Finite-Time Prescribed Performance Time-Varying Formation Control for Second-Order Multi-Agent Systems with Non-Strict Feedback Based on a Neural Network Observer

This paper studies the problem of time-varying formation control with finite-time prescribed performance for non-strict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities. To eliminate nonlinearities, neural networks are applied to approximate the inherent dy...

Full description

Saved in:
Bibliographic Details
Published inIEEE/CAA journal of automatica sinica Vol. 11; no. 4; pp. 1039 - 1050
Main Authors Ma, Chi, Dong, Dianbiao
Format Journal Article
LanguageEnglish
Published Piscataway Chinese Association of Automation (CAA) 01.04.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
Subjects
Online AccessGet full text
ISSN2329-9266
2329-9274
DOI10.1109/JAS.2023.123615

Cover

Loading…
Abstract This paper studies the problem of time-varying formation control with finite-time prescribed performance for non-strict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities. To eliminate nonlinearities, neural networks are applied to approximate the inherent dynamics of the system. In addition, due to the limitations of the actual working conditions, each follower agent can only obtain the locally measurable partial state information of the leader agent. To address this problem, a neural network state observer based on the leader state information is designed. Then, a finite-time prescribed performance adaptive output feedback control strategy is proposed by restricting the sliding mode surface to a prescribed region, which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time. Finally, a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm.
AbstractList This paper studies the problem of time-varying formation control with finite-time prescribed performance for non-strict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities. To eliminate nonlinearities, neural networks are applied to approximate the inherent dynamics of the system. In addition, due to the limitations of the actual working conditions, each follower agent can only obtain the locally measurable partial state information of the leader agent. To address this problem, a neural network state observer based on the leader state information is designed. Then, a finite-time prescribed performance adaptive output feedback control strategy is proposed by restricting the sliding mode surface to a prescribed region, which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time. Finally, a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm.
This paper studies the problem of time-varying for-mation control with finite-time prescribed performance for non-strict feedback second-order multi-agent systems with unmea-sured states and unknown nonlinearities.To eliminate nonlinear-ities,neural networks are applied to approximate the inherent dynamics of the system.In addition,due to the limitations of the actual working conditions,each follower agent can only obtain the locally measurable partial state information of the leader agent.To address this problem,a neural network state observer based on the leader state information is designed.Then,a finite-time prescribed performance adaptive output feedback control strat-egy is proposed by restricting the sliding mode surface to a pre-scribed region,which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time.Finally,a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm.
Author Ma, Chi
Dong, Dianbiao
AuthorAffiliation School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
AuthorAffiliation_xml – name: School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
Author_xml – sequence: 1
  givenname: Chi
  orcidid: 0009-0003-8694-2882
  surname: Ma
  fullname: Ma, Chi
  email: mc@mail.nwpu.edu.cn
  organization: School of Mechanical Engineering, Northwestern Polytechnical University,Xi'an,China,710072
– sequence: 2
  givenname: Dianbiao
  orcidid: 0000-0001-7046-8256
  surname: Dong
  fullname: Dong, Dianbiao
  email: dongdianbiao@nwpu.edu.cn
  organization: School of Mechanical Engineering, Northwestern Polytechnical University,Xi'an,China,710072
BookMark eNp9kU1vEzEQhleoSJTSMxcOlrghbeqP9W58DBGhoNJUSuG6stezqduN3Y4dQvpz-KU4LALEgdOM7OedkeZ5Xhz54KEoXjI6YYyqs4-z1YRTLiaMi5rJJ8UxF1yVijfV0e--rp8VpzHeUkoZl02tquPi-8J5l6C8dhsgVwixQ2fAkivAPuBG-w7I4a_8onHv_JosDq_JBU_mwScMA8kcWUEXvC2XaAHJp-2QXDlbg09ktY8JNpHsXLohl8GXq4SuS2QBYI3u7shbHfO6PE6TS9iiHnJJu4B3ZGki4FfAF8XTXg8RTn_Vk-Lz4t31_Ly8WL7_MJ9dlJ3gMpW9bSibghHCcNVXDaOiqRtr-t4AB20aqCTUqq4p0xWldiqsldLklnNLZS9Oijfj3J32vfbr9jZs0eeN7aO9-Wba_c7kE1e0okxl-PUI32N42EJMf2iuakUlzxoyJUeqwxAjQt92Lv28XkLthpbR9qCvzfrag7521JdzZ__k7tFtsoH_JF6NCQcAf9FMTRsqxQ9rhqhD
CODEN IJASJC
CitedBy_id crossref_primary_10_1109_JAS_2024_124794
crossref_primary_10_1109_TSMC_2025_3526980
crossref_primary_10_1007_s10489_023_05050_0
crossref_primary_10_3390_fractalfract8060339
crossref_primary_10_1109_TFUZZ_2024_3490607
crossref_primary_10_1016_j_neucom_2025_129538
crossref_primary_10_1049_cth2_12748
crossref_primary_10_1109_TCYB_2024_3498912
crossref_primary_10_1007_s11071_024_10644_5
crossref_primary_10_1109_JAS_2024_124827
crossref_primary_10_1109_TASE_2024_3417387
crossref_primary_10_1016_j_jfranklin_2025_107534
crossref_primary_10_1109_LCSYS_2025_3546525
crossref_primary_10_1109_TSMC_2024_3515196
Cites_doi 10.1109/TFUZZ.2022.3197938
10.1016/j.ifacol.2019.12.136
10.1109/tnnls.2022.3158085
10.1016/j.amc.2020.125704
10.1109/tfuzz.2021.3119750
10.1109/TII.2018.2839739
10.1016/j.ins.2018.08.029
10.1109/TCYB.2020.3046316
10.1016/j.sysconle.2012.10.012
10.1109/TSMCB.2011.2179981
10.1007/s11071-017-4020-1
10.1049/iet-cta.2017.0351
10.1109/TCYB.2017.2749511
10.1109/TII.2021.3133927
10.1109/TCYB.2020.2991761
10.1109/tnnls.2021.3139230
10.1109/JAS.2021.1003838
10.1109/TFUZZ.2020.2992632
10.1109/TCST.2017.2757448
10.1016/j.oceaneng.2022.112866
10.1109/TCYB.2018.2869084
10.1016/j.automatica.2015.02.001
10.1016/j.automatica.2016.03.005
10.1109/TCYB.2018.2805167
10.1002/oca.2222
10.1109/TCCN.2020.3027695
10.1109/MED.2008.4601971
10.1109/TFUZZ.2022.3184834
10.1109/tsmc.2020.3048733
10.1109/TAES.2021.3111719
10.1109/TFUZZ.2020.3048518
10.1016/j.automatica.2020.109086
10.1109/TFUZZ.2021.3053327
10.1016/j.automatica.2016.09.038
10.1109/TNNLS.2020.3010333
10.1016/j.neucom.2021.06.018
10.1109/TASE.2020.3019346
10.1109/TCYB.2019.2952913
10.1109/TFUZZ.2020.2982618
10.1109/TCYB.2017.2715980
10.1109/JAS.2019.1911858
10.1109/TAC.2011.2169618
10.1016/S0004-3702(02)00382-X
10.1109/TAC.2017.2673411
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1109/JAS.2023.123615
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2329-9274
EndPage 1050
ExternalDocumentID zdhxb_ywb202404019
10_1109_JAS_2023_123615
10198705
Genre orig-research
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities of China
  grantid: 31020210502002
  funderid: 10.13039/501100012226
– fundername: National Natural Science Foundation of China
  grantid: 62203356
  funderid: 10.13039/501100001809
GroupedDBID -0I
-0Y
-SI
-S~
0R~
4.4
5VR
6IK
92M
97E
9D9
9DI
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AFUIB
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CAJEI
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
Q--
RIA
RIE
RT9
T8Y
TCJ
TGT
U1F
U1G
U5I
U5S
AAYXX
CITATION
R-I
RIG
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
2B.
4A8
92I
93N
PSX
ID FETCH-LOGICAL-c325t-fd7018eb33b29f47103767dbffbe2eab7e45e696601a400d83dd55b40022d05f3
IEDL.DBID RIE
ISSN 2329-9266
IngestDate Thu May 29 04:10:31 EDT 2025
Sun Jul 13 04:58:55 EDT 2025
Thu Apr 24 23:03:08 EDT 2025
Tue Jul 01 02:11:57 EDT 2025
Wed Aug 27 02:17:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Finite-time control
multi-agent systems
neural net-work
prescribed performance control
time-varying formation con-trol
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c325t-fd7018eb33b29f47103767dbffbe2eab7e45e696601a400d83dd55b40022d05f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7046-8256
0009-0003-8694-2882
PQID 2969052615
PQPubID 2040495
PageCount 12
ParticipantIDs crossref_citationtrail_10_1109_JAS_2023_123615
wanfang_journals_zdhxb_ywb202404019
crossref_primary_10_1109_JAS_2023_123615
ieee_primary_10198705
proquest_journals_2969052615
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE/CAA journal of automatica sinica
PublicationTitleAbbrev JAS
PublicationTitle_FL IEEE/CAA Journal of Automatica Sinica
PublicationYear 2024
Publisher Chinese Association of Automation (CAA)
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
Publisher_xml – name: Chinese Association of Automation (CAA)
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
– name: School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref38
  doi: 10.1109/TFUZZ.2022.3197938
– ident: ref28
  doi: 10.1016/j.ifacol.2019.12.136
– ident: ref19
  doi: 10.1109/tnnls.2022.3158085
– ident: ref20
  doi: 10.1016/j.amc.2020.125704
– ident: ref40
  doi: 10.1109/tfuzz.2021.3119750
– ident: ref25
  doi: 10.1109/TII.2018.2839739
– ident: ref29
  doi: 10.1016/j.ins.2018.08.029
– ident: ref31
  doi: 10.1109/TCYB.2020.3046316
– ident: ref22
  doi: 10.1016/j.sysconle.2012.10.012
– ident: ref14
  doi: 10.1109/TSMCB.2011.2179981
– ident: ref36
  doi: 10.1007/s11071-017-4020-1
– ident: ref37
  doi: 10.1049/iet-cta.2017.0351
– ident: ref41
  doi: 10.1109/TCYB.2017.2749511
– ident: ref10
  doi: 10.1109/TII.2021.3133927
– ident: ref16
  doi: 10.1109/TCYB.2020.2991761
– ident: ref44
  doi: 10.1109/tnnls.2021.3139230
– ident: ref5
  doi: 10.1109/JAS.2021.1003838
– ident: ref39
  doi: 10.1109/TFUZZ.2020.2992632
– ident: ref23
  doi: 10.1109/TCST.2017.2757448
– ident: ref34
  doi: 10.1016/j.oceaneng.2022.112866
– ident: ref17
  doi: 10.1109/TCYB.2018.2869084
– ident: ref21
  doi: 10.1016/j.automatica.2015.02.001
– ident: ref43
  doi: 10.1016/j.automatica.2016.03.005
– ident: ref11
  doi: 10.1109/TCYB.2018.2805167
– ident: ref8
  doi: 10.1002/oca.2222
– ident: ref1
  doi: 10.1109/TCCN.2020.3027695
– ident: ref24
  doi: 10.1109/MED.2008.4601971
– ident: ref12
  doi: 10.1109/TFUZZ.2022.3184834
– ident: ref3
  doi: 10.1109/tsmc.2020.3048733
– ident: ref9
  doi: 10.1109/TAES.2021.3111719
– ident: ref32
  doi: 10.1109/TFUZZ.2020.3048518
– ident: ref26
  doi: 10.1016/j.automatica.2020.109086
– ident: ref33
  doi: 10.1109/TFUZZ.2021.3053327
– ident: ref15
  doi: 10.1016/j.automatica.2016.09.038
– ident: ref30
  doi: 10.1109/TNNLS.2020.3010333
– ident: ref35
  doi: 10.1016/j.neucom.2021.06.018
– ident: ref27
  doi: 10.1109/TASE.2020.3019346
– ident: ref4
  doi: 10.1109/TCYB.2019.2952913
– ident: ref18
  doi: 10.1109/TFUZZ.2020.2982618
– ident: ref42
  doi: 10.1109/TCYB.2017.2715980
– ident: ref6
  doi: 10.1109/JAS.2019.1911858
– ident: ref13
  doi: 10.1109/TAC.2011.2169618
– ident: ref2
  doi: 10.1016/S0004-3702(02)00382-X
– ident: ref7
  doi: 10.1109/TAC.2017.2673411
SSID ssj0001257694
Score 2.382903
Snippet This paper studies the problem of time-varying formation control with finite-time prescribed performance for non-strict feedback second-order multi-agent...
This paper studies the problem of time-varying for-mation control with finite-time prescribed performance for non-strict feedback second-order multi-agent...
SourceID wanfang
proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1039
SubjectTerms Adaptive control
Algorithms
Artificial neural networks
Closed loops
Feedback control
Finite-time control
Formation control
Multi-agent systems
Multiagent systems
neural network
Neural networks
Nonlinear systems
Nonlinearity
Observers
Output feedback
prescribed performance control
State observers
time-varying formation control
Time-varying systems
Title Finite-Time Prescribed Performance Time-Varying Formation Control for Second-Order Multi-Agent Systems with Non-Strict Feedback Based on a Neural Network Observer
URI https://ieeexplore.ieee.org/document/10198705
https://www.proquest.com/docview/2969052615
https://d.wanfangdata.com.cn/periodical/zdhxb-ywb202404019
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9RAFB60IOiD9VLp1ioD-uDLxFxmkszjWgyl4FZYK30LczIzKi1Z2Wap9uf4S3vOTNZuhYJvgbmQcM7MueR832HsbVWVCqyuRNlVUshK5cKgnRJ5VngLmTEeKFD8NCsPT-TRqTodweoBC-OcC8VnLqHH8C_fLroVpcrwhFOITIyl9zFyi2CtjYQKus6h8SE6CVpotDwjlU-W6vdH03lCncKTwDaiblmh0Fbllof54NL03vTfNkxNs81m65eMFSZnyWqApLv6h7_xv7_iCXs8Op18GrXkKbvn-mfs0QYV4XP2p_lB3qcgSAinugy8TcBZ_vkGWMBpTHw1S0JG8WaNeuQHsdqd4zw-p_jaimMi9OQB3CumBN7iIzM6p7wvny16MafWAANv0HqC6c74BzSnluN2hhNhCL7uLFao82OgzLFb7rCT5uOXg0Mx9m8QXZGrQXhbpVmN0XoBufZoBVOijrHgPbjcGaicVK4ketDM4FVi68JapUCSX2FT5YsXbKtf9G6XcV1DBR6jVVkraZyqa0Cxms57KaXPiwlL1vJsu5HcnHpsnLchyEl1iwrQkgK0UQEm7N3fBT8jr8fdU3dIiBvTovwmbH-tMe148C_aXJeaKHRo2ZtRi25Gr-z3X9D-voScqOUwtNV7d2z-kj2kObFGaJ9tDcuVe4XuzwCvg9pfAybRAXw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZQEQIOPItYKGAJDlwc8rCT-LhUREtpU6RtUW-WHduAirJoyarQn8MvZcbO0i1SJW6R_FCiGXseme8bQl5VVSmMlRUru4ozXomcabBTLM8Kb02mtTcYKB605eyY752IkxGsHrAwzrlQfOYSfAz_8u2iW2GqDE44hsjIWHodDD-XEa61kVIB5zm0PgQ3QTIJtmck88lS-WZvOk-wV3gS-EbEJTsUGqtc8jFvnOne6_7zhrFp7pJ2_ZqxxuQ0WQ0m6c7_YXD87--4R-6MbiedRj25T665_gG5vUFG-JD8br6i_8kQFEKxMgPuE-Ms_XgBLaA4xj7pJWKjaLPGPdLdWO9OYR6dY4Rt2SFSetIA72VThG_RkRudYuaXtouezbE5wEAbsJ9Gd6f0LRhUS2E7TZEyBF63jTXq9NBg7tgtt8lx8-5od8bGDg6sK3IxMG-rNKshXi9MLj3YwRTJY6zx3rjcaVM5LlyJBKGZhsvE1oW1QhiOnoVNhS8eka1-0bvHhMraVMZDvMprwbUTdW1ArLrznnPu82JCkrU8VTfSm2OXjW8qhDmpVKAAChVARQWYkNd_F3yPzB5XT91GIW5Mi_KbkJ21xqjx6P9QuSwlkujgspejFl2MntsvP436dWZyJJeD4FY-uWLzF-Tm7OhgX-2_bz88JbdwfqwY2iFbw3LlnoEzNJjn4Qj8Acj6BMw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Finite-Time+Prescribed+Performance+Time-Varying+Formation+Control+for+Second-Order+Multi-Agent+Systems+with+Non-Strict+Feedback+Based+on+a+Neural+Network+Observer&rft.jtitle=IEEE%2FCAA+journal+of+automatica+sinica&rft.au=Ma%2C+Chi&rft.au=Dong%2C+Dianbiao&rft.date=2024-04-01&rft.issn=2329-9266&rft.eissn=2329-9274&rft.volume=11&rft.issue=4&rft.spage=1039&rft.epage=1050&rft_id=info:doi/10.1109%2FJAS.2023.123615&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JAS_2023_123615
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzdhxb-ywb%2Fzdhxb-ywb.jpg