Near-unity NIR phosphorescent quantum yield from a room-temperature solvated metal nanocluster

Metal nanoclusters have emerged as promising near-infrared (NIR)–emissive materials, but their room-temperature photoluminescence quantum yield (PLQY), especially in solution, is often low (<10%). We studied the photophysics of Au 22 ( t BuPhC≡C) 18 (Au 22 ) and its alloy counterpart Au 16 Cu 6 (...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 383; no. 6680; pp. 326 - 330
Main Authors Shi, Wan-Qi, Zeng, Linlin, He, Rui-Lin, Han, Xu-Shuang, Guan, Zong-Jie, Zhou, Meng, Wang, Quan-Ming
Format Journal Article
LanguageEnglish
Published United States The American Association for the Advancement of Science 19.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Metal nanoclusters have emerged as promising near-infrared (NIR)–emissive materials, but their room-temperature photoluminescence quantum yield (PLQY), especially in solution, is often low (<10%). We studied the photophysics of Au 22 ( t BuPhC≡C) 18 (Au 22 ) and its alloy counterpart Au 16 Cu 6 ( t BuPhC≡C) 18 (Au 16 Cu 6 ) (where t Bu is tert -butyl and Ph is phenyl) and found that copper (Cu) doping suppressed the nonradiative decay (~60-fold less) and promoted intersystem crossing rate (~300-fold higher). The Au 16 Cu 6 nanocluster exhibited >99% PLQY in deaerated solution at room temperature with an emission maximum at 720 nanometers tailing to 950 nanometers and 61% PLQY in the oxygen-saturated solution. The approach to achieve near-unity PLQY could enable the development of highly emissive metal cluster materials. Gold nanoclusters have potential applications as near-infrared emissive materials for biological applications but often exhibit low photoluminescence quantum yield (PLQY) in solution at room temperature. Shi et al . found that copper substitution to form an Au16Cu6 cluster improved the PLQY to more than 60% in oxygenated solutions at room temperature. The presence of copper led to ultrafast intersystem crossing to the long-lived triplet state and also suppressed nonradiative decay. —Phil Szuromi A copper-doped gold cluster exhibited ultrafast intersystem crossing and suppressed nonradiative decay after photoexcitation.
AbstractList Metal nanoclusters have emerged as promising near-infrared (NIR)-emissive materials, but their room-temperature photoluminescence quantum yield (PLQY), especially in solution, is often low (<10%). We studied the photophysics of Au22(tBuPhC≡C)18 (Au22) and its alloy counterpart Au16Cu6(tBuPhC≡C)18 (Au16Cu6) (where tBu is tert-butyl and Ph is phenyl) and found that copper (Cu) doping suppressed the nonradiative decay (~60-fold less) and promoted intersystem crossing rate (~300-fold higher). The Au16Cu6 nanocluster exhibited >99% PLQY in deaerated solution at room temperature with an emission maximum at 720 nanometers tailing to 950 nanometers and 61% PLQY in the oxygen-saturated solution. The approach to achieve near-unity PLQY could enable the development of highly emissive metal cluster materials.Metal nanoclusters have emerged as promising near-infrared (NIR)-emissive materials, but their room-temperature photoluminescence quantum yield (PLQY), especially in solution, is often low (<10%). We studied the photophysics of Au22(tBuPhC≡C)18 (Au22) and its alloy counterpart Au16Cu6(tBuPhC≡C)18 (Au16Cu6) (where tBu is tert-butyl and Ph is phenyl) and found that copper (Cu) doping suppressed the nonradiative decay (~60-fold less) and promoted intersystem crossing rate (~300-fold higher). The Au16Cu6 nanocluster exhibited >99% PLQY in deaerated solution at room temperature with an emission maximum at 720 nanometers tailing to 950 nanometers and 61% PLQY in the oxygen-saturated solution. The approach to achieve near-unity PLQY could enable the development of highly emissive metal cluster materials.
Editor’s summaryGold nanoclusters have potential applications as near-infrared emissive materials for biological applications but often exhibit low photoluminescence quantum yield (PLQY) in solution at room temperature. Shi et al. found that copper substitution to form an Au16Cu6 cluster improved the PLQY to more than 60% in oxygenated solutions at room temperature. The presence of copper led to ultrafast intersystem crossing to the long-lived triplet state and also suppressed nonradiative decay. —Phil Szuromi
Metal nanoclusters have emerged as promising near-infrared (NIR)–emissive materials, but their room-temperature photoluminescence quantum yield (PLQY), especially in solution, is often low (<10%). We studied the photophysics of Au 22 ( t BuPhC≡C) 18 (Au 22 ) and its alloy counterpart Au 16 Cu 6 ( t BuPhC≡C) 18 (Au 16 Cu 6 ) (where t Bu is tert -butyl and Ph is phenyl) and found that copper (Cu) doping suppressed the nonradiative decay (~60-fold less) and promoted intersystem crossing rate (~300-fold higher). The Au 16 Cu 6 nanocluster exhibited >99% PLQY in deaerated solution at room temperature with an emission maximum at 720 nanometers tailing to 950 nanometers and 61% PLQY in the oxygen-saturated solution. The approach to achieve near-unity PLQY could enable the development of highly emissive metal cluster materials. Gold nanoclusters have potential applications as near-infrared emissive materials for biological applications but often exhibit low photoluminescence quantum yield (PLQY) in solution at room temperature. Shi et al . found that copper substitution to form an Au16Cu6 cluster improved the PLQY to more than 60% in oxygenated solutions at room temperature. The presence of copper led to ultrafast intersystem crossing to the long-lived triplet state and also suppressed nonradiative decay. —Phil Szuromi A copper-doped gold cluster exhibited ultrafast intersystem crossing and suppressed nonradiative decay after photoexcitation.
Metal nanoclusters have emerged as promising near-infrared (NIR)-emissive materials, but their room-temperature photoluminescence quantum yield (PLQY), especially in solution, is often low (<10%). We studied the photophysics of Au ( BuPhC≡C) (Au ) and its alloy counterpart Au Cu ( BuPhC≡C) (Au Cu ) (where Bu is -butyl and Ph is phenyl) and found that copper (Cu) doping suppressed the nonradiative decay (~60-fold less) and promoted intersystem crossing rate (~300-fold higher). The Au Cu nanocluster exhibited >99% PLQY in deaerated solution at room temperature with an emission maximum at 720 nanometers tailing to 950 nanometers and 61% PLQY in the oxygen-saturated solution. The approach to achieve near-unity PLQY could enable the development of highly emissive metal cluster materials.
Author Han, Xu-Shuang
Zeng, Linlin
Wang, Quan-Ming
Guan, Zong-Jie
Shi, Wan-Qi
He, Rui-Lin
Zhou, Meng
Author_xml – sequence: 1
  givenname: Wan-Qi
  orcidid: 0009-0001-4369-6824
  surname: Shi
  fullname: Shi, Wan-Qi
  organization: Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China
– sequence: 2
  givenname: Linlin
  orcidid: 0009-0000-8837-6739
  surname: Zeng
  fullname: Zeng, Linlin
  organization: Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
– sequence: 3
  givenname: Rui-Lin
  surname: He
  fullname: He, Rui-Lin
  organization: Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China
– sequence: 4
  givenname: Xu-Shuang
  orcidid: 0000-0001-9627-8960
  surname: Han
  fullname: Han, Xu-Shuang
  organization: Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China
– sequence: 5
  givenname: Zong-Jie
  orcidid: 0000-0001-8977-0850
  surname: Guan
  fullname: Guan, Zong-Jie
  organization: Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China., Department of Chemistry, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
– sequence: 6
  givenname: Meng
  orcidid: 0000-0001-5187-9084
  surname: Zhou
  fullname: Zhou, Meng
  organization: Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
– sequence: 7
  givenname: Quan-Ming
  orcidid: 0000-0002-3764-6409
  surname: Wang
  fullname: Wang, Quan-Ming
  organization: Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38236955$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1rGzEQxUVISRwn596KoJde1tHHSl4dS0gTg0khpNcKrTRLN92VbH0E_N9XIc4l0MMwMPq9x2jeBTr1wQNCnylZUcrkdbIjeAsr4_5KyboTtKBEiUYxwk_RghAum46sxTm6SOmZkPqm-Bk65x3jUgmxQL8fwMSm-DEf8MPmEe_-hFQrQrLgM94X43OZ8WGEyeEhhhkbHEOYmwzzDqLJJQJOYXoxGRyeIZsJe-ODnUrKEC_Rp8FMCa6OfYl-_bh9urlvtj_vNjfft43lTORmADsoKdd9JwQQN0hHaTv01BnSKaXalvQt5dzRdg2mjhl0yvXMWN6SDrqeL9G3N99dDPsCKet5rD-YJuMhlKSZYoqItaouS_T1A_ocSvR1u0pRSYSQrajUlyNV-hmc3sVxNvGg3y9XAfEG2BhSijBoO2aTx-BzNOOkKdGvCeljQvqYUNVdf9C9W_9P8Q-3y5eC
CitedBy_id crossref_primary_10_1002_ange_202409283
crossref_primary_10_1039_D4CC00681J
crossref_primary_10_1021_acs_nanolett_4c03687
crossref_primary_10_1016_j_ccr_2025_216591
crossref_primary_10_1002_adfm_202410361
crossref_primary_10_1021_acs_jpclett_5c00290
crossref_primary_10_1021_jacs_4c15112
crossref_primary_10_1021_prechem_4c00044
crossref_primary_10_1016_j_jscs_2024_101885
crossref_primary_10_1038_s41467_025_57523_0
crossref_primary_10_1039_D4NR01748J
crossref_primary_10_1002_ange_202418560
crossref_primary_10_1021_jacs_4c08094
crossref_primary_10_1021_acs_analchem_4c06529
crossref_primary_10_1002_adma_202412768
crossref_primary_10_1002_anie_202502217
crossref_primary_10_1016_j_mattod_2024_04_010
crossref_primary_10_1002_ange_202401206
crossref_primary_10_59717_j_xinn_mater_2024_100065
crossref_primary_10_6023_A24070218
crossref_primary_10_1002_adfm_202420587
crossref_primary_10_1016_j_ccr_2024_216066
crossref_primary_10_1021_acs_accounts_4c00521
crossref_primary_10_1007_s11426_024_2544_y
crossref_primary_10_1002_ange_202407034
crossref_primary_10_1002_anie_202424499
crossref_primary_10_1002_chem_202404528
crossref_primary_10_1002_anie_202406527
crossref_primary_10_1021_acsmaterialslett_4c00622
crossref_primary_10_1039_D4CE00488D
crossref_primary_10_1039_D4NR04371E
crossref_primary_10_1021_jacs_4c11703
crossref_primary_10_1016_j_cjsc_2024_100405
crossref_primary_10_1002_chem_202404281
crossref_primary_10_1002_anie_202500389
crossref_primary_10_1016_j_mtchem_2025_102642
crossref_primary_10_1039_D4SC04884A
crossref_primary_10_1002_anie_202417934
crossref_primary_10_1002_anie_202502168
crossref_primary_10_1126_sciadv_ads0728
crossref_primary_10_1002_ange_202424499
crossref_primary_10_1039_D4CC06083K
crossref_primary_10_1016_j_inoche_2024_113608
crossref_primary_10_1002_asia_202401194
crossref_primary_10_1002_anie_202407887
crossref_primary_10_1002_adom_202400940
crossref_primary_10_1038_s41467_024_51753_4
crossref_primary_10_1021_jacs_4c07518
crossref_primary_10_1002_ange_202500389
crossref_primary_10_1002_ange_202502168
crossref_primary_10_1002_anie_202423787
crossref_primary_10_1016_j_ccr_2025_216544
crossref_primary_10_1038_s41467_024_53174_9
crossref_primary_10_1039_D4NR02702G
crossref_primary_10_1002_ange_202407887
crossref_primary_10_1038_s41467_025_57554_7
crossref_primary_10_1021_acsnano_4c18197
crossref_primary_10_1016_j_cej_2024_152216
crossref_primary_10_1021_jacs_3c13514
crossref_primary_10_1007_s40242_024_4137_y
crossref_primary_10_1039_D4QI00334A
crossref_primary_10_1002_ange_202423787
crossref_primary_10_1038_s41467_025_55975_y
crossref_primary_10_1007_s12598_024_03105_w
crossref_primary_10_1021_acs_jpclett_4c03544
crossref_primary_10_1039_D4CC01747A
crossref_primary_10_1002_advs_202403198
crossref_primary_10_1021_acs_jpclett_4c02179
crossref_primary_10_1021_jacs_3c12982
crossref_primary_10_1002_ange_202502217
crossref_primary_10_1021_jacs_4c06832
crossref_primary_10_1002_anie_202407034
crossref_primary_10_1002_ange_202407214
crossref_primary_10_1016_j_jscs_2024_101849
crossref_primary_10_1007_s40820_024_01555_6
crossref_primary_10_1002_ange_202406527
crossref_primary_10_1007_s12274_024_6839_3
crossref_primary_10_1002_anie_202401206
crossref_primary_10_1039_D4NR03111C
crossref_primary_10_1039_D3NA01145C
crossref_primary_10_1002_agt2_70019
crossref_primary_10_1021_jacs_4c02401
crossref_primary_10_1038_s41467_025_57209_7
crossref_primary_10_1002_anie_202409283
crossref_primary_10_1021_acsnano_4c09597
crossref_primary_10_1002_ange_202417934
crossref_primary_10_1039_D4QI02920H
crossref_primary_10_1021_acs_nanolett_4c03538
crossref_primary_10_1038_s41467_024_51642_w
crossref_primary_10_1021_acsnano_4c16160
crossref_primary_10_1039_D4QI01773K
crossref_primary_10_1002_asia_202401361
crossref_primary_10_1016_j_cclet_2024_110803
crossref_primary_10_26599_POM_2024_9140075
crossref_primary_10_1038_s41578_024_00741_7
crossref_primary_10_1039_D4SC01022A
crossref_primary_10_1002_lpor_202400450
crossref_primary_10_1039_D4TB02207F
crossref_primary_10_1002_chem_202401094
crossref_primary_10_1039_D4NR03278K
crossref_primary_10_1021_acsnano_4c13264
crossref_primary_10_1002_anie_202407214
crossref_primary_10_1021_jacs_4c09447
crossref_primary_10_1039_D4QI03264K
crossref_primary_10_1002_adfm_202413453
crossref_primary_10_1002_adfm_202418867
crossref_primary_10_1039_D4NR01471E
crossref_primary_10_1016_j_cjsc_2024_100411
crossref_primary_10_1021_acsnano_5c00596
crossref_primary_10_1021_cbmi_4c00021
crossref_primary_10_1002_anie_202403645
crossref_primary_10_1007_s00216_024_05220_0
crossref_primary_10_1016_j_cjsc_2024_100417
crossref_primary_10_1021_acs_chemrev_3c00896
crossref_primary_10_1021_jacsau_5c00099
crossref_primary_10_1002_agt2_720
crossref_primary_10_1021_jacs_4c05530
crossref_primary_10_1021_acs_jpclett_4c03410
crossref_primary_10_1002_asia_202400443
crossref_primary_10_1039_D4DT02060J
crossref_primary_10_1039_D4QI02655A
crossref_primary_10_1021_acsnano_5c01675
crossref_primary_10_1093_nsr_nwae174
crossref_primary_10_1002_ange_202403645
crossref_primary_10_1002_anie_202418560
crossref_primary_10_1002_adom_202402991
Cites_doi 10.1038/s41551-016-0010
10.1021/ja0452471
10.1021/jacs.3c02880
10.1038/natrevmats.2017.72
10.1021/cr040084k
10.1002/9780470132500.ch18
10.1021/acs.jpcc.5b03985
10.1126/sciadv.adh7828
10.1021/jacs.2c09107
10.1063/1.4993215
10.1039/D2CS00490A
10.1103/PhysRevLett.77.3865
10.1080/00268977000100171
10.1021/jp075248q
10.1063/1.1795692
10.1021/acs.accounts.8b00364
10.1016/j.ccr.2016.06.016
10.1351/PAC-REP-10-09-31
10.1107/S0021889812029111
10.1002/smll.202007992
10.1038/nphoton.2014.166
10.3390/nano12213837
10.1021/acsnano.7b02035
10.1038/s44222-022-00002-8
10.1002/adma.200401552
10.1002/adma.201901015
10.1002/adfm.201807623
10.1126/science.aad2114
10.1126/sciadv.adg3587
10.1021/acs.jpclett.9b02920
10.1103/PhysRevLett.91.146401
10.1016/j.ccr.2023.215193
10.1021/acsnano.1c04759
10.1126/science.aav2865
10.1021/acs.jpclett.5b00364
10.1002/anie.201503893
10.1021/acs.jpclett.7b01892
10.1002/anie.201912984
10.1002/wcms.81
10.1002/smll.202003851
10.1103/PhysRevLett.78.1396
10.1021/jacs.9b07854
10.1021/ja411643u
10.1038/nphoton.2007.244
10.1039/b508541a
10.1126/science.aaw8007
10.1002/jcc.22885
10.1038/s41566-020-0600-6
ContentType Journal Article
Copyright Copyright © 2024 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
Copyright_xml – notice: Copyright © 2024 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
DBID AAYXX
CITATION
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
DOI 10.1126/science.adk6628
DatabaseName CrossRef
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database
CrossRef
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage 330
ExternalDocumentID 38236955
10_1126_science_adk6628
Genre Journal Article
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAMNW
AANCE
AAWTO
AAYXX
ABCQX
ABDBF
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPPZ
ABQIJ
ABTLG
ABWJO
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADUKH
ADXHL
AEGBM
AENEX
AETEA
AFBNE
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ASPBG
AVWKF
BKF
BLC
C45
CITATION
CS3
DB2
DU5
EBS
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPY
ISE
JCF
JLS
JSG
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
RHI
RXW
RZL
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YJ6
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c325t-fecf9667b855e0df6d114fb1da08999440b4133d147eab1d2e89db2ac3408e8b3
ISSN 0036-8075
1095-9203
IngestDate Mon Jul 21 11:08:47 EDT 2025
Sat Aug 23 12:38:32 EDT 2025
Mon Jul 21 05:55:30 EDT 2025
Tue Jul 01 03:14:04 EDT 2025
Thu Apr 24 22:55:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6680
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c325t-fecf9667b855e0df6d114fb1da08999440b4133d147eab1d2e89db2ac3408e8b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0001-4369-6824
0000-0002-3764-6409
0000-0001-5187-9084
0009-0000-8837-6739
0000-0001-9627-8960
0000-0001-8977-0850
PMID 38236955
PQID 2916055645
PQPubID 1256
PageCount 5
ParticipantIDs proquest_miscellaneous_2929057941
proquest_journals_2916055645
pubmed_primary_38236955
crossref_citationtrail_10_1126_science_adk6628
crossref_primary_10_1126_science_adk6628
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-19
PublicationDateYYYYMMDD 2024-01-19
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-19
  day: 19
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2024
Publisher The American Association for the Advancement of Science
Publisher_xml – name: The American Association for the Advancement of Science
References e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_28_2
e_1_3_2_29_2
e_1_3_2_41_2
e_1_3_2_40_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
e_1_3_2_14_2
e_1_3_2_35_2
References_xml – ident: e_1_3_2_2_2
  doi: 10.1038/s41551-016-0010
– ident: e_1_3_2_11_2
  doi: 10.1021/ja0452471
– ident: e_1_3_2_19_2
  doi: 10.1021/jacs.3c02880
– ident: e_1_3_2_29_2
  doi: 10.1038/natrevmats.2017.72
– ident: e_1_3_2_38_2
  doi: 10.1021/cr040084k
– ident: e_1_3_2_40_2
  doi: 10.1002/9780470132500.ch18
– ident: e_1_3_2_18_2
  doi: 10.1021/acs.jpcc.5b03985
– ident: e_1_3_2_17_2
  doi: 10.1126/sciadv.adh7828
– ident: e_1_3_2_23_2
  doi: 10.1021/jacs.2c09107
– ident: e_1_3_2_45_2
  doi: 10.1063/1.4993215
– ident: e_1_3_2_6_2
  doi: 10.1039/D2CS00490A
– ident: e_1_3_2_44_2
  doi: 10.1103/PhysRevLett.77.3865
– ident: e_1_3_2_25_2
  doi: 10.1080/00268977000100171
– ident: e_1_3_2_37_2
  doi: 10.1021/jp075248q
– ident: e_1_3_2_46_2
  doi: 10.1063/1.1795692
– ident: e_1_3_2_14_2
  doi: 10.1021/acs.accounts.8b00364
– ident: e_1_3_2_36_2
  doi: 10.1016/j.ccr.2016.06.016
– ident: e_1_3_2_39_2
  doi: 10.1351/PAC-REP-10-09-31
– ident: e_1_3_2_49_2
  doi: 10.1107/S0021889812029111
– ident: e_1_3_2_16_2
  doi: 10.1002/smll.202007992
– ident: e_1_3_2_3_2
  doi: 10.1038/nphoton.2014.166
– ident: e_1_3_2_21_2
  doi: 10.3390/nano12213837
– ident: e_1_3_2_15_2
  doi: 10.1021/acsnano.7b02035
– ident: e_1_3_2_5_2
  doi: 10.1038/s44222-022-00002-8
– ident: e_1_3_2_8_2
  doi: 10.1002/adma.200401552
– ident: e_1_3_2_20_2
  doi: 10.1002/adma.201901015
– ident: e_1_3_2_4_2
  doi: 10.1002/adfm.201807623
– ident: e_1_3_2_28_2
  doi: 10.1126/science.aad2114
– ident: e_1_3_2_12_2
  doi: 10.1126/sciadv.adg3587
– ident: e_1_3_2_35_2
  doi: 10.1021/acs.jpclett.9b02920
– ident: e_1_3_2_47_2
  doi: 10.1103/PhysRevLett.91.146401
– ident: e_1_3_2_7_2
  doi: 10.1016/j.ccr.2023.215193
– ident: e_1_3_2_24_2
  doi: 10.1021/acsnano.1c04759
– ident: e_1_3_2_27_2
  doi: 10.1126/science.aav2865
– ident: e_1_3_2_33_2
  doi: 10.1021/acs.jpclett.5b00364
– ident: e_1_3_2_9_2
  doi: 10.1002/anie.201503893
– ident: e_1_3_2_26_2
  doi: 10.1021/acs.jpclett.7b01892
– ident: e_1_3_2_34_2
  doi: 10.1002/anie.201912984
– ident: e_1_3_2_41_2
  doi: 10.1002/wcms.81
– ident: e_1_3_2_10_2
  doi: 10.1002/smll.202003851
– ident: e_1_3_2_43_2
  doi: 10.1103/PhysRevLett.78.1396
– ident: e_1_3_2_22_2
  doi: 10.1021/jacs.9b07854
– ident: e_1_3_2_32_2
  doi: 10.1021/ja411643u
– ident: e_1_3_2_30_2
  doi: 10.1038/nphoton.2007.244
– ident: e_1_3_2_42_2
  doi: 10.1039/b508541a
– ident: e_1_3_2_13_2
  doi: 10.1126/science.aaw8007
– ident: e_1_3_2_48_2
  doi: 10.1002/jcc.22885
– ident: e_1_3_2_31_2
  doi: 10.1038/s41566-020-0600-6
SSID ssj0009593
Score 2.6971552
Snippet Metal nanoclusters have emerged as promising near-infrared (NIR)–emissive materials, but their room-temperature photoluminescence quantum yield (PLQY),...
Metal nanoclusters have emerged as promising near-infrared (NIR)-emissive materials, but their room-temperature photoluminescence quantum yield (PLQY),...
Editor’s summaryGold nanoclusters have potential applications as near-infrared emissive materials for biological applications but often exhibit low...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 326
SubjectTerms Atomic energy levels
Climate
Copper
Nanoclusters
Phosphorescence
Photoluminescence
Photons
Room temperature
Triplet state
Title Near-unity NIR phosphorescent quantum yield from a room-temperature solvated metal nanocluster
URI https://www.ncbi.nlm.nih.gov/pubmed/38236955
https://www.proquest.com/docview/2916055645
https://www.proquest.com/docview/2929057941
Volume 383
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZKJyReEBu3wkBG4mEocpU4zu2xg1UFVUVsregTke04rKJLp7VBGm_8c45jJ0vHJg0eGlVOnIvPl5Pv2OeC0FsWMaXznJE8E5ywKIoIj5kkNOdSZdLzmagcZCfhaMY-zYN5p_O7HV2yEX3568a4kv-RKrSBXHWU7D9ItjkpNMB_kC9sQcKwvZOMJwBTUhaaSE8-Hjvnp6s1_C5MhiYdLwkflDPnUjupmTgS7miiTHQ-KptM2YE7_Mk17TxTOi6y4MVKLst17bVreWutAoCPNms8Lck2zooD41JQexjYbq3phpOqiLDzlRfky6KZtVZG44BhvFw0aB1Vc63H5YKMW41mwnZekpNTeL7v7VkLqj1diNWNRtG6ukYkdY1yUze0We3smzo3FoZhaOo-WXXrm2j7vz8DrcKVqs-zH2FoQ9C3Em5PPqfD2XicTo_m03toh4KlQbtoZ3D44XB4PXNzc3M2P1Qr8qq-wDa1ucVeqXjL9BF6aA0OPDDo2UUdVeyh-6YE6eUe2rUiWuMDm4H83WP07QpYGICFt4GFLbBwBSysgYU5vg4sXAMLV8DCLWA9QbPh0fT9iNhCHET6NNiQXMkczOJIxEGg3CwPM7Cic-FlXC8aJ4y5AriQn3ksUhyaqYqTTFAufebGKhb-U9QtVoV6jnAigbPmwGt1WBKYTInMgRF7IhMyjmXg91C_HsNU2iz1uljKMq2sVRqmdtBTO-g9dNB0ODcJWm4_dL8WSmrf4nVKwT7SCaVY0ENvmt2gY_XCGS_UqtTH0EQHbTOvh54ZYTbX0uvoYRIEL-7Q-yV6cPUu7KPu5qJUr4DTbsRri7o_FVSokQ
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Near-unity+NIR+phosphorescent+quantum+yield+from+a+room-temperature+solvated+metal+nanocluster&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Shi%2C+Wan-Qi&rft.au=Zeng%2C+Linlin&rft.au=He%2C+Rui-Lin&rft.au=Han%2C+Xu-Shuang&rft.date=2024-01-19&rft.issn=1095-9203&rft.eissn=1095-9203&rft.volume=383&rft.issue=6680&rft.spage=326&rft_id=info:doi/10.1126%2Fscience.adk6628&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon