Simultaneous achievement of energy recovery and carbon sequestration through municipal solid waste management: A review

Effective municipal solid waste (MSW) management is a crucial component for sustainable cities, as inefficient waste disposal contributes to the release of about a billion tons of CO2-eq in greenhouse gases (GHG) annually. With escalating global waste generation, there is an untapped opportunity to...

Full description

Saved in:
Bibliographic Details
Published inChemosphere (Oxford) Vol. 361; p. 142478
Main Authors Salvador, Ruben W., Doong, Ruey-An
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.08.2024
Subjects
Online AccessGet full text
ISSN0045-6535
1879-1298
1879-1298
DOI10.1016/j.chemosphere.2024.142478

Cover

Abstract Effective municipal solid waste (MSW) management is a crucial component for sustainable cities, as inefficient waste disposal contributes to the release of about a billion tons of CO2-eq in greenhouse gases (GHG) annually. With escalating global waste generation, there is an untapped opportunity to integrate carbon dioxide removal (CDR) technologies into existing MSW management processes. This review explores current research on utilizing MSW for CDR, emphasizing its potential for both energy generation and carbon sequestration. The investigation covers three waste management practices: landfilling, waste-to-energy (WtE), and biochar production, revealing two paths for carbon sequestration. First, MSW serves as a feedstock in bioenergy with carbon capture and storage (BECCS), acting as a carbon-neutral resource that avoids fossil fuel and energy crop use, reducing GHG emissions and generating value through energy production. Second, direct storage of organic MSW and its derivatives, like biochar, in various carbon sinks allows for extended sequestration, offering a comprehensive approach to address the challenges of waste management and climate change mitigation. Moreover, this review advocates for an extended exploration into several subjects including in-depth analysis of waste, research on MSW-derived biochar recalcitrance across different carbon sinks, and understanding the symbiotic connections with GHG-emitting sectors like agriculture and energy. Finally, this review emphasizes the necessity of conducting life-cycle assessment studies to fully discern the benefits and assess the impacts of any future endeavors exploring the role of MSW in carbon sequestration. [Display omitted] •Municipal solid waste (MSW) is an untapped resource for carbon dioxide removal.•Three strategies to utilize MSW for CO2 removal include landfilling, waste-to-energy, and biochar production.•Carbon sequestration is achieved through MSW-burial and energy recovery with CCS.•Auditing carbon emissions and LCA are necessary to illuminate the impacts of MSW.
AbstractList Effective municipal solid waste (MSW) management is a crucial component for sustainable cities, as inefficient waste disposal contributes to the release of about a billion tons of CO -eq in greenhouse gases (GHG) annually. With escalating global waste generation, there is an untapped opportunity to integrate carbon dioxide removal (CDR) technologies into existing MSW management processes. This review explores current research on utilizing MSW for CDR, emphasizing its potential for both energy generation and carbon sequestration. The investigation covers three waste management practices: landfilling, waste-to-energy (WtE), and biochar production, revealing two paths for carbon sequestration. First, MSW serves as a feedstock in bioenergy with carbon capture and storage (BECCS), acting as a carbon-neutral resource that avoids fossil fuel and energy crop use, reducing GHG emissions and generating value through energy production. Second, direct storage of organic MSW and its derivatives, like biochar, in various carbon sinks allows for extended sequestration, offering a comprehensive approach to address the challenges of waste management and climate change mitigation. Moreover, this review advocates for an extended exploration into several subjects including in-depth analysis of waste, research on MSW-derived biochar recalcitrance across different carbon sinks, and understanding the symbiotic connections with GHG-emitting sectors like agriculture and energy. Finally, this review emphasizes the necessity of conducting life-cycle assessment studies to fully discern the benefits and assess the impacts of any future endeavors exploring the role of MSW in carbon sequestration.
Effective municipal solid waste (MSW) management is a crucial component for sustainable cities, as inefficient waste disposal contributes to the release of about a billion tons of CO2-eq in greenhouse gases (GHG) annually. With escalating global waste generation, there is an untapped opportunity to integrate carbon dioxide removal (CDR) technologies into existing MSW management processes. This review explores current research on utilizing MSW for CDR, emphasizing its potential for both energy generation and carbon sequestration. The investigation covers three waste management practices: landfilling, waste-to-energy (WtE), and biochar production, revealing two paths for carbon sequestration. First, MSW serves as a feedstock in bioenergy with carbon capture and storage (BECCS), acting as a carbon-neutral resource that avoids fossil fuel and energy crop use, reducing GHG emissions and generating value through energy production. Second, direct storage of organic MSW and its derivatives, like biochar, in various carbon sinks allows for extended sequestration, offering a comprehensive approach to address the challenges of waste management and climate change mitigation. Moreover, this review advocates for an extended exploration into several subjects including in-depth analysis of waste, research on MSW-derived biochar recalcitrance across different carbon sinks, and understanding the symbiotic connections with GHG-emitting sectors like agriculture and energy. Finally, this review emphasizes the necessity of conducting life-cycle assessment studies to fully discern the benefits and assess the impacts of any future endeavors exploring the role of MSW in carbon sequestration. [Display omitted] •Municipal solid waste (MSW) is an untapped resource for carbon dioxide removal.•Three strategies to utilize MSW for CO2 removal include landfilling, waste-to-energy, and biochar production.•Carbon sequestration is achieved through MSW-burial and energy recovery with CCS.•Auditing carbon emissions and LCA are necessary to illuminate the impacts of MSW.
Effective municipal solid waste (MSW) management is a crucial component for sustainable cities, as inefficient waste disposal contributes to the release of about a billion tons of CO2-eq in greenhouse gases (GHG) annually. With escalating global waste generation, there is an untapped opportunity to integrate carbon dioxide removal (CDR) technologies into existing MSW management processes. This review explores current research on utilizing MSW for CDR, emphasizing its potential for both energy generation and carbon sequestration. The investigation covers three waste management practices: landfilling, waste-to-energy (WtE), and biochar production, revealing two paths for carbon sequestration. First, MSW serves as a feedstock in bioenergy with carbon capture and storage (BECCS), acting as a carbon-neutral resource that avoids fossil fuel and energy crop use, reducing GHG emissions and generating value through energy production. Second, direct storage of organic MSW and its derivatives, like biochar, in various carbon sinks allows for extended sequestration, offering a comprehensive approach to address the challenges of waste management and climate change mitigation. Moreover, this review advocates for an extended exploration into several subjects including in-depth analysis of waste, research on MSW-derived biochar recalcitrance across different carbon sinks, and understanding the symbiotic connections with GHG-emitting sectors like agriculture and energy. Finally, this review emphasizes the necessity of conducting life-cycle assessment studies to fully discern the benefits and assess the impacts of any future endeavors exploring the role of MSW in carbon sequestration.Effective municipal solid waste (MSW) management is a crucial component for sustainable cities, as inefficient waste disposal contributes to the release of about a billion tons of CO2-eq in greenhouse gases (GHG) annually. With escalating global waste generation, there is an untapped opportunity to integrate carbon dioxide removal (CDR) technologies into existing MSW management processes. This review explores current research on utilizing MSW for CDR, emphasizing its potential for both energy generation and carbon sequestration. The investigation covers three waste management practices: landfilling, waste-to-energy (WtE), and biochar production, revealing two paths for carbon sequestration. First, MSW serves as a feedstock in bioenergy with carbon capture and storage (BECCS), acting as a carbon-neutral resource that avoids fossil fuel and energy crop use, reducing GHG emissions and generating value through energy production. Second, direct storage of organic MSW and its derivatives, like biochar, in various carbon sinks allows for extended sequestration, offering a comprehensive approach to address the challenges of waste management and climate change mitigation. Moreover, this review advocates for an extended exploration into several subjects including in-depth analysis of waste, research on MSW-derived biochar recalcitrance across different carbon sinks, and understanding the symbiotic connections with GHG-emitting sectors like agriculture and energy. Finally, this review emphasizes the necessity of conducting life-cycle assessment studies to fully discern the benefits and assess the impacts of any future endeavors exploring the role of MSW in carbon sequestration.
Effective municipal solid waste (MSW) management is a crucial component for sustainable cities, as inefficient waste disposal contributes to the release of about a billion tons of CO₂-eq in greenhouse gases (GHG) annually. With escalating global waste generation, there is an untapped opportunity to integrate carbon dioxide removal (CDR) technologies into existing MSW management processes. This review explores current research on utilizing MSW for CDR, emphasizing its potential for both energy generation and carbon sequestration. The investigation covers three waste management practices: landfilling, waste-to-energy (WtE), and biochar production, revealing two paths for carbon sequestration. First, MSW serves as a feedstock in bioenergy with carbon capture and storage (BECCS), acting as a carbon-neutral resource that avoids fossil fuel and energy crop use, reducing GHG emissions and generating value through energy production. Second, direct storage of organic MSW and its derivatives, like biochar, in various carbon sinks allows for extended sequestration, offering a comprehensive approach to address the challenges of waste management and climate change mitigation. Moreover, this review advocates for an extended exploration into several subjects including in-depth analysis of waste, research on MSW-derived biochar recalcitrance across different carbon sinks, and understanding the symbiotic connections with GHG-emitting sectors like agriculture and energy. Finally, this review emphasizes the necessity of conducting life-cycle assessment studies to fully discern the benefits and assess the impacts of any future endeavors exploring the role of MSW in carbon sequestration.
ArticleNumber 142478
Author Doong, Ruey-An
Salvador, Ruben W.
Author_xml – sequence: 1
  givenname: Ruben W.
  surname: Salvador
  fullname: Salvador, Ruben W.
– sequence: 2
  givenname: Ruey-An
  orcidid: 0000-0002-4913-0602
  surname: Doong
  fullname: Doong, Ruey-An
  email: radoong@mx.nthu.edu.tw
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38815817$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1u3CAUhVGVqpmkfYWK7rrxBIzBuJsqGvUnUqQu2q4RxtdjRjZMAc9o3j5knEhVN83qCumc717OuUIXzjtA6AMla0qouNmtzQCTj_sBAqxLUlZrWpVVLV-hFZV1U9CykRdoRUjFC8EZv0RXMe4IyWbevEGXTErKJa1X6PjTTvOYtAM_R6zNYOEAE7iEfY_BQdiecADjDxBOWLsOGx1a73CEPzPEFHSy-ZWG4OftgKfZWWP3esTRj7bDRx0T4Ek7vT1DP-HbTDtYOL5Fr3s9Rnj3NK_R769ffm2-F_c_vt1tbu8Lw0qeit4QwThhfUtMDQIENYIS2QpiSEdqQdqet6Zkraaa8rLRpiG90LyTVVe1hLNr9HHh7oM_X6wmGw2M4_JjxShngpeiKf8vzadUXEpZZ-n7J-ncTtCpfbCTDif1nGsWfF4EJvgYA_TK2HTOKkdmR0WJemxS7dRfTarHJtXSZCY0_xCel7zEu1m8kJPNaQcVjQVnoLO5y6Q6b19AeQCOmsJb
CitedBy_id crossref_primary_10_3390_environments12010005
crossref_primary_10_3390_su17062730
Cites_doi 10.1016/j.gloenvcha.2010.09.012
10.1016/j.cemconcomp.2023.105078
10.1016/j.ijggc.2015.06.012
10.1111/1758-5899.12827
10.1016/j.uclim.2014.03.002
10.1016/j.prostr.2020.06.023
10.1016/j.segy.2023.100107
10.1021/acs.est.3c00644
10.1016/j.mex.2022.101869
10.1016/j.rser.2020.110490
10.1016/j.wasman.2018.07.007
10.1080/07352680590910393
10.1016/j.apenergy.2015.10.011
10.1016/j.jaap.2015.12.022
10.1039/D1EE00642H
10.1016/j.jenvman.2019.109466
10.1007/s10311-020-01100-y
10.1007/s13762-017-1470-4
10.1111/gcbb.12553
10.1016/j.biombioe.2021.105968
10.1016/j.conbuildmat.2022.128715
10.1016/j.rser.2022.112409
10.1007/s10163-015-0447-y
10.1039/C7EE02342A
10.1016/j.biortech.2018.09.030
10.1146/annurev.earth.031208.100206
10.1111/gcb.13178
10.1016/j.biombioe.2015.12.008
10.1111/gcbb.12137
10.1016/j.foodpol.2018.04.003
10.1002/ceat.201900108
10.1016/j.chemosphere.2015.08.046
10.1016/j.enconman.2021.115042
10.4155/cmt.11.22
10.1016/j.rser.2023.113415
10.1016/j.envres.2021.112219
10.1093/reep/rex027
10.1016/S1002-0160(21)60073-5
10.1016/j.energy.2020.117352
10.1016/j.spc.2021.02.028
10.1016/j.envadv.2023.100395
10.3389/fmats.2016.00023
10.1016/j.cosust.2015.09.002
10.1016/j.ijggc.2021.103309
10.1016/j.egypro.2017.03.1741
10.1007/s40641-018-0104-3
10.1126/science.290.5490.291
10.1016/j.scs.2022.104027
10.1007/s42773-023-00258-2
10.1016/j.joule.2021.04.011
10.1016/j.oneear.2019.11.006
10.1016/j.isci.2022.103990
10.1016/j.jclepro.2019.04.034
10.2139/ssrn.4286042
10.1016/j.jclepro.2017.08.016
10.1016/j.enconman.2020.113300
10.1016/j.ijggc.2022.103684
10.1007/s10668-020-00959-9
10.1016/j.resconrec.2017.07.025
10.1111/gcbb.12863
10.1016/j.scitotenv.2017.11.044
10.1016/j.rser.2021.111641
10.1016/j.energy.2015.07.122
10.1007/s10661-019-7273-y
10.1039/D0EE03757E
10.1016/j.energy.2022.124056
10.1016/j.ijggc.2017.11.007
10.1007/s13412-017-0445-6
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright © 2024 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2024 Elsevier Ltd
– notice: Copyright © 2024 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.chemosphere.2024.142478
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Ecology
EISSN 1879-1298
ExternalDocumentID 38815817
10_1016_j_chemosphere_2024_142478
S0045653524013717
Genre Journal Article
Review
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
ABEFU
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
AEBSH
AEFWE
AEGFY
AEIPS
AEKER
AENEX
AFFNX
AFJKZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HMC
HVGLF
HZ~
H~9
IHE
J1W
K-O
KCYFY
KOM
LY3
LY9
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCC
SCU
SDF
SDG
SDP
SEN
SEP
SES
SEW
SPCBC
SSJ
SSZ
T5K
TWZ
WH7
WUQ
XPP
Y6R
ZCG
ZMT
ZXP
~02
~G-
~KM
AATTM
AAYWO
AAYXX
ACVFH
ADCNI
ADXHL
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7X8
EFKBS
EFLBG
7S9
L.6
ID FETCH-LOGICAL-c325t-fc063503fb0c7e6e61c6108b60c0d0760bf5bc23ba1a1529ac90f6a5d84d4b053
IEDL.DBID AIKHN
ISSN 0045-6535
1879-1298
IngestDate Fri Sep 05 16:15:11 EDT 2025
Thu Sep 04 17:08:14 EDT 2025
Wed Feb 19 02:06:18 EST 2025
Tue Jul 01 01:00:49 EDT 2025
Thu Apr 24 22:57:17 EDT 2025
Sat Feb 08 15:52:14 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Municipal solid waste (MSW)
Urban ecosystems
Circular economy
Carbon sequestration
Sustainability
Language English
License Copyright © 2024 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c325t-fc063503fb0c7e6e61c6108b60c0d0760bf5bc23ba1a1529ac90f6a5d84d4b053
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-4913-0602
PMID 38815817
PQID 3063458887
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3153652692
proquest_miscellaneous_3063458887
pubmed_primary_38815817
crossref_citationtrail_10_1016_j_chemosphere_2024_142478
crossref_primary_10_1016_j_chemosphere_2024_142478
elsevier_sciencedirect_doi_10_1016_j_chemosphere_2024_142478
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2024
2024-08-00
2024-Aug
20240801
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: August 2024
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Chemosphere (Oxford)
PublicationTitleAlternate Chemosphere
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Struthers, Herraiz, Muslemani, Su, Thomson, Lucquiaud (bib70) 2022
Thengane, Bandyopadhyay (bib74) 2020; 22
Duval-Dachary, Pastor, Beauchet, Lorne, Salou, Helias (bib17) 2022; 22–23
Leng, Huang (bib41) 2018; 270
Tanzer, Blok, Ramírez (bib72) 2021; 8
Zarea, Moazed, Ahmadmoazzam, Malekghasemi, Jaafarzadeh (bib83) 2019; 191
Koytsoumpa, Magiri – Skouloudi, Karellas, Kakaras (bib34) 2021; 152
Crombie, Mašek (bib14) 2015; 7
Wienchol, Szlęk, Ditaranto (bib81) 2020; 198
Cruz, Perrella Balestieri, de Toledo Silva, Vilanova, Oliveira, Ávila (bib15) 2021; 108
Kumar, Sharma (bib35) 2014; 8
Pörtner, Roberts, Poloczanska, Mintenbeck, Tignor, Alegría, Craig, Langsdorf, Löschke, Möller, Okem (bib53) 2023
Tol (bib75) 2018; 12
Arehart, Hart, Pomponi, D'Amico (bib2) 2021; 27
Suarez-Riera, Restuccia, Ferro (bib71) 2020; 26
Vera, Wicke, Lamers, Cowie, Repo, Heukels, Zumpf, Styles, Parish, Cherubini, Berndes, Jager, Schiesari, Junginger, Brandão, Bentsen, Daioglou, Harris, van der Hilst (bib76) 2022; 161
Calvin, Cowie, Berndes, Arneth, Cherubini, Portugal-Pereira, Grassi, House, Johnson, Popp, Rounsevell, Slade, Smith (bib11) 2021; 13
Lee, Han, Wang (bib38) 2017; 166
Shackley, Hammond, Gaunt, Ibarrola (bib68) 2011; 2
Fennell, Davis, Mohammed (bib20) 2021; 5
Rehrah, Bansode, Hassan, Ahmedna (bib59) 2018; 15
Terlouw, Bauer, Rosa, Mazzotti (bib73) 2021; 14
Archer, Eby, Brovkin, Ridgwell, Cao, Mikolajewicz, Caldeira, Matsumoto, Munhoven, Montenegro, Tokos (bib1) 2009; 37
Bui, Adjiman, Bardow, Anthony, Boston, Brown, Fennell, Fuss, Galindo, Hackett, Hallett, Herzog, Jackson, Kemper, Krevor, Maitland, Matuszewski, Metcalfe, Petit, Mac Dowell (bib9) 2018; 11
Kinnunen, Talvitie, Ottelin, Heinonen, Junnila (bib32) 2022; 84
Ritchie, Roser (bib61) 2023
Rosha, Ibrahim (bib64) 2022
Zornoza, Moreno-Barriga, Acosta, Muñoz, Faz (bib85) 2016; 144
Rosa, Sanchez, Mazzotti (bib63) 2021; 14
Brack, King (bib8) 2021; 12
Falkowski, Scholes, Boyle, Canadell, Canfield, Elser, Gruber, Hibbard, Högberg, Linder, Mackenzie, Moore III, Pedersen, Rosenthal, Seitzinger, Smetacek, Steffen (bib19) 2000; 290
Nanda, Berruti (bib51) 2021; 19
Liu, Xie, Zhang (bib44) 2017; 19
Burns, Nicholson (bib10) 2017; 7
Sewak, Kim, Rundle-Thiele, Deshpande (bib67) 2021; 39
Eggleston, Buendia, Miwa, Ngara, Tanabe (bib18) 2006
Berrang-Ford, Ford, Paterson (bib7) 2011; 21
Ros, Veronezi Figueiredo, Srivastava, Huizinga, van Os, Wassenaar, Garcia Moretz-Sohn Monteiro (bib62) 2022
Wang, Wen, Shi, Nuran Zaini, Göran Jönsson, Yang (bib77) 2022; 252
Hauschild, Rosenbaum, Olsen (bib25) 2018
Smith (bib69) 2016; 22
Duval-Dachary, Beauchet, Lorne, Salou, Helias, Pastor (bib16) 2023; 183
Babin, Vaneeckhaute, Iliuta (bib3) 2021; 146
Beiron, Normann, Johnsson (bib5) 2022; 118
Iqbal, Zan, Liu, Chen (bib27) 2019; 225
Lima, Colvero, Gomes, Wenzel, Schalch, Cimpan (bib43) 2018; 78
Lal, Negassa, Lorenz (bib36) 2015; 15
Wang, Yang, Shi, Zaini, Wen, Jiang, Jönsson, Yang (bib78) 2022; 252
Gładysz, Ziębik (bib22) 2016; 85
Majumder, Neogi, Dutta, Powel, Banik (bib46) 2019; 250
Ramprasad, Teja, Gowtham, Vikas (bib57) 2022; 9
Karimi, Diaz de Tuesta, Carmem, Gomes, Rodrigues, Silva (bib28) 2020; 43
Ben-Mansour, Habib, Bamidele, Basha, Qasem, Peedikakkal, Laoui, Ali (bib6) 2016; 161
Pour (bib54) 2019
Rennuit-Mortensen, Dalgas Rasmussen, Grahn (bib60) 2023; 10
Schmidt, Anca-Couce, Hagemann, Werner, Gerten, Lucht, Kammann (bib66) 2019; 11
Kaza, Yao, Bhada-Tata, Van Woerden (bib29) 2018
Kemper (bib31) 2015; 40
Pour, Webley, Cook (bib56) 2018; 68
Gupta, Kua, Koh (bib24) 2018; 619–620
Kouchaki-Penchah, Bahn, Vaillancourt, Moreau, Thiffault, Levasseur (bib33) 2023; 57
Moult, Allan, Hewitt, Berners-Lee (bib50) 2018; 77
Lemus, Lal (bib40) 2005; 24
Goswami, Pant, Mansotra, Sharma, Joshi (bib23) 2021
Mishra, Danoglidis, Shah, Konsta-Gdoutos (bib48) 2023; 140
Keller, Lenton, Littleton, Oschlies, Scott, Vaughan (bib30) 2018; 4
Calvo-Muñoz, García-Mateos, Rosas, Rodríguez-Mirasol, Cordero (bib12) 2016; 3
Liu, Liu, Zhang, Li, Xing, Tang (bib45) 2022; 350
Ozkan, Nayak, Ruiz, Jiang (bib52) 2022; 25
Weihs, Jones, Ho, Malik, Abbas, Meka, Fennell, Wiley (bib80) 2022; 273
Li, Skelly (bib42) 2023; 13
Saleem, Ahmad, Rashid, Ahmad, AL-Wabel, Amin (bib65) 2022; 32
Zhu, Zhang, Luo, Chong, Li, Kong (bib84) 2021; 23
Rehrah, Bansode, Hassan, Ahmedna (bib58) 2016; 118
Chao, Deng, Dewil, Baeyens, Fan (bib13) 2021; 138
Moriarty, Honnery (bib49) 2019
Bandilla (bib4) 2020
Lausselet, Cherubini, Oreggioni, del Alamo Serrano, Becidan, Hu, Rørstad, Strømman (bib37) 2017; 126
Pour, Webley, Cook (bib55) 2017; 114
Wang, Pan, Zhang, Borhani, Li, Zhang (bib79) 2022; 207
Hu, Guo, Ma, Hu, Zhang, Xiao, Luo, Wang (bib26) 2015; 90
Lefebvre, Fawzy, Aquije, Osman, Draper, Trabold (bib39) 2023; 5
Yamamoto, Kinnaman (bib82) 2022; 111
Gambhir, Tavoni (bib21) 2019; 1
Melara, Singh, Colosi (bib47) 2020; 224
Ritchie (10.1016/j.chemosphere.2024.142478_bib61) 2023
Weihs (10.1016/j.chemosphere.2024.142478_bib80) 2022; 273
Burns (10.1016/j.chemosphere.2024.142478_bib10) 2017; 7
Ramprasad (10.1016/j.chemosphere.2024.142478_bib57) 2022; 9
Lee (10.1016/j.chemosphere.2024.142478_bib38) 2017; 166
Rosha (10.1016/j.chemosphere.2024.142478_bib64) 2022
Zarea (10.1016/j.chemosphere.2024.142478_bib83) 2019; 191
Archer (10.1016/j.chemosphere.2024.142478_bib1) 2009; 37
Lausselet (10.1016/j.chemosphere.2024.142478_bib37) 2017; 126
Ros (10.1016/j.chemosphere.2024.142478_bib62) 2022
Pour (10.1016/j.chemosphere.2024.142478_bib56) 2018; 68
Calvo-Muñoz (10.1016/j.chemosphere.2024.142478_bib12) 2016; 3
Rosa (10.1016/j.chemosphere.2024.142478_bib63) 2021; 14
Kemper (10.1016/j.chemosphere.2024.142478_bib31) 2015; 40
Saleem (10.1016/j.chemosphere.2024.142478_bib65) 2022; 32
Ben-Mansour (10.1016/j.chemosphere.2024.142478_bib6) 2016; 161
Gambhir (10.1016/j.chemosphere.2024.142478_bib21) 2019; 1
Li (10.1016/j.chemosphere.2024.142478_bib42) 2023; 13
Duval-Dachary (10.1016/j.chemosphere.2024.142478_bib16) 2023; 183
Cruz (10.1016/j.chemosphere.2024.142478_bib15) 2021; 108
Lal (10.1016/j.chemosphere.2024.142478_bib36) 2015; 15
Moult (10.1016/j.chemosphere.2024.142478_bib50) 2018; 77
Babin (10.1016/j.chemosphere.2024.142478_bib3) 2021; 146
Gładysz (10.1016/j.chemosphere.2024.142478_bib22) 2016; 85
Pour (10.1016/j.chemosphere.2024.142478_bib54) 2019
Gupta (10.1016/j.chemosphere.2024.142478_bib24) 2018; 619–620
Shackley (10.1016/j.chemosphere.2024.142478_bib68) 2011; 2
Wang (10.1016/j.chemosphere.2024.142478_bib77) 2022; 252
Goswami (10.1016/j.chemosphere.2024.142478_bib23) 2021
Terlouw (10.1016/j.chemosphere.2024.142478_bib73) 2021; 14
Wang (10.1016/j.chemosphere.2024.142478_bib79) 2022; 207
Hu (10.1016/j.chemosphere.2024.142478_bib26) 2015; 90
Pörtner (10.1016/j.chemosphere.2024.142478_bib53) 2023
Calvin (10.1016/j.chemosphere.2024.142478_bib11) 2021; 13
Moriarty (10.1016/j.chemosphere.2024.142478_bib49) 2019
Rennuit-Mortensen (10.1016/j.chemosphere.2024.142478_bib60) 2023; 10
Berrang-Ford (10.1016/j.chemosphere.2024.142478_bib7) 2011; 21
Lefebvre (10.1016/j.chemosphere.2024.142478_bib39) 2023; 5
Bandilla (10.1016/j.chemosphere.2024.142478_bib4) 2020
Majumder (10.1016/j.chemosphere.2024.142478_bib46) 2019; 250
Nanda (10.1016/j.chemosphere.2024.142478_bib51) 2021; 19
Sewak (10.1016/j.chemosphere.2024.142478_bib67) 2021; 39
Fennell (10.1016/j.chemosphere.2024.142478_bib20) 2021; 5
Ozkan (10.1016/j.chemosphere.2024.142478_bib52) 2022; 25
Zornoza (10.1016/j.chemosphere.2024.142478_bib85) 2016; 144
Beiron (10.1016/j.chemosphere.2024.142478_bib5) 2022; 118
Leng (10.1016/j.chemosphere.2024.142478_bib41) 2018; 270
Karimi (10.1016/j.chemosphere.2024.142478_bib28) 2020; 43
Suarez-Riera (10.1016/j.chemosphere.2024.142478_bib71) 2020; 26
Bui (10.1016/j.chemosphere.2024.142478_bib9) 2018; 11
Keller (10.1016/j.chemosphere.2024.142478_bib30) 2018; 4
Tanzer (10.1016/j.chemosphere.2024.142478_bib72) 2021; 8
Kaza (10.1016/j.chemosphere.2024.142478_bib29) 2018
Koytsoumpa (10.1016/j.chemosphere.2024.142478_bib34) 2021; 152
Crombie (10.1016/j.chemosphere.2024.142478_bib14) 2015; 7
Zhu (10.1016/j.chemosphere.2024.142478_bib84) 2021; 23
Kumar (10.1016/j.chemosphere.2024.142478_bib35) 2014; 8
Struthers (10.1016/j.chemosphere.2024.142478_bib70) 2022
Pour (10.1016/j.chemosphere.2024.142478_bib55) 2017; 114
Vera (10.1016/j.chemosphere.2024.142478_bib76) 2022; 161
Wang (10.1016/j.chemosphere.2024.142478_bib78) 2022; 252
Iqbal (10.1016/j.chemosphere.2024.142478_bib27) 2019; 225
Smith (10.1016/j.chemosphere.2024.142478_bib69) 2016; 22
Falkowski (10.1016/j.chemosphere.2024.142478_bib19) 2000; 290
Yamamoto (10.1016/j.chemosphere.2024.142478_bib82) 2022; 111
Kinnunen (10.1016/j.chemosphere.2024.142478_bib32) 2022; 84
Arehart (10.1016/j.chemosphere.2024.142478_bib2) 2021; 27
Melara (10.1016/j.chemosphere.2024.142478_bib47) 2020; 224
Liu (10.1016/j.chemosphere.2024.142478_bib44) 2017; 19
Schmidt (10.1016/j.chemosphere.2024.142478_bib66) 2019; 11
Chao (10.1016/j.chemosphere.2024.142478_bib13) 2021; 138
Mishra (10.1016/j.chemosphere.2024.142478_bib48) 2023; 140
Lima (10.1016/j.chemosphere.2024.142478_bib43) 2018; 78
Hauschild (10.1016/j.chemosphere.2024.142478_bib25) 2018
Wienchol (10.1016/j.chemosphere.2024.142478_bib81) 2020; 198
Lemus (10.1016/j.chemosphere.2024.142478_bib40) 2005; 24
Liu (10.1016/j.chemosphere.2024.142478_bib45) 2022; 350
Tol (10.1016/j.chemosphere.2024.142478_bib75) 2018; 12
Brack (10.1016/j.chemosphere.2024.142478_bib8) 2021; 12
Eggleston (10.1016/j.chemosphere.2024.142478_bib18) 2006
Duval-Dachary (10.1016/j.chemosphere.2024.142478_bib17) 2022; 22–23
Kouchaki-Penchah (10.1016/j.chemosphere.2024.142478_bib33) 2023; 57
Rehrah (10.1016/j.chemosphere.2024.142478_bib58) 2016; 118
Rehrah (10.1016/j.chemosphere.2024.142478_bib59) 2018; 15
Thengane (10.1016/j.chemosphere.2024.142478_bib74) 2020; 22
References_xml – volume: 161
  year: 2022
  ident: bib76
  article-title: Land use for bioenergy: synergies and trade-offs between sustainable development goals
  publication-title: Renew. Sustain. Energy Rev.
– volume: 84
  year: 2022
  ident: bib32
  article-title: Carbon sequestration and storage potential of urban residential environment – a review
  publication-title: Sustain. Cities Soc.
– volume: 27
  start-page: 1047
  year: 2021
  end-page: 1063
  ident: bib2
  article-title: Carbon sequestration and storage in the built environment
  publication-title: Sustain. Prod. Consum.
– volume: 15
  start-page: 79
  year: 2015
  end-page: 86
  ident: bib36
  article-title: Carbon sequestration in soil
  publication-title: Curr. Opin. Environ. Sustain.
– volume: 270
  start-page: 627
  year: 2018
  end-page: 642
  ident: bib41
  article-title: An overview of the effect of pyrolysis process parameters on biochar stability
  publication-title: Bioresour. Technol.
– volume: 13
  year: 2023
  ident: bib42
  article-title: Physicochemical properties and applications of biochars derived from municipal solid waste: a review
  publication-title: Environ. Adv.
– volume: 85
  start-page: 109
  year: 2016
  end-page: 118
  ident: bib22
  article-title: Environmental analysis of bio-CCS in an integrated oxy-fuel combustion power plant with CO
  publication-title: Biomass Bioenergy
– volume: 23
  start-page: 6603
  year: 2021
  end-page: 6622
  ident: bib84
  article-title: A review of municipal solid waste in China: characteristics, compositions, influential factors and treatment technologies
  publication-title: Environ. Dev. Sustain.
– volume: 225
  start-page: 1079
  year: 2019
  end-page: 1088
  ident: bib27
  article-title: Integrated municipal solid waste management scheme of Hong Kong: a comprehensive analysis in terms of global warming potential and energy use
  publication-title: J. Clean. Prod.
– volume: 26
  start-page: 199
  year: 2020
  end-page: 210
  ident: bib71
  article-title: The use of Biochar to reduce the carbon footprint of cement-based
  publication-title: Procedia Struct. Integr.
– volume: 21
  start-page: 25
  year: 2011
  end-page: 33
  ident: bib7
  article-title: Are we adapting to climate change? Glob
  publication-title: Environ. Change
– start-page: 273
  year: 2019
  end-page: 287
  ident: bib49
  article-title: Bioenergy with carbon capture and storage in a future world
  publication-title: Bioenergy with Carbon Capture and Storage
– volume: 4
  start-page: 250
  year: 2018
  end-page: 265
  ident: bib30
  article-title: The effects of carbon dioxide removal on the carbon cycle
  publication-title: Curr. Clim. Change Rep.
– volume: 43
  start-page: 1336
  year: 2020
  end-page: 1349
  ident: bib28
  article-title: Compost from municipal solid wastes as a source of biochar for CO
  publication-title: Chem. Eng. Technol.
– volume: 39
  start-page: 892
  year: 2021
  end-page: 909
  ident: bib67
  article-title: Influencing household-level waste-sorting and composting behaviour: what works? A systematic review
  publication-title: 1995–2020) of waste management interventions Waste Manag. Res.
– volume: 24
  start-page: 1
  year: 2005
  end-page: 21
  ident: bib40
  article-title: Bioenergy crops and carbon sequestration
  publication-title: CRC Crit. Rev. Plant Sci.
– volume: 118
  start-page: 42
  year: 2016
  end-page: 53
  ident: bib58
  article-title: Physico-chemical characterization of biochars from solid municipal waste for use in soil amendment
  publication-title: J. Anal. Appl. Pyrol.
– volume: 146
  year: 2021
  ident: bib3
  article-title: Potential and challenges of bioenergy with carbon capture and storage as a carbon-negative energy source: a review
  publication-title: Biomass Bioenergy
– volume: 13
  start-page: 1346
  year: 2021
  end-page: 1371
  ident: bib11
  article-title: Bioenergy for climate change mitigation: scale and sustainability
  publication-title: Glob. Change Biol. Bioenergy
– year: 2023
  ident: bib61
  article-title: Sector by sector: where do global greenhouse gas emissions come from?
  publication-title: Our World in Data
– volume: 111
  year: 2022
  ident: bib82
  article-title: Is incineration repressing recycling?
  publication-title: J. Environ. Econ. Manag.
– start-page: 85
  year: 2019
  end-page: 107
  ident: bib54
  article-title: Status of bioenergy with carbon capture and storage—potential and challenges
  publication-title: Bioenergy with Carbon Capture and Storage
– year: 2022
  ident: bib64
  article-title: Hydrogen production via solid waste gasification with subsequent amine-based carbon dioxide removal using Aspen Plus
  publication-title: Int. J. Hydrogen Energy
– volume: 32
  start-page: 283
  year: 2022
  end-page: 293
  ident: bib65
  article-title: Carbon potentials of different biochars derived from municipal solid waste in a saline soil
  publication-title: Pedosphere
– volume: 5
  start-page: 65
  year: 2023
  ident: bib39
  article-title: Biomass residue to carbon dioxide removal: quantifying the global impact of biochar
  publication-title: Biochar
– volume: 350
  year: 2022
  ident: bib45
  article-title: Application potential analysis of biochar as a carbon capture material in cementitious composites: a review
  publication-title: Construct. Build. Mater.
– volume: 8
  start-page: 253
  year: 2021
  end-page: 262
  ident: bib72
  article-title: Decarbonizing industry via BECCS: promising sectors, challenges, and techno-economic limits of negative emissions
  publication-title: Curr. Sustain. Renew. Energy Rep.
– volume: 22
  start-page: 1315
  year: 2016
  end-page: 1324
  ident: bib69
  article-title: Soil carbon sequestration and biochar as negative emission technologies
  publication-title: Global Change Biol.
– volume: 22
  start-page: 5
  year: 2020
  end-page: 10
  ident: bib74
  article-title: Biochar mines: panacea to climate change and energy crisis? Clean
  publication-title: Technol. Environ.
– year: 2022
  ident: bib70
  article-title: Assessing the negative carbon emissions potential from the waste-to-energy sector in Europe
  publication-title: SSRN Electron. J.
– volume: 77
  start-page: 50
  year: 2018
  end-page: 58
  ident: bib50
  article-title: Greenhouse gas emissions of food waste disposal options for UK retailers
  publication-title: Food Pol.
– volume: 19
  start-page: 1433
  year: 2021
  end-page: 1456
  ident: bib51
  article-title: Municipal solid waste management and landfilling technologies: a review
  publication-title: Environ. Chem. Lett.
– volume: 15
  start-page: 1093
  year: 2018
  end-page: 1102
  ident: bib59
  article-title: Short-term greenhouse emission lowering effect of biochars from solid organic municipal wastes
  publication-title: Int. J. Environ. Sci.
– volume: 619–620
  start-page: 419
  year: 2018
  end-page: 435
  ident: bib24
  article-title: Application of biochar from food and wood waste as green admixture for cement mortar
  publication-title: Sci. Total Environ.
– volume: 19
  start-page: 473
  year: 2017
  end-page: 482
  ident: bib44
  article-title: Effect of organic fraction of municipal solid waste (OFMSW)-based biochar on organic carbon mineralization in a dry land soil
  publication-title: J. Mater. Cycles Waste Manag.
– volume: 224
  year: 2020
  ident: bib47
  article-title: Is aquatic bioenergy with carbon capture and storage a sustainable negative emission technology? Insights from a spatially explicit environmental life-cycle assessment
  publication-title: Energy Convers. Manag.
– volume: 68
  start-page: 1
  year: 2018
  end-page: 15
  ident: bib56
  article-title: Potential for using municipal solid waste as a resource for bioenergy with carbon capture and storage (BECCS)
  publication-title: Int. J. Greenh. Gas Control
– volume: 252
  year: 2022
  ident: bib78
  article-title: Renewable hydrogen production from the organic fraction of municipal solid waste through a novel carbon-negative process concept
  publication-title: Energy
– volume: 183
  year: 2023
  ident: bib16
  article-title: Life cycle assessment of bioenergy with carbon capture and storage systems: critical review of life cycle inventories
  publication-title: Renew. Sustain. Energy Rev.
– volume: 140
  year: 2023
  ident: bib48
  article-title: Carbon capture and storage potential of biochar-enriched cementitious systems
  publication-title: Cement Concr. Compos.
– volume: 198
  year: 2020
  ident: bib81
  article-title: Waste-to-energy technology integrated with carbon capture–Challenges and opportunities
  publication-title: Energy
– volume: 191
  start-page: 131
  year: 2019
  ident: bib83
  article-title: Life cycle assessment for municipal solid waste management: a case study from Ahvaz, Iran
  publication-title: Environ. Monit. Assess.
– volume: 12
  start-page: 45
  year: 2021
  end-page: 56
  ident: bib8
  article-title: Managing land‐based CDR: BECCS, forests and carbon sequestration
  publication-title: Glob. Policy
– start-page: 251
  year: 2021
  end-page: 272
  ident: bib23
  article-title: Biochar: a carbon negative technology for combating climate change
  publication-title: Advances in Carbon Capture and Utilization
– volume: 12
  start-page: 4
  year: 2018
  end-page: 25
  ident: bib75
  article-title: The economic impacts of climate change
  publication-title: Rev. Environ. Econ. Pol.
– volume: 144
  start-page: 122
  year: 2016
  end-page: 130
  ident: bib85
  article-title: Stability, nutrient availability and hydrophobicity of biochars derived from manure, crop residues, and municipal solid waste for their use as soil amendments
  publication-title: Chemosphere
– volume: 5
  start-page: 1305
  year: 2021
  end-page: 1311
  ident: bib20
  article-title: Decarbonizing cement production
  publication-title: Joule
– volume: 252
  year: 2022
  ident: bib77
  article-title: Novel carbon-negative methane production via integrating anaerobic digestion and pyrolysis of organic fraction of municipal solid waste
  publication-title: Energy Convers. Manag.
– volume: 9
  year: 2022
  ident: bib57
  article-title: Quantification of landfill gas emissions and energy production potential in Tirupati Municipal solid waste disposal site by LandGEM mathematical model
  publication-title: MethodsX
– volume: 8
  start-page: 30
  year: 2014
  end-page: 41
  ident: bib35
  article-title: GHG emission and carbon sequestration potential from MSW of Indian metro cities
  publication-title: Urban Clim.
– volume: 1
  start-page: 405
  year: 2019
  end-page: 409
  ident: bib21
  article-title: Direct air carbon capture and sequestration: how it works and how it could contribute to climate-change mitigation
  publication-title: One Earth
– start-page: 669
  year: 2020
  end-page: 692
  ident: bib4
  article-title: Carbon capture and storage
  publication-title: Future Energy. 3
– volume: 138
  year: 2021
  ident: bib13
  article-title: Post-combustion carbon capture
  publication-title: Renew. Sustain. Energy Rev.
– volume: 207
  year: 2022
  ident: bib79
  article-title: Life cycle assessment of combustion-based electricity generation technologies integrated with carbon capture and storage: a review
  publication-title: Environ. Res.
– volume: 152
  year: 2021
  ident: bib34
  article-title: Bioenergy with carbon capture and utilization: a review on the potential deployment towards a European circular bioeconomy
  publication-title: Renew. Sustain. Energy Rev.
– volume: 166
  start-page: 335
  year: 2017
  end-page: 342
  ident: bib38
  article-title: Evaluation of landfill gas emissions from municipal solid waste landfills for the life-cycle analysis of waste-to-energy pathways
  publication-title: J. Clean. Prod.
– year: 2018
  ident: bib29
  article-title: What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050
– volume: 7
  start-page: 527
  year: 2017
  end-page: 534
  ident: bib10
  article-title: Bioenergy and carbon capture with storage (BECCS): the prospects and challenges of an emerging climate policy response
  publication-title: J. Environ. Stud. Sci.
– volume: 57
  start-page: 10615
  year: 2023
  end-page: 10628
  ident: bib33
  article-title: Impact of biogenic carbon neutrality assumption for achieving a net-zero emission target: insights from a techno-economic analysis
  publication-title: Environ. Sci. Technol.
– volume: 11
  start-page: 1062
  year: 2018
  end-page: 1176
  ident: bib9
  article-title: Carbon capture and storage (CCS): the way forward
  publication-title: Energy Environ. Sci.
– volume: 22–23
  year: 2022
  ident: bib17
  article-title: Life cycle assessment of BECCS systems: critical review of life cycle inventories
  publication-title: 16
– volume: 40
  start-page: 401
  year: 2015
  end-page: 430
  ident: bib31
  article-title: Biomass and carbon dioxide capture and storage: a review
  publication-title: Int. J. Greenh. Gas Control
– volume: 290
  start-page: 291
  year: 2000
  end-page: 296
  ident: bib19
  article-title: The global carbon cycle: a test of our knowledge of earth as a system
  publication-title: Science
– volume: 126
  start-page: 50
  year: 2017
  end-page: 61
  ident: bib37
  article-title: Norwegian waste-to-energy: climate change, circular economy and carbon capture and storage
  publication-title: Resour. Conserv. Recycl.
– volume: 14
  start-page: 3086
  year: 2021
  end-page: 3097
  ident: bib63
  article-title: Assessment of carbon dioxide removal potential via BECCS in a carbon-neutral Europe
  publication-title: Energy Environ. Sci.
– volume: 114
  start-page: 6044
  year: 2017
  end-page: 6056
  ident: bib55
  article-title: A sustainability framework for bioenergy with carbon capture and storage (BECCS) technologies
  publication-title: Energy Proc.
– volume: 273
  year: 2022
  ident: bib80
  article-title: Life cycle assessment of co-firing coal and wood waste for bio-energy with carbon capture and storage – new South Wales study
  publication-title: Energy Convers. Manag.
– volume: 14
  start-page: 1701
  year: 2021
  end-page: 1721
  ident: bib73
  article-title: Life cycle assessment of carbon dioxide removal technologies: a critical review
  publication-title: Energy Environ. Sci.
– volume: 11
  start-page: 573
  year: 2019
  end-page: 591
  ident: bib66
  article-title: Pyrogenic carbon capture and storage
  publication-title: Glob. Change Biol. Bioenergy
– volume: 7
  start-page: 349
  year: 2015
  end-page: 361
  ident: bib14
  article-title: Pyrolysis biochar systems, balance between bioenergy and carbon sequestration
  publication-title: Glob. Change Biol. Bioenergy
– year: 2023
  ident: bib53
  article-title: Climate change 2022: impacts, adaptation and vulnerability
  publication-title: Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change
– volume: 90
  start-page: 857
  year: 2015
  end-page: 863
  ident: bib26
  article-title: Hydrogen-rich gas production by the gasification of wet MSW (municipal solid waste) coupled with carbon dioxide capture
  publication-title: Energy
– volume: 2
  start-page: 335
  year: 2011
  end-page: 356
  ident: bib68
  article-title: The feasibility and costs of biochar deployment in the UK
  publication-title: Carbon Manag.
– volume: 108
  year: 2021
  ident: bib15
  article-title: Life cycle assessment of carbon capture and storage/utilization: from current state to future research directions and opportunities
  publication-title: Int. J. Greenh. Gas Control
– volume: 78
  start-page: 857
  year: 2018
  end-page: 870
  ident: bib43
  article-title: Environmental assessment of existing and alternative options for management of municipal solid waste in Brazil
  publication-title: J. Waste Manag.
– volume: 161
  start-page: 225
  year: 2016
  end-page: 255
  ident: bib6
  article-title: Carbon capture by physical adsorption: materials, experimental investigations and numerical modeling and simulations – a review
  publication-title: Appl. Energy
– year: 2006
  ident: bib18
  article-title: 2006 IPCC Guidelines for National Greenhouse Gas Inventories
– year: 2018
  ident: bib25
  publication-title: Life Cycle Assessment: Theory and Parctice
– volume: 3
  start-page: 23
  year: 2016
  ident: bib12
  article-title: Biomass waste carbon materials as adsorbents for CO
  publication-title: Front. Mater.
– volume: 250
  year: 2019
  ident: bib46
  article-title: The impact of biochar on soil carbon sequestration: meta-analytical approach to evaluating environmental and economic advantages
  publication-title: J. Environ. Manag.
– volume: 10
  year: 2023
  ident: bib60
  article-title: How replacing fossil fuels with electrofuels could influence the demand for renewable energy and land area
  publication-title: Smart Energy
– volume: 37
  start-page: 117
  year: 2009
  end-page: 134
  ident: bib1
  article-title: Atmospheric lifetime of fossil fuel carbon dioxide
  publication-title: Annu. Rev. Earth Planet Sci.
– volume: 118
  year: 2022
  ident: bib5
  article-title: A techno-economic assessment of CO
  publication-title: Int. J. Greenh. Gas Control
– volume: 25
  year: 2022
  ident: bib52
  article-title: Current status and pillars of direct air capture technologies
  publication-title: iScience
– year: 2022
  ident: bib62
  article-title: Results of the 2020 and 2021 campaigns of the commercial carbon capture plant at AVR Duiven
  publication-title: 16
– volume: 21
  start-page: 25
  issue: 1
  year: 2011
  ident: 10.1016/j.chemosphere.2024.142478_bib7
  article-title: Are we adapting to climate change? Glob
  publication-title: Environ. Change
  doi: 10.1016/j.gloenvcha.2010.09.012
– volume: 140
  year: 2023
  ident: 10.1016/j.chemosphere.2024.142478_bib48
  article-title: Carbon capture and storage potential of biochar-enriched cementitious systems
  publication-title: Cement Concr. Compos.
  doi: 10.1016/j.cemconcomp.2023.105078
– volume: 40
  start-page: 401
  year: 2015
  ident: 10.1016/j.chemosphere.2024.142478_bib31
  article-title: Biomass and carbon dioxide capture and storage: a review
  publication-title: Int. J. Greenh. Gas Control
  doi: 10.1016/j.ijggc.2015.06.012
– volume: 12
  start-page: 45
  year: 2021
  ident: 10.1016/j.chemosphere.2024.142478_bib8
  article-title: Managing land‐based CDR: BECCS, forests and carbon sequestration
  publication-title: Glob. Policy
  doi: 10.1111/1758-5899.12827
– volume: 8
  start-page: 30
  year: 2014
  ident: 10.1016/j.chemosphere.2024.142478_bib35
  article-title: GHG emission and carbon sequestration potential from MSW of Indian metro cities
  publication-title: Urban Clim.
  doi: 10.1016/j.uclim.2014.03.002
– volume: 26
  start-page: 199
  year: 2020
  ident: 10.1016/j.chemosphere.2024.142478_bib71
  article-title: The use of Biochar to reduce the carbon footprint of cement-based
  publication-title: Procedia Struct. Integr.
  doi: 10.1016/j.prostr.2020.06.023
– start-page: 85
  year: 2019
  ident: 10.1016/j.chemosphere.2024.142478_bib54
  article-title: Status of bioenergy with carbon capture and storage—potential and challenges
– volume: 10
  year: 2023
  ident: 10.1016/j.chemosphere.2024.142478_bib60
  article-title: How replacing fossil fuels with electrofuels could influence the demand for renewable energy and land area
  publication-title: Smart Energy
  doi: 10.1016/j.segy.2023.100107
– volume: 57
  start-page: 10615
  issue: 29
  year: 2023
  ident: 10.1016/j.chemosphere.2024.142478_bib33
  article-title: Impact of biogenic carbon neutrality assumption for achieving a net-zero emission target: insights from a techno-economic analysis
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.3c00644
– volume: 9
  year: 2022
  ident: 10.1016/j.chemosphere.2024.142478_bib57
  article-title: Quantification of landfill gas emissions and energy production potential in Tirupati Municipal solid waste disposal site by LandGEM mathematical model
  publication-title: MethodsX
  doi: 10.1016/j.mex.2022.101869
– volume: 138
  year: 2021
  ident: 10.1016/j.chemosphere.2024.142478_bib13
  article-title: Post-combustion carbon capture
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2020.110490
– volume: 78
  start-page: 857
  year: 2018
  ident: 10.1016/j.chemosphere.2024.142478_bib43
  article-title: Environmental assessment of existing and alternative options for management of municipal solid waste in Brazil
  publication-title: J. Waste Manag.
  doi: 10.1016/j.wasman.2018.07.007
– volume: 24
  start-page: 1
  issue: 1
  year: 2005
  ident: 10.1016/j.chemosphere.2024.142478_bib40
  article-title: Bioenergy crops and carbon sequestration
  publication-title: CRC Crit. Rev. Plant Sci.
  doi: 10.1080/07352680590910393
– year: 2022
  ident: 10.1016/j.chemosphere.2024.142478_bib64
  article-title: Hydrogen production via solid waste gasification with subsequent amine-based carbon dioxide removal using Aspen Plus
  publication-title: Int. J. Hydrogen Energy
– volume: 161
  start-page: 225
  year: 2016
  ident: 10.1016/j.chemosphere.2024.142478_bib6
  article-title: Carbon capture by physical adsorption: materials, experimental investigations and numerical modeling and simulations – a review
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.10.011
– volume: 118
  start-page: 42
  year: 2016
  ident: 10.1016/j.chemosphere.2024.142478_bib58
  article-title: Physico-chemical characterization of biochars from solid municipal waste for use in soil amendment
  publication-title: J. Anal. Appl. Pyrol.
  doi: 10.1016/j.jaap.2015.12.022
– volume: 39
  start-page: 892
  issue: 7
  year: 2021
  ident: 10.1016/j.chemosphere.2024.142478_bib67
  article-title: Influencing household-level waste-sorting and composting behaviour: what works? A systematic review
  publication-title: 1995–2020) of waste management interventions Waste Manag. Res.
– volume: 14
  start-page: 3086
  issue: 5
  year: 2021
  ident: 10.1016/j.chemosphere.2024.142478_bib63
  article-title: Assessment of carbon dioxide removal potential via BECCS in a carbon-neutral Europe
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE00642H
– volume: 250
  year: 2019
  ident: 10.1016/j.chemosphere.2024.142478_bib46
  article-title: The impact of biochar on soil carbon sequestration: meta-analytical approach to evaluating environmental and economic advantages
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2019.109466
– volume: 19
  start-page: 1433
  issue: 2
  year: 2021
  ident: 10.1016/j.chemosphere.2024.142478_bib51
  article-title: Municipal solid waste management and landfilling technologies: a review
  publication-title: Environ. Chem. Lett.
  doi: 10.1007/s10311-020-01100-y
– volume: 15
  start-page: 1093
  issue: 5
  year: 2018
  ident: 10.1016/j.chemosphere.2024.142478_bib59
  article-title: Short-term greenhouse emission lowering effect of biochars from solid organic municipal wastes
  publication-title: Int. J. Environ. Sci.
  doi: 10.1007/s13762-017-1470-4
– volume: 11
  start-page: 573
  issue: 4
  year: 2019
  ident: 10.1016/j.chemosphere.2024.142478_bib66
  article-title: Pyrogenic carbon capture and storage
  publication-title: Glob. Change Biol. Bioenergy
  doi: 10.1111/gcbb.12553
– volume: 146
  year: 2021
  ident: 10.1016/j.chemosphere.2024.142478_bib3
  article-title: Potential and challenges of bioenergy with carbon capture and storage as a carbon-negative energy source: a review
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2021.105968
– volume: 350
  year: 2022
  ident: 10.1016/j.chemosphere.2024.142478_bib45
  article-title: Application potential analysis of biochar as a carbon capture material in cementitious composites: a review
  publication-title: Construct. Build. Mater.
  doi: 10.1016/j.conbuildmat.2022.128715
– volume: 161
  year: 2022
  ident: 10.1016/j.chemosphere.2024.142478_bib76
  article-title: Land use for bioenergy: synergies and trade-offs between sustainable development goals
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2022.112409
– volume: 19
  start-page: 473
  issue: 1
  year: 2017
  ident: 10.1016/j.chemosphere.2024.142478_bib44
  article-title: Effect of organic fraction of municipal solid waste (OFMSW)-based biochar on organic carbon mineralization in a dry land soil
  publication-title: J. Mater. Cycles Waste Manag.
  doi: 10.1007/s10163-015-0447-y
– start-page: 669
  year: 2020
  ident: 10.1016/j.chemosphere.2024.142478_bib4
  article-title: Carbon capture and storage
– volume: 11
  start-page: 1062
  issue: 5
  year: 2018
  ident: 10.1016/j.chemosphere.2024.142478_bib9
  article-title: Carbon capture and storage (CCS): the way forward
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE02342A
– volume: 270
  start-page: 627
  year: 2018
  ident: 10.1016/j.chemosphere.2024.142478_bib41
  article-title: An overview of the effect of pyrolysis process parameters on biochar stability
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2018.09.030
– volume: 37
  start-page: 117
  issue: 1
  year: 2009
  ident: 10.1016/j.chemosphere.2024.142478_bib1
  article-title: Atmospheric lifetime of fossil fuel carbon dioxide
  publication-title: Annu. Rev. Earth Planet Sci.
  doi: 10.1146/annurev.earth.031208.100206
– volume: 22
  start-page: 1315
  issue: 3
  year: 2016
  ident: 10.1016/j.chemosphere.2024.142478_bib69
  article-title: Soil carbon sequestration and biochar as negative emission technologies
  publication-title: Global Change Biol.
  doi: 10.1111/gcb.13178
– volume: 85
  start-page: 109
  year: 2016
  ident: 10.1016/j.chemosphere.2024.142478_bib22
  article-title: Environmental analysis of bio-CCS in an integrated oxy-fuel combustion power plant with CO2 transport and storage
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2015.12.008
– start-page: 251
  year: 2021
  ident: 10.1016/j.chemosphere.2024.142478_bib23
  article-title: Biochar: a carbon negative technology for combating climate change
– volume: 7
  start-page: 349
  issue: 2
  year: 2015
  ident: 10.1016/j.chemosphere.2024.142478_bib14
  article-title: Pyrolysis biochar systems, balance between bioenergy and carbon sequestration
  publication-title: Glob. Change Biol. Bioenergy
  doi: 10.1111/gcbb.12137
– volume: 273
  year: 2022
  ident: 10.1016/j.chemosphere.2024.142478_bib80
  article-title: Life cycle assessment of co-firing coal and wood waste for bio-energy with carbon capture and storage – new South Wales study
  publication-title: Energy Convers. Manag.
– volume: 77
  start-page: 50
  year: 2018
  ident: 10.1016/j.chemosphere.2024.142478_bib50
  article-title: Greenhouse gas emissions of food waste disposal options for UK retailers
  publication-title: Food Pol.
  doi: 10.1016/j.foodpol.2018.04.003
– volume: 43
  start-page: 1336
  issue: 7
  year: 2020
  ident: 10.1016/j.chemosphere.2024.142478_bib28
  article-title: Compost from municipal solid wastes as a source of biochar for CO2 capture
  publication-title: Chem. Eng. Technol.
  doi: 10.1002/ceat.201900108
– volume: 144
  start-page: 122
  year: 2016
  ident: 10.1016/j.chemosphere.2024.142478_bib85
  article-title: Stability, nutrient availability and hydrophobicity of biochars derived from manure, crop residues, and municipal solid waste for their use as soil amendments
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2015.08.046
– volume: 252
  year: 2022
  ident: 10.1016/j.chemosphere.2024.142478_bib77
  article-title: Novel carbon-negative methane production via integrating anaerobic digestion and pyrolysis of organic fraction of municipal solid waste
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2021.115042
– year: 2022
  ident: 10.1016/j.chemosphere.2024.142478_bib62
  article-title: Results of the 2020 and 2021 campaigns of the commercial carbon capture plant at AVR Duiven
  publication-title: 16th Proceed. Greenh. Gas Control Technol. Conf.
– volume: 2
  start-page: 335
  issue: 3
  year: 2011
  ident: 10.1016/j.chemosphere.2024.142478_bib68
  article-title: The feasibility and costs of biochar deployment in the UK
  publication-title: Carbon Manag.
  doi: 10.4155/cmt.11.22
– volume: 22
  start-page: 5
  issue: 1
  year: 2020
  ident: 10.1016/j.chemosphere.2024.142478_bib74
  article-title: Biochar mines: panacea to climate change and energy crisis? Clean
  publication-title: Technol. Environ.
– volume: 183
  year: 2023
  ident: 10.1016/j.chemosphere.2024.142478_bib16
  article-title: Life cycle assessment of bioenergy with carbon capture and storage systems: critical review of life cycle inventories
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2023.113415
– volume: 207
  year: 2022
  ident: 10.1016/j.chemosphere.2024.142478_bib79
  article-title: Life cycle assessment of combustion-based electricity generation technologies integrated with carbon capture and storage: a review
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2021.112219
– volume: 12
  start-page: 4
  issue: 1
  year: 2018
  ident: 10.1016/j.chemosphere.2024.142478_bib75
  article-title: The economic impacts of climate change
  publication-title: Rev. Environ. Econ. Pol.
  doi: 10.1093/reep/rex027
– volume: 8
  start-page: 253
  issue: 4
  year: 2021
  ident: 10.1016/j.chemosphere.2024.142478_bib72
  article-title: Decarbonizing industry via BECCS: promising sectors, challenges, and techno-economic limits of negative emissions
  publication-title: Curr. Sustain. Renew. Energy Rep.
– year: 2018
  ident: 10.1016/j.chemosphere.2024.142478_bib29
– year: 2023
  ident: 10.1016/j.chemosphere.2024.142478_bib53
  article-title: Climate change 2022: impacts, adaptation and vulnerability
– volume: 32
  start-page: 283
  issue: 2
  year: 2022
  ident: 10.1016/j.chemosphere.2024.142478_bib65
  article-title: Carbon potentials of different biochars derived from municipal solid waste in a saline soil
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(21)60073-5
– volume: 198
  year: 2020
  ident: 10.1016/j.chemosphere.2024.142478_bib81
  article-title: Waste-to-energy technology integrated with carbon capture–Challenges and opportunities
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117352
– volume: 27
  start-page: 1047
  year: 2021
  ident: 10.1016/j.chemosphere.2024.142478_bib2
  article-title: Carbon sequestration and storage in the built environment
  publication-title: Sustain. Prod. Consum.
  doi: 10.1016/j.spc.2021.02.028
– volume: 13
  year: 2023
  ident: 10.1016/j.chemosphere.2024.142478_bib42
  article-title: Physicochemical properties and applications of biochars derived from municipal solid waste: a review
  publication-title: Environ. Adv.
  doi: 10.1016/j.envadv.2023.100395
– volume: 3
  start-page: 23
  year: 2016
  ident: 10.1016/j.chemosphere.2024.142478_bib12
  article-title: Biomass waste carbon materials as adsorbents for CO2 capture under post-combustion conditions
  publication-title: Front. Mater.
  doi: 10.3389/fmats.2016.00023
– volume: 15
  start-page: 79
  year: 2015
  ident: 10.1016/j.chemosphere.2024.142478_bib36
  article-title: Carbon sequestration in soil
  publication-title: Curr. Opin. Environ. Sustain.
  doi: 10.1016/j.cosust.2015.09.002
– volume: 108
  year: 2021
  ident: 10.1016/j.chemosphere.2024.142478_bib15
  article-title: Life cycle assessment of carbon capture and storage/utilization: from current state to future research directions and opportunities
  publication-title: Int. J. Greenh. Gas Control
  doi: 10.1016/j.ijggc.2021.103309
– volume: 114
  start-page: 6044
  year: 2017
  ident: 10.1016/j.chemosphere.2024.142478_bib55
  article-title: A sustainability framework for bioenergy with carbon capture and storage (BECCS) technologies
  publication-title: Energy Proc.
  doi: 10.1016/j.egypro.2017.03.1741
– volume: 4
  start-page: 250
  issue: 3
  year: 2018
  ident: 10.1016/j.chemosphere.2024.142478_bib30
  article-title: The effects of carbon dioxide removal on the carbon cycle
  publication-title: Curr. Clim. Change Rep.
  doi: 10.1007/s40641-018-0104-3
– volume: 290
  start-page: 291
  year: 2000
  ident: 10.1016/j.chemosphere.2024.142478_bib19
  article-title: The global carbon cycle: a test of our knowledge of earth as a system
  publication-title: Science
  doi: 10.1126/science.290.5490.291
– volume: 84
  year: 2022
  ident: 10.1016/j.chemosphere.2024.142478_bib32
  article-title: Carbon sequestration and storage potential of urban residential environment – a review
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2022.104027
– volume: 5
  start-page: 65
  issue: 1
  year: 2023
  ident: 10.1016/j.chemosphere.2024.142478_bib39
  article-title: Biomass residue to carbon dioxide removal: quantifying the global impact of biochar
  publication-title: Biochar
  doi: 10.1007/s42773-023-00258-2
– volume: 5
  start-page: 1305
  issue: 6
  year: 2021
  ident: 10.1016/j.chemosphere.2024.142478_bib20
  article-title: Decarbonizing cement production
  publication-title: Joule
  doi: 10.1016/j.joule.2021.04.011
– volume: 1
  start-page: 405
  issue: 4
  year: 2019
  ident: 10.1016/j.chemosphere.2024.142478_bib21
  article-title: Direct air carbon capture and sequestration: how it works and how it could contribute to climate-change mitigation
  publication-title: One Earth
  doi: 10.1016/j.oneear.2019.11.006
– volume: 25
  issue: 4
  year: 2022
  ident: 10.1016/j.chemosphere.2024.142478_bib52
  article-title: Current status and pillars of direct air capture technologies
  publication-title: iScience
  doi: 10.1016/j.isci.2022.103990
– year: 2023
  ident: 10.1016/j.chemosphere.2024.142478_bib61
  article-title: Sector by sector: where do global greenhouse gas emissions come from?
– volume: 225
  start-page: 1079
  year: 2019
  ident: 10.1016/j.chemosphere.2024.142478_bib27
  article-title: Integrated municipal solid waste management scheme of Hong Kong: a comprehensive analysis in terms of global warming potential and energy use
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.04.034
– year: 2022
  ident: 10.1016/j.chemosphere.2024.142478_bib70
  article-title: Assessing the negative carbon emissions potential from the waste-to-energy sector in Europe
  publication-title: SSRN Electron. J.
  doi: 10.2139/ssrn.4286042
– volume: 166
  start-page: 335
  year: 2017
  ident: 10.1016/j.chemosphere.2024.142478_bib38
  article-title: Evaluation of landfill gas emissions from municipal solid waste landfills for the life-cycle analysis of waste-to-energy pathways
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2017.08.016
– volume: 224
  year: 2020
  ident: 10.1016/j.chemosphere.2024.142478_bib47
  article-title: Is aquatic bioenergy with carbon capture and storage a sustainable negative emission technology? Insights from a spatially explicit environmental life-cycle assessment
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2020.113300
– volume: 118
  year: 2022
  ident: 10.1016/j.chemosphere.2024.142478_bib5
  article-title: A techno-economic assessment of CO2 capture in biomass and waste-fired combined heat and power plants – a Swedish case study
  publication-title: Int. J. Greenh. Gas Control
  doi: 10.1016/j.ijggc.2022.103684
– volume: 23
  start-page: 6603
  year: 2021
  ident: 10.1016/j.chemosphere.2024.142478_bib84
  article-title: A review of municipal solid waste in China: characteristics, compositions, influential factors and treatment technologies
  publication-title: Environ. Dev. Sustain.
  doi: 10.1007/s10668-020-00959-9
– volume: 126
  start-page: 50
  year: 2017
  ident: 10.1016/j.chemosphere.2024.142478_bib37
  article-title: Norwegian waste-to-energy: climate change, circular economy and carbon capture and storage
  publication-title: Resour. Conserv. Recycl.
  doi: 10.1016/j.resconrec.2017.07.025
– volume: 13
  start-page: 1346
  issue: 9
  year: 2021
  ident: 10.1016/j.chemosphere.2024.142478_bib11
  article-title: Bioenergy for climate change mitigation: scale and sustainability
  publication-title: Glob. Change Biol. Bioenergy
  doi: 10.1111/gcbb.12863
– volume: 619–620
  start-page: 419
  year: 2018
  ident: 10.1016/j.chemosphere.2024.142478_bib24
  article-title: Application of biochar from food and wood waste as green admixture for cement mortar
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.11.044
– volume: 152
  year: 2021
  ident: 10.1016/j.chemosphere.2024.142478_bib34
  article-title: Bioenergy with carbon capture and utilization: a review on the potential deployment towards a European circular bioeconomy
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2021.111641
– volume: 90
  start-page: 857
  year: 2015
  ident: 10.1016/j.chemosphere.2024.142478_bib26
  article-title: Hydrogen-rich gas production by the gasification of wet MSW (municipal solid waste) coupled with carbon dioxide capture
  publication-title: Energy
  doi: 10.1016/j.energy.2015.07.122
– year: 2018
  ident: 10.1016/j.chemosphere.2024.142478_bib25
– volume: 22–23
  year: 2022
  ident: 10.1016/j.chemosphere.2024.142478_bib17
  article-title: Life cycle assessment of BECCS systems: critical review of life cycle inventories
  publication-title: 16th Proceed. Greenh. Gas Control Technol. Conf.
– volume: 111
  year: 2022
  ident: 10.1016/j.chemosphere.2024.142478_bib82
  article-title: Is incineration repressing recycling?
  publication-title: J. Environ. Econ. Manag.
– start-page: 273
  year: 2019
  ident: 10.1016/j.chemosphere.2024.142478_bib49
  article-title: Bioenergy with carbon capture and storage in a future world
– volume: 191
  start-page: 131
  issue: 3
  year: 2019
  ident: 10.1016/j.chemosphere.2024.142478_bib83
  article-title: Life cycle assessment for municipal solid waste management: a case study from Ahvaz, Iran
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-019-7273-y
– volume: 14
  start-page: 1701
  year: 2021
  ident: 10.1016/j.chemosphere.2024.142478_bib73
  article-title: Life cycle assessment of carbon dioxide removal technologies: a critical review
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE03757E
– volume: 252
  year: 2022
  ident: 10.1016/j.chemosphere.2024.142478_bib78
  article-title: Renewable hydrogen production from the organic fraction of municipal solid waste through a novel carbon-negative process concept
  publication-title: Energy
  doi: 10.1016/j.energy.2022.124056
– year: 2006
  ident: 10.1016/j.chemosphere.2024.142478_bib18
– volume: 68
  start-page: 1
  year: 2018
  ident: 10.1016/j.chemosphere.2024.142478_bib56
  article-title: Potential for using municipal solid waste as a resource for bioenergy with carbon capture and storage (BECCS)
  publication-title: Int. J. Greenh. Gas Control
  doi: 10.1016/j.ijggc.2017.11.007
– volume: 7
  start-page: 527
  issue: 4
  year: 2017
  ident: 10.1016/j.chemosphere.2024.142478_bib10
  article-title: Bioenergy and carbon capture with storage (BECCS): the prospects and challenges of an emerging climate policy response
  publication-title: J. Environ. Stud. Sci.
  doi: 10.1007/s13412-017-0445-6
SSID ssj0001659
Score 2.4504366
SecondaryResourceType review_article
Snippet Effective municipal solid waste (MSW) management is a crucial component for sustainable cities, as inefficient waste disposal contributes to the release of...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 142478
SubjectTerms biochar
bioenergy
carbon
Carbon Dioxide
Carbon Sequestration
Charcoal - chemistry
Circular economy
Cities
Climate Change
energy
energy crops
energy recovery
feedstocks
fossil fuels
Greenhouse Gases - analysis
greenhouses
life cycle assessment
municipal solid waste
Municipal solid waste (MSW)
Refuse Disposal - methods
Solid Waste - analysis
Sustainability
Urban ecosystems
waste disposal
Waste Management - methods
Title Simultaneous achievement of energy recovery and carbon sequestration through municipal solid waste management: A review
URI https://dx.doi.org/10.1016/j.chemosphere.2024.142478
https://www.ncbi.nlm.nih.gov/pubmed/38815817
https://www.proquest.com/docview/3063458887
https://www.proquest.com/docview/3153652692
Volume 361
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB6SDX1cSps-sn0EBXp1YsuSLJVeliVh29Jc2kBuQpJlcGm8S7oh5NLf3hnL3rbQlkCPNh4sNKN5oO-bAXgtXRWjrl3mqpBnghchcwofjdA-BBN47Js9fzxVizPx_lyeb8F85MIQrHLw_cmn9956eHM07ObRqm2J40vZCCYQVCJgVbINO7w0Sk5gZ_buw-J045ALJVMWLGRGAnfh4CfMC7fmYvmNKPzUNJOLQ6J-0dC1P4epv6WhfTg6eQgPhjySzdJSH8FW7Hbh3nwc37YLd477ftQ3j-H6U0uwQddFrPIZgSdj3yR8zZYNiz33j1FdjEZ9w1xXs-Au_bJjPcp6bKvLhoE-rKeTtCv8N1ptW7Nrh3bCLjYomjdsxhIf5gmcnRx_ni-yYd5CFkou11kTMF-Redn4PFRRRVUETK60V3nIa7rB8430gZfeFQ7DvnHB5I1ystaiFh5P81OYdMsu7gGTTVWbuvHGhCiE8zp33JtchJKu_ao4BT1urw1DM3KaifHVjqizL_YXzVjSjE2amQLfiK5SR47bCL0ddWh_My-LkeM24gej3i2qke5UktIsVlwlkX119Y9vMKoomuTOp_AsGc1m5aXWhdRF9fz_FvgC7tNTQia-hMn68iq-wmxp7fdh-_B7sT-ciR-IUBh7
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7SLW16KW36yPapQK9O_JBsufQSlg3bZncvSSA3IckyuDTeJdkS9tLf3hnJ3jTQlECPfggLzVjzDfq-GYBPQhfOyUpHurBxxNPERjrHy5JLY21pU-eLPc_m-eSMfzsX51sw6rUwRKvs9v6wp_vdurtz0K3mwbJpSONLaAQBBKUImJU8gIdcZAXx-vZ_3fA8klwEDMxFRK8_hr0bkhcuzMXiigT8VDIz5fsk_KKWa38PUneBUB-Mjp7B0w5FssMw0eew5dod2B71zdt24NHYV6Nev4Drk4ZIg7p1mOMzok46XyJ8xRY1c175xygrRpdeM91WzOpLs2iZ51j3RXVZ186HeTFJs8Rvo882FbvW6CXsYsOh-cwOWVDDvISzo_HpaBJ13RYim6ViFdUW0YqIs9rEtnC5yxOL0EqaPLZxRed3phbGppnRicagX2pbxnWuRSV5xQ3-y69g0C5atwtM1EVVVrUpS-s410bGOjVlzG1Gh36FG4Lsl1fZrhQ5dcT4oXrO2Xf1h2UUWUYFywwh3Qxdhnoc9xn0pbehuuVcCuPGfYbv9XZXaEY6UQlGU5hvZST1lcU_3sGYklMf93QIr4PTbGaeSZkImRRv_m-CH2F7cjqbqunX-fFbeEJPAkfxHQxWlz_de8RNK_PB_xe_AfJhGUY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simultaneous+achievement+of+energy+recovery+and+carbon+sequestration+through+municipal+solid+waste+management%3A+A+review&rft.jtitle=Chemosphere+%28Oxford%29&rft.au=Salvador%2C+Ruben+W.&rft.au=Doong%2C+Ruey-An&rft.date=2024-08-01&rft.issn=0045-6535&rft.volume=361&rft.spage=142478&rft_id=info:doi/10.1016%2Fj.chemosphere.2024.142478&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_chemosphere_2024_142478
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-6535&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-6535&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-6535&client=summon