 50% relative humidity following more than 1,000 h of maximum power point tracking under 1 sun illumination. This represents one of the most stable PSCs subjected to accelerated ageing: achieved with a PCE surpassing 24%. The engineering of phosphonic acid adsorption on textured substrates offers a promising avenue for efficient and stable PSCs. It is also anticipated to benefit other optoelectronic devices that require light management.
A co-adsorbent is used to achieve a uniform self-assembled phosphonic acid monolayer on a textured substrate, leading to more efficient inverted perovskite solar cells. |
---|---|
AbstractList | Inverted perovskite solar cells (PSCs) promise enhanced operating stability compared to their normal-structure counterparts
1
–
3
. To improve efficiency further, it is crucial to combine effective light management with low interfacial losses
4
,
5
. Here we develop a conformal self-assembled monolayer (SAM) as the hole-selective contact on light-managing textured substrates. Molecular dynamics simulations indicate that cluster formation during phosphonic acid adsorption leads to incomplete SAM coverage. We devise a co-adsorbent strategy that disassembles high-order clusters, thus homogenizing the distribution of phosphonic acid molecules, and thereby minimizing interfacial recombination and improving electronic structures. We report a laboratory-measured power conversion efficiency (PCE) of 25.3% and a certified quasi-steady-state PCE of 24.8% for inverted PSCs, with a photocurrent approaching 95% of the Shockley–Queisser maximum. An encapsulated device having a PCE of 24.6% at room temperature retains 95% of its peak performance when stressed at 65 °C and 50% relative humidity following more than 1,000 h of maximum power point tracking under 1 sun illumination. This represents one of the most stable PSCs subjected to accelerated ageing: achieved with a PCE surpassing 24%. The engineering of phosphonic acid adsorption on textured substrates offers a promising avenue for efficient and stable PSCs. It is also anticipated to benefit other optoelectronic devices that require light management.
A co-adsorbent is used to achieve a uniform self-assembled phosphonic acid monolayer on a textured substrate, leading to more efficient inverted perovskite solar cells. Inverted perovskite solar cells (PSCs) promise enhanced operating stability compared to their normal-structure counterparts1-3. To improve efficiency further, it is crucial to combine effective light management with low interfacial losses4,5. Here we develop a conformal self-assembled monolayer (SAM) as the hole-selective contact on light-managing textured substrates. Molecular dynamics simulations indicate that cluster formation during phosphonic acid adsorption leads to incomplete SAM coverage. We devise a co-adsorbent strategy that disassembles high-order clusters, thus homogenizing the distribution of phosphonic acid molecules, and thereby minimizing interfacial recombination and improving electronic structures. We report a laboratory-measured power conversion efficiency (PCE) of 25.3% and a certified quasi-steady-state PCE of 24.8% for inverted PSCs, with a photocurrent approaching 95% of the Shockley-Queisser maximum. An encapsulated device having a PCE of 24.6% at room temperature retains 95% of its peak performance when stressed at 65 °C and 50% relative humidity following more than 1,000 h of maximum power point tracking under 1 sun illumination. This represents one of the most stable PSCs subjected to accelerated ageing: achieved with a PCE surpassing 24%. The engineering of phosphonic acid adsorption on textured substrates offers a promising avenue for efficient and stable PSCs. It is also anticipated to benefit other optoelectronic devices that require light management. Inverted perovskite solar cells (PSCs) promise enhanced operating stability compared to their normal-structure counterparts13. To improve efficiency further, it is crucial to combine effective light management with low interfacial losses4 5. Here we develop a conformal self-assembled monolayer (SAM) as the hole-selective contact on lightmanaging textured substrates. Molecular dynamics simulations indicate that cluster formation during phosphonic acid adsorption leadsto incomplete SAM coverage. We devise a co-adsorbent strategy that disassembles high-order clusters, thus homogenizing the distribution of phosphonic acid molecules, and thereby minimizing interfacial recombination and improving electronic structures. We report a laboratorymeasured power conversion efficiency (PCE) of 25.3% and a certified quasi-steady-state PCE of 24.8% for inverted PSCs, with a photocurrent approaching 95% ofthe ShockleyQueisser maximum. An encapsulated device having a PCE of 24.6% at room temperature retains 95% of its peak performance when stressed at 65 °C and 50% relative humidity following more than 1,000 h of maximum power point tracking underl sun illumination. This represents one ofthe most stable PSCs subjected to accelerated ageing: achieved with a PCE surpassing 24%. The engineering of phosphonic acid adsorption on textured substrates offers a promising avenue for efficient and stable PSCs. It is also anticipated to benefit other optoelectronic devices that require light management. Inverted perovskite solar cells (PSCs) promise enhanced operating stability compared to their normal-structure counterparts . To improve efficiency further, it is crucial to combine effective light management with low interfacial losses . Here we develop a conformal self-assembled monolayer (SAM) as the hole-selective contact on light-managing textured substrates. Molecular dynamics simulations indicate that cluster formation during phosphonic acid adsorption leads to incomplete SAM coverage. We devise a co-adsorbent strategy that disassembles high-order clusters, thus homogenizing the distribution of phosphonic acid molecules, and thereby minimizing interfacial recombination and improving electronic structures. We report a laboratory-measured power conversion efficiency (PCE) of 25.3% and a certified quasi-steady-state PCE of 24.8% for inverted PSCs, with a photocurrent approaching 95% of the Shockley-Queisser maximum. An encapsulated device having a PCE of 24.6% at room temperature retains 95% of its peak performance when stressed at 65 °C and 50% relative humidity following more than 1,000 h of maximum power point tracking under 1 sun illumination. This represents one of the most stable PSCs subjected to accelerated ageing: achieved with a PCE surpassing 24%. The engineering of phosphonic acid adsorption on textured substrates offers a promising avenue for efficient and stable PSCs. It is also anticipated to benefit other optoelectronic devices that require light management. |
