Simultaneous achievement of energy recovery and carbon sequestration through municipal solid waste management: A review
Effective municipal solid waste (MSW) management is a crucial component for sustainable cities, as inefficient waste disposal contributes to the release of about a billion tons of CO2-eq in greenhouse gases (GHG) annually. With escalating global waste generation, there is an untapped opportunity to...
Saved in:
Published in | Chemosphere (Oxford) Vol. 361; p. 142478 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.08.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0045-6535 1879-1298 1879-1298 |
DOI | 10.1016/j.chemosphere.2024.142478 |
Cover
Abstract | Effective municipal solid waste (MSW) management is a crucial component for sustainable cities, as inefficient waste disposal contributes to the release of about a billion tons of CO2-eq in greenhouse gases (GHG) annually. With escalating global waste generation, there is an untapped opportunity to integrate carbon dioxide removal (CDR) technologies into existing MSW management processes. This review explores current research on utilizing MSW for CDR, emphasizing its potential for both energy generation and carbon sequestration. The investigation covers three waste management practices: landfilling, waste-to-energy (WtE), and biochar production, revealing two paths for carbon sequestration. First, MSW serves as a feedstock in bioenergy with carbon capture and storage (BECCS), acting as a carbon-neutral resource that avoids fossil fuel and energy crop use, reducing GHG emissions and generating value through energy production. Second, direct storage of organic MSW and its derivatives, like biochar, in various carbon sinks allows for extended sequestration, offering a comprehensive approach to address the challenges of waste management and climate change mitigation. Moreover, this review advocates for an extended exploration into several subjects including in-depth analysis of waste, research on MSW-derived biochar recalcitrance across different carbon sinks, and understanding the symbiotic connections with GHG-emitting sectors like agriculture and energy. Finally, this review emphasizes the necessity of conducting life-cycle assessment studies to fully discern the benefits and assess the impacts of any future endeavors exploring the role of MSW in carbon sequestration.
[Display omitted]
•Municipal solid waste (MSW) is an untapped resource for carbon dioxide removal.•Three strategies to utilize MSW for CO2 removal include landfilling, waste-to-energy, and biochar production.•Carbon sequestration is achieved through MSW-burial and energy recovery with CCS.•Auditing carbon emissions and LCA are necessary to illuminate the impacts of MSW. |
---|---|
AbstractList | Effective municipal solid waste (MSW) management is a crucial component for sustainable cities, as inefficient waste disposal contributes to the release of about a billion tons of CO
-eq in greenhouse gases (GHG) annually. With escalating global waste generation, there is an untapped opportunity to integrate carbon dioxide removal (CDR) technologies into existing MSW management processes. This review explores current research on utilizing MSW for CDR, emphasizing its potential for both energy generation and carbon sequestration. The investigation covers three waste management practices: landfilling, waste-to-energy (WtE), and biochar production, revealing two paths for carbon sequestration. First, MSW serves as a feedstock in bioenergy with carbon capture and storage (BECCS), acting as a carbon-neutral resource that avoids fossil fuel and energy crop use, reducing GHG emissions and generating value through energy production. Second, direct storage of organic MSW and its derivatives, like biochar, in various carbon sinks allows for extended sequestration, offering a comprehensive approach to address the challenges of waste management and climate change mitigation. Moreover, this review advocates for an extended exploration into several subjects including in-depth analysis of waste, research on MSW-derived biochar recalcitrance across different carbon sinks, and understanding the symbiotic connections with GHG-emitting sectors like agriculture and energy. Finally, this review emphasizes the necessity of conducting life-cycle assessment studies to fully discern the benefits and assess the impacts of any future endeavors exploring the role of MSW in carbon sequestration. Effective municipal solid waste (MSW) management is a crucial component for sustainable cities, as inefficient waste disposal contributes to the release of about a billion tons of CO2-eq in greenhouse gases (GHG) annually. With escalating global waste generation, there is an untapped opportunity to integrate carbon dioxide removal (CDR) technologies into existing MSW management processes. This review explores current research on utilizing MSW for CDR, emphasizing its potential for both energy generation and carbon sequestration. The investigation covers three waste management practices: landfilling, waste-to-energy (WtE), and biochar production, revealing two paths for carbon sequestration. First, MSW serves as a feedstock in bioenergy with carbon capture and storage (BECCS), acting as a carbon-neutral resource that avoids fossil fuel and energy crop use, reducing GHG emissions and generating value through energy production. Second, direct storage of organic MSW and its derivatives, like biochar, in various carbon sinks allows for extended sequestration, offering a comprehensive approach to address the challenges of waste management and climate change mitigation. Moreover, this review advocates for an extended exploration into several subjects including in-depth analysis of waste, research on MSW-derived biochar recalcitrance across different carbon sinks, and understanding the symbiotic connections with GHG-emitting sectors like agriculture and energy. Finally, this review emphasizes the necessity of conducting life-cycle assessment studies to fully discern the benefits and assess the impacts of any future endeavors exploring the role of MSW in carbon sequestration. [Display omitted] •Municipal solid waste (MSW) is an untapped resource for carbon dioxide removal.•Three strategies to utilize MSW for CO2 removal include landfilling, waste-to-energy, and biochar production.•Carbon sequestration is achieved through MSW-burial and energy recovery with CCS.•Auditing carbon emissions and LCA are necessary to illuminate the impacts of MSW. Effective municipal solid waste (MSW) management is a crucial component for sustainable cities, as inefficient waste disposal contributes to the release of about a billion tons of CO2-eq in greenhouse gases (GHG) annually. With escalating global waste generation, there is an untapped opportunity to integrate carbon dioxide removal (CDR) technologies into existing MSW management processes. This review explores current research on utilizing MSW for CDR, emphasizing its potential for both energy generation and carbon sequestration. The investigation covers three waste management practices: landfilling, waste-to-energy (WtE), and biochar production, revealing two paths for carbon sequestration. First, MSW serves as a feedstock in bioenergy with carbon capture and storage (BECCS), acting as a carbon-neutral resource that avoids fossil fuel and energy crop use, reducing GHG emissions and generating value through energy production. Second, direct storage of organic MSW and its derivatives, like biochar, in various carbon sinks allows for extended sequestration, offering a comprehensive approach to address the challenges of waste management and climate change mitigation. Moreover, this review advocates for an extended exploration into several subjects including in-depth analysis of waste, research on MSW-derived biochar recalcitrance across different carbon sinks, and understanding the symbiotic connections with GHG-emitting sectors like agriculture and energy. Finally, this review emphasizes the necessity of conducting life-cycle assessment studies to fully discern the benefits and assess the impacts of any future endeavors exploring the role of MSW in carbon sequestration.Effective municipal solid waste (MSW) management is a crucial component for sustainable cities, as inefficient waste disposal contributes to the release of about a billion tons of CO2-eq in greenhouse gases (GHG) annually. With escalating global waste generation, there is an untapped opportunity to integrate carbon dioxide removal (CDR) technologies into existing MSW management processes. This review explores current research on utilizing MSW for CDR, emphasizing its potential for both energy generation and carbon sequestration. The investigation covers three waste management practices: landfilling, waste-to-energy (WtE), and biochar production, revealing two paths for carbon sequestration. First, MSW serves as a feedstock in bioenergy with carbon capture and storage (BECCS), acting as a carbon-neutral resource that avoids fossil fuel and energy crop use, reducing GHG emissions and generating value through energy production. Second, direct storage of organic MSW and its derivatives, like biochar, in various carbon sinks allows for extended sequestration, offering a comprehensive approach to address the challenges of waste management and climate change mitigation. Moreover, this review advocates for an extended exploration into several subjects including in-depth analysis of waste, research on MSW-derived biochar recalcitrance across different carbon sinks, and understanding the symbiotic connections with GHG-emitting sectors like agriculture and energy. Finally, this review emphasizes the necessity of conducting life-cycle assessment studies to fully discern the benefits and assess the impacts of any future endeavors exploring the role of MSW in carbon sequestration. Effective municipal solid waste (MSW) management is a crucial component for sustainable cities, as inefficient waste disposal contributes to the release of about a billion tons of CO₂-eq in greenhouse gases (GHG) annually. With escalating global waste generation, there is an untapped opportunity to integrate carbon dioxide removal (CDR) technologies into existing MSW management processes. This review explores current research on utilizing MSW for CDR, emphasizing its potential for both energy generation and carbon sequestration. The investigation covers three waste management practices: landfilling, waste-to-energy (WtE), and biochar production, revealing two paths for carbon sequestration. First, MSW serves as a feedstock in bioenergy with carbon capture and storage (BECCS), acting as a carbon-neutral resource that avoids fossil fuel and energy crop use, reducing GHG emissions and generating value through energy production. Second, direct storage of organic MSW and its derivatives, like biochar, in various carbon sinks allows for extended sequestration, offering a comprehensive approach to address the challenges of waste management and climate change mitigation. Moreover, this review advocates for an extended exploration into several subjects including in-depth analysis of waste, research on MSW-derived biochar recalcitrance across different carbon sinks, and understanding the symbiotic connections with GHG-emitting sectors like agriculture and energy. Finally, this review emphasizes the necessity of conducting life-cycle assessment studies to fully discern the benefits and assess the impacts of any future endeavors exploring the role of MSW in carbon sequestration. |
ArticleNumber | 142478 |
Author | Doong, Ruey-An Salvador, Ruben W. |
Author_xml | – sequence: 1 givenname: Ruben W. surname: Salvador fullname: Salvador, Ruben W. – sequence: 2 givenname: Ruey-An orcidid: 0000-0002-4913-0602 surname: Doong fullname: Doong, Ruey-An email: radoong@mx.nthu.edu.tw |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38815817$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1u3CAUhVGVqpmkfYWK7rrxBIzBuJsqGvUnUqQu2q4RxtdjRjZMAc9o3j5knEhVN83qCumc717OuUIXzjtA6AMla0qouNmtzQCTj_sBAqxLUlZrWpVVLV-hFZV1U9CykRdoRUjFC8EZv0RXMe4IyWbevEGXTErKJa1X6PjTTvOYtAM_R6zNYOEAE7iEfY_BQdiecADjDxBOWLsOGx1a73CEPzPEFHSy-ZWG4OftgKfZWWP3esTRj7bDRx0T4Ek7vT1DP-HbTDtYOL5Fr3s9Rnj3NK_R769ffm2-F_c_vt1tbu8Lw0qeit4QwThhfUtMDQIENYIS2QpiSEdqQdqet6Zkraaa8rLRpiG90LyTVVe1hLNr9HHh7oM_X6wmGw2M4_JjxShngpeiKf8vzadUXEpZZ-n7J-ncTtCpfbCTDif1nGsWfF4EJvgYA_TK2HTOKkdmR0WJemxS7dRfTarHJtXSZCY0_xCel7zEu1m8kJPNaQcVjQVnoLO5y6Q6b19AeQCOmsJb |
CitedBy_id | crossref_primary_10_3390_environments12010005 crossref_primary_10_3390_su17062730 |
Cites_doi | 10.1016/j.gloenvcha.2010.09.012 10.1016/j.cemconcomp.2023.105078 10.1016/j.ijggc.2015.06.012 10.1111/1758-5899.12827 10.1016/j.uclim.2014.03.002 10.1016/j.prostr.2020.06.023 10.1016/j.segy.2023.100107 10.1021/acs.est.3c00644 10.1016/j.mex.2022.101869 10.1016/j.rser.2020.110490 10.1016/j.wasman.2018.07.007 10.1080/07352680590910393 10.1016/j.apenergy.2015.10.011 10.1016/j.jaap.2015.12.022 10.1039/D1EE00642H 10.1016/j.jenvman.2019.109466 10.1007/s10311-020-01100-y 10.1007/s13762-017-1470-4 10.1111/gcbb.12553 10.1016/j.biombioe.2021.105968 10.1016/j.conbuildmat.2022.128715 10.1016/j.rser.2022.112409 10.1007/s10163-015-0447-y 10.1039/C7EE02342A 10.1016/j.biortech.2018.09.030 10.1146/annurev.earth.031208.100206 10.1111/gcb.13178 10.1016/j.biombioe.2015.12.008 10.1111/gcbb.12137 10.1016/j.foodpol.2018.04.003 10.1002/ceat.201900108 10.1016/j.chemosphere.2015.08.046 10.1016/j.enconman.2021.115042 10.4155/cmt.11.22 10.1016/j.rser.2023.113415 10.1016/j.envres.2021.112219 10.1093/reep/rex027 10.1016/S1002-0160(21)60073-5 10.1016/j.energy.2020.117352 10.1016/j.spc.2021.02.028 10.1016/j.envadv.2023.100395 10.3389/fmats.2016.00023 10.1016/j.cosust.2015.09.002 10.1016/j.ijggc.2021.103309 10.1016/j.egypro.2017.03.1741 10.1007/s40641-018-0104-3 10.1126/science.290.5490.291 10.1016/j.scs.2022.104027 10.1007/s42773-023-00258-2 10.1016/j.joule.2021.04.011 10.1016/j.oneear.2019.11.006 10.1016/j.isci.2022.103990 10.1016/j.jclepro.2019.04.034 10.2139/ssrn.4286042 10.1016/j.jclepro.2017.08.016 10.1016/j.enconman.2020.113300 10.1016/j.ijggc.2022.103684 10.1007/s10668-020-00959-9 10.1016/j.resconrec.2017.07.025 10.1111/gcbb.12863 10.1016/j.scitotenv.2017.11.044 10.1016/j.rser.2021.111641 10.1016/j.energy.2015.07.122 10.1007/s10661-019-7273-y 10.1039/D0EE03757E 10.1016/j.energy.2022.124056 10.1016/j.ijggc.2017.11.007 10.1007/s13412-017-0445-6 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Ltd Copyright © 2024 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2024 Elsevier Ltd – notice: Copyright © 2024 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.chemosphere.2024.142478 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Ecology |
EISSN | 1879-1298 |
ExternalDocumentID | 38815817 10_1016_j_chemosphere_2024_142478 S0045653524013717 |
Genre | Journal Article Review |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO ABEFU ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO AEBSH AEFWE AEGFY AEIPS AEKER AENEX AFFNX AFJKZ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANKPU ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HMC HVGLF HZ~ H~9 IHE J1W K-O KCYFY KOM LY3 LY9 M41 MO0 MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCC SCU SDF SDG SDP SEN SEP SES SEW SPCBC SSJ SSZ T5K TWZ WH7 WUQ XPP Y6R ZCG ZMT ZXP ~02 ~G- ~KM AATTM AAYWO AAYXX ACVFH ADCNI ADXHL AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM PKN 7X8 EFKBS EFLBG 7S9 L.6 |
ID | FETCH-LOGICAL-c325t-fc063503fb0c7e6e61c6108b60c0d0760bf5bc23ba1a1529ac90f6a5d84d4b053 |
IEDL.DBID | AIKHN |
ISSN | 0045-6535 1879-1298 |
IngestDate | Fri Sep 05 16:15:11 EDT 2025 Thu Sep 04 17:08:14 EDT 2025 Wed Feb 19 02:06:18 EST 2025 Tue Jul 01 01:00:49 EDT 2025 Thu Apr 24 22:57:17 EDT 2025 Sat Feb 08 15:52:14 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Municipal solid waste (MSW) Urban ecosystems Circular economy Carbon sequestration Sustainability |
Language | English |
License | Copyright © 2024 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c325t-fc063503fb0c7e6e61c6108b60c0d0760bf5bc23ba1a1529ac90f6a5d84d4b053 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-4913-0602 |
PMID | 38815817 |
PQID | 3063458887 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3153652692 proquest_miscellaneous_3063458887 pubmed_primary_38815817 crossref_citationtrail_10_1016_j_chemosphere_2024_142478 crossref_primary_10_1016_j_chemosphere_2024_142478 elsevier_sciencedirect_doi_10_1016_j_chemosphere_2024_142478 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2024 2024-08-00 2024-Aug 20240801 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: August 2024 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Chemosphere (Oxford) |
PublicationTitleAlternate | Chemosphere |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Struthers, Herraiz, Muslemani, Su, Thomson, Lucquiaud (bib70) 2022 Thengane, Bandyopadhyay (bib74) 2020; 22 Duval-Dachary, Pastor, Beauchet, Lorne, Salou, Helias (bib17) 2022; 22–23 Leng, Huang (bib41) 2018; 270 Tanzer, Blok, Ramírez (bib72) 2021; 8 Zarea, Moazed, Ahmadmoazzam, Malekghasemi, Jaafarzadeh (bib83) 2019; 191 Koytsoumpa, Magiri – Skouloudi, Karellas, Kakaras (bib34) 2021; 152 Crombie, Mašek (bib14) 2015; 7 Wienchol, Szlęk, Ditaranto (bib81) 2020; 198 Cruz, Perrella Balestieri, de Toledo Silva, Vilanova, Oliveira, Ávila (bib15) 2021; 108 Kumar, Sharma (bib35) 2014; 8 Pörtner, Roberts, Poloczanska, Mintenbeck, Tignor, Alegría, Craig, Langsdorf, Löschke, Möller, Okem (bib53) 2023 Tol (bib75) 2018; 12 Arehart, Hart, Pomponi, D'Amico (bib2) 2021; 27 Suarez-Riera, Restuccia, Ferro (bib71) 2020; 26 Vera, Wicke, Lamers, Cowie, Repo, Heukels, Zumpf, Styles, Parish, Cherubini, Berndes, Jager, Schiesari, Junginger, Brandão, Bentsen, Daioglou, Harris, van der Hilst (bib76) 2022; 161 Calvin, Cowie, Berndes, Arneth, Cherubini, Portugal-Pereira, Grassi, House, Johnson, Popp, Rounsevell, Slade, Smith (bib11) 2021; 13 Lee, Han, Wang (bib38) 2017; 166 Shackley, Hammond, Gaunt, Ibarrola (bib68) 2011; 2 Fennell, Davis, Mohammed (bib20) 2021; 5 Rehrah, Bansode, Hassan, Ahmedna (bib59) 2018; 15 Terlouw, Bauer, Rosa, Mazzotti (bib73) 2021; 14 Archer, Eby, Brovkin, Ridgwell, Cao, Mikolajewicz, Caldeira, Matsumoto, Munhoven, Montenegro, Tokos (bib1) 2009; 37 Bui, Adjiman, Bardow, Anthony, Boston, Brown, Fennell, Fuss, Galindo, Hackett, Hallett, Herzog, Jackson, Kemper, Krevor, Maitland, Matuszewski, Metcalfe, Petit, Mac Dowell (bib9) 2018; 11 Kinnunen, Talvitie, Ottelin, Heinonen, Junnila (bib32) 2022; 84 Ritchie, Roser (bib61) 2023 Rosha, Ibrahim (bib64) 2022 Zornoza, Moreno-Barriga, Acosta, Muñoz, Faz (bib85) 2016; 144 Rosa, Sanchez, Mazzotti (bib63) 2021; 14 Brack, King (bib8) 2021; 12 Falkowski, Scholes, Boyle, Canadell, Canfield, Elser, Gruber, Hibbard, Högberg, Linder, Mackenzie, Moore III, Pedersen, Rosenthal, Seitzinger, Smetacek, Steffen (bib19) 2000; 290 Nanda, Berruti (bib51) 2021; 19 Liu, Xie, Zhang (bib44) 2017; 19 Burns, Nicholson (bib10) 2017; 7 Sewak, Kim, Rundle-Thiele, Deshpande (bib67) 2021; 39 Eggleston, Buendia, Miwa, Ngara, Tanabe (bib18) 2006 Berrang-Ford, Ford, Paterson (bib7) 2011; 21 Ros, Veronezi Figueiredo, Srivastava, Huizinga, van Os, Wassenaar, Garcia Moretz-Sohn Monteiro (bib62) 2022 Wang, Wen, Shi, Nuran Zaini, Göran Jönsson, Yang (bib77) 2022; 252 Hauschild, Rosenbaum, Olsen (bib25) 2018 Smith (bib69) 2016; 22 Duval-Dachary, Beauchet, Lorne, Salou, Helias, Pastor (bib16) 2023; 183 Babin, Vaneeckhaute, Iliuta (bib3) 2021; 146 Beiron, Normann, Johnsson (bib5) 2022; 118 Iqbal, Zan, Liu, Chen (bib27) 2019; 225 Lima, Colvero, Gomes, Wenzel, Schalch, Cimpan (bib43) 2018; 78 Lal, Negassa, Lorenz (bib36) 2015; 15 Wang, Yang, Shi, Zaini, Wen, Jiang, Jönsson, Yang (bib78) 2022; 252 Gładysz, Ziębik (bib22) 2016; 85 Majumder, Neogi, Dutta, Powel, Banik (bib46) 2019; 250 Ramprasad, Teja, Gowtham, Vikas (bib57) 2022; 9 Karimi, Diaz de Tuesta, Carmem, Gomes, Rodrigues, Silva (bib28) 2020; 43 Ben-Mansour, Habib, Bamidele, Basha, Qasem, Peedikakkal, Laoui, Ali (bib6) 2016; 161 Pour (bib54) 2019 Rennuit-Mortensen, Dalgas Rasmussen, Grahn (bib60) 2023; 10 Schmidt, Anca-Couce, Hagemann, Werner, Gerten, Lucht, Kammann (bib66) 2019; 11 Kaza, Yao, Bhada-Tata, Van Woerden (bib29) 2018 Kemper (bib31) 2015; 40 Pour, Webley, Cook (bib56) 2018; 68 Gupta, Kua, Koh (bib24) 2018; 619–620 Kouchaki-Penchah, Bahn, Vaillancourt, Moreau, Thiffault, Levasseur (bib33) 2023; 57 Moult, Allan, Hewitt, Berners-Lee (bib50) 2018; 77 Lemus, Lal (bib40) 2005; 24 Goswami, Pant, Mansotra, Sharma, Joshi (bib23) 2021 Mishra, Danoglidis, Shah, Konsta-Gdoutos (bib48) 2023; 140 Keller, Lenton, Littleton, Oschlies, Scott, Vaughan (bib30) 2018; 4 Calvo-Muñoz, García-Mateos, Rosas, Rodríguez-Mirasol, Cordero (bib12) 2016; 3 Liu, Liu, Zhang, Li, Xing, Tang (bib45) 2022; 350 Ozkan, Nayak, Ruiz, Jiang (bib52) 2022; 25 Weihs, Jones, Ho, Malik, Abbas, Meka, Fennell, Wiley (bib80) 2022; 273 Li, Skelly (bib42) 2023; 13 Saleem, Ahmad, Rashid, Ahmad, AL-Wabel, Amin (bib65) 2022; 32 Zhu, Zhang, Luo, Chong, Li, Kong (bib84) 2021; 23 Rehrah, Bansode, Hassan, Ahmedna (bib58) 2016; 118 Chao, Deng, Dewil, Baeyens, Fan (bib13) 2021; 138 Moriarty, Honnery (bib49) 2019 Bandilla (bib4) 2020 Lausselet, Cherubini, Oreggioni, del Alamo Serrano, Becidan, Hu, Rørstad, Strømman (bib37) 2017; 126 Pour, Webley, Cook (bib55) 2017; 114 Wang, Pan, Zhang, Borhani, Li, Zhang (bib79) 2022; 207 Hu, Guo, Ma, Hu, Zhang, Xiao, Luo, Wang (bib26) 2015; 90 Lefebvre, Fawzy, Aquije, Osman, Draper, Trabold (bib39) 2023; 5 Yamamoto, Kinnaman (bib82) 2022; 111 Gambhir, Tavoni (bib21) 2019; 1 Melara, Singh, Colosi (bib47) 2020; 224 Ritchie (10.1016/j.chemosphere.2024.142478_bib61) 2023 Weihs (10.1016/j.chemosphere.2024.142478_bib80) 2022; 273 Burns (10.1016/j.chemosphere.2024.142478_bib10) 2017; 7 Ramprasad (10.1016/j.chemosphere.2024.142478_bib57) 2022; 9 Lee (10.1016/j.chemosphere.2024.142478_bib38) 2017; 166 Rosha (10.1016/j.chemosphere.2024.142478_bib64) 2022 Zarea (10.1016/j.chemosphere.2024.142478_bib83) 2019; 191 Archer (10.1016/j.chemosphere.2024.142478_bib1) 2009; 37 Lausselet (10.1016/j.chemosphere.2024.142478_bib37) 2017; 126 Ros (10.1016/j.chemosphere.2024.142478_bib62) 2022 Pour (10.1016/j.chemosphere.2024.142478_bib56) 2018; 68 Calvo-Muñoz (10.1016/j.chemosphere.2024.142478_bib12) 2016; 3 Rosa (10.1016/j.chemosphere.2024.142478_bib63) 2021; 14 Kemper (10.1016/j.chemosphere.2024.142478_bib31) 2015; 40 Saleem (10.1016/j.chemosphere.2024.142478_bib65) 2022; 32 Ben-Mansour (10.1016/j.chemosphere.2024.142478_bib6) 2016; 161 Gambhir (10.1016/j.chemosphere.2024.142478_bib21) 2019; 1 Li (10.1016/j.chemosphere.2024.142478_bib42) 2023; 13 Duval-Dachary (10.1016/j.chemosphere.2024.142478_bib16) 2023; 183 Cruz (10.1016/j.chemosphere.2024.142478_bib15) 2021; 108 Lal (10.1016/j.chemosphere.2024.142478_bib36) 2015; 15 Moult (10.1016/j.chemosphere.2024.142478_bib50) 2018; 77 Babin (10.1016/j.chemosphere.2024.142478_bib3) 2021; 146 Gładysz (10.1016/j.chemosphere.2024.142478_bib22) 2016; 85 Pour (10.1016/j.chemosphere.2024.142478_bib54) 2019 Gupta (10.1016/j.chemosphere.2024.142478_bib24) 2018; 619–620 Shackley (10.1016/j.chemosphere.2024.142478_bib68) 2011; 2 Wang (10.1016/j.chemosphere.2024.142478_bib77) 2022; 252 Goswami (10.1016/j.chemosphere.2024.142478_bib23) 2021 Terlouw (10.1016/j.chemosphere.2024.142478_bib73) 2021; 14 Wang (10.1016/j.chemosphere.2024.142478_bib79) 2022; 207 Hu (10.1016/j.chemosphere.2024.142478_bib26) 2015; 90 Pörtner (10.1016/j.chemosphere.2024.142478_bib53) 2023 Calvin (10.1016/j.chemosphere.2024.142478_bib11) 2021; 13 Moriarty (10.1016/j.chemosphere.2024.142478_bib49) 2019 Rennuit-Mortensen (10.1016/j.chemosphere.2024.142478_bib60) 2023; 10 Berrang-Ford (10.1016/j.chemosphere.2024.142478_bib7) 2011; 21 Lefebvre (10.1016/j.chemosphere.2024.142478_bib39) 2023; 5 Bandilla (10.1016/j.chemosphere.2024.142478_bib4) 2020 Majumder (10.1016/j.chemosphere.2024.142478_bib46) 2019; 250 Nanda (10.1016/j.chemosphere.2024.142478_bib51) 2021; 19 Sewak (10.1016/j.chemosphere.2024.142478_bib67) 2021; 39 Fennell (10.1016/j.chemosphere.2024.142478_bib20) 2021; 5 Ozkan (10.1016/j.chemosphere.2024.142478_bib52) 2022; 25 Zornoza (10.1016/j.chemosphere.2024.142478_bib85) 2016; 144 Beiron (10.1016/j.chemosphere.2024.142478_bib5) 2022; 118 Leng (10.1016/j.chemosphere.2024.142478_bib41) 2018; 270 Karimi (10.1016/j.chemosphere.2024.142478_bib28) 2020; 43 Suarez-Riera (10.1016/j.chemosphere.2024.142478_bib71) 2020; 26 Bui (10.1016/j.chemosphere.2024.142478_bib9) 2018; 11 Keller (10.1016/j.chemosphere.2024.142478_bib30) 2018; 4 Tanzer (10.1016/j.chemosphere.2024.142478_bib72) 2021; 8 Kaza (10.1016/j.chemosphere.2024.142478_bib29) 2018 Koytsoumpa (10.1016/j.chemosphere.2024.142478_bib34) 2021; 152 Crombie (10.1016/j.chemosphere.2024.142478_bib14) 2015; 7 Zhu (10.1016/j.chemosphere.2024.142478_bib84) 2021; 23 Kumar (10.1016/j.chemosphere.2024.142478_bib35) 2014; 8 Struthers (10.1016/j.chemosphere.2024.142478_bib70) 2022 Pour (10.1016/j.chemosphere.2024.142478_bib55) 2017; 114 Vera (10.1016/j.chemosphere.2024.142478_bib76) 2022; 161 Wang (10.1016/j.chemosphere.2024.142478_bib78) 2022; 252 Iqbal (10.1016/j.chemosphere.2024.142478_bib27) 2019; 225 Smith (10.1016/j.chemosphere.2024.142478_bib69) 2016; 22 Falkowski (10.1016/j.chemosphere.2024.142478_bib19) 2000; 290 Yamamoto (10.1016/j.chemosphere.2024.142478_bib82) 2022; 111 Kinnunen (10.1016/j.chemosphere.2024.142478_bib32) 2022; 84 Arehart (10.1016/j.chemosphere.2024.142478_bib2) 2021; 27 Melara (10.1016/j.chemosphere.2024.142478_bib47) 2020; 224 Liu (10.1016/j.chemosphere.2024.142478_bib44) 2017; 19 Schmidt (10.1016/j.chemosphere.2024.142478_bib66) 2019; 11 Chao (10.1016/j.chemosphere.2024.142478_bib13) 2021; 138 Mishra (10.1016/j.chemosphere.2024.142478_bib48) 2023; 140 Lima (10.1016/j.chemosphere.2024.142478_bib43) 2018; 78 Hauschild (10.1016/j.chemosphere.2024.142478_bib25) 2018 Wienchol (10.1016/j.chemosphere.2024.142478_bib81) 2020; 198 Lemus (10.1016/j.chemosphere.2024.142478_bib40) 2005; 24 Liu (10.1016/j.chemosphere.2024.142478_bib45) 2022; 350 Tol (10.1016/j.chemosphere.2024.142478_bib75) 2018; 12 Brack (10.1016/j.chemosphere.2024.142478_bib8) 2021; 12 Eggleston (10.1016/j.chemosphere.2024.142478_bib18) 2006 Duval-Dachary (10.1016/j.chemosphere.2024.142478_bib17) 2022; 22–23 Kouchaki-Penchah (10.1016/j.chemosphere.2024.142478_bib33) 2023; 57 Rehrah (10.1016/j.chemosphere.2024.142478_bib58) 2016; 118 Rehrah (10.1016/j.chemosphere.2024.142478_bib59) 2018; 15 Thengane (10.1016/j.chemosphere.2024.142478_bib74) 2020; 22 |
References_xml | – volume: 161 year: 2022 ident: bib76 article-title: Land use for bioenergy: synergies and trade-offs between sustainable development goals publication-title: Renew. Sustain. Energy Rev. – volume: 84 year: 2022 ident: bib32 article-title: Carbon sequestration and storage potential of urban residential environment – a review publication-title: Sustain. Cities Soc. – volume: 27 start-page: 1047 year: 2021 end-page: 1063 ident: bib2 article-title: Carbon sequestration and storage in the built environment publication-title: Sustain. Prod. Consum. – volume: 15 start-page: 79 year: 2015 end-page: 86 ident: bib36 article-title: Carbon sequestration in soil publication-title: Curr. Opin. Environ. Sustain. – volume: 270 start-page: 627 year: 2018 end-page: 642 ident: bib41 article-title: An overview of the effect of pyrolysis process parameters on biochar stability publication-title: Bioresour. Technol. – volume: 13 year: 2023 ident: bib42 article-title: Physicochemical properties and applications of biochars derived from municipal solid waste: a review publication-title: Environ. Adv. – volume: 85 start-page: 109 year: 2016 end-page: 118 ident: bib22 article-title: Environmental analysis of bio-CCS in an integrated oxy-fuel combustion power plant with CO publication-title: Biomass Bioenergy – volume: 23 start-page: 6603 year: 2021 end-page: 6622 ident: bib84 article-title: A review of municipal solid waste in China: characteristics, compositions, influential factors and treatment technologies publication-title: Environ. Dev. Sustain. – volume: 225 start-page: 1079 year: 2019 end-page: 1088 ident: bib27 article-title: Integrated municipal solid waste management scheme of Hong Kong: a comprehensive analysis in terms of global warming potential and energy use publication-title: J. Clean. Prod. – volume: 26 start-page: 199 year: 2020 end-page: 210 ident: bib71 article-title: The use of Biochar to reduce the carbon footprint of cement-based publication-title: Procedia Struct. Integr. – volume: 21 start-page: 25 year: 2011 end-page: 33 ident: bib7 article-title: Are we adapting to climate change? Glob publication-title: Environ. Change – start-page: 273 year: 2019 end-page: 287 ident: bib49 article-title: Bioenergy with carbon capture and storage in a future world publication-title: Bioenergy with Carbon Capture and Storage – volume: 4 start-page: 250 year: 2018 end-page: 265 ident: bib30 article-title: The effects of carbon dioxide removal on the carbon cycle publication-title: Curr. Clim. Change Rep. – volume: 43 start-page: 1336 year: 2020 end-page: 1349 ident: bib28 article-title: Compost from municipal solid wastes as a source of biochar for CO publication-title: Chem. Eng. Technol. – volume: 39 start-page: 892 year: 2021 end-page: 909 ident: bib67 article-title: Influencing household-level waste-sorting and composting behaviour: what works? A systematic review publication-title: 1995–2020) of waste management interventions Waste Manag. Res. – volume: 24 start-page: 1 year: 2005 end-page: 21 ident: bib40 article-title: Bioenergy crops and carbon sequestration publication-title: CRC Crit. Rev. Plant Sci. – volume: 118 start-page: 42 year: 2016 end-page: 53 ident: bib58 article-title: Physico-chemical characterization of biochars from solid municipal waste for use in soil amendment publication-title: J. Anal. Appl. Pyrol. – volume: 146 year: 2021 ident: bib3 article-title: Potential and challenges of bioenergy with carbon capture and storage as a carbon-negative energy source: a review publication-title: Biomass Bioenergy – volume: 13 start-page: 1346 year: 2021 end-page: 1371 ident: bib11 article-title: Bioenergy for climate change mitigation: scale and sustainability publication-title: Glob. Change Biol. Bioenergy – year: 2023 ident: bib61 article-title: Sector by sector: where do global greenhouse gas emissions come from? publication-title: Our World in Data – volume: 111 year: 2022 ident: bib82 article-title: Is incineration repressing recycling? publication-title: J. Environ. Econ. Manag. – start-page: 85 year: 2019 end-page: 107 ident: bib54 article-title: Status of bioenergy with carbon capture and storage—potential and challenges publication-title: Bioenergy with Carbon Capture and Storage – year: 2022 ident: bib64 article-title: Hydrogen production via solid waste gasification with subsequent amine-based carbon dioxide removal using Aspen Plus publication-title: Int. J. Hydrogen Energy – volume: 32 start-page: 283 year: 2022 end-page: 293 ident: bib65 article-title: Carbon potentials of different biochars derived from municipal solid waste in a saline soil publication-title: Pedosphere – volume: 5 start-page: 65 year: 2023 ident: bib39 article-title: Biomass residue to carbon dioxide removal: quantifying the global impact of biochar publication-title: Biochar – volume: 350 year: 2022 ident: bib45 article-title: Application potential analysis of biochar as a carbon capture material in cementitious composites: a review publication-title: Construct. Build. Mater. – volume: 8 start-page: 253 year: 2021 end-page: 262 ident: bib72 article-title: Decarbonizing industry via BECCS: promising sectors, challenges, and techno-economic limits of negative emissions publication-title: Curr. Sustain. Renew. Energy Rep. – volume: 22 start-page: 1315 year: 2016 end-page: 1324 ident: bib69 article-title: Soil carbon sequestration and biochar as negative emission technologies publication-title: Global Change Biol. – volume: 22 start-page: 5 year: 2020 end-page: 10 ident: bib74 article-title: Biochar mines: panacea to climate change and energy crisis? Clean publication-title: Technol. Environ. – year: 2022 ident: bib70 article-title: Assessing the negative carbon emissions potential from the waste-to-energy sector in Europe publication-title: SSRN Electron. J. – volume: 77 start-page: 50 year: 2018 end-page: 58 ident: bib50 article-title: Greenhouse gas emissions of food waste disposal options for UK retailers publication-title: Food Pol. – volume: 19 start-page: 1433 year: 2021 end-page: 1456 ident: bib51 article-title: Municipal solid waste management and landfilling technologies: a review publication-title: Environ. Chem. Lett. – volume: 15 start-page: 1093 year: 2018 end-page: 1102 ident: bib59 article-title: Short-term greenhouse emission lowering effect of biochars from solid organic municipal wastes publication-title: Int. J. Environ. Sci. – volume: 619–620 start-page: 419 year: 2018 end-page: 435 ident: bib24 article-title: Application of biochar from food and wood waste as green admixture for cement mortar publication-title: Sci. Total Environ. – volume: 19 start-page: 473 year: 2017 end-page: 482 ident: bib44 article-title: Effect of organic fraction of municipal solid waste (OFMSW)-based biochar on organic carbon mineralization in a dry land soil publication-title: J. Mater. Cycles Waste Manag. – volume: 224 year: 2020 ident: bib47 article-title: Is aquatic bioenergy with carbon capture and storage a sustainable negative emission technology? Insights from a spatially explicit environmental life-cycle assessment publication-title: Energy Convers. Manag. – volume: 68 start-page: 1 year: 2018 end-page: 15 ident: bib56 article-title: Potential for using municipal solid waste as a resource for bioenergy with carbon capture and storage (BECCS) publication-title: Int. J. Greenh. Gas Control – volume: 252 year: 2022 ident: bib78 article-title: Renewable hydrogen production from the organic fraction of municipal solid waste through a novel carbon-negative process concept publication-title: Energy – volume: 183 year: 2023 ident: bib16 article-title: Life cycle assessment of bioenergy with carbon capture and storage systems: critical review of life cycle inventories publication-title: Renew. Sustain. Energy Rev. – volume: 140 year: 2023 ident: bib48 article-title: Carbon capture and storage potential of biochar-enriched cementitious systems publication-title: Cement Concr. Compos. – volume: 198 year: 2020 ident: bib81 article-title: Waste-to-energy technology integrated with carbon capture–Challenges and opportunities publication-title: Energy – volume: 191 start-page: 131 year: 2019 ident: bib83 article-title: Life cycle assessment for municipal solid waste management: a case study from Ahvaz, Iran publication-title: Environ. Monit. Assess. – volume: 12 start-page: 45 year: 2021 end-page: 56 ident: bib8 article-title: Managing land‐based CDR: BECCS, forests and carbon sequestration publication-title: Glob. Policy – start-page: 251 year: 2021 end-page: 272 ident: bib23 article-title: Biochar: a carbon negative technology for combating climate change publication-title: Advances in Carbon Capture and Utilization – volume: 12 start-page: 4 year: 2018 end-page: 25 ident: bib75 article-title: The economic impacts of climate change publication-title: Rev. Environ. Econ. Pol. – volume: 144 start-page: 122 year: 2016 end-page: 130 ident: bib85 article-title: Stability, nutrient availability and hydrophobicity of biochars derived from manure, crop residues, and municipal solid waste for their use as soil amendments publication-title: Chemosphere – volume: 5 start-page: 1305 year: 2021 end-page: 1311 ident: bib20 article-title: Decarbonizing cement production publication-title: Joule – volume: 252 year: 2022 ident: bib77 article-title: Novel carbon-negative methane production via integrating anaerobic digestion and pyrolysis of organic fraction of municipal solid waste publication-title: Energy Convers. Manag. – volume: 9 year: 2022 ident: bib57 article-title: Quantification of landfill gas emissions and energy production potential in Tirupati Municipal solid waste disposal site by LandGEM mathematical model publication-title: MethodsX – volume: 8 start-page: 30 year: 2014 end-page: 41 ident: bib35 article-title: GHG emission and carbon sequestration potential from MSW of Indian metro cities publication-title: Urban Clim. – volume: 1 start-page: 405 year: 2019 end-page: 409 ident: bib21 article-title: Direct air carbon capture and sequestration: how it works and how it could contribute to climate-change mitigation publication-title: One Earth – start-page: 669 year: 2020 end-page: 692 ident: bib4 article-title: Carbon capture and storage publication-title: Future Energy. 3 – volume: 138 year: 2021 ident: bib13 article-title: Post-combustion carbon capture publication-title: Renew. Sustain. Energy Rev. – volume: 207 year: 2022 ident: bib79 article-title: Life cycle assessment of combustion-based electricity generation technologies integrated with carbon capture and storage: a review publication-title: Environ. Res. – volume: 152 year: 2021 ident: bib34 article-title: Bioenergy with carbon capture and utilization: a review on the potential deployment towards a European circular bioeconomy publication-title: Renew. Sustain. Energy Rev. – volume: 166 start-page: 335 year: 2017 end-page: 342 ident: bib38 article-title: Evaluation of landfill gas emissions from municipal solid waste landfills for the life-cycle analysis of waste-to-energy pathways publication-title: J. Clean. Prod. – year: 2018 ident: bib29 article-title: What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050 – volume: 7 start-page: 527 year: 2017 end-page: 534 ident: bib10 article-title: Bioenergy and carbon capture with storage (BECCS): the prospects and challenges of an emerging climate policy response publication-title: J. Environ. Stud. Sci. – volume: 57 start-page: 10615 year: 2023 end-page: 10628 ident: bib33 article-title: Impact of biogenic carbon neutrality assumption for achieving a net-zero emission target: insights from a techno-economic analysis publication-title: Environ. Sci. Technol. – volume: 11 start-page: 1062 year: 2018 end-page: 1176 ident: bib9 article-title: Carbon capture and storage (CCS): the way forward publication-title: Energy Environ. Sci. – volume: 22–23 year: 2022 ident: bib17 article-title: Life cycle assessment of BECCS systems: critical review of life cycle inventories publication-title: 16 – volume: 40 start-page: 401 year: 2015 end-page: 430 ident: bib31 article-title: Biomass and carbon dioxide capture and storage: a review publication-title: Int. J. Greenh. Gas Control – volume: 290 start-page: 291 year: 2000 end-page: 296 ident: bib19 article-title: The global carbon cycle: a test of our knowledge of earth as a system publication-title: Science – volume: 126 start-page: 50 year: 2017 end-page: 61 ident: bib37 article-title: Norwegian waste-to-energy: climate change, circular economy and carbon capture and storage publication-title: Resour. Conserv. Recycl. – volume: 14 start-page: 3086 year: 2021 end-page: 3097 ident: bib63 article-title: Assessment of carbon dioxide removal potential via BECCS in a carbon-neutral Europe publication-title: Energy Environ. Sci. – volume: 114 start-page: 6044 year: 2017 end-page: 6056 ident: bib55 article-title: A sustainability framework for bioenergy with carbon capture and storage (BECCS) technologies publication-title: Energy Proc. – volume: 273 year: 2022 ident: bib80 article-title: Life cycle assessment of co-firing coal and wood waste for bio-energy with carbon capture and storage – new South Wales study publication-title: Energy Convers. Manag. – volume: 14 start-page: 1701 year: 2021 end-page: 1721 ident: bib73 article-title: Life cycle assessment of carbon dioxide removal technologies: a critical review publication-title: Energy Environ. Sci. – volume: 11 start-page: 573 year: 2019 end-page: 591 ident: bib66 article-title: Pyrogenic carbon capture and storage publication-title: Glob. Change Biol. Bioenergy – volume: 7 start-page: 349 year: 2015 end-page: 361 ident: bib14 article-title: Pyrolysis biochar systems, balance between bioenergy and carbon sequestration publication-title: Glob. Change Biol. Bioenergy – year: 2023 ident: bib53 article-title: Climate change 2022: impacts, adaptation and vulnerability publication-title: Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change – volume: 90 start-page: 857 year: 2015 end-page: 863 ident: bib26 article-title: Hydrogen-rich gas production by the gasification of wet MSW (municipal solid waste) coupled with carbon dioxide capture publication-title: Energy – volume: 2 start-page: 335 year: 2011 end-page: 356 ident: bib68 article-title: The feasibility and costs of biochar deployment in the UK publication-title: Carbon Manag. – volume: 108 year: 2021 ident: bib15 article-title: Life cycle assessment of carbon capture and storage/utilization: from current state to future research directions and opportunities publication-title: Int. J. Greenh. Gas Control – volume: 78 start-page: 857 year: 2018 end-page: 870 ident: bib43 article-title: Environmental assessment of existing and alternative options for management of municipal solid waste in Brazil publication-title: J. Waste Manag. – volume: 161 start-page: 225 year: 2016 end-page: 255 ident: bib6 article-title: Carbon capture by physical adsorption: materials, experimental investigations and numerical modeling and simulations – a review publication-title: Appl. Energy – year: 2006 ident: bib18 article-title: 2006 IPCC Guidelines for National Greenhouse Gas Inventories – year: 2018 ident: bib25 publication-title: Life Cycle Assessment: Theory and Parctice – volume: 3 start-page: 23 year: 2016 ident: bib12 article-title: Biomass waste carbon materials as adsorbents for CO publication-title: Front. Mater. – volume: 250 year: 2019 ident: bib46 article-title: The impact of biochar on soil carbon sequestration: meta-analytical approach to evaluating environmental and economic advantages publication-title: J. Environ. Manag. – volume: 10 year: 2023 ident: bib60 article-title: How replacing fossil fuels with electrofuels could influence the demand for renewable energy and land area publication-title: Smart Energy – volume: 37 start-page: 117 year: 2009 end-page: 134 ident: bib1 article-title: Atmospheric lifetime of fossil fuel carbon dioxide publication-title: Annu. Rev. Earth Planet Sci. – volume: 118 year: 2022 ident: bib5 article-title: A techno-economic assessment of CO publication-title: Int. J. Greenh. Gas Control – volume: 25 year: 2022 ident: bib52 article-title: Current status and pillars of direct air capture technologies publication-title: iScience – year: 2022 ident: bib62 article-title: Results of the 2020 and 2021 campaigns of the commercial carbon capture plant at AVR Duiven publication-title: 16 – volume: 21 start-page: 25 issue: 1 year: 2011 ident: 10.1016/j.chemosphere.2024.142478_bib7 article-title: Are we adapting to climate change? Glob publication-title: Environ. Change doi: 10.1016/j.gloenvcha.2010.09.012 – volume: 140 year: 2023 ident: 10.1016/j.chemosphere.2024.142478_bib48 article-title: Carbon capture and storage potential of biochar-enriched cementitious systems publication-title: Cement Concr. Compos. doi: 10.1016/j.cemconcomp.2023.105078 – volume: 40 start-page: 401 year: 2015 ident: 10.1016/j.chemosphere.2024.142478_bib31 article-title: Biomass and carbon dioxide capture and storage: a review publication-title: Int. J. Greenh. Gas Control doi: 10.1016/j.ijggc.2015.06.012 – volume: 12 start-page: 45 year: 2021 ident: 10.1016/j.chemosphere.2024.142478_bib8 article-title: Managing land‐based CDR: BECCS, forests and carbon sequestration publication-title: Glob. Policy doi: 10.1111/1758-5899.12827 – volume: 8 start-page: 30 year: 2014 ident: 10.1016/j.chemosphere.2024.142478_bib35 article-title: GHG emission and carbon sequestration potential from MSW of Indian metro cities publication-title: Urban Clim. doi: 10.1016/j.uclim.2014.03.002 – volume: 26 start-page: 199 year: 2020 ident: 10.1016/j.chemosphere.2024.142478_bib71 article-title: The use of Biochar to reduce the carbon footprint of cement-based publication-title: Procedia Struct. Integr. doi: 10.1016/j.prostr.2020.06.023 – start-page: 85 year: 2019 ident: 10.1016/j.chemosphere.2024.142478_bib54 article-title: Status of bioenergy with carbon capture and storage—potential and challenges – volume: 10 year: 2023 ident: 10.1016/j.chemosphere.2024.142478_bib60 article-title: How replacing fossil fuels with electrofuels could influence the demand for renewable energy and land area publication-title: Smart Energy doi: 10.1016/j.segy.2023.100107 – volume: 57 start-page: 10615 issue: 29 year: 2023 ident: 10.1016/j.chemosphere.2024.142478_bib33 article-title: Impact of biogenic carbon neutrality assumption for achieving a net-zero emission target: insights from a techno-economic analysis publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.3c00644 – volume: 9 year: 2022 ident: 10.1016/j.chemosphere.2024.142478_bib57 article-title: Quantification of landfill gas emissions and energy production potential in Tirupati Municipal solid waste disposal site by LandGEM mathematical model publication-title: MethodsX doi: 10.1016/j.mex.2022.101869 – volume: 138 year: 2021 ident: 10.1016/j.chemosphere.2024.142478_bib13 article-title: Post-combustion carbon capture publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2020.110490 – volume: 78 start-page: 857 year: 2018 ident: 10.1016/j.chemosphere.2024.142478_bib43 article-title: Environmental assessment of existing and alternative options for management of municipal solid waste in Brazil publication-title: J. Waste Manag. doi: 10.1016/j.wasman.2018.07.007 – volume: 24 start-page: 1 issue: 1 year: 2005 ident: 10.1016/j.chemosphere.2024.142478_bib40 article-title: Bioenergy crops and carbon sequestration publication-title: CRC Crit. Rev. Plant Sci. doi: 10.1080/07352680590910393 – year: 2022 ident: 10.1016/j.chemosphere.2024.142478_bib64 article-title: Hydrogen production via solid waste gasification with subsequent amine-based carbon dioxide removal using Aspen Plus publication-title: Int. J. Hydrogen Energy – volume: 161 start-page: 225 year: 2016 ident: 10.1016/j.chemosphere.2024.142478_bib6 article-title: Carbon capture by physical adsorption: materials, experimental investigations and numerical modeling and simulations – a review publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.10.011 – volume: 118 start-page: 42 year: 2016 ident: 10.1016/j.chemosphere.2024.142478_bib58 article-title: Physico-chemical characterization of biochars from solid municipal waste for use in soil amendment publication-title: J. Anal. Appl. Pyrol. doi: 10.1016/j.jaap.2015.12.022 – volume: 39 start-page: 892 issue: 7 year: 2021 ident: 10.1016/j.chemosphere.2024.142478_bib67 article-title: Influencing household-level waste-sorting and composting behaviour: what works? A systematic review publication-title: 1995–2020) of waste management interventions Waste Manag. Res. – volume: 14 start-page: 3086 issue: 5 year: 2021 ident: 10.1016/j.chemosphere.2024.142478_bib63 article-title: Assessment of carbon dioxide removal potential via BECCS in a carbon-neutral Europe publication-title: Energy Environ. Sci. doi: 10.1039/D1EE00642H – volume: 250 year: 2019 ident: 10.1016/j.chemosphere.2024.142478_bib46 article-title: The impact of biochar on soil carbon sequestration: meta-analytical approach to evaluating environmental and economic advantages publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2019.109466 – volume: 19 start-page: 1433 issue: 2 year: 2021 ident: 10.1016/j.chemosphere.2024.142478_bib51 article-title: Municipal solid waste management and landfilling technologies: a review publication-title: Environ. Chem. Lett. doi: 10.1007/s10311-020-01100-y – volume: 15 start-page: 1093 issue: 5 year: 2018 ident: 10.1016/j.chemosphere.2024.142478_bib59 article-title: Short-term greenhouse emission lowering effect of biochars from solid organic municipal wastes publication-title: Int. J. Environ. Sci. doi: 10.1007/s13762-017-1470-4 – volume: 11 start-page: 573 issue: 4 year: 2019 ident: 10.1016/j.chemosphere.2024.142478_bib66 article-title: Pyrogenic carbon capture and storage publication-title: Glob. Change Biol. Bioenergy doi: 10.1111/gcbb.12553 – volume: 146 year: 2021 ident: 10.1016/j.chemosphere.2024.142478_bib3 article-title: Potential and challenges of bioenergy with carbon capture and storage as a carbon-negative energy source: a review publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2021.105968 – volume: 350 year: 2022 ident: 10.1016/j.chemosphere.2024.142478_bib45 article-title: Application potential analysis of biochar as a carbon capture material in cementitious composites: a review publication-title: Construct. Build. Mater. doi: 10.1016/j.conbuildmat.2022.128715 – volume: 161 year: 2022 ident: 10.1016/j.chemosphere.2024.142478_bib76 article-title: Land use for bioenergy: synergies and trade-offs between sustainable development goals publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2022.112409 – volume: 19 start-page: 473 issue: 1 year: 2017 ident: 10.1016/j.chemosphere.2024.142478_bib44 article-title: Effect of organic fraction of municipal solid waste (OFMSW)-based biochar on organic carbon mineralization in a dry land soil publication-title: J. Mater. Cycles Waste Manag. doi: 10.1007/s10163-015-0447-y – start-page: 669 year: 2020 ident: 10.1016/j.chemosphere.2024.142478_bib4 article-title: Carbon capture and storage – volume: 11 start-page: 1062 issue: 5 year: 2018 ident: 10.1016/j.chemosphere.2024.142478_bib9 article-title: Carbon capture and storage (CCS): the way forward publication-title: Energy Environ. Sci. doi: 10.1039/C7EE02342A – volume: 270 start-page: 627 year: 2018 ident: 10.1016/j.chemosphere.2024.142478_bib41 article-title: An overview of the effect of pyrolysis process parameters on biochar stability publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.09.030 – volume: 37 start-page: 117 issue: 1 year: 2009 ident: 10.1016/j.chemosphere.2024.142478_bib1 article-title: Atmospheric lifetime of fossil fuel carbon dioxide publication-title: Annu. Rev. Earth Planet Sci. doi: 10.1146/annurev.earth.031208.100206 – volume: 22 start-page: 1315 issue: 3 year: 2016 ident: 10.1016/j.chemosphere.2024.142478_bib69 article-title: Soil carbon sequestration and biochar as negative emission technologies publication-title: Global Change Biol. doi: 10.1111/gcb.13178 – volume: 85 start-page: 109 year: 2016 ident: 10.1016/j.chemosphere.2024.142478_bib22 article-title: Environmental analysis of bio-CCS in an integrated oxy-fuel combustion power plant with CO2 transport and storage publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2015.12.008 – start-page: 251 year: 2021 ident: 10.1016/j.chemosphere.2024.142478_bib23 article-title: Biochar: a carbon negative technology for combating climate change – volume: 7 start-page: 349 issue: 2 year: 2015 ident: 10.1016/j.chemosphere.2024.142478_bib14 article-title: Pyrolysis biochar systems, balance between bioenergy and carbon sequestration publication-title: Glob. Change Biol. Bioenergy doi: 10.1111/gcbb.12137 – volume: 273 year: 2022 ident: 10.1016/j.chemosphere.2024.142478_bib80 article-title: Life cycle assessment of co-firing coal and wood waste for bio-energy with carbon capture and storage – new South Wales study publication-title: Energy Convers. Manag. – volume: 77 start-page: 50 year: 2018 ident: 10.1016/j.chemosphere.2024.142478_bib50 article-title: Greenhouse gas emissions of food waste disposal options for UK retailers publication-title: Food Pol. doi: 10.1016/j.foodpol.2018.04.003 – volume: 43 start-page: 1336 issue: 7 year: 2020 ident: 10.1016/j.chemosphere.2024.142478_bib28 article-title: Compost from municipal solid wastes as a source of biochar for CO2 capture publication-title: Chem. Eng. Technol. doi: 10.1002/ceat.201900108 – volume: 144 start-page: 122 year: 2016 ident: 10.1016/j.chemosphere.2024.142478_bib85 article-title: Stability, nutrient availability and hydrophobicity of biochars derived from manure, crop residues, and municipal solid waste for their use as soil amendments publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.08.046 – volume: 252 year: 2022 ident: 10.1016/j.chemosphere.2024.142478_bib77 article-title: Novel carbon-negative methane production via integrating anaerobic digestion and pyrolysis of organic fraction of municipal solid waste publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2021.115042 – year: 2022 ident: 10.1016/j.chemosphere.2024.142478_bib62 article-title: Results of the 2020 and 2021 campaigns of the commercial carbon capture plant at AVR Duiven publication-title: 16th Proceed. Greenh. Gas Control Technol. Conf. – volume: 2 start-page: 335 issue: 3 year: 2011 ident: 10.1016/j.chemosphere.2024.142478_bib68 article-title: The feasibility and costs of biochar deployment in the UK publication-title: Carbon Manag. doi: 10.4155/cmt.11.22 – volume: 22 start-page: 5 issue: 1 year: 2020 ident: 10.1016/j.chemosphere.2024.142478_bib74 article-title: Biochar mines: panacea to climate change and energy crisis? Clean publication-title: Technol. Environ. – volume: 183 year: 2023 ident: 10.1016/j.chemosphere.2024.142478_bib16 article-title: Life cycle assessment of bioenergy with carbon capture and storage systems: critical review of life cycle inventories publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2023.113415 – volume: 207 year: 2022 ident: 10.1016/j.chemosphere.2024.142478_bib79 article-title: Life cycle assessment of combustion-based electricity generation technologies integrated with carbon capture and storage: a review publication-title: Environ. Res. doi: 10.1016/j.envres.2021.112219 – volume: 12 start-page: 4 issue: 1 year: 2018 ident: 10.1016/j.chemosphere.2024.142478_bib75 article-title: The economic impacts of climate change publication-title: Rev. Environ. Econ. Pol. doi: 10.1093/reep/rex027 – volume: 8 start-page: 253 issue: 4 year: 2021 ident: 10.1016/j.chemosphere.2024.142478_bib72 article-title: Decarbonizing industry via BECCS: promising sectors, challenges, and techno-economic limits of negative emissions publication-title: Curr. Sustain. Renew. Energy Rep. – year: 2018 ident: 10.1016/j.chemosphere.2024.142478_bib29 – year: 2023 ident: 10.1016/j.chemosphere.2024.142478_bib53 article-title: Climate change 2022: impacts, adaptation and vulnerability – volume: 32 start-page: 283 issue: 2 year: 2022 ident: 10.1016/j.chemosphere.2024.142478_bib65 article-title: Carbon potentials of different biochars derived from municipal solid waste in a saline soil publication-title: Pedosphere doi: 10.1016/S1002-0160(21)60073-5 – volume: 198 year: 2020 ident: 10.1016/j.chemosphere.2024.142478_bib81 article-title: Waste-to-energy technology integrated with carbon capture–Challenges and opportunities publication-title: Energy doi: 10.1016/j.energy.2020.117352 – volume: 27 start-page: 1047 year: 2021 ident: 10.1016/j.chemosphere.2024.142478_bib2 article-title: Carbon sequestration and storage in the built environment publication-title: Sustain. Prod. Consum. doi: 10.1016/j.spc.2021.02.028 – volume: 13 year: 2023 ident: 10.1016/j.chemosphere.2024.142478_bib42 article-title: Physicochemical properties and applications of biochars derived from municipal solid waste: a review publication-title: Environ. Adv. doi: 10.1016/j.envadv.2023.100395 – volume: 3 start-page: 23 year: 2016 ident: 10.1016/j.chemosphere.2024.142478_bib12 article-title: Biomass waste carbon materials as adsorbents for CO2 capture under post-combustion conditions publication-title: Front. Mater. doi: 10.3389/fmats.2016.00023 – volume: 15 start-page: 79 year: 2015 ident: 10.1016/j.chemosphere.2024.142478_bib36 article-title: Carbon sequestration in soil publication-title: Curr. Opin. Environ. Sustain. doi: 10.1016/j.cosust.2015.09.002 – volume: 108 year: 2021 ident: 10.1016/j.chemosphere.2024.142478_bib15 article-title: Life cycle assessment of carbon capture and storage/utilization: from current state to future research directions and opportunities publication-title: Int. J. Greenh. Gas Control doi: 10.1016/j.ijggc.2021.103309 – volume: 114 start-page: 6044 year: 2017 ident: 10.1016/j.chemosphere.2024.142478_bib55 article-title: A sustainability framework for bioenergy with carbon capture and storage (BECCS) technologies publication-title: Energy Proc. doi: 10.1016/j.egypro.2017.03.1741 – volume: 4 start-page: 250 issue: 3 year: 2018 ident: 10.1016/j.chemosphere.2024.142478_bib30 article-title: The effects of carbon dioxide removal on the carbon cycle publication-title: Curr. Clim. Change Rep. doi: 10.1007/s40641-018-0104-3 – volume: 290 start-page: 291 year: 2000 ident: 10.1016/j.chemosphere.2024.142478_bib19 article-title: The global carbon cycle: a test of our knowledge of earth as a system publication-title: Science doi: 10.1126/science.290.5490.291 – volume: 84 year: 2022 ident: 10.1016/j.chemosphere.2024.142478_bib32 article-title: Carbon sequestration and storage potential of urban residential environment – a review publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2022.104027 – volume: 5 start-page: 65 issue: 1 year: 2023 ident: 10.1016/j.chemosphere.2024.142478_bib39 article-title: Biomass residue to carbon dioxide removal: quantifying the global impact of biochar publication-title: Biochar doi: 10.1007/s42773-023-00258-2 – volume: 5 start-page: 1305 issue: 6 year: 2021 ident: 10.1016/j.chemosphere.2024.142478_bib20 article-title: Decarbonizing cement production publication-title: Joule doi: 10.1016/j.joule.2021.04.011 – volume: 1 start-page: 405 issue: 4 year: 2019 ident: 10.1016/j.chemosphere.2024.142478_bib21 article-title: Direct air carbon capture and sequestration: how it works and how it could contribute to climate-change mitigation publication-title: One Earth doi: 10.1016/j.oneear.2019.11.006 – volume: 25 issue: 4 year: 2022 ident: 10.1016/j.chemosphere.2024.142478_bib52 article-title: Current status and pillars of direct air capture technologies publication-title: iScience doi: 10.1016/j.isci.2022.103990 – year: 2023 ident: 10.1016/j.chemosphere.2024.142478_bib61 article-title: Sector by sector: where do global greenhouse gas emissions come from? – volume: 225 start-page: 1079 year: 2019 ident: 10.1016/j.chemosphere.2024.142478_bib27 article-title: Integrated municipal solid waste management scheme of Hong Kong: a comprehensive analysis in terms of global warming potential and energy use publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.04.034 – year: 2022 ident: 10.1016/j.chemosphere.2024.142478_bib70 article-title: Assessing the negative carbon emissions potential from the waste-to-energy sector in Europe publication-title: SSRN Electron. J. doi: 10.2139/ssrn.4286042 – volume: 166 start-page: 335 year: 2017 ident: 10.1016/j.chemosphere.2024.142478_bib38 article-title: Evaluation of landfill gas emissions from municipal solid waste landfills for the life-cycle analysis of waste-to-energy pathways publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2017.08.016 – volume: 224 year: 2020 ident: 10.1016/j.chemosphere.2024.142478_bib47 article-title: Is aquatic bioenergy with carbon capture and storage a sustainable negative emission technology? Insights from a spatially explicit environmental life-cycle assessment publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2020.113300 – volume: 118 year: 2022 ident: 10.1016/j.chemosphere.2024.142478_bib5 article-title: A techno-economic assessment of CO2 capture in biomass and waste-fired combined heat and power plants – a Swedish case study publication-title: Int. J. Greenh. Gas Control doi: 10.1016/j.ijggc.2022.103684 – volume: 23 start-page: 6603 year: 2021 ident: 10.1016/j.chemosphere.2024.142478_bib84 article-title: A review of municipal solid waste in China: characteristics, compositions, influential factors and treatment technologies publication-title: Environ. Dev. Sustain. doi: 10.1007/s10668-020-00959-9 – volume: 126 start-page: 50 year: 2017 ident: 10.1016/j.chemosphere.2024.142478_bib37 article-title: Norwegian waste-to-energy: climate change, circular economy and carbon capture and storage publication-title: Resour. Conserv. Recycl. doi: 10.1016/j.resconrec.2017.07.025 – volume: 13 start-page: 1346 issue: 9 year: 2021 ident: 10.1016/j.chemosphere.2024.142478_bib11 article-title: Bioenergy for climate change mitigation: scale and sustainability publication-title: Glob. Change Biol. Bioenergy doi: 10.1111/gcbb.12863 – volume: 619–620 start-page: 419 year: 2018 ident: 10.1016/j.chemosphere.2024.142478_bib24 article-title: Application of biochar from food and wood waste as green admixture for cement mortar publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.11.044 – volume: 152 year: 2021 ident: 10.1016/j.chemosphere.2024.142478_bib34 article-title: Bioenergy with carbon capture and utilization: a review on the potential deployment towards a European circular bioeconomy publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2021.111641 – volume: 90 start-page: 857 year: 2015 ident: 10.1016/j.chemosphere.2024.142478_bib26 article-title: Hydrogen-rich gas production by the gasification of wet MSW (municipal solid waste) coupled with carbon dioxide capture publication-title: Energy doi: 10.1016/j.energy.2015.07.122 – year: 2018 ident: 10.1016/j.chemosphere.2024.142478_bib25 – volume: 22–23 year: 2022 ident: 10.1016/j.chemosphere.2024.142478_bib17 article-title: Life cycle assessment of BECCS systems: critical review of life cycle inventories publication-title: 16th Proceed. Greenh. Gas Control Technol. Conf. – volume: 111 year: 2022 ident: 10.1016/j.chemosphere.2024.142478_bib82 article-title: Is incineration repressing recycling? publication-title: J. Environ. Econ. Manag. – start-page: 273 year: 2019 ident: 10.1016/j.chemosphere.2024.142478_bib49 article-title: Bioenergy with carbon capture and storage in a future world – volume: 191 start-page: 131 issue: 3 year: 2019 ident: 10.1016/j.chemosphere.2024.142478_bib83 article-title: Life cycle assessment for municipal solid waste management: a case study from Ahvaz, Iran publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-019-7273-y – volume: 14 start-page: 1701 year: 2021 ident: 10.1016/j.chemosphere.2024.142478_bib73 article-title: Life cycle assessment of carbon dioxide removal technologies: a critical review publication-title: Energy Environ. Sci. doi: 10.1039/D0EE03757E – volume: 252 year: 2022 ident: 10.1016/j.chemosphere.2024.142478_bib78 article-title: Renewable hydrogen production from the organic fraction of municipal solid waste through a novel carbon-negative process concept publication-title: Energy doi: 10.1016/j.energy.2022.124056 – year: 2006 ident: 10.1016/j.chemosphere.2024.142478_bib18 – volume: 68 start-page: 1 year: 2018 ident: 10.1016/j.chemosphere.2024.142478_bib56 article-title: Potential for using municipal solid waste as a resource for bioenergy with carbon capture and storage (BECCS) publication-title: Int. J. Greenh. Gas Control doi: 10.1016/j.ijggc.2017.11.007 – volume: 7 start-page: 527 issue: 4 year: 2017 ident: 10.1016/j.chemosphere.2024.142478_bib10 article-title: Bioenergy and carbon capture with storage (BECCS): the prospects and challenges of an emerging climate policy response publication-title: J. Environ. Stud. Sci. doi: 10.1007/s13412-017-0445-6 |
SSID | ssj0001659 |
Score | 2.4504366 |
SecondaryResourceType | review_article |
Snippet | Effective municipal solid waste (MSW) management is a crucial component for sustainable cities, as inefficient waste disposal contributes to the release of... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 142478 |
SubjectTerms | biochar bioenergy carbon Carbon Dioxide Carbon Sequestration Charcoal - chemistry Circular economy Cities Climate Change energy energy crops energy recovery feedstocks fossil fuels Greenhouse Gases - analysis greenhouses life cycle assessment municipal solid waste Municipal solid waste (MSW) Refuse Disposal - methods Solid Waste - analysis Sustainability Urban ecosystems waste disposal Waste Management - methods |
Title | Simultaneous achievement of energy recovery and carbon sequestration through municipal solid waste management: A review |
URI | https://dx.doi.org/10.1016/j.chemosphere.2024.142478 https://www.ncbi.nlm.nih.gov/pubmed/38815817 https://www.proquest.com/docview/3063458887 https://www.proquest.com/docview/3153652692 |
Volume | 361 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB6SDX1cSps-sn0EBXp1YsuSLJVeliVh29Jc2kBuQpJlcGm8S7oh5NLf3hnL3rbQlkCPNh4sNKN5oO-bAXgtXRWjrl3mqpBnghchcwofjdA-BBN47Js9fzxVizPx_lyeb8F85MIQrHLw_cmn9956eHM07ObRqm2J40vZCCYQVCJgVbINO7w0Sk5gZ_buw-J045ALJVMWLGRGAnfh4CfMC7fmYvmNKPzUNJOLQ6J-0dC1P4epv6WhfTg6eQgPhjySzdJSH8FW7Hbh3nwc37YLd477ftQ3j-H6U0uwQddFrPIZgSdj3yR8zZYNiz33j1FdjEZ9w1xXs-Au_bJjPcp6bKvLhoE-rKeTtCv8N1ptW7Nrh3bCLjYomjdsxhIf5gmcnRx_ni-yYd5CFkou11kTMF-Redn4PFRRRVUETK60V3nIa7rB8430gZfeFQ7DvnHB5I1ystaiFh5P81OYdMsu7gGTTVWbuvHGhCiE8zp33JtchJKu_ao4BT1urw1DM3KaifHVjqizL_YXzVjSjE2amQLfiK5SR47bCL0ddWh_My-LkeM24gej3i2qke5UktIsVlwlkX119Y9vMKoomuTOp_AsGc1m5aXWhdRF9fz_FvgC7tNTQia-hMn68iq-wmxp7fdh-_B7sT-ciR-IUBh7 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7SLW16KW36yPapQK9O_JBsufQSlg3bZncvSSA3IckyuDTeJdkS9tLf3hnJ3jTQlECPfggLzVjzDfq-GYBPQhfOyUpHurBxxNPERjrHy5JLY21pU-eLPc_m-eSMfzsX51sw6rUwRKvs9v6wp_vdurtz0K3mwbJpSONLaAQBBKUImJU8gIdcZAXx-vZ_3fA8klwEDMxFRK8_hr0bkhcuzMXiigT8VDIz5fsk_KKWa38PUneBUB-Mjp7B0w5FssMw0eew5dod2B71zdt24NHYV6Nev4Drk4ZIg7p1mOMzok46XyJ8xRY1c175xygrRpdeM91WzOpLs2iZ51j3RXVZ186HeTFJs8Rvo882FbvW6CXsYsOh-cwOWVDDvISzo_HpaBJ13RYim6ViFdUW0YqIs9rEtnC5yxOL0EqaPLZxRed3phbGppnRicagX2pbxnWuRSV5xQ3-y69g0C5atwtM1EVVVrUpS-s410bGOjVlzG1Gh36FG4Lsl1fZrhQ5dcT4oXrO2Xf1h2UUWUYFywwh3Qxdhnoc9xn0pbehuuVcCuPGfYbv9XZXaEY6UQlGU5hvZST1lcU_3sGYklMf93QIr4PTbGaeSZkImRRv_m-CH2F7cjqbqunX-fFbeEJPAkfxHQxWlz_de8RNK_PB_xe_AfJhGUY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simultaneous+achievement+of+energy+recovery+and+carbon+sequestration+through+municipal+solid+waste+management%3A+A+review&rft.jtitle=Chemosphere+%28Oxford%29&rft.au=Salvador%2C+Ruben+W.&rft.au=Doong%2C+Ruey-An&rft.date=2024-08-01&rft.issn=0045-6535&rft.volume=361&rft.spage=142478&rft_id=info:doi/10.1016%2Fj.chemosphere.2024.142478&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_chemosphere_2024_142478 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-6535&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-6535&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-6535&client=summon |