Manipulating noncovalent conformational lock via side‐chain engineering for luminescence at aggregate level

The unfavorable photochemical processes at the molecular level have become a barrier limiting the use of aromatic amides as high‐performance luminescent materials. Herein, we propose a reliable strategy for manipulating noncovalent conformational lock (NCL) via side‐chain engineering to burst out ey...

Full description

Saved in:
Bibliographic Details
Published inAggregate (Hoboken) Vol. 5; no. 4
Main Authors Lian, Mingbing, Mu, Yingxiao, Ye, Zecong, Lu, Ziying, Xiao, Jingping, Zhang, Jianyu, Ji, Shaomin, Zhang, Haoke, Huo, Yanping, Tang, Ben Zhong
Format Journal Article
LanguageEnglish
Published Wiley 01.08.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The unfavorable photochemical processes at the molecular level have become a barrier limiting the use of aromatic amides as high‐performance luminescent materials. Herein, we propose a reliable strategy for manipulating noncovalent conformational lock (NCL) via side‐chain engineering to burst out eye‐catching luminescence at the aggregate level. Contrary to the invisible emission in dilute solutions, dyad OO with a three‐centered H‐bond gave the wondrous crystallization‐induced emission with a quantum yield of 66.8% and clusterization‐triggered emission, which were much brighter than those of isomers. Theoretical calculations demonstrate that crystallization‐induced planarized intramolecular charge transfer (PICT), conformation rigidification, and through‐space conjugation (TSC) are responsible for aggregate‐state luminescence. Robust NCL composed of intramolecular N‐H···O interactions could boost molecular rigidity and planarity, thus greatly facilitating PICT and TSC. This study would inspire researchers to design efficient luminescent materials at the aggregate level via rational conformational control. The planarized intramolecular charge transfer and through‐space conjugation enabled the wondrous crystallization‐induced and clusterization‐triggered emissions in aromatic amide. Rational manipulating noncovalent conformational lock via side‐chain engineering was proposed to burst out the eye‐catching aggregate‐state luminescence. This study would inspire researchers to acquire strong emission at aggregate level via rational conformational control.
AbstractList The unfavorable photochemical processes at the molecular level have become a barrier limiting the use of aromatic amides as high‐performance luminescent materials. Herein, we propose a reliable strategy for manipulating noncovalent conformational lock (NCL) via side‐chain engineering to burst out eye‐catching luminescence at the aggregate level. Contrary to the invisible emission in dilute solutions, dyad OO with a three‐centered H‐bond gave the wondrous crystallization‐induced emission with a quantum yield of 66.8% and clusterization‐triggered emission, which were much brighter than those of isomers. Theoretical calculations demonstrate that crystallization‐induced planarized intramolecular charge transfer (PICT), conformation rigidification, and through‐space conjugation (TSC) are responsible for aggregate‐state luminescence. Robust NCL composed of intramolecular N‐H···O interactions could boost molecular rigidity and planarity, thus greatly facilitating PICT and TSC. This study would inspire researchers to design efficient luminescent materials at the aggregate level via rational conformational control. The planarized intramolecular charge transfer and through‐space conjugation enabled the wondrous crystallization‐induced and clusterization‐triggered emissions in aromatic amide. Rational manipulating noncovalent conformational lock via side‐chain engineering was proposed to burst out the eye‐catching aggregate‐state luminescence. This study would inspire researchers to acquire strong emission at aggregate level via rational conformational control.
Abstract The unfavorable photochemical processes at the molecular level have become a barrier limiting the use of aromatic amides as high‐performance luminescent materials. Herein, we propose a reliable strategy for manipulating noncovalent conformational lock (NCL) via side‐chain engineering to burst out eye‐catching luminescence at the aggregate level. Contrary to the invisible emission in dilute solutions, dyad OO with a three‐centered H‐bond gave the wondrous crystallization‐induced emission with a quantum yield of 66.8% and clusterization‐triggered emission, which were much brighter than those of isomers. Theoretical calculations demonstrate that crystallization‐induced planarized intramolecular charge transfer (PICT), conformation rigidification, and through‐space conjugation (TSC) are responsible for aggregate‐state luminescence. Robust NCL composed of intramolecular N‐H···O interactions could boost molecular rigidity and planarity, thus greatly facilitating PICT and TSC. This study would inspire researchers to design efficient luminescent materials at the aggregate level via rational conformational control.
Author Huo, Yanping
Zhang, Haoke
Mu, Yingxiao
Ye, Zecong
Lu, Ziying
Xiao, Jingping
Ji, Shaomin
Zhang, Jianyu
Lian, Mingbing
Tang, Ben Zhong
Author_xml – sequence: 1
  givenname: Mingbing
  surname: Lian
  fullname: Lian, Mingbing
  organization: Guangdong University of Technology
– sequence: 2
  givenname: Yingxiao
  orcidid: 0000-0002-4145-4469
  surname: Mu
  fullname: Mu, Yingxiao
  organization: Guangdong University of Technology
– sequence: 3
  givenname: Zecong
  surname: Ye
  fullname: Ye, Zecong
  email: yezecong@gdut.edu.cn
  organization: Guangdong University of Technology
– sequence: 4
  givenname: Ziying
  surname: Lu
  fullname: Lu, Ziying
  organization: Guangdong University of Technology
– sequence: 5
  givenname: Jingping
  surname: Xiao
  fullname: Xiao, Jingping
  organization: Guangdong University of Technology
– sequence: 6
  givenname: Jianyu
  surname: Zhang
  fullname: Zhang, Jianyu
  email: jianyu.zhang@rug.nl
  organization: University of Groningen
– sequence: 7
  givenname: Shaomin
  surname: Ji
  fullname: Ji, Shaomin
  organization: Guangdong University of Technology
– sequence: 8
  givenname: Haoke
  orcidid: 0000-0001-7309-2506
  surname: Zhang
  fullname: Zhang, Haoke
  organization: Zhejiang University
– sequence: 9
  givenname: Yanping
  orcidid: 0000-0003-4124-6026
  surname: Huo
  fullname: Huo, Yanping
  email: yphuo@gdut.edu.cn
  organization: Guangdong University of Technology
– sequence: 10
  givenname: Ben Zhong
  surname: Tang
  fullname: Tang, Ben Zhong
  email: tangbenz@cuhk.edu.cn
  organization: The Chinese University of Hong Kong
BookMark eNp1kLtOwzAUhi0EElAq8QgeWQKOEzvJiBCXSkUsZbaOnZPg4tqVE4rYeASekSfBpQixMJ3bd77hPyb7Pngk5DRn5zlj_AL6kZ8LyfbIEZcNz8rU7__pD8l0GJYsoSIvcsGOyOoevF2_OBit72nSmbABh36kJvguxFU6BA-OumCe6cYCHWyLn-8f5gmsp-h76xHj9jnR1L2s0jwY9AYpjBT6PmIPI1KHG3Qn5KADN-D0p07I48314uoumz_czq4u55kpuGQZ1gJLKXVdsBIrLltsZWVMwQTDAruSCyFkq4Uum0YL4E1b6BI4Ys7a2gAWEzLbedsAS7WOdgXxTQWw6nsRYq8gjtY4VKxtKi1N1WEjy0pUOkfdaCYaltec111yne1cJoZhiNj9-nKmtqmrbeoqpZvQbIe-Wodv_3Lq8nbBt_wX3buHqQ
Cites_doi 10.1016/j.mattod.2019.08.010
10.1002/adom.201900283
10.1039/D1CS00239B
10.1021/ja00242a058
10.1007/s11426-018-9315-2
10.1021/acsphotonics.2c02018
10.1039/C7TC02381B
10.1021/ja0474547
10.1002/tcr.201402046
10.1002/marc.200700190
10.1002/chem.201503927
10.1021/cr300116k
10.1039/D2OB01263D
10.1002/jcc.22885
10.1002/adma.201101059
10.1002/chem.201700566
10.1002/anie.202300927
10.1021/acs.chemrev.5b00188
10.1021/ja00008a005
10.1039/C4TC02161D
10.1021/jacs.7b11571
10.1021/ja00232a059
10.1246/bcsj.52.365
10.1021/acs.iecr.3c01014
10.1016/j.progpolymsci.2018.09.004
10.1021/ja807935y
10.1016/S0166-1280(96)04603-9
10.1126/science.265.5173.765
10.1021/ja403667s
10.1039/D0CS01087A
10.1016/0301-0104(89)80056-4
10.1039/b822552b
10.1021/ar400030e
10.1021/acsami.8b02573
10.1021/acsami.2c19227
10.1021/bm201196p
10.1002/adma.202110639
10.1021/acsenergylett.0c02604
10.1016/j.carbon.2020.05.023
10.1002/adom.202100959
10.1021/acs.jafc.1c02567
10.1039/C9QM00716D
10.1002/adma.202008523
10.1007/s11426-013-4923-8
10.1002/agt2.320
10.1021/acsapm.9b01089
10.1021/acs.chemrev.5b00263
10.1016/j.progpolymsci.2023.101689
10.1021/ja0460561
10.1002/adma.201401356
10.1002/adma.202101955
10.1515/zna-1999-8-909
10.1021/acs.chemrev.1c00330
10.1021/ja015712j
10.1021/acs.chemrev.6b00814
10.1016/0009-2614(88)80432-9
10.1002/EXP.20220011
10.1021/ma502160w
10.1039/b008033k
10.1039/C5TC00891C
10.1021/acs.jpcc.7b02797
10.1021/acs.jpclett.6b01156
10.1111/j.1751-1097.1971.tb06162.x
10.1002/anie.201914437
10.1016/0167-7322(89)80086-8
10.1002/anie.200902532
10.1016/j.cej.2023.142550
ContentType Journal Article
Copyright 2024 The Authors. published by South China University of Technology, AIE Institute and John Wiley & Sons Australia, Ltd
Copyright_xml – notice: 2024 The Authors. published by South China University of Technology, AIE Institute and John Wiley & Sons Australia, Ltd
DBID 24P
WIN
AAYXX
CITATION
DOA
DOI 10.1002/agt2.560
DatabaseName Wiley-Blackwell Open Access Collection
Wiley-Blackwell Backfiles (Open access)
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley-Blackwell Open Access Collection
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2692-4560
EndPage n/a
ExternalDocumentID oai_doaj_org_article_0d97b6c7fe964757b1eb9b059018228f
10_1002_agt2_560
AGT2560
Genre article
GrantInformation_xml – fundername: HORIZON EUROPE Marie Sklodowska‐Curie Actions
  funderid: 101105790
– fundername: National Natural Science Foundation of China
  funderid: 22205040; 52273168; U2001222
– fundername: Basic and Applied Basic Research Foundation of Guangdong Province
  funderid: 2021A1515110417
GroupedDBID 0R~
1OC
24P
AAFWJ
AAHHS
AAHJG
ABMDY
ABQXS
ACCFJ
ACESK
ACXQS
ADZOD
AEEZP
AEQDE
AFKRA
AFPKN
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARCSS
AVUZU
BENPR
CCPQU
EBS
GROUPED_DOAJ
IAO
IGS
M~E
OK1
PIMPY
WIN
AAYXX
CITATION
ITC
ID FETCH-LOGICAL-c3260-e85e466b8304e726ded67cc3050e3ef425556db5b499b5a29d3b4a2ee10d8cae3
IEDL.DBID 24P
ISSN 2692-4560
IngestDate Tue Oct 22 15:12:13 EDT 2024
Thu Sep 26 20:37:34 EDT 2024
Sat Aug 24 01:05:16 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3260-e85e466b8304e726ded67cc3050e3ef425556db5b499b5a29d3b4a2ee10d8cae3
Notes Mingbing Lian and Yingxiao Mu contributed equally to this work.
ORCID 0000-0001-7309-2506
0000-0003-4124-6026
0000-0002-4145-4469
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fagt2.560
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_0d97b6c7fe964757b1eb9b059018228f
crossref_primary_10_1002_agt2_560
wiley_primary_10_1002_agt2_560_AGT2560
PublicationCentury 2000
PublicationDate August 2024
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: August 2024
PublicationDecade 2020
PublicationTitle Aggregate (Hoboken)
PublicationYear 2024
Publisher Wiley
Publisher_xml – name: Wiley
References 2021; 69
2017; 5
1989; 41
2019; 90
1991; 113
2004; 126
1988; 150
2023; 142
2023; 4
2020; 165
1987; 109
2023; 464
2014; 26
2020; 59
2011; 12
2022; 20
2023; 3
2017; 117
2007; 28
2022; 122
2023; 62
1994; 265
2020; 4
2020; 2
2021; 33
2013; 56
1971; 14
2022; 34
1999; 54
2016; 116
2011; 23
2017; 121
2021; 9
2023; 10
2019; 7
2015; 15
2001; 123
2021; 6
2018; 140
2015; 3
2023; 15
1989; 136
2013; 46
2010; 39
2017; 23
2014; 48
2018; 61
2020; 32
2009; 131
2021; 50
1996; 367
1979; 52
2012; 33
2016; 7
2010; 49
2012; 112
2015; 115
2013; 135
1988; 110
2018; 10
2001; 30
2016; 22
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 3
  start-page: 7446
  year: 2015
  publication-title: J. Mater. Chem. C
– volume: 23
  start-page: 3261
  year: 2011
  publication-title: Adv. Mater.
– volume: 464
  year: 2023
  publication-title: Chem. Eng. J.
– volume: 54
  start-page: 495
  year: 1999
  publication-title: Z. Natureforsch. A
– volume: 117
  start-page: 9907
  year: 2017
  publication-title: Chem. Rev.
– volume: 121
  year: 2017
  publication-title: J. Phys. Chem. C
– volume: 113
  start-page: 2833
  year: 1991
  publication-title: J. Am. Chem. Soc.
– volume: 26
  start-page: 5429
  year: 2014
  publication-title: Adv. Mater.
– volume: 7
  start-page: 2893
  year: 2016
  publication-title: J. Phys. Chem. Lett.
– volume: 48
  start-page: 64
  year: 2014
  publication-title: Macromolecules
– volume: 62
  year: 2023
  publication-title: Angew. Chem. Int. Ed.
– volume: 30
  start-page: 83
  year: 2001
  publication-title: Chem. Soc. Rev.
– volume: 112
  start-page: 5271
  year: 2012
  publication-title: Chem. Rev.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 33
  start-page: 580
  year: 2012
  publication-title: J. Comput. Chem.
– volume: 135
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 367
  start-page: 127
  year: 1996
  publication-title: J. Mol. Struct.: THEOCHEM.
– volume: 126
  year: 2004
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 8082
  year: 2017
  publication-title: J. Mater. Chem. C
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 131
  start-page: 2629
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 4283
  year: 2011
  publication-title: Biomacromolecules
– volume: 115
  year: 2015
  publication-title: Chem. Rev.
– volume: 122
  start-page: 4946
  year: 2022
  publication-title: Chem. Rev.
– volume: 39
  start-page: 3889
  year: 2010
  publication-title: Chem. Soc. Rev.
– volume: 116
  start-page: 962
  year: 2016
  publication-title: Chem. Rev.
– volume: 32
  start-page: 275
  year: 2020
  publication-title: Mater. Today
– volume: 4
  start-page: 788
  year: 2020
  publication-title: Mater. Chem. Front.
– volume: 3
  year: 2023
  publication-title: Exploration
– volume: 14
  start-page: 189
  year: 1971
  publication-title: J. Photochem. Photobiol.
– volume: 23
  start-page: 9288
  year: 2017
  publication-title: Chem. Eur. J.
– volume: 61
  start-page: 1359
  year: 2018
  publication-title: Sci. China: Chem.
– volume: 7
  year: 2019
  publication-title: Adv. Opt. Mater.
– volume: 140
  start-page: 4253
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 62
  start-page: 9961
  year: 2023
  publication-title: Ind. Eng. Chem. Res.
– volume: 49
  start-page: 9068
  year: 2010
  publication-title: Angew. Chem. Int. Ed.
– volume: 265
  start-page: 765
  year: 1994
  publication-title: Science
– volume: 142
  year: 2023
  publication-title: Prog. Polym. Sci.
– volume: 52
  start-page: 365
  year: 1979
  publication-title: Bull. Chem. Soc. Jpn.
– volume: 90
  start-page: 35
  year: 2019
  publication-title: Prog. Polym. Sci.
– volume: 6
  start-page: 643
  year: 2021
  publication-title: ACS Energy Lett
– volume: 123
  start-page: 4643
  year: 2001
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 1222
  year: 2020
  publication-title: ACS Appl. Polym. Mater
– volume: 59
  year: 2020
  publication-title: Angew. Chem. Int. Ed.
– volume: 4
  year: 2023
  publication-title: Aggregate
– volume: 150
  start-page: 433
  year: 1988
  publication-title: Chem. Phys. Lett.
– volume: 110
  start-page: 8255
  year: 1988
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 1382
  year: 2023
  publication-title: ACS Photonics
– volume: 28
  start-page: 1404
  year: 2007
  publication-title: Macromol. Rapid Commun.
– volume: 41
  start-page: 305
  year: 1989
  publication-title: J. Mol. Liq.
– volume: 15
  start-page: 2237
  year: 2023
  publication-title: ACS Appl. Mater. Interfaces
– volume: 46
  start-page: 2856
  year: 2013
  publication-title: Acc. Chem. Res.
– volume: 20
  start-page: 9023
  year: 2022
  publication-title: Org. Biomol. Chem.
– volume: 22
  start-page: 971
  year: 2016
  publication-title: Chem. Eur. J.
– volume: 165
  start-page: 461
  year: 2020
  publication-title: Carbon
– volume: 3
  start-page: 112
  year: 2015
  publication-title: J. Mater. Chem. C
– volume: 50
  year: 2021
  publication-title: Chem. Soc. Rev.
– volume: 136
  start-page: 321
  year: 1989
  publication-title: Chem. Phys.
– volume: 9
  year: 2021
  publication-title: Adv. Opt. Mater.
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 56
  start-page: 1178
  year: 2013
  publication-title: Sci. China: Chem.
– volume: 15
  start-page: 233
  year: 2015
  publication-title: Chem. Rec.
– volume: 109
  start-page: 2531
  year: 1987
  publication-title: J. Am. Chem. Soc.
– volume: 69
  start-page: 7680
  year: 2021
  publication-title: J. Agric. Food Chem.
– ident: e_1_2_7_29_1
  doi: 10.1016/j.mattod.2019.08.010
– ident: e_1_2_7_67_1
  doi: 10.1002/adom.201900283
– ident: e_1_2_7_59_1
  doi: 10.1039/D1CS00239B
– ident: e_1_2_7_33_1
  doi: 10.1021/ja00242a058
– ident: e_1_2_7_41_1
  doi: 10.1007/s11426-018-9315-2
– ident: e_1_2_7_7_1
  doi: 10.1021/acsphotonics.2c02018
– ident: e_1_2_7_23_1
  doi: 10.1039/C7TC02381B
– ident: e_1_2_7_55_1
  doi: 10.1021/ja0474547
– ident: e_1_2_7_57_1
  doi: 10.1002/tcr.201402046
– ident: e_1_2_7_22_1
  doi: 10.1002/marc.200700190
– ident: e_1_2_7_65_1
  doi: 10.1002/chem.201503927
– ident: e_1_2_7_30_1
  doi: 10.1021/cr300116k
– ident: e_1_2_7_31_1
  doi: 10.1039/D2OB01263D
– ident: e_1_2_7_60_1
  doi: 10.1002/jcc.22885
– ident: e_1_2_7_18_1
  doi: 10.1002/adma.201101059
– ident: e_1_2_7_66_1
  doi: 10.1002/chem.201700566
– ident: e_1_2_7_54_1
  doi: 10.1002/anie.202300927
– ident: e_1_2_7_13_1
  doi: 10.1021/acs.chemrev.5b00188
– ident: e_1_2_7_39_1
  doi: 10.1021/ja00008a005
– ident: e_1_2_7_20_1
  doi: 10.1039/C4TC02161D
– ident: e_1_2_7_14_1
  doi: 10.1021/jacs.7b11571
– ident: e_1_2_7_34_1
  doi: 10.1021/ja00232a059
– ident: e_1_2_7_68_1
  doi: 10.1246/bcsj.52.365
– ident: e_1_2_7_5_1
  doi: 10.1021/acs.iecr.3c01014
– ident: e_1_2_7_27_1
  doi: 10.1016/j.progpolymsci.2018.09.004
– ident: e_1_2_7_56_1
  doi: 10.1021/ja807935y
– ident: e_1_2_7_40_1
  doi: 10.1016/S0166-1280(96)04603-9
– ident: e_1_2_7_15_1
  doi: 10.1126/science.265.5173.765
– ident: e_1_2_7_42_1
  doi: 10.1021/ja403667s
– ident: e_1_2_7_28_1
  doi: 10.1039/D0CS01087A
– ident: e_1_2_7_37_1
  doi: 10.1016/0301-0104(89)80056-4
– ident: e_1_2_7_49_1
  doi: 10.1039/b822552b
– ident: e_1_2_7_58_1
  doi: 10.1021/ar400030e
– ident: e_1_2_7_10_1
  doi: 10.1021/acsami.8b02573
– ident: e_1_2_7_6_1
  doi: 10.1021/acsami.2c19227
– ident: e_1_2_7_24_1
  doi: 10.1021/bm201196p
– ident: e_1_2_7_44_1
  doi: 10.1002/adma.202110639
– ident: e_1_2_7_52_1
  doi: 10.1021/acsenergylett.0c02604
– ident: e_1_2_7_61_1
  doi: 10.1016/j.carbon.2020.05.023
– ident: e_1_2_7_4_1
  doi: 10.1002/adom.202100959
– ident: e_1_2_7_9_1
  doi: 10.1021/acs.jafc.1c02567
– ident: e_1_2_7_11_1
  doi: 10.1039/C9QM00716D
– ident: e_1_2_7_51_1
  doi: 10.1002/adma.202008523
– ident: e_1_2_7_26_1
  doi: 10.1007/s11426-013-4923-8
– ident: e_1_2_7_53_1
  doi: 10.1002/agt2.320
– ident: e_1_2_7_2_1
  doi: 10.1021/acsapm.9b01089
– ident: e_1_2_7_16_1
  doi: 10.1021/acs.chemrev.5b00263
– ident: e_1_2_7_45_1
  doi: 10.1016/j.progpolymsci.2023.101689
– ident: e_1_2_7_63_1
  doi: 10.1021/ja0460561
– ident: e_1_2_7_19_1
  doi: 10.1002/adma.201401356
– ident: e_1_2_7_50_1
  doi: 10.1002/adma.202101955
– ident: e_1_2_7_36_1
  doi: 10.1515/zna-1999-8-909
– ident: e_1_2_7_48_1
  doi: 10.1021/acs.chemrev.1c00330
– ident: e_1_2_7_43_1
  doi: 10.1021/ja015712j
– ident: e_1_2_7_47_1
  doi: 10.1021/acs.chemrev.6b00814
– ident: e_1_2_7_35_1
  doi: 10.1016/0009-2614(88)80432-9
– ident: e_1_2_7_8_1
  doi: 10.1002/EXP.20220011
– ident: e_1_2_7_25_1
  doi: 10.1021/ma502160w
– ident: e_1_2_7_46_1
  doi: 10.1039/b008033k
– ident: e_1_2_7_17_1
  doi: 10.1039/C5TC00891C
– ident: e_1_2_7_64_1
  doi: 10.1021/acs.jpcc.7b02797
– ident: e_1_2_7_62_1
  doi: 10.1021/acs.jpclett.6b01156
– ident: e_1_2_7_32_1
  doi: 10.1111/j.1751-1097.1971.tb06162.x
– ident: e_1_2_7_21_1
  doi: 10.1002/anie.201914437
– ident: e_1_2_7_38_1
  doi: 10.1016/0167-7322(89)80086-8
– ident: e_1_2_7_12_1
  doi: 10.1002/anie.200902532
– ident: e_1_2_7_3_1
  doi: 10.1016/j.cej.2023.142550
SSID ssj0002513150
Score 2.317332
Snippet The unfavorable photochemical processes at the molecular level have become a barrier limiting the use of aromatic amides as high‐performance luminescent...
Abstract The unfavorable photochemical processes at the molecular level have become a barrier limiting the use of aromatic amides as high‐performance...
SourceID doaj
crossref
wiley
SourceType Open Website
Aggregation Database
Publisher
SubjectTerms aromatic amide
clusterization‐triggered emission
crystallization‐induced emission
noncovalent conformational lock
side‐chain engineering
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwELVQT3BArKJsMhLiFurES5JjQZQKCU6t1FtkO5NSAQWhwplP4Bv5EmacbhwQF25REtnRjMfzXjR-w9ips6ayXuWRk6aMlCbJW4QJUa5FVSkwRDKo2uLOdPvqZqAHS62-qCaslgeuDdcSZZ4649MK6MykTl0MLnfhyCTmtqwKu2-sl8gU7cGYtSVCnZnarEhadjhJznVQolzknyDT_xOWhrzS2WDrU0DI2_WHbLIVGG-xtSWZwG32dGvHo7rP1njIka_7Z1wfmC04ktn56UMcBBPTA38fWU49OL8-Pv098n4Oi7E4vs1xO6Jad08xze2E2yFybvqbxh-pgmiH9TtXvctuNG2TEHnEXiKCTIMyxmVSKEgTU0JpUu8xkAVIqDAotTal0w7JjdM2yUvplE0AYlFm3oLcZQ38dNhjXMZKZ7kSpVAWr-LMSumpR1WcgsZwb7KTmfGKl1oNo6h1j5OCDFyggZvsgqw6f0761eEGerWYerX4y6tNdhZ88ussRfu6R2ht_z9mO2CrCWKVuq7vkDUmr29whFhj4o7DsvoGfyTSSw
  priority: 102
  providerName: Directory of Open Access Journals
Title Manipulating noncovalent conformational lock via side‐chain engineering for luminescence at aggregate level
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fagt2.560
https://doaj.org/article/0d97b6c7fe964757b1eb9b059018228f
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA4-LnoQn7g-lgjirZrm1faooi6C4kHBW0nS6bqoq-jqUfwJ_kZ_iTPp7qoHwUspbZqGSSbzTZj5hrFt72ztgi4Sr2yVaEOUtwgTksKIutZgycmgaItz27nSp9fmehhVSbkwDT_E-MCNNCPu16Tgzj_vfZOGuu5A7qK9nmTTiGpyWtFSX4zPV9BuqzQWaJW2kDgKK0bcs0LujT7-ZY0iaf9vkBqtzPE8mxvCQ77fzOcCm4D-Ipv9QRq4xO7PXL_XVN3qdzl67-EBVwvaDo6u7TgXETtBM3XLX3uOU0XOz_ePcON6fQ7ffXFszXFzosj3QBrO3YC7LnrgdLbG7yieaJldHR9dHnaSYdGEJCASEwnkBrS1PldCQyZtBZXNQkC1FqCgRhU1xlbeeHR1vHGyqJTXTgKkosqDA7XCpnDosMq4SjXKVYtKaId3ae6UClSxKs3AoPK32NZIeOVjw41RNizIsiQBlyjgFjsgqY7fE5t1fPDw1C2HylGKqsi8DVkNlBdrMp-CL3xMi0X8ktctthPn5M-_lPsnl4Td1v7bcJ3NSEQnTSTfBpsaPL3AJqKLgW_HZdSOvjlez96OvgDpNM27
link.rule.ids 315,786,790,870,2115,11589,27955,27956,46085,46509,50847,50956
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NTtxADLaAHoADoqUVC6VMpaq3wGT-kogTRYWFAuphkbhFMxNnWQELQgtnHoFn5Emwk90FDpV6i5JJMvKMx58t-zPAj-Bd7aMpkqBdlRjLlLcEE5LCyro26NjJ4GyLU9c9M0fn9nwGdia1MC0_xDTgxprRnNes4ByQ3n5lDfX9kdoigz0LHwzzwDGts_k7DbCQ4dZp06FVuULRNJyckM9KtT15-Z05alj736PUxszsL8PSGB-K3XZBP8IMDj_B4hvWwBW4PvHDQdt2a9gX5L7HG9ouZDwE-bbTYkT6CNmpS_Ew8IJbcj4_PsULPxgKfP2WoNGCTidOfY-s4sKPhO-TC87BNXHFCUWf4Wz_d2-vm4y7JiSRoJhMMLdonAu5lgYz5SqsXBYj6bVEjTXpqLWuCjaQrxOsV0Wlg_EKMZVVHj3qLzBHU8dVEDo1Ni-MrKTxdJXmXuvILavSDC1pfwe-T4RX3rbkGGVLg6xKFnBJAu7AL5bq9DnTWTc3bu765Vg7SlkVWXAxq5ELY20WUgxFaOpiCcDkdQd-Nmvyz7-Uuwc9Bm9r_ztwE-a7vZPj8vjw9M86LCiCKm1a31eYG93d4wZBjVH41mypF1H-zv0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTuQwELVYJASHEatoZgAjIW4Bx1uSI1uzIw4gcYu8VJoWM90INZznE_jG-ZKpSrobOCBxixLbscou1yur6hVj297ZygVdJF7ZmGhDlLcIE5LCiKrSYMnJoGiLa3t6p8_vzf0wqpJyYRp-iPGFG2lGfV6Tgj_Fau-dNNR1BnIX7fUkm9YWgQOxOuub8f0K2m2V1gVapS0kzsKKEfeskHujzp-sUU3a_xmk1lamPc9-DOEh32_Wc4FNQG-RzX0gDVxif65cr9tU3ep1OHrvoY-7BW0HR9d2nIuIg6CZeuSvXcepIue_v2_hwXV7HN7H4tia4-FEke-BNJy7AXcd9MDpbo3_pniiZXbXPr49PE2GRROSgEhMJJAb0Nb6XAkNmbQRos1CQLUWoKBCFTXGRm88ujreOFlE5bWTAKmIeXCgVtgUTh1WGVepNnmhRRTa4VOaO6UCVaxKMzCo_C22NRJe-dRwY5QNC7IsScAlCrjFDkiq4-_EZl2_6D93yqFylCIWmbchq4DyYk3mU_CFr9NiEb_kVYvt1Gvy5V_K_ZNbwm5r3224yWZujtrl5dn1xU82KxGoNEF9v9jU4PkF1hFoDPxGvaP-AzQ6ziY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Manipulating+noncovalent+conformational+lock+via+side%E2%80%90chain+engineering+for+luminescence+at+aggregate+level&rft.jtitle=Aggregate+%28Hoboken%29&rft.au=Lian%2C+Mingbing&rft.au=Mu%2C+Yingxiao&rft.au=Ye%2C+Zecong&rft.au=Lu%2C+Ziying&rft.date=2024-08-01&rft.issn=2692-4560&rft.eissn=2692-4560&rft.volume=5&rft.issue=4&rft_id=info:doi/10.1002%2Fagt2.560&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_agt2_560
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-4560&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-4560&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-4560&client=summon