Author | Agosta, Lorenzo Kanatzidis, Mercouri G. Grätzel, Michael Choi, Deokjae Carnevali, Virginia Filleter, Tobin Park, So Min Serles, Peter Vafaie, Maral Xiao, Lixin Darabi, Kasra Eickemeyer, Felix T. Sargent, Edward H. Graham, Kenneth R. Shin, Heejong Amassian, Aram Lempesis, Nikolaos Jung, Eui Dae Hossain, Tareq Atapattu, Harindi R. Kim, Da Bin Chen, Bin Rothlisberger, Ursula Zakeeruddin, Shaik M. Wei, Mingyang Yu, Wenjin Yang, Yi |
Author_xml | – sequence: 1 givenname: So Min orcidid: 0000-0001-7677-5564 surname: Park fullname: Park, So Min organization: Department of Chemistry, Northwestern University, Department of Electrical and Computer Engineering, University of Toronto – sequence: 2 givenname: Mingyang surname: Wei fullname: Wei, Mingyang organization: Laboratory of Photonics and Interfaces, Ecole Polytechnique Fédérale de Lausanne – sequence: 3 givenname: Nikolaos orcidid: 0000-0002-4104-9666 surname: Lempesis fullname: Lempesis, Nikolaos organization: Laboratory of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale de Lausanne – sequence: 4 givenname: Wenjin surname: Yu fullname: Yu, Wenjin organization: State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University – sequence: 5 givenname: Tareq orcidid: 0000-0001-5559-1168 surname: Hossain fullname: Hossain, Tareq organization: Department of Chemistry, University of Kentucky – sequence: 6 givenname: Lorenzo surname: Agosta fullname: Agosta, Lorenzo organization: Laboratory of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale de Lausanne – sequence: 7 givenname: Virginia orcidid: 0000-0002-8905-2928 surname: Carnevali fullname: Carnevali, Virginia organization: Laboratory of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale de Lausanne – sequence: 8 givenname: Harindi R. surname: Atapattu fullname: Atapattu, Harindi R. organization: Department of Chemistry, University of Kentucky – sequence: 9 givenname: Peter orcidid: 0000-0002-3105-4672 surname: Serles fullname: Serles, Peter organization: Department of Mechanical and Industrial Engineering, University of Toronto – sequence: 10 givenname: Felix T. orcidid: 0000-0003-0855-9944 surname: Eickemeyer fullname: Eickemeyer, Felix T. organization: Laboratory of Photonics and Interfaces, Ecole Polytechnique Fédérale de Lausanne – sequence: 11 givenname: Heejong surname: Shin fullname: Shin, Heejong organization: Department of Chemistry, Northwestern University – sequence: 12 givenname: Maral orcidid: 0000-0001-9119-6499 surname: Vafaie fullname: Vafaie, Maral organization: Department of Electrical and Computer Engineering, University of Toronto – sequence: 13 givenname: Deokjae surname: Choi fullname: Choi, Deokjae organization: Department of Chemistry, Northwestern University – sequence: 14 givenname: Kasra surname: Darabi fullname: Darabi, Kasra organization: Department of Materials Science and Engineering, and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University – sequence: 15 givenname: Eui Dae orcidid: 0000-0003-4848-0931 surname: Jung fullname: Jung, Eui Dae organization: Department of Electrical and Computer Engineering, University of Toronto – sequence: 16 givenname: Yi surname: Yang fullname: Yang, Yi organization: Department of Chemistry, Northwestern University – sequence: 17 givenname: Da Bin surname: Kim fullname: Kim, Da Bin organization: Department of Electrical and Computer Engineering, University of Toronto – sequence: 18 givenname: Shaik M. orcidid: 0000-0003-0655-4744 surname: Zakeeruddin fullname: Zakeeruddin, Shaik M. organization: Laboratory of Photonics and Interfaces, Ecole Polytechnique Fédérale de Lausanne – sequence: 19 givenname: Bin orcidid: 0000-0002-2106-7664 surname: Chen fullname: Chen, Bin organization: Department of Chemistry, Northwestern University – sequence: 20 givenname: Aram orcidid: 0000-0002-5734-1194 surname: Amassian fullname: Amassian, Aram organization: Department of Materials Science and Engineering, and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University – sequence: 21 givenname: Tobin orcidid: 0000-0003-2609-4773 surname: Filleter fullname: Filleter, Tobin organization: Department of Mechanical and Industrial Engineering, University of Toronto – sequence: 22 givenname: Mercouri G. orcidid: 0000-0003-2037-4168 surname: Kanatzidis fullname: Kanatzidis, Mercouri G. organization: Department of Chemistry, Northwestern University – sequence: 23 givenname: Kenneth R. orcidid: 0000-0002-6387-3998 surname: Graham fullname: Graham, Kenneth R. organization: Department of Chemistry, University of Kentucky – sequence: 24 givenname: Lixin orcidid: 0000-0002-1190-6962 surname: Xiao fullname: Xiao, Lixin organization: State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University – sequence: 25 givenname: Ursula orcidid: 0000-0002-1704-8591 surname: Rothlisberger fullname: Rothlisberger, Ursula organization: Laboratory of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale de Lausanne – sequence: 26 givenname: Michael orcidid: 0000-0002-0068-0195 surname: Grätzel fullname: Grätzel, Michael email: michael.graetzel@epfl.ch organization: Laboratory of Photonics and Interfaces, Ecole Polytechnique Fédérale de Lausanne – sequence: 27 givenname: Edward H. orcidid: 0000-0003-0396-6495 surname: Sargent fullname: Sargent, Edward H. email: ted.sargent@northwestern.edu organization: Department of Chemistry, Northwestern University, Department of Electrical and Computer Engineering, University of Toronto, Department of Electrical and Computer Engineering, Northwestern University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37871614$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kE1LAzEQhoNUtFb_gAdZ8OIlmo_Nxx5F_IKCFz2HbXZWqttNzWSr_nujrQoePA3MPPPO8OyRUR96IOSQs1POpD3DkiurKROSMm1KRc0WGfPSaFpqa0ZkzJiwlFmpd8ke4hNjTHFT7pBdaazhmpdjMp2GV9oFxMKHPtU-YRH6IsFbGiI0BQ4zTLFOgEUbYjHvVxBT7i8hhhU-zxMUGLo6Fh66DvfJdlt3CAebOiEPV5f3Fzd0end9e3E-pV4KLamufF2xivFWKSW4UapS0rQeBJSVZDPd-MoY2-rGVEppL7i3AFYp3ja2AS8n5GSdu4zhZQBMbjHHzw_qHsKATljLRakkVxk9_oM-hSH2-TsnKiYMV8zyTIk15WNWEaF1yzhf1PHdceY-Xbu1a5dduy_XzuSlo030MFtA87PyLTcDcg1gHvWPEH9v_xP7AWsNiuU |
CitedBy_id | crossref_primary_10_26599_EMD_2024_9370018 crossref_primary_10_1002_adfm_202404402 crossref_primary_10_1002_adfm_202316500 crossref_primary_10_1002_ifm2_8 crossref_primary_10_1016_j_cej_2024_153253 crossref_primary_10_6023_A24010026 crossref_primary_10_1002_adma_202311025 crossref_primary_10_1126_science_adm9474 crossref_primary_10_1002_adma_202312237 crossref_primary_10_1002_aenm_202401414 crossref_primary_10_1002_ange_202403610 crossref_primary_10_1002_adfm_202315604 crossref_primary_10_1021_acsnano_3c11642 crossref_primary_10_1002_adfm_202315843 crossref_primary_10_1038_s41560_024_01529_3 crossref_primary_10_1002_adfm_202316591 crossref_primary_10_1002_adma_202401788 crossref_primary_10_1038_s41578_024_00678_x crossref_primary_10_1002_idm2_12145 crossref_primary_10_1038_s41586_023_06892_x crossref_primary_10_1002_adfm_202402655 crossref_primary_10_1007_s40820_024_01408_2 crossref_primary_10_1002_adfm_202400474 crossref_primary_10_1016_j_xcrp_2024_101992 crossref_primary_10_1002_adma_202312264 crossref_primary_10_1002_anie_202403610 crossref_primary_10_1002_adma_202311970 crossref_primary_10_1016_j_mtener_2024_101593 crossref_primary_10_1021_acs_jpclett_4c01264 crossref_primary_10_1021_acsenergylett_4c00510 crossref_primary_10_1016_j_cej_2024_153404 crossref_primary_10_1039_D4EE01044B crossref_primary_10_1126_science_ado2302 crossref_primary_10_3390_nano14050446 crossref_primary_10_1002_adfm_202402061 crossref_primary_10_1016_j_cej_2024_149035 crossref_primary_10_1016_j_ssc_2024_115556 crossref_primary_10_1002_adfm_202400467 crossref_primary_10_26599_EMD_2024_9370038 crossref_primary_10_1088_2752_5724_ad42ba crossref_primary_10_1039_D3TA06808K crossref_primary_10_1021_acsenergylett_4c00045 crossref_primary_10_1002_anie_202407766 crossref_primary_10_1039_D4CP00509K crossref_primary_10_1039_D4TA00962B crossref_primary_10_1002_aenm_202303705 crossref_primary_10_1002_adfm_202404255 crossref_primary_10_1002_adma_202407433 crossref_primary_10_1021_jacs_4c03917 crossref_primary_10_1016_j_jcis_2024_02_220 crossref_primary_10_1002_solr_202400182 crossref_primary_10_1002_adfm_202407805 crossref_primary_10_1007_s11708_024_0937_5 crossref_primary_10_1002_adma_202401537 crossref_primary_10_1002_ange_202407766 crossref_primary_10_1002_smll_202402197 crossref_primary_10_20517_jmi_2024_10 crossref_primary_10_1002_advs_202401955 crossref_primary_10_1002_aenm_202304486 crossref_primary_10_1063_5_0189968 |
Cites_doi | 10.1021/acs.chemrev.6b00061 10.1021/jp022656f 10.1126/science.adg3755 10.1002/jcc.20035 10.1021/acsenergylett.2c02629 10.1039/C7SM02429K 10.1038/s41586-023-05825-y 10.1063/5.0007045 10.1063/1.2408420 10.1021/jp0523423 10.1038/s41560-019-0529-5 10.1038/s41467-022-29702-w 10.1002/aenm.202203982 10.1038/s41563-018-0115-4 10.1063/1.447334 10.1038/s41566-022-00985-1 10.1093/nar/gkx312 10.1002/adma.202206193 10.1103/PhysRevB.59.12301 10.1038/s41560-019-0538-4 10.1063/1.442716 10.1016/j.joule.2019.05.016 10.1016/j.joule.2019.06.018 10.1126/science.abd4016 10.1126/science.ade3126 10.1021/jacs.3c00805 10.1021/cr0300789 10.1126/science.abm8566 10.1039/C9EE02268F 10.1038/s41586-022-05268-x 10.1002/wcms.30 10.1021/acsami.1c15860 10.1063/1.2770708 10.1126/science.add8786 10.1016/j.cpc.2018.01.012 10.1002/adma.202210146 10.1038/s41578-022-00503-3 10.1039/c0jm02829k 10.1021/ja5048076 10.1126/science.abh1885 10.1021/la000502q 10.1515/zna-2009-3-406 10.1016/j.joule.2020.06.004 10.1126/science.adi4107 10.1002/anie.202203088 10.1002/aenm.201901631 10.1103/PhysRevA.31.1695 10.1038/s41586-023-05992-y 10.1002/admi.202000041 10.1021/jp0538666 10.1021/jp710893k 10.1021/acsenergylett.1c00748 10.1002/adma.202304415 10.1201/9780367806934 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2023. The Author(s), under exclusive licence to Springer Nature Limited. Copyright Nature Publishing Group Dec 14, 2023 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2023. The Author(s), under exclusive licence to Springer Nature Limited. – notice: Copyright Nature Publishing Group Dec 14, 2023 |
DBID | NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 K9. KL. M7N NAPCQ P64 RC3 SOI 7X8 |
DOI | 10.1038/s41586-023-06745-7 |
DatabaseName | PubMed CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Meteorological & Geoastrophysical Abstracts - Academic Algology Mycology and Protozoology Abstracts (Microbiology C) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Nursing & Allied Health Premium Genetics Abstracts Meteorological & Geoastrophysical Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Virology and AIDS Abstracts PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1476-4687 |
EndPage | 294 |
ExternalDocumentID | 10_1038_s41586_023_06745_7 37871614 |
Genre | Journal Article |
GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 07C 0R~ 0WA 123 186 1OL 29M 2KS 39C 53G 5RE 6TJ 70F 7RV 85S 8WZ 97F A6W A7Z AAEEF AAHBH AAHTB AAIKC AAKAB AAMNW AASDW AAYEP AAZLF ABFSI ABIVO ABJNI ABLJU ABOCM ABPEJ ABPPZ ABVXF ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACWUS ADBBV ADFRT ADUKH AENEX AFBBN AFFNX AFLOW AFRAH AFRQD AFSHS AGAYW AGEZK AGHSJ AGHTU AGSOS AHMBA AHSBF AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN B-7 BENPR BHPHI BIN BKKNO CJ0 CS3 DU5 E.- E.L EAP EBS EE. EPS EXGXG F5P FAC FEDTE FQGFK FSGXE HCIFZ HG6 HVGLF HZ~ IAO ICQ IEA IEP IGS IH2 IHR INH IOF IPY KOO L7B LGEZI LOTEE LSO M0K M2O M7P N9A NADUK NEPJS NXXTH O9- OBC OES OHH OMK OVD P2P PV9 RND RNS RNT RNTTT RXW SC5 SHXYY SIXXV SJN SNYQT TAE TAOOD TBHMF TDRGL TEORI TN5 TSG TWZ U5U UIG UKR UMD UQL VQA VVN WH7 X7M XIH XKW XZL Y6R YAE YCJ YFH YJ6 YNT YOC YQT YR2 YXB YZZ ZCA ~02 ~88 ~KM .-4 .GJ .HR 00M 08P 0B8 1CY 1VR 1VW 2XV 354 3EH 3O- 3V. 4.4 41X 41~ 42X 4R4 663 79B 7X2 7X7 7XC 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 97L 9M8 A8Z AAJYS AAKAS AAVBQ AAYOK AAYZH ABAWZ ABDBF ABDPE ABEFU ABJCF ABTAH ABUWG ACBNA ACBTR ACTDY ADRHT ADYSU ADZCM AFFDN AFHKK AFKRA AGCDD AGNAY AIDAL AIYXT AJUXI APEBS ARTTT AZQEC B0M BBNVY BCR BCU BDKGC BEC BES BGLVJ BKEYQ BKOMP BKSAR BLC BPHCQ BVXVI CCPQU D1I D1J D1K DB5 DO4 DWQXO EAD EAS EAZ EBC EBD EBO ECC EJD EMB EMF EMH EMK EMOBN EPL ESE ESN ESTFP ESX EX3 FA8 FYUFA GNUQQ GUQSH HMCUK I-F INR ISR ITC J5H K6- KB. L-9 L6V LK5 LK8 M0L M1P M2M M2P M7R M7S MVM N4W NAPCQ NEJ NPM ODYON OHT P-O P62 PATMY PCBAR PDBOC PEA PM3 PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X QS- R05 R4F RHI S0X SJFOW SKT SV3 TH9 TUD TUS UAO UBY UHB UKHRP USG VOH WOW X7L XOL YQI YQJ YV5 YXA YYP YYQ ZCG ZE2 ZGI ZHY ZKB ZKG ZY4 ~7V ~8M ~G0 AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 K9. KL. M7N P64 RC3 SOI 7X8 |
ID | FETCH-LOGICAL-c3263-69ca90901f555217559537fce2e4930b6dc9778f6d79556c21c8ee8551fd8dec3 |
ISSN | 0028-0836 |
IngestDate | Fri Oct 25 02:02:27 EDT 2024 Thu Nov 07 08:37:34 EST 2024 Thu Sep 12 16:33:44 EDT 2024 Sat Nov 02 12:25:22 EDT 2024 Fri Oct 11 20:46:21 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7991 |
Language | English |
License | 2023. The Author(s), under exclusive licence to Springer Nature Limited. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3263-69ca90901f555217559537fce2e4930b6dc9778f6d79556c21c8ee8551fd8dec3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-8905-2928 0000-0003-0855-9944 0000-0001-7677-5564 0000-0002-4104-9666 0000-0002-5734-1194 0000-0001-9119-6499 0000-0003-2609-4773 0000-0002-2106-7664 0000-0002-1190-6962 0000-0003-0655-4744 0000-0002-3105-4672 0000-0002-6387-3998 0000-0003-2037-4168 0000-0003-4848-0931 0000-0002-1704-8591 0000-0002-0068-0195 0000-0001-5559-1168 0000-0003-0396-6495 |
PMID | 37871614 |
PQID | 2902715081 |
PQPubID | 40569 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2881245315 proquest_journals_2902715081 crossref_primary_10_1038_s41586_023_06745_7 pubmed_primary_37871614 springer_journals_10_1038_s41586_023_06745_7 |
PublicationCentury | 2000 |
PublicationDate | 2023-12-14 |
PublicationDateYYYYMMDD | 2023-12-14 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-14 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature (London) |
PublicationTitleAbbrev | Nature |
PublicationTitleAlternate | Nature |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Nazeeruddin, Humphry-Baker, Liska, Grätzel (CR31) 2003; 107 Neale, Kopidakis, van de Lagemaat, Grätzel, Frank (CR24) 2005; 109 Truong (CR16) 2023; 145 Nosé (CR48) 1984; 81 Zhang (CR2) 2023; 380 Wang, Wolf, Caldwell, Kollman, Case (CR53) 2004; 25 Grimme (CR42) 2011; 1 Dang (CR33) 2019; 3 Zheng (CR8) 2020; 5 Paniagua (CR29) 2008; 112 Deng (CR25) 2022; 61 Al-Ashouri (CR35) 2020; 370 Hotchkiss, Malicki, Giordano, Armstrong, Marder (CR30) 2011; 21 Bandura, Sofo, Kubicki (CR50) 2006; 110 Isikgor (CR17) 2022; 8 CR6 Li (CR10) 2022; 376 Lim (CR55) 2009; 64 He (CR19) 2023; 618 Sandberg (CR38) 2020; 7 Park (CR1) 2023; 381 Bussi, Donadio, Parrinello (CR45) 2007; 126 Li (CR36) 2022; 13 Moot (CR39) 2021; 6 VandeVondele, Hutter (CR44) 2007; 127 Bunker (CR32) 2000; 16 Caprioglio (CR34) 2019; 9 Sahli (CR13) 2018; 17 Boyd (CR22) 2020; 4 Bengtsson (CR43) 1999; 59 Kim (CR4) 2022; 375 Peng (CR11) 2023; 379 Farag (CR21) 2023; 13 Al-Ashouri (CR26) 2023; 8 Lami (CR37) 2019; 3 Al-Ashouri (CR14) 2019; 12 CR54 Swope, Andersen, Berens, Wilson (CR47) 1982; 76 Van Setten (CR41) 2018; 226 Camaioni (CR12) 2023; 35 Park (CR5) 2023; 616 Chen (CR9) 2022; 16 Dodda, Cabeza de Vaca, Tirado-Rives, Jorgensen (CR51) 2017; 45 Jiang (CR3) 2022; 611 Paniagua (CR15) 2016; 116 CR27 Fukano (CR23) 2004; 82 Kühne (CR40) 2020; 152 Hoover (CR49) 1985; 31 Mao (CR18) 2022; 34 Meltzer (CR52) 2014; 136 Love, Estroff, Kriebel, Nuzzo, Whitesides (CR28) 2005; 105 Kryuchkov, Yurchenko, Fomin, Tsiok, Ryzhov (CR46) 2018; 14 Phung (CR20) 2022; 14 You (CR7) 2023; 379 Khenkin (CR56) 2020; 5 T Moot (6745_CR39) 2021; 6 V Lami (6745_CR37) 2019; 3 MJ Van Setten (6745_CR41) 2018; 226 MA Truong (6745_CR16) 2023; 145 N Phung (6745_CR20) 2022; 14 MK Nazeeruddin (6745_CR31) 2003; 107 J VandeVondele (6745_CR44) 2007; 127 L Bengtsson (6745_CR43) 1999; 59 S You (6745_CR7) 2023; 379 LS Dodda (6745_CR51) 2017; 45 CC Boyd (6745_CR22) 2020; 4 HX Dang (6745_CR33) 2019; 3 SM Park (6745_CR1) 2023; 381 R He (6745_CR19) 2023; 618 S Nosé (6745_CR48) 1984; 81 AV Bandura (6745_CR50) 2006; 110 6745_CR6 X Li (6745_CR36) 2022; 13 A Al-Ashouri (6745_CR26) 2023; 8 M Kim (6745_CR4) 2022; 375 X Zheng (6745_CR8) 2020; 5 JC Love (6745_CR28) 2005; 105 6745_CR54 SA Paniagua (6745_CR15) 2016; 116 A Farag (6745_CR21) 2023; 13 TD Kühne (6745_CR40) 2020; 152 MV Khenkin (6745_CR56) 2020; 5 H Chen (6745_CR9) 2022; 16 6745_CR27 OJ Sandberg (6745_CR38) 2020; 7 F Sahli (6745_CR13) 2018; 17 L Mao (6745_CR18) 2022; 34 S Grimme (6745_CR42) 2011; 1 J Wang (6745_CR53) 2004; 25 A Al-Ashouri (6745_CR14) 2019; 12 BC Bunker (6745_CR32) 2000; 16 T Fukano (6745_CR23) 2004; 82 WG Hoover (6745_CR49) 1985; 31 P Caprioglio (6745_CR34) 2019; 9 PJ Hotchkiss (6745_CR30) 2011; 21 W Peng (6745_CR11) 2023; 379 SA Paniagua (6745_CR29) 2008; 112 X Deng (6745_CR25) 2022; 61 N Camaioni (6745_CR12) 2023; 35 FH Isikgor (6745_CR17) 2022; 8 NP Kryuchkov (6745_CR46) 2018; 14 Q Jiang (6745_CR3) 2022; 611 G Bussi (6745_CR45) 2007; 126 NR Neale (6745_CR24) 2005; 109 WC Swope (6745_CR47) 1982; 76 Z Li (6745_CR10) 2022; 376 T-C Lim (6745_CR55) 2009; 64 C Meltzer (6745_CR52) 2014; 136 A Al-Ashouri (6745_CR35) 2020; 370 J Park (6745_CR5) 2023; 616 S Zhang (6745_CR2) 2023; 380 |
References_xml | – volume: 116 start-page: 7117 year: 2016 end-page: 7158 ident: CR15 article-title: Phosphonic acids for interfacial engineering of transparent conductive oxides publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00061 contributor: fullname: Paniagua – volume: 107 start-page: 8981 year: 2003 end-page: 8987 ident: CR31 article-title: Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO solar cell publication-title: J. Phys. Chem. B doi: 10.1021/jp022656f contributor: fullname: Grätzel – volume: 380 start-page: 404 year: 2023 end-page: 409 ident: CR2 article-title: Minimizing buried interfacial defects for efficient inverted perovskite solar cells publication-title: Science doi: 10.1126/science.adg3755 contributor: fullname: Zhang – volume: 25 start-page: 1157 year: 2004 end-page: 1174 ident: CR53 article-title: Development and testing of a general Amber force field publication-title: J. Comput. Chem. doi: 10.1002/jcc.20035 contributor: fullname: Case – volume: 8 start-page: 898 year: 2023 end-page: 900 ident: CR26 article-title: Wettability improvement of a carbazole-based hole-selective monolayer for reproducible perovskite solar cells publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.2c02629 contributor: fullname: Al-Ashouri – volume: 14 start-page: 2152 year: 2018 end-page: 2162 ident: CR46 article-title: Complex crystalline structures in a two-dimensional core-softened system publication-title: Soft Matter doi: 10.1039/C7SM02429K contributor: fullname: Ryzhov – volume: 616 start-page: 724 year: 2023 end-page: 730 ident: CR5 article-title: Controlled growth of perovskite layers with volatile alkylammonium chlorides publication-title: Nature doi: 10.1038/s41586-023-05825-y contributor: fullname: Park – volume: 152 start-page: 194103 year: 2020 ident: CR40 article-title: CP2K: an electronic structure and molecular dynamics software package—Quickstep: efficient and accurate electronic structure calculations publication-title: J. Chem. Phys. doi: 10.1063/5.0007045 contributor: fullname: Kühne – volume: 126 start-page: 014101 year: 2007 ident: CR45 article-title: Canonical sampling through velocity rescaling publication-title: J. Chem. Phys. doi: 10.1063/1.2408420 contributor: fullname: Parrinello – volume: 110 start-page: 8386 year: 2006 end-page: 8397 ident: CR50 article-title: derivation of force field parameters for SnO –H O surface systems from plane-wave density functional theory calculations publication-title: J. Phys. Chem. B doi: 10.1021/jp0523423 contributor: fullname: Kubicki – volume: 5 start-page: 35 year: 2020 end-page: 49 ident: CR56 article-title: Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures publication-title: Nat. Energy doi: 10.1038/s41560-019-0529-5 contributor: fullname: Khenkin – ident: CR54 – volume: 13 year: 2022 ident: CR36 article-title: Mapping the energy level alignment at donor/acceptor interfaces in non-fullerene organic solar cells publication-title: Nat. Commun. doi: 10.1038/s41467-022-29702-w contributor: fullname: Li – volume: 13 start-page: 2203982 year: 2023 ident: CR21 article-title: Evaporated self‐assembled monolayer hole transport layers: lossless interfaces in p‐i‐n perovskite solar cells publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202203982 contributor: fullname: Farag – volume: 17 start-page: 820 year: 2018 end-page: 826 ident: CR13 article-title: Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency publication-title: Nat. Mater. doi: 10.1038/s41563-018-0115-4 contributor: fullname: Sahli – volume: 81 start-page: 511 year: 1984 end-page: 519 ident: CR48 article-title: A unified formulation of the constant temperature molecular dynamics methods publication-title: J. Chem. Phys. doi: 10.1063/1.447334 contributor: fullname: Nosé – volume: 16 start-page: 352 year: 2022 end-page: 358 ident: CR9 article-title: Quantum-size-tuned heterostructures enable efficient and stable inverted perovskite solar cells publication-title: Nat. Photonics doi: 10.1038/s41566-022-00985-1 contributor: fullname: Chen – volume: 45 start-page: W331 year: 2017 end-page: W336 ident: CR51 article-title: LigParGen web server: an automatic OPLS-AA parameter generator for organic ligands publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx312 contributor: fullname: Jorgensen – volume: 34 start-page: e2206193 year: 2022 ident: CR18 article-title: Fully textured, production‐line compatible monolithic perovskite/silicon tandem solar cells approaching 29% efficiency publication-title: Adv. Mater. doi: 10.1002/adma.202206193 contributor: fullname: Mao – volume: 59 start-page: 12301 year: 1999 end-page: 12304 ident: CR43 article-title: Dipole correction for surface supercell calculations publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.12301 contributor: fullname: Bengtsson – volume: 5 start-page: 131 year: 2020 end-page: 140 ident: CR8 article-title: Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells publication-title: Nat. Energy doi: 10.1038/s41560-019-0538-4 contributor: fullname: Zheng – volume: 76 start-page: 637 year: 1982 end-page: 649 ident: CR47 article-title: A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: application to small water clusters publication-title: J. Chem. Phys. doi: 10.1063/1.442716 contributor: fullname: Wilson – volume: 3 start-page: 1746 year: 2019 end-page: 1764 ident: CR33 article-title: Multi-cation synergy suppresses phase segregation in mixed-halide perovskites publication-title: Joule doi: 10.1016/j.joule.2019.05.016 contributor: fullname: Dang – volume: 3 start-page: 2513 year: 2019 end-page: 2534 ident: CR37 article-title: Visualizing the vertical energetic landscape in organic photovoltaics publication-title: Joule doi: 10.1016/j.joule.2019.06.018 contributor: fullname: Lami – volume: 370 start-page: 1300 year: 2020 end-page: 1309 ident: CR35 article-title: Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction publication-title: Science doi: 10.1126/science.abd4016 contributor: fullname: Al-Ashouri – volume: 379 start-page: 683 year: 2023 end-page: 690 ident: CR11 article-title: Reducing nonradiative recombination in perovskite solar cells with a porous insulator contact publication-title: Science doi: 10.1126/science.ade3126 contributor: fullname: Peng – volume: 145 start-page: 7528 year: 2023 end-page: 7539 ident: CR16 article-title: Tripodal triazatruxene derivative as a face-on oriented hole-collecting monolayer for efficient and stable inverted perovskite solar cells publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c00805 contributor: fullname: Truong – volume: 105 start-page: 1103 year: 2005 end-page: 1170 ident: CR28 article-title: Self-assembled monolayers of thiolates on metals as a form of nanotechnology publication-title: Chem. Rev. doi: 10.1021/cr0300789 contributor: fullname: Whitesides – ident: CR6 – volume: 376 start-page: 416 year: 2022 end-page: 420 ident: CR10 article-title: Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells publication-title: Science doi: 10.1126/science.abm8566 contributor: fullname: Li – volume: 12 start-page: 3356 year: 2019 end-page: 3369 ident: CR14 article-title: Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells publication-title: Energy Environ. Sci. doi: 10.1039/C9EE02268F contributor: fullname: Al-Ashouri – volume: 611 start-page: 278 year: 2022 end-page: 283 ident: CR3 article-title: Surface reaction for efficient and stable inverted perovskite solar cells publication-title: Nature doi: 10.1038/s41586-022-05268-x contributor: fullname: Jiang – volume: 1 start-page: 211 year: 2011 end-page: 228 ident: CR42 article-title: Density functional theory with London dispersion corrections publication-title: WIREs Comput. Mol. Sci. doi: 10.1002/wcms.30 contributor: fullname: Grimme – volume: 14 start-page: 2166 year: 2022 end-page: 2176 ident: CR20 article-title: Enhanced self-assembled monolayer surface coverage by ALD NiO in p-i-n perovskite solar cells publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c15860 contributor: fullname: Phung – ident: CR27 – volume: 127 start-page: 114105 year: 2007 ident: CR44 article-title: Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases publication-title: J. Chem. Phys. doi: 10.1063/1.2770708 contributor: fullname: Hutter – volume: 82 start-page: 567 year: 2004 end-page: 575 ident: CR23 article-title: Low-temperature growth of highly crystallized transparent conductive fluorine-doped tin oxide films by intermittent spray pyrolysis deposition publication-title: Sol. Energy Mater. Sol. Cells contributor: fullname: Fukano – volume: 379 start-page: 288 year: 2023 end-page: 294 ident: CR7 article-title: Radical polymeric p-doping and grain modulation for stable, efficient perovskite solar modules publication-title: Science doi: 10.1126/science.add8786 contributor: fullname: You – volume: 226 start-page: 39 year: 2018 end-page: 54 ident: CR41 article-title: The PseudoDojo: training and grading a 85 element optimized norm-conserving pseudopotential table publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2018.01.012 contributor: fullname: Van Setten – volume: 35 start-page: 2210146 year: 2023 ident: CR12 article-title: Polymer solar cells with active layer thickness compatible with scalable fabrication processes: a meta‐analysis publication-title: Adv. Mater. doi: 10.1002/adma.202210146 contributor: fullname: Camaioni – volume: 8 start-page: 89 year: 2022 end-page: 108 ident: CR17 article-title: Molecular engineering of contact interfaces for high-performance perovskite solar cells publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-022-00503-3 contributor: fullname: Isikgor – volume: 21 start-page: 3107 year: 2011 ident: CR30 article-title: Characterization of phosphonic acid binding to zinc oxide publication-title: J. Mater. Chem. doi: 10.1039/c0jm02829k contributor: fullname: Marder – volume: 136 start-page: 10718 year: 2014 end-page: 10727 ident: CR52 article-title: indentation and self-healing mechanisms of a self-assembled monolayer—a combined experimental and modeling study publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5048076 contributor: fullname: Meltzer – volume: 375 start-page: 302 year: 2022 end-page: 306 ident: CR4 article-title: Conformal quantum dot–SnO layers as electron transporters for efficient perovskite solar cells publication-title: Science doi: 10.1126/science.abh1885 contributor: fullname: Kim – volume: 16 start-page: 7742 year: 2000 end-page: 7751 ident: CR32 article-title: The impact of solution agglomeration on the deposition of self-assembled monolayers publication-title: Langmuir doi: 10.1021/la000502q contributor: fullname: Bunker – volume: 64 start-page: 200 year: 2009 end-page: 204 ident: CR55 article-title: Alignment of Buckingham parameters to generalized Lennard-Jones potential functions publication-title: Z. Naturforsch. A doi: 10.1515/zna-2009-3-406 contributor: fullname: Lim – volume: 4 start-page: 1759 year: 2020 end-page: 1775 ident: CR22 article-title: Overcoming redox reactions at perovskite-nickel oxide interfaces to boost voltages in perovskite solar cells publication-title: Joule doi: 10.1016/j.joule.2020.06.004 contributor: fullname: Boyd – volume: 381 start-page: 209 year: 2023 end-page: 215 ident: CR1 article-title: Engineering ligand reactivity enables high-temperature operation of stable perovskite solar cells publication-title: Science doi: 10.1126/science.adi4107 contributor: fullname: Park – volume: 61 start-page: e202203088 year: 2022 ident: CR25 article-title: Co‐assembled monolayers as hole‐selective contact for high‐performance inverted perovskite solar cells with optimized recombination loss and long‐term stability publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.202203088 contributor: fullname: Deng – volume: 9 start-page: 1901631 year: 2019 ident: CR34 article-title: On the relation between the open‐circuit voltage and quasi‐Fermi level splitting in efficient perovskite solar cells publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201901631 contributor: fullname: Caprioglio – volume: 31 start-page: 1695 year: 1985 end-page: 1697 ident: CR49 article-title: Canonical Dynamics: Equilibrium Phase-Space Distributions publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.31.1695 contributor: fullname: Hoover – volume: 618 start-page: 80 year: 2023 end-page: 86 ident: CR19 article-title: Improving interface quality for 1-cm all-perovskite tandem solar cells publication-title: Nature doi: 10.1038/s41586-023-05992-y contributor: fullname: He – volume: 7 start-page: 2000041 year: 2020 ident: CR38 article-title: On the question of the need for a built‐in potential in perovskite solar cells publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.202000041 contributor: fullname: Sandberg – volume: 109 start-page: 23183 year: 2005 end-page: 23189 ident: CR24 article-title: Effect of a coadsorbent on the performance of dye-sensitized TiO solar cells: shielding versus band-edge movement publication-title: J. Phys. Chem. B doi: 10.1021/jp0538666 contributor: fullname: Frank – volume: 112 start-page: 7809 year: 2008 end-page: 7817 ident: CR29 article-title: Phosphonic acid modification of indium–tin oxide electrodes: combined XPS/UPS/contact angle studies publication-title: J. Phys. Chem. C doi: 10.1021/jp710893k contributor: fullname: Paniagua – volume: 6 start-page: 2038 year: 2021 end-page: 2047 ident: CR39 article-title: Temperature coefficients of perovskite photovoltaics for energy yield calculations publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.1c00748 contributor: fullname: Moot – volume: 8 start-page: 898 year: 2023 ident: 6745_CR26 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.2c02629 contributor: fullname: A Al-Ashouri – volume: 76 start-page: 637 year: 1982 ident: 6745_CR47 publication-title: J. Chem. Phys. doi: 10.1063/1.442716 contributor: fullname: WC Swope – volume: 35 start-page: 2210146 year: 2023 ident: 6745_CR12 publication-title: Adv. Mater. doi: 10.1002/adma.202210146 contributor: fullname: N Camaioni – volume: 105 start-page: 1103 year: 2005 ident: 6745_CR28 publication-title: Chem. Rev. doi: 10.1021/cr0300789 contributor: fullname: JC Love – volume: 3 start-page: 1746 year: 2019 ident: 6745_CR33 publication-title: Joule doi: 10.1016/j.joule.2019.05.016 contributor: fullname: HX Dang – volume: 370 start-page: 1300 year: 2020 ident: 6745_CR35 publication-title: Science doi: 10.1126/science.abd4016 contributor: fullname: A Al-Ashouri – volume: 107 start-page: 8981 year: 2003 ident: 6745_CR31 publication-title: J. Phys. Chem. B doi: 10.1021/jp022656f contributor: fullname: MK Nazeeruddin – volume: 25 start-page: 1157 year: 2004 ident: 6745_CR53 publication-title: J. Comput. Chem. doi: 10.1002/jcc.20035 contributor: fullname: J Wang – volume: 5 start-page: 131 year: 2020 ident: 6745_CR8 publication-title: Nat. Energy doi: 10.1038/s41560-019-0538-4 contributor: fullname: X Zheng – volume: 14 start-page: 2166 year: 2022 ident: 6745_CR20 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c15860 contributor: fullname: N Phung – volume: 611 start-page: 278 year: 2022 ident: 6745_CR3 publication-title: Nature doi: 10.1038/s41586-022-05268-x contributor: fullname: Q Jiang – volume: 136 start-page: 10718 year: 2014 ident: 6745_CR52 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5048076 contributor: fullname: C Meltzer – volume: 376 start-page: 416 year: 2022 ident: 6745_CR10 publication-title: Science doi: 10.1126/science.abm8566 contributor: fullname: Z Li – volume: 13 start-page: 2203982 year: 2023 ident: 6745_CR21 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202203982 contributor: fullname: A Farag – volume: 616 start-page: 724 year: 2023 ident: 6745_CR5 publication-title: Nature doi: 10.1038/s41586-023-05825-y contributor: fullname: J Park – volume: 109 start-page: 23183 year: 2005 ident: 6745_CR24 publication-title: J. Phys. Chem. B doi: 10.1021/jp0538666 contributor: fullname: NR Neale – volume: 379 start-page: 288 year: 2023 ident: 6745_CR7 publication-title: Science doi: 10.1126/science.add8786 contributor: fullname: S You – volume: 16 start-page: 352 year: 2022 ident: 6745_CR9 publication-title: Nat. Photonics doi: 10.1038/s41566-022-00985-1 contributor: fullname: H Chen – volume: 4 start-page: 1759 year: 2020 ident: 6745_CR22 publication-title: Joule doi: 10.1016/j.joule.2020.06.004 contributor: fullname: CC Boyd – volume: 81 start-page: 511 year: 1984 ident: 6745_CR48 publication-title: J. Chem. Phys. doi: 10.1063/1.447334 contributor: fullname: S Nosé – volume: 1 start-page: 211 year: 2011 ident: 6745_CR42 publication-title: WIREs Comput. Mol. Sci. doi: 10.1002/wcms.30 contributor: fullname: S Grimme – ident: 6745_CR6 – volume: 380 start-page: 404 year: 2023 ident: 6745_CR2 publication-title: Science doi: 10.1126/science.adg3755 contributor: fullname: S Zhang – volume: 31 start-page: 1695 year: 1985 ident: 6745_CR49 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.31.1695 contributor: fullname: WG Hoover – volume: 145 start-page: 7528 year: 2023 ident: 6745_CR16 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c00805 contributor: fullname: MA Truong – volume: 21 start-page: 3107 year: 2011 ident: 6745_CR30 publication-title: J. Mater. Chem. doi: 10.1039/c0jm02829k contributor: fullname: PJ Hotchkiss – volume: 16 start-page: 7742 year: 2000 ident: 6745_CR32 publication-title: Langmuir doi: 10.1021/la000502q contributor: fullname: BC Bunker – volume: 45 start-page: W331 year: 2017 ident: 6745_CR51 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx312 contributor: fullname: LS Dodda – volume: 112 start-page: 7809 year: 2008 ident: 6745_CR29 publication-title: J. Phys. Chem. C doi: 10.1021/jp710893k contributor: fullname: SA Paniagua – volume: 152 start-page: 194103 year: 2020 ident: 6745_CR40 publication-title: J. Chem. Phys. doi: 10.1063/5.0007045 contributor: fullname: TD Kühne – volume: 5 start-page: 35 year: 2020 ident: 6745_CR56 publication-title: Nat. Energy doi: 10.1038/s41560-019-0529-5 contributor: fullname: MV Khenkin – volume: 7 start-page: 2000041 year: 2020 ident: 6745_CR38 publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.202000041 contributor: fullname: OJ Sandberg – volume: 127 start-page: 114105 year: 2007 ident: 6745_CR44 publication-title: J. Chem. Phys. doi: 10.1063/1.2770708 contributor: fullname: J VandeVondele – volume: 82 start-page: 567 year: 2004 ident: 6745_CR23 publication-title: Sol. Energy Mater. Sol. Cells contributor: fullname: T Fukano – ident: 6745_CR27 doi: 10.1002/adma.202304415 – volume: 110 start-page: 8386 year: 2006 ident: 6745_CR50 publication-title: J. Phys. Chem. B doi: 10.1021/jp0523423 contributor: fullname: AV Bandura – volume: 12 start-page: 3356 year: 2019 ident: 6745_CR14 publication-title: Energy Environ. Sci. doi: 10.1039/C9EE02268F contributor: fullname: A Al-Ashouri – volume: 126 start-page: 014101 year: 2007 ident: 6745_CR45 publication-title: J. Chem. Phys. doi: 10.1063/1.2408420 contributor: fullname: G Bussi – volume: 34 start-page: e2206193 year: 2022 ident: 6745_CR18 publication-title: Adv. Mater. doi: 10.1002/adma.202206193 contributor: fullname: L Mao – volume: 64 start-page: 200 year: 2009 ident: 6745_CR55 publication-title: Z. Naturforsch. A doi: 10.1515/zna-2009-3-406 contributor: fullname: T-C Lim – volume: 59 start-page: 12301 year: 1999 ident: 6745_CR43 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.12301 contributor: fullname: L Bengtsson – volume: 8 start-page: 89 year: 2022 ident: 6745_CR17 publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-022-00503-3 contributor: fullname: FH Isikgor – volume: 379 start-page: 683 year: 2023 ident: 6745_CR11 publication-title: Science doi: 10.1126/science.ade3126 contributor: fullname: W Peng – volume: 381 start-page: 209 year: 2023 ident: 6745_CR1 publication-title: Science doi: 10.1126/science.adi4107 contributor: fullname: SM Park – volume: 116 start-page: 7117 year: 2016 ident: 6745_CR15 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00061 contributor: fullname: SA Paniagua – ident: 6745_CR54 doi: 10.1201/9780367806934 – volume: 3 start-page: 2513 year: 2019 ident: 6745_CR37 publication-title: Joule doi: 10.1016/j.joule.2019.06.018 contributor: fullname: V Lami – volume: 17 start-page: 820 year: 2018 ident: 6745_CR13 publication-title: Nat. Mater. doi: 10.1038/s41563-018-0115-4 contributor: fullname: F Sahli – volume: 9 start-page: 1901631 year: 2019 ident: 6745_CR34 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201901631 contributor: fullname: P Caprioglio – volume: 6 start-page: 2038 year: 2021 ident: 6745_CR39 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.1c00748 contributor: fullname: T Moot – volume: 13 year: 2022 ident: 6745_CR36 publication-title: Nat. Commun. doi: 10.1038/s41467-022-29702-w contributor: fullname: X Li – volume: 226 start-page: 39 year: 2018 ident: 6745_CR41 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2018.01.012 contributor: fullname: MJ Van Setten – volume: 14 start-page: 2152 year: 2018 ident: 6745_CR46 publication-title: Soft Matter doi: 10.1039/C7SM02429K contributor: fullname: NP Kryuchkov – volume: 618 start-page: 80 year: 2023 ident: 6745_CR19 publication-title: Nature doi: 10.1038/s41586-023-05992-y contributor: fullname: R He – volume: 375 start-page: 302 year: 2022 ident: 6745_CR4 publication-title: Science doi: 10.1126/science.abh1885 contributor: fullname: M Kim – volume: 61 start-page: e202203088 year: 2022 ident: 6745_CR25 publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.202203088 contributor: fullname: X Deng |
SSID | ssj0005174 |
Score | 2.6477168 |
Snippet | Inverted perovskite solar cells (PSCs) promise enhanced operating stability compared to their normal-structure counterparts
1
–
3
. To improve efficiency... Inverted perovskite solar cells (PSCs) promise enhanced operating stability compared to their normal-structure counterparts . To improve efficiency further, it... Inverted perovskite solar cells (PSCs) promise enhanced operating stability compared to their normal-structure counterparts13. To improve efficiency further,... Inverted perovskite solar cells (PSCs) promise enhanced operating stability compared to their normal-structure counterparts1-3. To improve efficiency further,... |
SourceID | proquest crossref pubmed springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 289 |
SubjectTerms | 119/118 140/125 140/146 639/301/299/946 639/4077/909/4101/4096/946 Acids Adsorbents Adsorption Chemical bonds Efficiency Energy conversion efficiency Humanities and Social Sciences Maximum power tracking Molecular dynamics multidisciplinary Optoelectronic devices Perovskites Phosphonic acids Photoelectric effect Photovoltaic cells Relative humidity Room temperature Science Science (multidisciplinary) Self-assembled monolayers Self-assembly Simulation Solar cells Spectrum analysis Substrates |
Title | Low-loss contacts on textured substrates for inverted perovskite solar cells |
URI | https://link.springer.com/article/10.1038/s41586-023-06745-7 https://www.ncbi.nlm.nih.gov/pubmed/37871614 https://www.proquest.com/docview/2902715081 https://search.proquest.com/docview/2881245315 |
Volume | 624 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFD5oi9IXsfXSaJURfFBi2s1lMpPHVixF2kWwxfoUJpOJrNakmF1Ff71nbsmWtaC-hCUJM9lzvpz5zuRcAJ4rJuNCoZOjZCyjjMciqoSiUcFxeU8mVMhaf9E9meZHZ9nbc3o-FlQw2SXzalf--mNeyf9oFc-hXnWW7D9odhgUT-Bv1C8eUcN4_CsdH3c_ootO15fu2rmQbusfze1CR5X3aBNM7VlTciGctbr1Mp7XpcG_93rXNuy1Yxvqzft-maVOTbXP5W4fw3bBOxdb_b4LT2YDsD6omY3Bbz_9FG4tNFE-SMp7W8VgOvuCk3UDhf-4MOF9qv3shnFbD0mqwzhsyueusuYyY3mU5W7JdPY0t0nRDjissN24vIG0DYNWDLct094jneA6KFp3nGAZjdjyzSj8y69GlSnTfp5_lCvlsv2lm7CeoO1Bo7e-f3hwMB3jftAHc9lTOOne6pQbcNsPcpWsrHggK1_PDSk5vQt3nDdB9i00NuGGarfglonqlf0WbDrL3ZMXrrz4y3tw7FFDPGpI1xKPGjKihiBqiEcNGVFDDGqIQc19ODt8c_r6KHI9NSKJRD2N8kKKYoIksKEUmRtDh5KmrJEqUVmRTqq8lugR8CavWUFpLpNYcqU48uqm5rWS6QNYa7tWbQNhlKla92mRDUfSLUUjG1HFVNWxKuq4CiD0wisvbemU0oQ8pLy0Ui9R6qWReskC2PHyLd0r1pdJMUmY7lgQB_BsuIwGUP9F0apugfdwzVFxKaEBPLR6GabzegzglVfUOPj1z_Lo2oEew8b4IuzA2vzbQj1BVjqvnjqc_QaMrohv |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-loss+contacts+on+textured+substrates+for+inverted+perovskite+solar+cells&rft.jtitle=Nature+%28London%29&rft.au=Park%2C+So+Min&rft.au=Wei%2C+Mingyang&rft.au=Lempesis%2C+Nikolaos&rft.au=Yu%2C+Wenjin&rft.date=2023-12-14&rft.eissn=1476-4687&rft.volume=624&rft.issue=7991&rft.spage=289&rft_id=info:doi/10.1038%2Fs41586-023-06745-7&rft_id=info%3Apmid%2F37871614&rft.externalDocID=37871614 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |