Finite-Time Prescribed Performance Time-Varying Formation Control for Second-Order Multi-Agent Systems with Non-Strict Feedback Based on a Neural Network Observer
This paper studies the problem of time-varying formation control with finite-time prescribed performance for non-strict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities. To eliminate nonlinearities, neural networks are applied to approximate the inherent dy...
Saved in:
Published in | IEEE/CAA journal of automatica sinica Vol. 11; no. 4; pp. 1039 - 1050 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Piscataway
Chinese Association of Automation (CAA)
01.04.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China |
Subjects | |
Online Access | Get full text |
ISSN | 2329-9266 2329-9274 |
DOI | 10.1109/JAS.2023.123615 |
Cover
Loading…
Abstract | This paper studies the problem of time-varying formation control with finite-time prescribed performance for non-strict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities. To eliminate nonlinearities, neural networks are applied to approximate the inherent dynamics of the system. In addition, due to the limitations of the actual working conditions, each follower agent can only obtain the locally measurable partial state information of the leader agent. To address this problem, a neural network state observer based on the leader state information is designed. Then, a finite-time prescribed performance adaptive output feedback control strategy is proposed by restricting the sliding mode surface to a prescribed region, which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time. Finally, a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm. |
---|---|
AbstractList | This paper studies the problem of time-varying formation control with finite-time prescribed performance for non-strict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities. To eliminate nonlinearities, neural networks are applied to approximate the inherent dynamics of the system. In addition, due to the limitations of the actual working conditions, each follower agent can only obtain the locally measurable partial state information of the leader agent. To address this problem, a neural network state observer based on the leader state information is designed. Then, a finite-time prescribed performance adaptive output feedback control strategy is proposed by restricting the sliding mode surface to a prescribed region, which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time. Finally, a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm. This paper studies the problem of time-varying for-mation control with finite-time prescribed performance for non-strict feedback second-order multi-agent systems with unmea-sured states and unknown nonlinearities.To eliminate nonlinear-ities,neural networks are applied to approximate the inherent dynamics of the system.In addition,due to the limitations of the actual working conditions,each follower agent can only obtain the locally measurable partial state information of the leader agent.To address this problem,a neural network state observer based on the leader state information is designed.Then,a finite-time prescribed performance adaptive output feedback control strat-egy is proposed by restricting the sliding mode surface to a pre-scribed region,which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time.Finally,a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm. |
Author | Ma, Chi Dong, Dianbiao |
AuthorAffiliation | School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China |
AuthorAffiliation_xml | – name: School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China |
Author_xml | – sequence: 1 givenname: Chi orcidid: 0009-0003-8694-2882 surname: Ma fullname: Ma, Chi email: mc@mail.nwpu.edu.cn organization: School of Mechanical Engineering, Northwestern Polytechnical University,Xi'an,China,710072 – sequence: 2 givenname: Dianbiao orcidid: 0000-0001-7046-8256 surname: Dong fullname: Dong, Dianbiao email: dongdianbiao@nwpu.edu.cn organization: School of Mechanical Engineering, Northwestern Polytechnical University,Xi'an,China,710072 |
BookMark | eNp9kU1vEzEQhleoSJTSMxcOlrghbeqP9W58DBGhoNJUSuG6stezqduN3Y4dQvpz-KU4LALEgdOM7OedkeZ5Xhz54KEoXjI6YYyqs4-z1YRTLiaMi5rJJ8UxF1yVijfV0e--rp8VpzHeUkoZl02tquPi-8J5l6C8dhsgVwixQ2fAkivAPuBG-w7I4a_8onHv_JosDq_JBU_mwScMA8kcWUEXvC2XaAHJp-2QXDlbg09ktY8JNpHsXLohl8GXq4SuS2QBYI3u7shbHfO6PE6TS9iiHnJJu4B3ZGki4FfAF8XTXg8RTn_Vk-Lz4t31_Ly8WL7_MJ9dlJ3gMpW9bSibghHCcNVXDaOiqRtr-t4AB20aqCTUqq4p0xWldiqsldLklnNLZS9Oijfj3J32vfbr9jZs0eeN7aO9-Wba_c7kE1e0okxl-PUI32N42EJMf2iuakUlzxoyJUeqwxAjQt92Lv28XkLthpbR9qCvzfrag7521JdzZ__k7tFtsoH_JF6NCQcAf9FMTRsqxQ9rhqhD |
CODEN | IJASJC |
CitedBy_id | crossref_primary_10_1109_JAS_2024_124794 crossref_primary_10_1109_TSMC_2025_3526980 crossref_primary_10_1007_s10489_023_05050_0 crossref_primary_10_3390_fractalfract8060339 crossref_primary_10_1109_TFUZZ_2024_3490607 crossref_primary_10_1016_j_neucom_2025_129538 crossref_primary_10_1049_cth2_12748 crossref_primary_10_1109_TCYB_2024_3498912 crossref_primary_10_1007_s11071_024_10644_5 crossref_primary_10_1109_JAS_2024_124827 crossref_primary_10_1109_TASE_2024_3417387 crossref_primary_10_1016_j_jfranklin_2025_107534 crossref_primary_10_1109_LCSYS_2025_3546525 crossref_primary_10_1109_TSMC_2024_3515196 |
Cites_doi | 10.1109/TFUZZ.2022.3197938 10.1016/j.ifacol.2019.12.136 10.1109/tnnls.2022.3158085 10.1016/j.amc.2020.125704 10.1109/tfuzz.2021.3119750 10.1109/TII.2018.2839739 10.1016/j.ins.2018.08.029 10.1109/TCYB.2020.3046316 10.1016/j.sysconle.2012.10.012 10.1109/TSMCB.2011.2179981 10.1007/s11071-017-4020-1 10.1049/iet-cta.2017.0351 10.1109/TCYB.2017.2749511 10.1109/TII.2021.3133927 10.1109/TCYB.2020.2991761 10.1109/tnnls.2021.3139230 10.1109/JAS.2021.1003838 10.1109/TFUZZ.2020.2992632 10.1109/TCST.2017.2757448 10.1016/j.oceaneng.2022.112866 10.1109/TCYB.2018.2869084 10.1016/j.automatica.2015.02.001 10.1016/j.automatica.2016.03.005 10.1109/TCYB.2018.2805167 10.1002/oca.2222 10.1109/TCCN.2020.3027695 10.1109/MED.2008.4601971 10.1109/TFUZZ.2022.3184834 10.1109/tsmc.2020.3048733 10.1109/TAES.2021.3111719 10.1109/TFUZZ.2020.3048518 10.1016/j.automatica.2020.109086 10.1109/TFUZZ.2021.3053327 10.1016/j.automatica.2016.09.038 10.1109/TNNLS.2020.3010333 10.1016/j.neucom.2021.06.018 10.1109/TASE.2020.3019346 10.1109/TCYB.2019.2952913 10.1109/TFUZZ.2020.2982618 10.1109/TCYB.2017.2715980 10.1109/JAS.2019.1911858 10.1109/TAC.2011.2169618 10.1016/S0004-3702(02)00382-X 10.1109/TAC.2017.2673411 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1109/JAS.2023.123615 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2329-9274 |
EndPage | 1050 |
ExternalDocumentID | zdhxb_ywb202404019 10_1109_JAS_2023_123615 10198705 |
Genre | orig-research |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities of China grantid: 31020210502002 funderid: 10.13039/501100012226 – fundername: National Natural Science Foundation of China grantid: 62203356 funderid: 10.13039/501100001809 |
GroupedDBID | -0I -0Y -SI -S~ 0R~ 4.4 5VR 6IK 92M 97E 9D9 9DI AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AFUIB AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CAJEI EBS EJD IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ Q-- RIA RIE RT9 T8Y TCJ TGT U1F U1G U5I U5S AAYXX CITATION R-I RIG 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D 2B. 4A8 92I 93N PSX |
ID | FETCH-LOGICAL-c325t-fd7018eb33b29f47103767dbffbe2eab7e45e696601a400d83dd55b40022d05f3 |
IEDL.DBID | RIE |
ISSN | 2329-9266 |
IngestDate | Thu May 29 04:10:31 EDT 2025 Sun Jul 13 04:58:55 EDT 2025 Thu Apr 24 23:03:08 EDT 2025 Tue Jul 01 02:11:57 EDT 2025 Wed Aug 27 02:17:02 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Finite-time control multi-agent systems neural net-work prescribed performance control time-varying formation con-trol |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c325t-fd7018eb33b29f47103767dbffbe2eab7e45e696601a400d83dd55b40022d05f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7046-8256 0009-0003-8694-2882 |
PQID | 2969052615 |
PQPubID | 2040495 |
PageCount | 12 |
ParticipantIDs | crossref_citationtrail_10_1109_JAS_2023_123615 wanfang_journals_zdhxb_ywb202404019 crossref_primary_10_1109_JAS_2023_123615 ieee_primary_10198705 proquest_journals_2969052615 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-01 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE/CAA journal of automatica sinica |
PublicationTitleAbbrev | JAS |
PublicationTitle_FL | IEEE/CAA Journal of Automatica Sinica |
PublicationYear | 2024 |
Publisher | Chinese Association of Automation (CAA) The Institute of Electrical and Electronics Engineers, Inc. (IEEE) School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China |
Publisher_xml | – name: Chinese Association of Automation (CAA) – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) – name: School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref42 ref41 ref22 ref44 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref38 doi: 10.1109/TFUZZ.2022.3197938 – ident: ref28 doi: 10.1016/j.ifacol.2019.12.136 – ident: ref19 doi: 10.1109/tnnls.2022.3158085 – ident: ref20 doi: 10.1016/j.amc.2020.125704 – ident: ref40 doi: 10.1109/tfuzz.2021.3119750 – ident: ref25 doi: 10.1109/TII.2018.2839739 – ident: ref29 doi: 10.1016/j.ins.2018.08.029 – ident: ref31 doi: 10.1109/TCYB.2020.3046316 – ident: ref22 doi: 10.1016/j.sysconle.2012.10.012 – ident: ref14 doi: 10.1109/TSMCB.2011.2179981 – ident: ref36 doi: 10.1007/s11071-017-4020-1 – ident: ref37 doi: 10.1049/iet-cta.2017.0351 – ident: ref41 doi: 10.1109/TCYB.2017.2749511 – ident: ref10 doi: 10.1109/TII.2021.3133927 – ident: ref16 doi: 10.1109/TCYB.2020.2991761 – ident: ref44 doi: 10.1109/tnnls.2021.3139230 – ident: ref5 doi: 10.1109/JAS.2021.1003838 – ident: ref39 doi: 10.1109/TFUZZ.2020.2992632 – ident: ref23 doi: 10.1109/TCST.2017.2757448 – ident: ref34 doi: 10.1016/j.oceaneng.2022.112866 – ident: ref17 doi: 10.1109/TCYB.2018.2869084 – ident: ref21 doi: 10.1016/j.automatica.2015.02.001 – ident: ref43 doi: 10.1016/j.automatica.2016.03.005 – ident: ref11 doi: 10.1109/TCYB.2018.2805167 – ident: ref8 doi: 10.1002/oca.2222 – ident: ref1 doi: 10.1109/TCCN.2020.3027695 – ident: ref24 doi: 10.1109/MED.2008.4601971 – ident: ref12 doi: 10.1109/TFUZZ.2022.3184834 – ident: ref3 doi: 10.1109/tsmc.2020.3048733 – ident: ref9 doi: 10.1109/TAES.2021.3111719 – ident: ref32 doi: 10.1109/TFUZZ.2020.3048518 – ident: ref26 doi: 10.1016/j.automatica.2020.109086 – ident: ref33 doi: 10.1109/TFUZZ.2021.3053327 – ident: ref15 doi: 10.1016/j.automatica.2016.09.038 – ident: ref30 doi: 10.1109/TNNLS.2020.3010333 – ident: ref35 doi: 10.1016/j.neucom.2021.06.018 – ident: ref27 doi: 10.1109/TASE.2020.3019346 – ident: ref4 doi: 10.1109/TCYB.2019.2952913 – ident: ref18 doi: 10.1109/TFUZZ.2020.2982618 – ident: ref42 doi: 10.1109/TCYB.2017.2715980 – ident: ref6 doi: 10.1109/JAS.2019.1911858 – ident: ref13 doi: 10.1109/TAC.2011.2169618 – ident: ref2 doi: 10.1016/S0004-3702(02)00382-X – ident: ref7 doi: 10.1109/TAC.2017.2673411 |
SSID | ssj0001257694 |
Score | 2.382903 |
Snippet | This paper studies the problem of time-varying formation control with finite-time prescribed performance for non-strict feedback second-order multi-agent... This paper studies the problem of time-varying for-mation control with finite-time prescribed performance for non-strict feedback second-order multi-agent... |
SourceID | wanfang proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1039 |
SubjectTerms | Adaptive control Algorithms Artificial neural networks Closed loops Feedback control Finite-time control Formation control Multi-agent systems Multiagent systems neural network Neural networks Nonlinear systems Nonlinearity Observers Output feedback prescribed performance control State observers time-varying formation control Time-varying systems |
Title | Finite-Time Prescribed Performance Time-Varying Formation Control for Second-Order Multi-Agent Systems with Non-Strict Feedback Based on a Neural Network Observer |
URI | https://ieeexplore.ieee.org/document/10198705 https://www.proquest.com/docview/2969052615 https://d.wanfangdata.com.cn/periodical/zdhxb-ywb202404019 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9RAFB60IOiD9VLp1ioD-uDLxFxmkszjWgyl4FZYK30LczIzKi1Z2Wap9uf4S3vOTNZuhYJvgbmQcM7MueR832HsbVWVCqyuRNlVUshK5cKgnRJ5VngLmTEeKFD8NCsPT-TRqTodweoBC-OcC8VnLqHH8C_fLroVpcrwhFOITIyl9zFyi2CtjYQKus6h8SE6CVpotDwjlU-W6vdH03lCncKTwDaiblmh0Fbllof54NL03vTfNkxNs81m65eMFSZnyWqApLv6h7_xv7_iCXs8Op18GrXkKbvn-mfs0QYV4XP2p_lB3qcgSAinugy8TcBZ_vkGWMBpTHw1S0JG8WaNeuQHsdqd4zw-p_jaimMi9OQB3CumBN7iIzM6p7wvny16MafWAANv0HqC6c74BzSnluN2hhNhCL7uLFao82OgzLFb7rCT5uOXg0Mx9m8QXZGrQXhbpVmN0XoBufZoBVOijrHgPbjcGaicVK4ketDM4FVi68JapUCSX2FT5YsXbKtf9G6XcV1DBR6jVVkraZyqa0Cxms57KaXPiwlL1vJsu5HcnHpsnLchyEl1iwrQkgK0UQEm7N3fBT8jr8fdU3dIiBvTovwmbH-tMe148C_aXJeaKHRo2ZtRi25Gr-z3X9D-voScqOUwtNV7d2z-kj2kObFGaJ9tDcuVe4XuzwCvg9pfAybRAXw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZQEQIOPItYKGAJDlwc8rCT-LhUREtpU6RtUW-WHduAirJoyarQn8MvZcbO0i1SJW6R_FCiGXseme8bQl5VVSmMlRUru4ozXomcabBTLM8Kb02mtTcYKB605eyY752IkxGsHrAwzrlQfOYSfAz_8u2iW2GqDE44hsjIWHodDD-XEa61kVIB5zm0PgQ3QTIJtmck88lS-WZvOk-wV3gS-EbEJTsUGqtc8jFvnOne6_7zhrFp7pJ2_ZqxxuQ0WQ0m6c7_YXD87--4R-6MbiedRj25T665_gG5vUFG-JD8br6i_8kQFEKxMgPuE-Ms_XgBLaA4xj7pJWKjaLPGPdLdWO9OYR6dY4Rt2SFSetIA72VThG_RkRudYuaXtouezbE5wEAbsJ9Gd6f0LRhUS2E7TZEyBF63jTXq9NBg7tgtt8lx8-5od8bGDg6sK3IxMG-rNKshXi9MLj3YwRTJY6zx3rjcaVM5LlyJBKGZhsvE1oW1QhiOnoVNhS8eka1-0bvHhMraVMZDvMprwbUTdW1ArLrznnPu82JCkrU8VTfSm2OXjW8qhDmpVKAAChVARQWYkNd_F3yPzB5XT91GIW5Mi_KbkJ21xqjx6P9QuSwlkujgspejFl2MntsvP436dWZyJJeD4FY-uWLzF-Tm7OhgX-2_bz88JbdwfqwY2iFbw3LlnoEzNJjn4Qj8Acj6BMw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Finite-Time+Prescribed+Performance+Time-Varying+Formation+Control+for+Second-Order+Multi-Agent+Systems+with+Non-Strict+Feedback+Based+on+a+Neural+Network+Observer&rft.jtitle=IEEE%2FCAA+journal+of+automatica+sinica&rft.au=Ma%2C+Chi&rft.au=Dong%2C+Dianbiao&rft.date=2024-04-01&rft.issn=2329-9266&rft.eissn=2329-9274&rft.volume=11&rft.issue=4&rft.spage=1039&rft.epage=1050&rft_id=info:doi/10.1109%2FJAS.2023.123615&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JAS_2023_123615 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzdhxb-ywb%2Fzdhxb-ywb.jpg |