Near-unity NIR phosphorescent quantum yield from a room-temperature solvated metal nanocluster
Metal nanoclusters have emerged as promising near-infrared (NIR)–emissive materials, but their room-temperature photoluminescence quantum yield (PLQY), especially in solution, is often low (<10%). We studied the photophysics of Au 22 ( t BuPhC≡C) 18 (Au 22 ) and its alloy counterpart Au 16 Cu 6 (...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 383; no. 6680; pp. 326 - 330 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
The American Association for the Advancement of Science
19.01.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Metal nanoclusters have emerged as promising near-infrared (NIR)–emissive materials, but their room-temperature photoluminescence quantum yield (PLQY), especially in solution, is often low (<10%). We studied the photophysics of Au
22
(
t
BuPhC≡C)
18
(Au
22
) and its alloy counterpart Au
16
Cu
6
(
t
BuPhC≡C)
18
(Au
16
Cu
6
) (where
t
Bu is
tert
-butyl and Ph is phenyl) and found that copper (Cu) doping suppressed the nonradiative decay (~60-fold less) and promoted intersystem crossing rate (~300-fold higher). The Au
16
Cu
6
nanocluster exhibited >99% PLQY in deaerated solution at room temperature with an emission maximum at 720 nanometers tailing to 950 nanometers and 61% PLQY in the oxygen-saturated solution. The approach to achieve near-unity PLQY could enable the development of highly emissive metal cluster materials.
Gold nanoclusters have potential applications as near-infrared emissive materials for biological applications but often exhibit low photoluminescence quantum yield (PLQY) in solution at room temperature. Shi
et al
. found that copper substitution to form an Au16Cu6 cluster improved the PLQY to more than 60% in oxygenated solutions at room temperature. The presence of copper led to ultrafast intersystem crossing to the long-lived triplet state and also suppressed nonradiative decay. —Phil Szuromi
A copper-doped gold cluster exhibited ultrafast intersystem crossing and suppressed nonradiative decay after photoexcitation. |
---|---|
AbstractList | Metal nanoclusters have emerged as promising near-infrared (NIR)-emissive materials, but their room-temperature photoluminescence quantum yield (PLQY), especially in solution, is often low (<10%). We studied the photophysics of Au22(tBuPhC≡C)18 (Au22) and its alloy counterpart Au16Cu6(tBuPhC≡C)18 (Au16Cu6) (where tBu is tert-butyl and Ph is phenyl) and found that copper (Cu) doping suppressed the nonradiative decay (~60-fold less) and promoted intersystem crossing rate (~300-fold higher). The Au16Cu6 nanocluster exhibited >99% PLQY in deaerated solution at room temperature with an emission maximum at 720 nanometers tailing to 950 nanometers and 61% PLQY in the oxygen-saturated solution. The approach to achieve near-unity PLQY could enable the development of highly emissive metal cluster materials.Metal nanoclusters have emerged as promising near-infrared (NIR)-emissive materials, but their room-temperature photoluminescence quantum yield (PLQY), especially in solution, is often low (<10%). We studied the photophysics of Au22(tBuPhC≡C)18 (Au22) and its alloy counterpart Au16Cu6(tBuPhC≡C)18 (Au16Cu6) (where tBu is tert-butyl and Ph is phenyl) and found that copper (Cu) doping suppressed the nonradiative decay (~60-fold less) and promoted intersystem crossing rate (~300-fold higher). The Au16Cu6 nanocluster exhibited >99% PLQY in deaerated solution at room temperature with an emission maximum at 720 nanometers tailing to 950 nanometers and 61% PLQY in the oxygen-saturated solution. The approach to achieve near-unity PLQY could enable the development of highly emissive metal cluster materials. Editor’s summaryGold nanoclusters have potential applications as near-infrared emissive materials for biological applications but often exhibit low photoluminescence quantum yield (PLQY) in solution at room temperature. Shi et al. found that copper substitution to form an Au16Cu6 cluster improved the PLQY to more than 60% in oxygenated solutions at room temperature. The presence of copper led to ultrafast intersystem crossing to the long-lived triplet state and also suppressed nonradiative decay. —Phil Szuromi Metal nanoclusters have emerged as promising near-infrared (NIR)–emissive materials, but their room-temperature photoluminescence quantum yield (PLQY), especially in solution, is often low (<10%). We studied the photophysics of Au 22 ( t BuPhC≡C) 18 (Au 22 ) and its alloy counterpart Au 16 Cu 6 ( t BuPhC≡C) 18 (Au 16 Cu 6 ) (where t Bu is tert -butyl and Ph is phenyl) and found that copper (Cu) doping suppressed the nonradiative decay (~60-fold less) and promoted intersystem crossing rate (~300-fold higher). The Au 16 Cu 6 nanocluster exhibited >99% PLQY in deaerated solution at room temperature with an emission maximum at 720 nanometers tailing to 950 nanometers and 61% PLQY in the oxygen-saturated solution. The approach to achieve near-unity PLQY could enable the development of highly emissive metal cluster materials. Gold nanoclusters have potential applications as near-infrared emissive materials for biological applications but often exhibit low photoluminescence quantum yield (PLQY) in solution at room temperature. Shi et al . found that copper substitution to form an Au16Cu6 cluster improved the PLQY to more than 60% in oxygenated solutions at room temperature. The presence of copper led to ultrafast intersystem crossing to the long-lived triplet state and also suppressed nonradiative decay. —Phil Szuromi A copper-doped gold cluster exhibited ultrafast intersystem crossing and suppressed nonradiative decay after photoexcitation. Metal nanoclusters have emerged as promising near-infrared (NIR)-emissive materials, but their room-temperature photoluminescence quantum yield (PLQY), especially in solution, is often low (<10%). We studied the photophysics of Au ( BuPhC≡C) (Au ) and its alloy counterpart Au Cu ( BuPhC≡C) (Au Cu ) (where Bu is -butyl and Ph is phenyl) and found that copper (Cu) doping suppressed the nonradiative decay (~60-fold less) and promoted intersystem crossing rate (~300-fold higher). The Au Cu nanocluster exhibited >99% PLQY in deaerated solution at room temperature with an emission maximum at 720 nanometers tailing to 950 nanometers and 61% PLQY in the oxygen-saturated solution. The approach to achieve near-unity PLQY could enable the development of highly emissive metal cluster materials. |
Author | Han, Xu-Shuang Zeng, Linlin Wang, Quan-Ming Guan, Zong-Jie Shi, Wan-Qi He, Rui-Lin Zhou, Meng |
Author_xml | – sequence: 1 givenname: Wan-Qi orcidid: 0009-0001-4369-6824 surname: Shi fullname: Shi, Wan-Qi organization: Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China – sequence: 2 givenname: Linlin orcidid: 0009-0000-8837-6739 surname: Zeng fullname: Zeng, Linlin organization: Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China – sequence: 3 givenname: Rui-Lin surname: He fullname: He, Rui-Lin organization: Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China – sequence: 4 givenname: Xu-Shuang orcidid: 0000-0001-9627-8960 surname: Han fullname: Han, Xu-Shuang organization: Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China – sequence: 5 givenname: Zong-Jie orcidid: 0000-0001-8977-0850 surname: Guan fullname: Guan, Zong-Jie organization: Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China., Department of Chemistry, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China – sequence: 6 givenname: Meng orcidid: 0000-0001-5187-9084 surname: Zhou fullname: Zhou, Meng organization: Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China – sequence: 7 givenname: Quan-Ming orcidid: 0000-0002-3764-6409 surname: Wang fullname: Wang, Quan-Ming organization: Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38236955$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1rGzEQxUVISRwn596KoJde1tHHSl4dS0gTg0khpNcKrTRLN92VbH0E_N9XIc4l0MMwMPq9x2jeBTr1wQNCnylZUcrkdbIjeAsr4_5KyboTtKBEiUYxwk_RghAum46sxTm6SOmZkPqm-Bk65x3jUgmxQL8fwMSm-DEf8MPmEe_-hFQrQrLgM94X43OZ8WGEyeEhhhkbHEOYmwzzDqLJJQJOYXoxGRyeIZsJe-ODnUrKEC_Rp8FMCa6OfYl-_bh9urlvtj_vNjfft43lTORmADsoKdd9JwQQN0hHaTv01BnSKaXalvQt5dzRdg2mjhl0yvXMWN6SDrqeL9G3N99dDPsCKet5rD-YJuMhlKSZYoqItaouS_T1A_ocSvR1u0pRSYSQrajUlyNV-hmc3sVxNvGg3y9XAfEG2BhSijBoO2aTx-BzNOOkKdGvCeljQvqYUNVdf9C9W_9P8Q-3y5eC |
CitedBy_id | crossref_primary_10_1002_ange_202409283 crossref_primary_10_1039_D4CC00681J crossref_primary_10_1021_acs_nanolett_4c03687 crossref_primary_10_1016_j_ccr_2025_216591 crossref_primary_10_1002_adfm_202410361 crossref_primary_10_1021_acs_jpclett_5c00290 crossref_primary_10_1021_jacs_4c15112 crossref_primary_10_1021_prechem_4c00044 crossref_primary_10_1016_j_jscs_2024_101885 crossref_primary_10_1038_s41467_025_57523_0 crossref_primary_10_1039_D4NR01748J crossref_primary_10_1002_ange_202418560 crossref_primary_10_1021_jacs_4c08094 crossref_primary_10_1021_acs_analchem_4c06529 crossref_primary_10_1002_adma_202412768 crossref_primary_10_1002_anie_202502217 crossref_primary_10_1016_j_mattod_2024_04_010 crossref_primary_10_1002_ange_202401206 crossref_primary_10_59717_j_xinn_mater_2024_100065 crossref_primary_10_6023_A24070218 crossref_primary_10_1002_adfm_202420587 crossref_primary_10_1016_j_ccr_2024_216066 crossref_primary_10_1021_acs_accounts_4c00521 crossref_primary_10_1007_s11426_024_2544_y crossref_primary_10_1002_ange_202407034 crossref_primary_10_1002_anie_202424499 crossref_primary_10_1002_chem_202404528 crossref_primary_10_1002_anie_202406527 crossref_primary_10_1021_acsmaterialslett_4c00622 crossref_primary_10_1039_D4CE00488D crossref_primary_10_1039_D4NR04371E crossref_primary_10_1021_jacs_4c11703 crossref_primary_10_1016_j_cjsc_2024_100405 crossref_primary_10_1002_chem_202404281 crossref_primary_10_1002_anie_202500389 crossref_primary_10_1016_j_mtchem_2025_102642 crossref_primary_10_1039_D4SC04884A crossref_primary_10_1002_anie_202417934 crossref_primary_10_1002_anie_202502168 crossref_primary_10_1126_sciadv_ads0728 crossref_primary_10_1002_ange_202424499 crossref_primary_10_1039_D4CC06083K crossref_primary_10_1016_j_inoche_2024_113608 crossref_primary_10_1002_asia_202401194 crossref_primary_10_1002_anie_202407887 crossref_primary_10_1002_adom_202400940 crossref_primary_10_1038_s41467_024_51753_4 crossref_primary_10_1021_jacs_4c07518 crossref_primary_10_1002_ange_202500389 crossref_primary_10_1002_ange_202502168 crossref_primary_10_1002_anie_202423787 crossref_primary_10_1016_j_ccr_2025_216544 crossref_primary_10_1038_s41467_024_53174_9 crossref_primary_10_1039_D4NR02702G crossref_primary_10_1002_ange_202407887 crossref_primary_10_1038_s41467_025_57554_7 crossref_primary_10_1021_acsnano_4c18197 crossref_primary_10_1016_j_cej_2024_152216 crossref_primary_10_1021_jacs_3c13514 crossref_primary_10_1007_s40242_024_4137_y crossref_primary_10_1039_D4QI00334A crossref_primary_10_1002_ange_202423787 crossref_primary_10_1038_s41467_025_55975_y crossref_primary_10_1007_s12598_024_03105_w crossref_primary_10_1021_acs_jpclett_4c03544 crossref_primary_10_1039_D4CC01747A crossref_primary_10_1002_advs_202403198 crossref_primary_10_1021_acs_jpclett_4c02179 crossref_primary_10_1021_jacs_3c12982 crossref_primary_10_1002_ange_202502217 crossref_primary_10_1021_jacs_4c06832 crossref_primary_10_1002_anie_202407034 crossref_primary_10_1002_ange_202407214 crossref_primary_10_1016_j_jscs_2024_101849 crossref_primary_10_1007_s40820_024_01555_6 crossref_primary_10_1002_ange_202406527 crossref_primary_10_1007_s12274_024_6839_3 crossref_primary_10_1002_anie_202401206 crossref_primary_10_1039_D4NR03111C crossref_primary_10_1039_D3NA01145C crossref_primary_10_1002_agt2_70019 crossref_primary_10_1021_jacs_4c02401 crossref_primary_10_1038_s41467_025_57209_7 crossref_primary_10_1002_anie_202409283 crossref_primary_10_1021_acsnano_4c09597 crossref_primary_10_1002_ange_202417934 crossref_primary_10_1039_D4QI02920H crossref_primary_10_1021_acs_nanolett_4c03538 crossref_primary_10_1038_s41467_024_51642_w crossref_primary_10_1021_acsnano_4c16160 crossref_primary_10_1039_D4QI01773K crossref_primary_10_1002_asia_202401361 crossref_primary_10_1016_j_cclet_2024_110803 crossref_primary_10_26599_POM_2024_9140075 crossref_primary_10_1038_s41578_024_00741_7 crossref_primary_10_1039_D4SC01022A crossref_primary_10_1002_lpor_202400450 crossref_primary_10_1039_D4TB02207F crossref_primary_10_1002_chem_202401094 crossref_primary_10_1039_D4NR03278K crossref_primary_10_1021_acsnano_4c13264 crossref_primary_10_1002_anie_202407214 crossref_primary_10_1021_jacs_4c09447 crossref_primary_10_1039_D4QI03264K crossref_primary_10_1002_adfm_202413453 crossref_primary_10_1002_adfm_202418867 crossref_primary_10_1039_D4NR01471E crossref_primary_10_1016_j_cjsc_2024_100411 crossref_primary_10_1021_acsnano_5c00596 crossref_primary_10_1021_cbmi_4c00021 crossref_primary_10_1002_anie_202403645 crossref_primary_10_1007_s00216_024_05220_0 crossref_primary_10_1016_j_cjsc_2024_100417 crossref_primary_10_1021_acs_chemrev_3c00896 crossref_primary_10_1021_jacsau_5c00099 crossref_primary_10_1002_agt2_720 crossref_primary_10_1021_jacs_4c05530 crossref_primary_10_1021_acs_jpclett_4c03410 crossref_primary_10_1002_asia_202400443 crossref_primary_10_1039_D4DT02060J crossref_primary_10_1039_D4QI02655A crossref_primary_10_1021_acsnano_5c01675 crossref_primary_10_1093_nsr_nwae174 crossref_primary_10_1002_ange_202403645 crossref_primary_10_1002_anie_202418560 crossref_primary_10_1002_adom_202402991 |
Cites_doi | 10.1038/s41551-016-0010 10.1021/ja0452471 10.1021/jacs.3c02880 10.1038/natrevmats.2017.72 10.1021/cr040084k 10.1002/9780470132500.ch18 10.1021/acs.jpcc.5b03985 10.1126/sciadv.adh7828 10.1021/jacs.2c09107 10.1063/1.4993215 10.1039/D2CS00490A 10.1103/PhysRevLett.77.3865 10.1080/00268977000100171 10.1021/jp075248q 10.1063/1.1795692 10.1021/acs.accounts.8b00364 10.1016/j.ccr.2016.06.016 10.1351/PAC-REP-10-09-31 10.1107/S0021889812029111 10.1002/smll.202007992 10.1038/nphoton.2014.166 10.3390/nano12213837 10.1021/acsnano.7b02035 10.1038/s44222-022-00002-8 10.1002/adma.200401552 10.1002/adma.201901015 10.1002/adfm.201807623 10.1126/science.aad2114 10.1126/sciadv.adg3587 10.1021/acs.jpclett.9b02920 10.1103/PhysRevLett.91.146401 10.1016/j.ccr.2023.215193 10.1021/acsnano.1c04759 10.1126/science.aav2865 10.1021/acs.jpclett.5b00364 10.1002/anie.201503893 10.1021/acs.jpclett.7b01892 10.1002/anie.201912984 10.1002/wcms.81 10.1002/smll.202003851 10.1103/PhysRevLett.78.1396 10.1021/jacs.9b07854 10.1021/ja411643u 10.1038/nphoton.2007.244 10.1039/b508541a 10.1126/science.aaw8007 10.1002/jcc.22885 10.1038/s41566-020-0600-6 |
ContentType | Journal Article |
Copyright | Copyright © 2024 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
Copyright_xml | – notice: Copyright © 2024 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
DBID | AAYXX CITATION NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
DOI | 10.1126/science.adk6628 |
DatabaseName | CrossRef PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 330 |
ExternalDocumentID | 38236955 10_1126_science_adk6628 |
Genre | Journal Article |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAMNW AANCE AAWTO AAYXX ABCQX ABDBF ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPPZ ABQIJ ABTLG ABWJO ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADUKH ADXHL AEGBM AENEX AETEA AFBNE AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ASPBG AVWKF BKF BLC C45 CITATION CS3 DB2 DU5 EBS EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPY ISE JCF JLS JSG JST K-O KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ RHI RXW RZL SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YJ6 YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-c325t-fecf9667b855e0df6d114fb1da08999440b4133d147eab1d2e89db2ac3408e8b3 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Mon Jul 21 11:08:47 EDT 2025 Sat Aug 23 12:38:32 EDT 2025 Mon Jul 21 05:55:30 EDT 2025 Tue Jul 01 03:14:04 EDT 2025 Thu Apr 24 22:55:12 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6680 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c325t-fecf9667b855e0df6d114fb1da08999440b4133d147eab1d2e89db2ac3408e8b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0009-0001-4369-6824 0000-0002-3764-6409 0000-0001-5187-9084 0009-0000-8837-6739 0000-0001-9627-8960 0000-0001-8977-0850 |
PMID | 38236955 |
PQID | 2916055645 |
PQPubID | 1256 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_2929057941 proquest_journals_2916055645 pubmed_primary_38236955 crossref_citationtrail_10_1126_science_adk6628 crossref_primary_10_1126_science_adk6628 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-19 |
PublicationDateYYYYMMDD | 2024-01-19 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-19 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2024 |
Publisher | The American Association for the Advancement of Science |
Publisher_xml | – name: The American Association for the Advancement of Science |
References | e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_28_2 e_1_3_2_29_2 e_1_3_2_41_2 e_1_3_2_40_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 e_1_3_2_14_2 e_1_3_2_35_2 |
References_xml | – ident: e_1_3_2_2_2 doi: 10.1038/s41551-016-0010 – ident: e_1_3_2_11_2 doi: 10.1021/ja0452471 – ident: e_1_3_2_19_2 doi: 10.1021/jacs.3c02880 – ident: e_1_3_2_29_2 doi: 10.1038/natrevmats.2017.72 – ident: e_1_3_2_38_2 doi: 10.1021/cr040084k – ident: e_1_3_2_40_2 doi: 10.1002/9780470132500.ch18 – ident: e_1_3_2_18_2 doi: 10.1021/acs.jpcc.5b03985 – ident: e_1_3_2_17_2 doi: 10.1126/sciadv.adh7828 – ident: e_1_3_2_23_2 doi: 10.1021/jacs.2c09107 – ident: e_1_3_2_45_2 doi: 10.1063/1.4993215 – ident: e_1_3_2_6_2 doi: 10.1039/D2CS00490A – ident: e_1_3_2_44_2 doi: 10.1103/PhysRevLett.77.3865 – ident: e_1_3_2_25_2 doi: 10.1080/00268977000100171 – ident: e_1_3_2_37_2 doi: 10.1021/jp075248q – ident: e_1_3_2_46_2 doi: 10.1063/1.1795692 – ident: e_1_3_2_14_2 doi: 10.1021/acs.accounts.8b00364 – ident: e_1_3_2_36_2 doi: 10.1016/j.ccr.2016.06.016 – ident: e_1_3_2_39_2 doi: 10.1351/PAC-REP-10-09-31 – ident: e_1_3_2_49_2 doi: 10.1107/S0021889812029111 – ident: e_1_3_2_16_2 doi: 10.1002/smll.202007992 – ident: e_1_3_2_3_2 doi: 10.1038/nphoton.2014.166 – ident: e_1_3_2_21_2 doi: 10.3390/nano12213837 – ident: e_1_3_2_15_2 doi: 10.1021/acsnano.7b02035 – ident: e_1_3_2_5_2 doi: 10.1038/s44222-022-00002-8 – ident: e_1_3_2_8_2 doi: 10.1002/adma.200401552 – ident: e_1_3_2_20_2 doi: 10.1002/adma.201901015 – ident: e_1_3_2_4_2 doi: 10.1002/adfm.201807623 – ident: e_1_3_2_28_2 doi: 10.1126/science.aad2114 – ident: e_1_3_2_12_2 doi: 10.1126/sciadv.adg3587 – ident: e_1_3_2_35_2 doi: 10.1021/acs.jpclett.9b02920 – ident: e_1_3_2_47_2 doi: 10.1103/PhysRevLett.91.146401 – ident: e_1_3_2_7_2 doi: 10.1016/j.ccr.2023.215193 – ident: e_1_3_2_24_2 doi: 10.1021/acsnano.1c04759 – ident: e_1_3_2_27_2 doi: 10.1126/science.aav2865 – ident: e_1_3_2_33_2 doi: 10.1021/acs.jpclett.5b00364 – ident: e_1_3_2_9_2 doi: 10.1002/anie.201503893 – ident: e_1_3_2_26_2 doi: 10.1021/acs.jpclett.7b01892 – ident: e_1_3_2_34_2 doi: 10.1002/anie.201912984 – ident: e_1_3_2_41_2 doi: 10.1002/wcms.81 – ident: e_1_3_2_10_2 doi: 10.1002/smll.202003851 – ident: e_1_3_2_43_2 doi: 10.1103/PhysRevLett.78.1396 – ident: e_1_3_2_22_2 doi: 10.1021/jacs.9b07854 – ident: e_1_3_2_32_2 doi: 10.1021/ja411643u – ident: e_1_3_2_30_2 doi: 10.1038/nphoton.2007.244 – ident: e_1_3_2_42_2 doi: 10.1039/b508541a – ident: e_1_3_2_13_2 doi: 10.1126/science.aaw8007 – ident: e_1_3_2_48_2 doi: 10.1002/jcc.22885 – ident: e_1_3_2_31_2 doi: 10.1038/s41566-020-0600-6 |
SSID | ssj0009593 |
Score | 2.6971552 |
Snippet | Metal nanoclusters have emerged as promising near-infrared (NIR)–emissive materials, but their room-temperature photoluminescence quantum yield (PLQY),... Metal nanoclusters have emerged as promising near-infrared (NIR)-emissive materials, but their room-temperature photoluminescence quantum yield (PLQY),... Editor’s summaryGold nanoclusters have potential applications as near-infrared emissive materials for biological applications but often exhibit low... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 326 |
SubjectTerms | Atomic energy levels Climate Copper Nanoclusters Phosphorescence Photoluminescence Photons Room temperature Triplet state |
Title | Near-unity NIR phosphorescent quantum yield from a room-temperature solvated metal nanocluster |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38236955 https://www.proquest.com/docview/2916055645 https://www.proquest.com/docview/2929057941 |
Volume | 383 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZKJyReEBu3wkBG4mEocpU4zu2xg1UFVUVsregTke04rKJLp7VBGm_8c45jJ0vHJg0eGlVOnIvPl5Pv2OeC0FsWMaXznJE8E5ywKIoIj5kkNOdSZdLzmagcZCfhaMY-zYN5p_O7HV2yEX3568a4kv-RKrSBXHWU7D9ItjkpNMB_kC9sQcKwvZOMJwBTUhaaSE8-Hjvnp6s1_C5MhiYdLwkflDPnUjupmTgS7miiTHQ-KptM2YE7_Mk17TxTOi6y4MVKLst17bVreWutAoCPNms8Lck2zooD41JQexjYbq3phpOqiLDzlRfky6KZtVZG44BhvFw0aB1Vc63H5YKMW41mwnZekpNTeL7v7VkLqj1diNWNRtG6ukYkdY1yUze0We3smzo3FoZhaOo-WXXrm2j7vz8DrcKVqs-zH2FoQ9C3Em5PPqfD2XicTo_m03toh4KlQbtoZ3D44XB4PXNzc3M2P1Qr8qq-wDa1ucVeqXjL9BF6aA0OPDDo2UUdVeyh-6YE6eUe2rUiWuMDm4H83WP07QpYGICFt4GFLbBwBSysgYU5vg4sXAMLV8DCLWA9QbPh0fT9iNhCHET6NNiQXMkczOJIxEGg3CwPM7Cic-FlXC8aJ4y5AriQn3ksUhyaqYqTTFAufebGKhb-U9QtVoV6jnAigbPmwGt1WBKYTInMgRF7IhMyjmXg91C_HsNU2iz1uljKMq2sVRqmdtBTO-g9dNB0ODcJWm4_dL8WSmrf4nVKwT7SCaVY0ENvmt2gY_XCGS_UqtTH0EQHbTOvh54ZYTbX0uvoYRIEL-7Q-yV6cPUu7KPu5qJUr4DTbsRri7o_FVSokQ |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Near-unity+NIR+phosphorescent+quantum+yield+from+a+room-temperature+solvated+metal+nanocluster&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Shi%2C+Wan-Qi&rft.au=Zeng%2C+Linlin&rft.au=He%2C+Rui-Lin&rft.au=Han%2C+Xu-Shuang&rft.date=2024-01-19&rft.issn=1095-9203&rft.eissn=1095-9203&rft.volume=383&rft.issue=6680&rft.spage=326&rft_id=info:doi/10.1126%2Fscience.adk6628&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |