Scheduling trade‐off of dynamic multiple parallel workflows on heterogeneous distributed computing systems

Summary Scheduling multiple parallel workflows, which arrive at different instants on heterogeneous distributed computing systems, is a great challenge because of the different requirements of resource providers and users. Overall scheduling length is the main concern of resource providers, whereas...

Full description

Saved in:
Bibliographic Details
Published inConcurrency and computation Vol. 29; no. 2; pp. np - n/a
Main Authors Xie, Guoqi, Liu, Liangjiao, Yang, Liu, Li, Renfa
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 25.01.2017
Subjects
Online AccessGet full text
ISSN1532-0626
1532-0634
DOI10.1002/cpe.3782

Cover

Abstract Summary Scheduling multiple parallel workflows, which arrive at different instants on heterogeneous distributed computing systems, is a great challenge because of the different requirements of resource providers and users. Overall scheduling length is the main concern of resource providers, whereas deadlines of workflows are the major requirements of users. Most algorithms use fairness‐based strategies to reduce the overall scheduling length. However, these algorithms cause obvious unfairness to longer‐makespan workflows or shorter‐makespan workflows. Furthermore, the systems cannot meet the deadlines of all workflows, particularly on large‐scale resource‐constrained computational grids. Gaining a reasonable balance between the overall scheduling length and the deadlines of workflows is a desirable goal. In this study, we first propose a fairness‐based scheduling algorithm called fairness‐based dynamic multiple heterogeneous selection value to achieve high performance of systems compared with existing works. Then, to meet the deadlines of partial higher‐priority workflows, we present a priority‐based scheduling algorithm called priority‐based dynamic multiple heterogeneous selection value. Finally, combining fairness‐based dynamic multiple heterogeneous selection value and priority‐based dynamic multiple heterogeneous selection value, we present the tradeoff‐based scheduling algorithm to meet the deadlines of more higher‐priority workflows while still allowing the lower‐priority workflows to be processed actively for better performance of systems. Both example and extensive experimental evaluations demonstrate significant improvement of our proposed algorithms. Copyright © 2016 John Wiley & Sons, Ltd.
AbstractList Summary Scheduling multiple parallel workflows, which arrive at different instants on heterogeneous distributed computing systems, is a great challenge because of the different requirements of resource providers and users. Overall scheduling length is the main concern of resource providers, whereas deadlines of workflows are the major requirements of users. Most algorithms use fairness‐based strategies to reduce the overall scheduling length. However, these algorithms cause obvious unfairness to longer‐makespan workflows or shorter‐makespan workflows. Furthermore, the systems cannot meet the deadlines of all workflows, particularly on large‐scale resource‐constrained computational grids. Gaining a reasonable balance between the overall scheduling length and the deadlines of workflows is a desirable goal. In this study, we first propose a fairness‐based scheduling algorithm called fairness‐based dynamic multiple heterogeneous selection value to achieve high performance of systems compared with existing works. Then, to meet the deadlines of partial higher‐priority workflows, we present a priority‐based scheduling algorithm called priority‐based dynamic multiple heterogeneous selection value. Finally, combining fairness‐based dynamic multiple heterogeneous selection value and priority‐based dynamic multiple heterogeneous selection value, we present the tradeoff‐based scheduling algorithm to meet the deadlines of more higher‐priority workflows while still allowing the lower‐priority workflows to be processed actively for better performance of systems. Both example and extensive experimental evaluations demonstrate significant improvement of our proposed algorithms. Copyright © 2016 John Wiley & Sons, Ltd.
Scheduling multiple parallel workflows, which arrive at different instants on heterogeneous distributed computing systems, is a great challenge because of the different requirements of resource providers and users. Overall scheduling length is the main concern of resource providers, whereas deadlines of workflows are the major requirements of users. Most algorithms use fairness-based strategies to reduce the overall scheduling length. However, these algorithms cause obvious unfairness to longer-makespan workflows or shorter-makespan workflows. Furthermore, the systems cannot meet the deadlines of all workflows, particularly on large-scale resource-constrained computational grids. Gaining a reasonable balance between the overall scheduling length and the deadlines of workflows is a desirable goal. In this study, we first propose a fairness-based scheduling algorithm called fairness-based dynamic multiple heterogeneous selection value to achieve high performance of systems compared with existing works. Then, to meet the deadlines of partial higher-priority workflows, we present a priority-based scheduling algorithm called priority-based dynamic multiple heterogeneous selection value. Finally, combining fairness-based dynamic multiple heterogeneous selection value and priority-based dynamic multiple heterogeneous selection value, we present the tradeoff-based scheduling algorithm to meet the deadlines of more higher-priority workflows while still allowing the lower-priority workflows to be processed actively for better performance of systems. Both example and extensive experimental evaluations demonstrate significant improvement of our proposed algorithms.
Summary Scheduling multiple parallel workflows, which arrive at different instants on heterogeneous distributed computing systems, is a great challenge because of the different requirements of resource providers and users. Overall scheduling length is the main concern of resource providers, whereas deadlines of workflows are the major requirements of users. Most algorithms use fairness-based strategies to reduce the overall scheduling length. However, these algorithms cause obvious unfairness to longer-makespan workflows or shorter-makespan workflows. Furthermore, the systems cannot meet the deadlines of all workflows, particularly on large-scale resource-constrained computational grids. Gaining a reasonable balance between the overall scheduling length and the deadlines of workflows is a desirable goal. In this study, we first propose a fairness-based scheduling algorithm called fairness-based dynamic multiple heterogeneous selection value to achieve high performance of systems compared with existing works. Then, to meet the deadlines of partial higher-priority workflows, we present a priority-based scheduling algorithm called priority-based dynamic multiple heterogeneous selection value. Finally, combining fairness-based dynamic multiple heterogeneous selection value and priority-based dynamic multiple heterogeneous selection value, we present the tradeoff-based scheduling algorithm to meet the deadlines of more higher-priority workflows while still allowing the lower-priority workflows to be processed actively for better performance of systems. Both example and extensive experimental evaluations demonstrate significant improvement of our proposed algorithms. Copyright © 2016 John Wiley & Sons, Ltd.
Scheduling multiple parallel workflows, which arrive at different instants on heterogeneous distributed computing systems, is a great challenge because of the different requirements of resource providers and users. Overall scheduling length is the main concern of resource providers, whereas deadlines of workflows are the major requirements of users. Most algorithms use fairness‐based strategies to reduce the overall scheduling length. However, these algorithms cause obvious unfairness to longer‐makespan workflows or shorter‐makespan workflows. Furthermore, the systems cannot meet the deadlines of all workflows, particularly on large‐scale resource‐constrained computational grids. Gaining a reasonable balance between the overall scheduling length and the deadlines of workflows is a desirable goal. In this study, we first propose a fairness‐based scheduling algorithm called fairness‐based dynamic multiple heterogeneous selection value to achieve high performance of systems compared with existing works. Then, to meet the deadlines of partial higher‐priority workflows, we present a priority‐based scheduling algorithm called priority‐based dynamic multiple heterogeneous selection value. Finally, combining fairness‐based dynamic multiple heterogeneous selection value and priority‐based dynamic multiple heterogeneous selection value, we present the tradeoff‐based scheduling algorithm to meet the deadlines of more higher‐priority workflows while still allowing the lower‐priority workflows to be processed actively for better performance of systems. Both example and extensive experimental evaluations demonstrate significant improvement of our proposed algorithms. Copyright © 2016 John Wiley & Sons, Ltd.
Author Liu, Liangjiao
Li, Renfa
Xie, Guoqi
Yang, Liu
Author_xml – sequence: 1
  givenname: Guoqi
  surname: Xie
  fullname: Xie, Guoqi
  email: xgqman@hnu.edu.cn
  organization: Hunan University
– sequence: 2
  givenname: Liangjiao
  surname: Liu
  fullname: Liu, Liangjiao
  organization: Hunan University
– sequence: 3
  givenname: Liu
  surname: Yang
  fullname: Yang, Liu
  organization: Development and Reform Commission of Hunan Province
– sequence: 4
  givenname: Renfa
  surname: Li
  fullname: Li, Renfa
  organization: Hunan University
BookMark eNp1kM1KAzEUhYMoqFXwEQJu3EzNTzuZLKX4B4KCug6ZzI1GM5MxyVC68xF8Rp_EtoqC6OrexXcOh28XbXahA4QOKBlTQtix6WHMRcU20A6dclaQkk82v39WbqPdlJ4IoZRwuoP8rXmEZvCue8A56gbeX9-CtThY3Cw63TqD28Fn13vAvY7ae_B4HuKz9WGecOjwI2SI4QE6CEPCjUs5unrI0GAT2n7Iq-a0SBnatIe2rPYJ9r_uCN2fnd7NLoqr6_PL2clVYTgrWUEFERqIqXRjuWUc9ESW9ZTxKakE11pYXhvJpjUBrqmASgioOTSslIZSzvkIHX329jG8DJCyal0y4L1ej1S0ElJKwtfo4S_0KQyxW65TVDI2mUhSyp9CE0NKEazqo2t1XChK1Eq7WmpXK-1LdPwLNS7r7EK31Ov8X4HiMzB3Hhb_FqvZzema_wCcOJfK
CitedBy_id crossref_primary_10_1007_s10723_017_9391_5
crossref_primary_10_1142_S0218126621501632
crossref_primary_10_4018_IJGHPC_2017070105
crossref_primary_10_1002_cpe_7452
crossref_primary_10_1109_TSUSC_2017_2705183
crossref_primary_10_3390_math11051232
crossref_primary_10_1002_cpe_6027
crossref_primary_10_1016_j_sysarc_2020_101916
crossref_primary_10_1142_S0218126623501414
crossref_primary_10_1016_j_micpro_2020_103507
crossref_primary_10_1007_s10951_024_00820_1
crossref_primary_10_1007_s11227_020_03403_x
crossref_primary_10_1007_s10586_020_03095_1
crossref_primary_10_1109_ACCESS_2019_2912652
crossref_primary_10_1109_TSC_2021_3054754
crossref_primary_10_1109_TSUSC_2017_2711362
crossref_primary_10_1142_S0218126621300038
crossref_primary_10_1016_j_sysarc_2023_102894
crossref_primary_10_1007_s10586_021_03464_4
crossref_primary_10_1145_3368036
crossref_primary_10_1002_cpe_3964
crossref_primary_10_1016_j_comnet_2021_108560
crossref_primary_10_1109_TSC_2017_2665552
crossref_primary_10_1109_ACCESS_2019_2944204
Cites_doi 10.1007/s10723-009-9144-1
10.1002/cpe.1631
10.1109/AINA.2014.123
10.1109/TPDS.2004.1264795
10.1109/E-SCIENCE.2006.261098
10.1145/1331331.1331343
10.1109/TPDS.2007.1106
10.1016/j.parco.2005.04.002
10.1109/ISPA.2012.94
10.1109/71.993206
10.1109/ICPP-W.2008.10
10.1145/1594835.1504188
10.1117/12.745354
10.1016/j.future.2010.10.015
10.14569/IJACSA.2011.020209
10.1016/j.parco.2012.01.001
ContentType Journal Article
Copyright Copyright © 2016 John Wiley & Sons, Ltd.
Copyright © 2017 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2016 John Wiley & Sons, Ltd.
– notice: Copyright © 2017 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/cpe.3782
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Computer and Information Systems Abstracts
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1532-0634
EndPage n/a
ExternalDocumentID 10_1002_cpe_3782
CPE3782
Genre article
GrantInformation_xml – fundername: National High‐Tech Research and Development Plan of China
  funderid: 2012AA01A301-01
– fundername: National Natural Science Foundation of China
  funderid: 61173036, 61300037, 61300039, and 61402170
GroupedDBID .3N
.DC
.GA
05W
0R~
10A
1L6
1OB
1OC
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ACAHQ
ACCZN
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADOZA
ADXAS
ADZMN
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AGHNM
AGYGG
AHBTC
AITYG
AIURR
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
HGLYW
HHY
HZ~
IX1
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
WZISG
XG1
XV2
~IA
~WT
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c3262-1707ae0c8adf3f23ea496b52350873aa7f3bc925b0e3a17e877eb3ed269c11333
IEDL.DBID DR2
ISSN 1532-0626
IngestDate Fri Sep 05 03:38:16 EDT 2025
Fri Jul 25 07:54:14 EDT 2025
Thu Apr 24 22:57:43 EDT 2025
Tue Jul 01 00:33:54 EDT 2025
Tue Sep 09 05:11:35 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3262-1707ae0c8adf3f23ea496b52350873aa7f3bc925b0e3a17e877eb3ed269c11333
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1922449069
PQPubID 2045170
PageCount 18
ParticipantIDs proquest_miscellaneous_1879990333
proquest_journals_1922449069
crossref_primary_10_1002_cpe_3782
crossref_citationtrail_10_1002_cpe_3782
wiley_primary_10_1002_cpe_3782_CPE3782
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 25 January 2017
PublicationDateYYYYMMDD 2017-01-25
PublicationDate_xml – month: 01
  year: 2017
  text: 25 January 2017
  day: 25
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Concurrency and computation
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2007; 18
2012
2011
2002; 13
2004; 15
2009
2008
2007
2005; 31
2008; 7
2006
2004
2011; 23
2012; 38
2014
2013
2011; 27
2010; 8
e_1_2_9_20_1
e_1_2_9_11_1
e_1_2_9_22_1
e_1_2_9_10_1
e_1_2_9_21_1
e_1_2_9_13_1
e_1_2_9_12_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
References_xml – volume: 23
  start-page: 187
  issue: 2
  year: 2011
  end-page: 198
  article-title: Starpu: a unified platform for task scheduling on heterogeneous multicore architectures
  publication-title: Concurrency and Computation: Practice and Experience
– year: 2011
– volume: 13
  start-page: 260
  issue: 3
  year: 2002
  end-page: 274
  article-title: Performance‐effective and low‐complexity task scheduling for heterogeneous computing
  publication-title: IEEE Transactions on Parallel and Distributed Systems
– start-page: 65
  year: 2009
  end-page: 74
– volume: 38
  start-page: 175
  issue: 4
  year: 2012
  end-page: 193
  article-title: Scheduling for heterogeneous systems using constrained critical paths
  publication-title: Parallel Computing
– volume: 15
  start-page: 107
  issue: 2
  year: 2004
  end-page: 118
  article-title: Improving scheduling of tasks in a heterogeneous environment
  publication-title: IEEE Transactions on Parallel and Distributed Systems
– start-page: 1
  year: 2008
  end-page: 8
– start-page: 633
  year: 2012
  end-page: 639
– start-page: 3
  year: 2013
  end-page: 5
– volume: 7
  start-page: 1
  issue: 2
  year: 2008
  end-page: 19:35
  article-title: Task mapping and priority assignment for soft real‐time applications under deadline miss ratio constraints
  publication-title: ACM Transactions on Embedded Computing Systems (TECS)
– start-page: 593
  year: 2004
  end-page: 596
– volume: 31
  start-page: 653
  issue: 7
  year: 2005
  end-page: 670
  article-title: A high performance, low complexity algorithm for compile‐time task scheduling in heterogeneous systems
  publication-title: Parallel Computing
– volume: 27
  start-page: 860
  issue: 6
  year: 2011
  end-page: 870
  article-title: Online scheduling of workflow applications in grid environments
  publication-title: Future Generation Computer Systems
– start-page: 14
  year: 2006
  end-page: 14
– start-page: 67841F
  year: 2007
  end-page: 67841F
– start-page: 159
  year: 2006
  end-page: 172
– start-page: 147
  year: 2006
  end-page: 152
– start-page: 1011
  year: 2014
  end-page: 1016
– volume: 8
  start-page: 419
  issue: 3
  year: 2010
  end-page: 441
  article-title: Towards the scheduling of multiple workflows on computational grids
  publication-title: Journal of Grid Computing
– volume: 18
  start-page: 1489
  issue: 11
  year: 2007
  end-page: 1502
  article-title: Push‐pull: deterministic search‐based DAG scheduling for heterogeneous cluster systems
  publication-title: IEEE Transactions on Parallel and Distributed Systems
– ident: e_1_2_9_2_1
– ident: e_1_2_9_20_1
  doi: 10.1007/s10723-009-9144-1
– ident: e_1_2_9_7_1
  doi: 10.1002/cpe.1631
– ident: e_1_2_9_18_1
  doi: 10.1109/AINA.2014.123
– ident: e_1_2_9_10_1
  doi: 10.1109/TPDS.2004.1264795
– ident: e_1_2_9_3_1
  doi: 10.1109/E-SCIENCE.2006.261098
– ident: e_1_2_9_22_1
  doi: 10.1145/1331331.1331343
– ident: e_1_2_9_9_1
  doi: 10.1109/TPDS.2007.1106
– ident: e_1_2_9_21_1
  doi: 10.1016/j.parco.2005.04.002
– ident: e_1_2_9_6_1
  doi: 10.1109/ISPA.2012.94
– ident: e_1_2_9_12_1
– ident: e_1_2_9_16_1
  doi: 10.1109/71.993206
– ident: e_1_2_9_15_1
– ident: e_1_2_9_4_1
  doi: 10.1109/ICPP-W.2008.10
– ident: e_1_2_9_13_1
  doi: 10.1145/1594835.1504188
– ident: e_1_2_9_19_1
  doi: 10.1117/12.745354
– ident: e_1_2_9_11_1
– ident: e_1_2_9_5_1
  doi: 10.1016/j.future.2010.10.015
– ident: e_1_2_9_14_1
  doi: 10.14569/IJACSA.2011.020209
– ident: e_1_2_9_17_1
  doi: 10.1016/j.parco.2012.01.001
– ident: e_1_2_9_8_1
  doi: 10.1109/71.993206
SSID ssj0011031
Score 2.3168263
Snippet Summary Scheduling multiple parallel workflows, which arrive at different instants on heterogeneous distributed computing systems, is a great challenge because...
Scheduling multiple parallel workflows, which arrive at different instants on heterogeneous distributed computing systems, is a great challenge because of the...
Summary Scheduling multiple parallel workflows, which arrive at different instants on heterogeneous distributed computing systems, is a great challenge because...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage np
SubjectTerms Algorithms
Computational grids
Computer networks
Distributed processing
dynamic
Dynamical systems
Dynamics
Priority scheduling
Scheduling
Scheduling algorithms
tradeoff
User requirements
Workflow
workflows
Title Scheduling trade‐off of dynamic multiple parallel workflows on heterogeneous distributed computing systems
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpe.3782
https://www.proquest.com/docview/1922449069
https://www.proquest.com/docview/1879990333
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSsQwFA3iyo3jE8cXEURXHduk08dSfCCCIurAgIuSp4JlOtgOgis_wW_0S7y3r1FREFddNE3a3Nzk3PTmHEJ2YzcKtZZ41olrx-e-dGQcxI6C-BaiMSVsHw8nX1wGZwP_fNgf1lmVeBam4odoN9zQM8r5Gh1cyPxgShqqxqbHYX2D6dfjAdLmH1-3zFEeqhdUVKnMcQG0N7yzLjtoHvy6Ek3h5WeQWq4ypx1y17xflVzy2JsUsqdevlE3_u8DFsh8DT7pYTVaFsmMGS2RTiPsQGs_XybpDZhSY476PS2ehDbvr2-ZtTSzVFcK9rRJRKTIHZ6mJqWY4WXT7Dmn2Yg-YJZNBoPTZJOcamTnRWEto6kqW8OaKxLpfIUMTk9uj86cWpbBUYD1mOOFbiiMqyKhLbeMG-HHgYSAFrBeyIUILZcqZn3pGi680ERhCBG70QxM70FIzFfJ7CgbmTVCAS5GOtaeQcVgo0Qkrfa11dxXuFktu2S_MVGias5ylM5Ik4ptmSXQiQl2YpfstCXHFU_HD2U2GysntafmCSBcQDixG8RQRXsbfAx_nIiylxJUZIdVG169S_ZKk_7aRnJ0dYLX9b8W3CBzDJGC6zmsv0lmi6eJ2QKcU8jtckR_AFjW_a4
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xOJRLaXmIbWlrJASnLImd3STihChoaQGhAhIHJMtPkBptELsrJE78BH4jv4SZPJYWgYQ45RDHdjye-Btn_H0Aq1mYJtZqOuskbBCLWAc662aBwfgWozGjfIcOJx8cdnun8a-zztkEbDZnYSp-iPGGG3lG-b0mB6cN6Y0n1lBz5doCF7hJmI4RZ1Dk9fPPmDsqIv2CiiyVByHC9oZ5NuQbzZP_r0VPAPNfmFquM7uzcN70sEov-dseDXXb3D4jb3znK3yCjzX-ZFvVhPkME64_B7ONtgOrXX0e8mO0pqU09Qs2vFbWPdzdF96zwjNbidizJheREX14nrucUZKXz4ubASv67JISbQqcn64YDZglgl7S1nKWmbI1qrnikR4swOnuzsl2L6iVGQKDcI8HURImyoUmVdYLz4VTcdbVGNMi3EuEUokX2mS8o0MnVJS4NEkwaHeWo_UjjIrFIkz1i75bAoaIMbWZjRyJBjujUu1tbL0VsaH9at2C9cZG0tS05aSekcuKcJlLHERJg9iClXHJq4qq44Uyy42ZZe2sA4kgF0FOFnYzrGJ8G92M_p2ocpQkibLjwo1db8FaadNX25DbRzt0_fLWgj_gQ-_kYF_u7x3-_goznIBDGAW8swxTw-uR-4awZ6i_l9P7ESZFAdw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB61VKp6AUqpWB6tkSp6ypLY2TyOaLsrSluEaJGQerD8BIlos2J3hcSJn8Bv5Jcwk8dCKypVnHKIYzseT_yNM_4-gE95mKXWajrrJGwQi1gHOk_ywGB8i9GYUb5Hh5N_HCb7J_HBae-0yaqkszA1P8R8w408o_pek4OPrd99IA01Y9cVuL69hFdxgkCCANHxnDoqIvmCmiuVByGi9pZ4NuS77ZN_LkUP-PIxSq2WmeES_G47WGeXXHRnU901139xNz7vDZZhsUGfbK-eLm_hhRutwFKr7MAaR38HxU-0paUk9TM2vVTW3d3clt6z0jNbS9izNhOREXl4UbiCUYqXL8qrCStH7JzSbEqcna6cTZglel5S1nKWmao1qrlmkZ6swslw8Ku_HzS6DIFBsMeDKA1T5UKTKeuF58KpOE80RrQI9lKhVOqFNjnv6dAJFaUuS1MM2Z3laPsIY2LxHhZG5citAUO8mNncRo4kg51RmfY2tt6K2NBute7A59ZE0jSk5aSdUciabplLHERJg9iB7XnJcU3U8USZzdbKsnHViUSIixAnD5Mcq5jfRiejPyeqGiVJkuy4bGPXO7BTmfSfbcj-0YCu6_9b8CO8PvoylN-_Hn7bgDecUEMYBby3CQvTy5nbQswz1R-qyX0PMP8Aiw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scheduling+trade-off+of+dynamic+multiple+parallel+workflows+on+heterogeneous+distributed+computing+systems&rft.jtitle=Concurrency+and+computation&rft.au=Xie%2C+Guoqi&rft.au=Liu%2C+Liangjiao&rft.au=Yang%2C+Liu&rft.au=Li%2C+Renfa&rft.date=2017-01-25&rft.issn=1532-0626&rft.eissn=1532-0634&rft.volume=29&rft.issue=2&rft.spage=np&rft.epage=np&rft_id=info:doi/10.1002%2Fcpe.3782&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0626&client=summon